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Abstract. In this paper we consider numerical solutions of the diffuse interface model
with Peng-Robinson equation of state for the multi-component two-phase fluid sys-
tem, which describes real states of hydrocarbon fluids in petroleum industry. A major
challenge is to develop appropriate temporal discretizations to overcome the strong
nonlinearity of the source term and preserve the energy dissipation law in the discrete
sense. Efficient first and second order time stepping schemes are designed based on
the “Invariant Energy Quadratization” approach and the stabilized method. The re-
sulting temporal semi-discretizations by both schemes lead to linear systems that are
symmetric and positive definite at each time step, and their unconditional energy sta-
bilities are rigorously proven. Numerical experiments are presented to demonstrate
accuracy and stability of the proposed schemes.
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1 Introduction

Many problems in the fields of science and engineering, particularly in materials science
and fluid dynamics, involve flows with multiple constitutive components [11, 22, 28, 29].
A typical well-known application is the subsurface gas and oil reservoir, which contains
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gas phase, oil phase and water phase, together with the solid phase [9]. From mathe-
matical modeling and numerical algorithmic points of view, it is a challenge to perform
numerical simulations of multiphase flows and study interfaces between phases, due to
inherent nonlinearities, topological changes, and complexities of dealing with unknown
moving interfaces.

There are many approaches to categorize the moving interfaces. The first method
to simulate multiphase and multi-component flows is interface tracking (sharp inter-
face modeling [24], front-tracking [10], immersed boundary [27]), and the interface is
described as a zero-thickness two-dimensional entity. This approach can successfully
predict the shape and dynamics of the interface, assuming that the interface tension is
given. However, it can not provide information within the interface itself. The second
method is the phase field model (interface capturing, diffuse interface theory) to simulate
multiphase and multi-component flows [1,2,4,5,21,23], which is an increasingly popular
choice for modeling the motion of multiphase and multi-component fluids. In the phase
field model, a conserved order parameter such as a mass concentration that varies con-
tinuously over thin interfacial layers is introduced, and the order parameter is mostly
uniform in the bulk phases. Based on this idea, sharp fluid interfaces are replaced by
thin but nonzero thickness transition regions where the interfacial forces are smoothly
distributed. The free interface can be automatically tracked without imposing any math-
ematical conditions on the moving interface. One advantage of the phase field model is
that the governing system of equations in the model can be derived from the variational
principle. Moreover, the phase field model usually leads to well-posed nonlinear systems
that satisfy the energy dissipation law. Therefore, this model has become a well-known
simulation tool to resolve the motion of free interfaces in multiple components, and has
also been successfully applied to many problems in the fields of science and industry
(see [12, 13, 30, 31] and the references cited therein).

In order to study the interface between phases, the development of energy stable
schemes for phase field model is an important issue. There are several popular numer-
ical approaches to construct energy stable schemes. The first approach is the convex
splitting method, which is introduced by Elliott and Stuart [3, 6] and popularized by
Eyre [7]. The main idea is assuming the free energy density can be split as the differ-
ence of two convex functions, where the convex part is treated implicitly and the concave
part is treated explicitly. Although the convex splitting method is unconditionally energy
stable and uniquely solvable, it reduces to a nonlinear system at each time step and the
implementation is complicated and the computational cost is high. The second widely
used approach is the stabilized method which treats the nonlinear terms explicitly, and
adds an artificial stabilization term to overcome strict temporal step constraint [39, 40].
This method is also energy stable and produces a linear system at each time step which is
easy to implement. However, it is not easy to find the stabilization term for all problems,
and it can not be unconditionally energy stable for second order scheme.

In this paper, we focus on the diffuse interface modeling of multi-component and
multiphase fluid systems, and consider the energy stable schemes for a more realistic
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model with Peng-Robinson equation of state (EOS). The Peng-Robinson EOS as a dif-
fuse interface model to describe the real states of hydrocarbon fluids in the petroleum
industry has become one of the most useful and successfully applied models for thermo-
dynamic and volumetric calculations in both industrial and academic fields [20]. It has
been considered as one of the best two constants third degree equations of state appli-
cable to vapor-liquid equilibria, and volumetric and thermodynamic properties calcula-
tions for pure substances and mixtures. The structure of its energy functional is highly
nonlinear and more complicated than many conventional phase field models. Therefore,
the development of accurate, efficient, easy-to-implement, and energy stable numerical
schemes is a very important and challenging issue. Many efforts have been devoted to
designing numerical schemes with energy stability. In the work by Qiao and Sun [23],
an efficient scheme for single-component systems of Peng-Robinson EOS is developed.
The authors established a clean convex splitting of the total Helmholtz free energy and
treated the convex and concave parts separately. However, it is not straightforward to ex-
tend the convex splitting method from single-component to multi-component systems.
Fan and his collaborators designed a componentwise convex splitting scheme for dif-
fuse interface models with Peng-Robinson EOS in [8]. Kou and Sun proposed a modified
Newton’s method to solve the nonlinear model and proved the maximum principle of
the molar density with multi-component in [14]. Some recent developments in numeri-
cal algorithms for the multi-component diffuse interface model with Peng-Robinson EOS
can be referenced to [13, 15–18].

In this work, we are devoted to designing efficient linear unconditionally energy sta-
ble numerical schemes to solve the multi-component diffuse interface model with Peng-
Robinson EOS. Combining the stabilized method, the “Invariant Energy Quadratization”
(IEQ) approach, which is a novel method and applicable to a large class of free energies,
is adopted to develop the numerical schemes for Peng-Robinson EOS. Yang and his col-
laborators designed the IEQ approach by generalizing the Lagrange multiplier approach,
and many phase field models have been solved by this approach [32–38]. The main idea
of the IEQ method is to transform the free energy into a quadratic form of a set of aux-
iliary variables. Then, a new but equivalent system is obtained, which still retains the
energy dissipation law in terms of the auxiliary variables. This approach enjoys the fol-
lowing advantages: (i) all nonlinear terms in the new system can then be discretized by
semi-explicit schemes in time to produce a linear system at each time step, thus it is very
efficient; (ii) the energy dissipation laws in the discrete sense are also preserved; (iii) it can
be easily extended to higher-order schemes. Based on the IEQ approach, we have suc-
cessfully designed the first and second order linear schemes for single-component diffuse
interface model with Peng-Robinson EOS, and rigorously proved the unconditional en-
ergy stabilities [19]. Recently, Shen and his collaborators developed the scalar auxiliary
variable (SAV) approach which is built upon the IEQ method. It enjoys all advantages
of the IEQ approach but overcomes most of its shortcomings [25, 26]. In a future work,
we shall design the unconditionally energy stable schemes for the Peng-Robinson EOS
by applying the SAV approach.
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The rest of this paper is organized as follows. In Section 2, the model of multi-
component Peng-Robinson EOS is presented, and a linear transformation is introduced
to decouple the system. In Section 3 we develop numerical schemes with respective first
and second orders for time discretization of the problem, and then prove well-posedness
of the resulting linear systems as well as the unconditional energy stabilities. Various 2D
and 3D numerical simulations are presented to validate the proposed numerical schemes
in Section 4. Finally some concluding remarks are given in Section 5.

2 Mathematical model of fluid systems with multi-component

diffuse interface

A fluid system consisting of a fixed number of species on a fixed domain with a spatially
uniform-distributed given temperature is considered. The total Helmholtz free energy
achieves a global minimum at the equilibrium state, according to the second law of ther-
modynamics. We are interested in the equilibrium state of the system in this work.

We denote by M the number of components in the fluid mixture and ni the molar
concentration of the component i. Let n=(n1,n2,··· ,nM)T be the molar concentrations of
all components and n=n1+n2+···+nM be the molar density of the fluid. According to
the gradient theory, one of the most popular thermodynamic theories for inhomogeneous
fluid, the total Helmholtz energy density has two contributions, one from the thermody-
namic theory of homogeneous fluids and the other one from inhomogeneity of the fluid.
That is

F(n)=
∫

Ω
f (n;T)dx=F0(n;T,Ω)+F∇(n;T,Ω)=

∫

Ω
f0(n;T)dx+

∫

Ω
f∇(n;T)dx, (2.1)

where T is the temperature, F0(n;T,Ω) is the contribution of Helmholtz free energy
density from the homogeneous fluid theory, and the F∇(n;T,Ω) is the contribution of
Helmholtz free energy density from the concentration gradient. The inhomogeneous
term or the gradient contribution f∇(n;T) can be modeled by a simple quadratic relation

f∇(n;T)=
1

2

M

∑
i,j=1

cij∇ni ·∇nj,

where cij is the influence parameter. The parameter cij is a function of molar concentra-
tions and temperature. The influence parameter depends on molar concentrations only
weakly, thus it is often justified to assume that cij is a constant for a given fixed tempera-
ture T.

Since the molar concentration n at equilibrium minimizes the total Helmholtz free
energy F for a closed and conserved fluid system with temperature T, the mathematical
statement of the problem is formulated as follows: find n∗∈H satisfying

F(n∗)=min
n∈H

F(n), (2.2)
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subject to the constraint

∫

Ω
ndx=N, (2.3)

where H be a space of functions with certain regularity, N=(N1,N2,··· ,NM)T is a given
constant vector representing the fixed amount of material mass for each component in
the system.

2.1 Peng-Robinson equation of state

The Peng-Robinson equation of state is the most popular model for computing the fluid
equilibrium property of petroleum fluids in reservoir engineering and oil industries,
since its publication in 1976. We briefly review the Peng-Robinson EOS in this part. The
Helmholtz free energy f0(n;T) of a homogeneous fluid in this model is given by

f0(n;T)= f01(n)+ f02(n) (2.4)

with

f01(n)=RT
M

∑
i=1

ni(lnni−1)−nRT ln(1−bn), (2.5)

f02(n)=
a(T)n

2
√

2b
ln
(1+(1−

√
2)bn

1+(1+
√

2)bn

)

, (2.6)

where T is the temperature of the mixture and R is the universal gas constant and n=

∑
M
i=1ni. The two parameters, energy parameter a= a(T) which depends on temperature

T, and the co-volume parameter b, are utilized in the Peng-Robinson EOS. We refer to the
“Appendix” for details of these parameters.

2.2 Transformed system

Consider a fluid mixture composed of M (M≥2) components. In order to decouple the
relations between different components, a linear transformation is introduced, and as a
result, the models are simplified.

The crossed influence parameters cij are generally described as the modified geomet-
ric mean of the pure component influence parameters ci and cj by

cij =(1−βij)
√

cicj, (2.7)

where the parameters βij are binary interaction coefficients for the influence parame-

ters. The influence parameter matrix is denoted by C= (cij)
M
i,j=1. In this work, suitable

parameters βij are chosen such that C is symmetric positive definite. Thus there exists

QTQ=QQT = I such that C=QΛQT, where Λ=diag(λ1,··· ,λM) and λi (i=1,2,··· ,M)
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denote the real positive eigenvalues of C. We can define a transformation matrix Q =
[q1,··· ,qM] where qi (i=1,2,··· ,M) are orthonormal eigenvectors corresponding to eigen-
values λi (i=1,2,··· ,M). Applying this orthonormal transformation, we define a vector
Φ=[φ1,··· ,φM]T as

Φ=QTn, n=QΦ. (2.8)

Denote g(Φ)= f0(n)= f0(QΦ). Using the relations given by (2.8), we have

M

∑
i,j=1

cij∇ni ·∇nj =
M

∑
i=1

λi|∇φi|2. (2.9)

The free energy then can be represented as

E(φ)=
∫

Ω

(1

2

M

∑
i=1

λi|∇φi|2+g(φ))
)

dx. (2.10)

Based on the variational approach, we have

∂φi

∂t
=−δE(φ)

δφi
=λi∆φi−

∂g(φ)

∂φi
, i=1,2,··· ,M, (2.11)

which is equivalent to

∂φi

∂t
=(λi∆φi−κiφi)−

(

δg(φ)

δφi
−κiφi

)

(2.12)

after introducing stabilizer κi which satisfies κi≥ 1
2 max{0,maxφ

∂2g(φ)
∂φ2

i

}. Correspondingly,

the free energy (2.10) can be rewritten as

E(φ)=
∫

Ω

{1

2

M

∑
i=1

(λi|∇φi|2+κiφ
2
i )+ g̃(φ)

}

dx, (2.13)

where g̃(φ)= g(φ)− 1
2 ∑

M
i=1κiφ

2
i .

Assuming that function g̃(φ) is bounded from below, that is, g̃(φ)≥−B0 for some
constant B0≥0. The free energy can be reformed as

E(φ)=
∫

Ω

{1

2

M

∑
i=1

(λi|∇φi|2+κiφ
2
i )+

(

√

g̃(φ)+B0

)2

−B0

}

dx. (2.14)

Since we only add a zero term B0−B0 therein, we emphasize that the free energy is in-
variant.
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By introducing the auxiliary variables W =
√

g̃(φ)+B0 and ψi =
∫

Ω
φidx−Ñi (i =

1,2,··· ,M), the modified free energy functional can be expressed as the following func-
tional

E(φ,W,ψ)=
∫

Ω

{1

2

M

∑
i=1

(λi|∇φi|2+κiφ
2
i )+W2−B0

}

dx+
1

2

M

∑
i=1

Piψ
2
i , (2.15)

where Ñi =qT
i N and Pi are penalty parameters to retain mass constraint for all compo-

nents.
Based on the variational approach, we have

∂φi

∂t
=−δE(φ,W,ψ)

δφi
=λi∆φi−κiφi−W(φ)H(φi)−Piψi, (2.16)

where H(φi)=
∂g̃(φ)

∂φi
−κiφi√

g̃(φ)+B0

. Then, we obtain a new, but equivalent partial differential system

as follows:


































∂φi

∂t
=λi∆φi−κiφi−W(φ)H(φi)−Piψi, (2.17)

∂W

∂t
=

1

2

M

∑
i=1

H(φi)
∂φi

∂t
, (2.18)

∂ψi

∂t
=
∫

Ω

∂φi

∂t
dx, (2.19)

with the initial conditions

φi|(t=0)=φi0, W|(t=0)=
√

g̃(φi0)+B0, ψi|(t=0)=0, (2.20)

for i=1,2,··· ,M.
Denoted by (h(x),g(x)) =

∫

Ω
h(x)g(x)dx the L2-inner product of two arbitrary func-

tions h(x) and g(x), and ‖g‖=
√

(g,g) the L2-norm of any function g(x). Taking the

L2-inner product of (2.17) with
∂φi

∂t , of (2.18) with W, and taking the simple multiplica-
tion of (2.19) with Piψi, summing them up, we then get the energy dissipation law of the
modified system (2.17)-(2.19) as follows

d

dt
E(φ,W,ψ)=−

M

∑
i=1

∥

∥

∥

∥

∂φi

∂t

∥

∥

∥

∥

2

≤0. (2.21)

In the following, we focus on designing numerical schemes for time stepping of the
transformed system (2.17)-(2.19), that are linear and satisfy discrete energy dissipation
laws.

Remark 2.1. For the regularity relation between n and Φ, we have the following con-
clusion from the property of the linear transformation. If Φ ∈ (Hs(Ω))M (s ≥ 0), then
n∈ (Hs(Ω))M (s≥0), and vice versa.
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3 Linear numerical schemes for time integration

In this section we present linear time stepping schemes of first and second order respec-
tively, to solve the system (2.17)-(2.19). Let us assume a uniform time partition with the
time step size δt.

3.1 First order scheme

Assuming that φk
i , Wk and ψk

i are already known, then we solve φk+1
i , Wk+1 and ψk+1

i
from the following first order temporal semi-discretized system: for i=1,2,··· ,M,







































φk+1
i −φk

i

δt
=λi∆φk+1

i −κiφ
k+1
i −Wk+1H(φk

i )−Piψ
k+1
i , (3.1)

Wk+1−Wk

δt
=

1

2

M

∑
i=1

H(φk
i )

φk+1
i −φk

i

δt
, (3.2)

ψk+1
i −ψk

i

δt
=
∫

Ω

φk+1
i −φk

i

δt
dx. (3.3)

From (3.2) and (3.3), we have

Wk+1=Wk− 1

2

M

∑
i=1

H(φk
i )φ

k
i +

1

2

M

∑
i=1

H(φk
i )φ

k+1
i , AW1+AW2(φ

k+1
i ),

ψk+1
i =ψk

i −
∫

Ω
φk

i dx+
∫

Ω
φk+1

i dx , A3i+A4i(φ
k+1
i ).

Then the system (3.1)-(3.3) can be rewritten as

φk+1
i

δt
−λi∆φk+1

i +κiφ
k+1
i +H(φk

i )AW2(φ
k+1
i )+Pi A4i(φ

k+1
i )

=
φk

i

δt
−H(φk

i )AW1−PiA3i, 1≤ i≤M. (3.4)

The above linear system can be denoted as Aφ=b.

Theorem 3.1. The linear operator A is symmetric positive definite.

Proof. Assuming ρ=[ρ1,ρ2,··· ,ρM]T, we have

(Aφ,ρ)=
1

δt

M

∑
i=1

(φi,ρi)−
M

∑
i=1

λi(∆φi,ρi)+
M

∑
i=1

κi(φi,ρi)+
M

∑
i=1

H(φk
i )(AW2(φi),ρi)

+
M

∑
i=1

Pi(A4i(φi),ρi)
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=
1

δt

M

∑
i=1

(φi,ρi)−
M

∑
i=1

λi(φi,∆ρi)+
M

∑
i=1

κi(ρi,φi)+
M

∑
i=1

H(φk
i )(AW2(ρi),φi)

+
M

∑
i=1

PiA4i(φi)A4i(ρi)

=(Aρ,φ),

and

(Aφ,φ)=
1

δt

M

∑
i=1

(φi,φi)−
M

∑
i=1

λi(∆φi,φi)+
M

∑
i=1

κi(φi,φi)+
M

∑
i=1

H(φk
i )(AW2(φi),φi)

+
M

∑
i=1

Pi(A4i(φi),φi)

=
1

δt

M

∑
i=1

(φi,φi)+
M

∑
i=1

λi(∇φi,∇φi)+
M

∑
i=1

κi(φi,φi)+
1

2

(

M

∑
i=1

H(φk
i )φi,

M

∑
i=1

H(φk
i )φi

)

+
M

∑
i=1

Pi A4i(φi)A4i(φi)

≥ 1

δt

M

∑
i=1

‖φi‖2.

Therefore, the operator A is symmetric positive definite.

Let us define the norm ‖φ‖
A
=
√

(Aφ,φ) for any φ∈L2
per(Ω) and the subset X={φ∈

L2
per(Ω) :‖φ‖

A
<∞}, where L2

per(Ω) denotes the subspace of all functions φ∈L2(Ω) with
periodic or no-flux boundary conditions.

Remark 3.1. It is easy to show that ‖φ‖
A

is a norm for L2
per(Ω) and X is a Hilbert subspace

associated with the norm ‖φ‖
A

. Then the well-posedness of the linear system Aφ=b in
the weak sense comes from the Lax-Milgram theorem, i.e., the linear system (3.4) admits
a unique weak solution in X.

Theorem 3.2. The first order linear scheme (3.1)-(3.3) is unconditionally energy stable, i.e.,
satisfies the following discrete energy dissipation law

Ek+1
1st ≤Ek

1st−
1

δt

M

∑
i=1

‖φk+1
i −φk

i ‖
2
, (3.5)

where

Ek
1st=

1

2

M

∑
i=1

(

λi‖∇φk
i ‖

2
+κi‖φk

i ‖2+Pi(ψ
k
i )

2
)

+||Wk||2. (3.6)
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Proof. By taking the L2-inner product of (3.1) with φk+1
i −φk

i , and summing from i=1 to
M, we have

1

δt

M

∑
i=1

‖φk+1
i −φk

i ‖
2
=

M

∑
i=1

λi

(

∆φk+1
i ,φk+1

i −φk
i

)

−
M

∑
i=1

κi

(

φk+1
i ,φk+1

i −φk
i

)

−
M

∑
i=1

(

Wk+1H(φk
i ),φ

k+1
i −φk

i

)

−
M

∑
i=1

Pi

(

ψk+1
i ,φk+1

i −φk
i

)

. (3.7)

By taking the L2-inner product of (3.2) with Wk+1, we have

2
(

Wk+1−Wk,Wk+1
)

=
M

∑
i=1

(

Wk+1H(φk
i ),φ

k+1
i −φk

i

)

. (3.8)

By taking the simple multiplication of (3.3) with Piψ
k+1
i , and summing from i= 1 to M,

we obtain

M

∑
i=1

Pi

(

ψk+1
i −ψk

i

)

ψk+1
i =

M

∑
i=1

Pi

(

ψk+1
i ,φk+1

i −φk
i

)

. (3.9)

Combining (3.7)-(3.9), and applying the identity

2(a−b,a)= |a|2−|b|2+|a−b|2, (3.10)

we obtain

1

2

M

∑
i=1

λi‖∇φk+1
i ‖2+‖Wk+1‖2+

1

2

M

∑
i=1

Pi(ψ
k+1
i )2+

1

2

M

∑
i=1

λi‖∇φk+1
i −∇φk

i ‖2+‖Wk+1−Wk‖2

+
1

2

M

∑
i=1

Pi(ψ
k+1
i −ψk

i )
2+

1

2

M

∑
i=1

κ‖φk+1
i ‖2+

1

2

M

∑
i=1

κ‖φk+1
i −φk

i ‖2

=
1

2

M

∑
i=1

λi‖∇φk
i ‖2+‖Wk‖2+

1

2

M

∑
i=1

Pi(ψ
k
i )

2+
1

2

M

∑
i=1

κ‖φk
i ‖2− 1

δt

M

∑
i=1

‖φk+1
i −φk

i ‖2. (3.11)

Finally, we obtain result (3.5) after dropping some positive terms from Eq. (3.11).

3.2 Second order scheme

The second order time stepping scheme to solve the system (2.17)-(2.19) is developed
based on the second order backward differentiation formulas (BDF2). Assuming that
φk−1

i , Wk−1, ψk−1
i , and φk

i , Wk, ψk
i are already known, then we solve φk+1

i , Wk+1 and ψk+1
i
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from following second order temporal semi-discretized system: for i=1,2,··· ,M,







































3φk+1
i −4φk

i +φk−1
i

2δt
=λi∆φk+1

i −κiφ
k+1
i −Wk+1H(φ∗

i )−Piψ
k+1
i , (3.12)

3Wk+1−4Wk+Wk−1

2δt
=

1

2

M

∑
i=1

H(φ∗
i )

3φk+1
i −4φk

i +φk−1
i

2δt
, (3.13)

3ψk+1
i −4ψk

i +ψk−1
i

2δt
=
∫

Ω

3φk+1
i −4φk

i +φk−1
i

2δt
dx, (3.14)

where φ∗
i =2φk

i −φk−1
i .

For (3.13) and (3.14), we have

Wk+1=
4Wk−Wk−1

3
− 1

2

M

∑
i=1

H(φ∗
i )

4φk
i −φk−1

i

3
+

1

2

M

∑
i=1

H(φ∗
i )φ

k+1
i ,

ψk+1
i =

4ψk
i −ψk−1

i

3
−
∫

Ω

4φk
i −φk−1

i

3
dx+

∫

Ω
φk+1

i dx.

Set

B1=W+− 1

2

M

∑
i=1

H(φ∗
i )φ

+
i , B2(φ)=

1

2

M

∑
i=1

H(φ∗
i )φi,

B3i=ψ+
i −

∫

Ω
φ+

i dx, B4i(φi)=
∫

Ω
φidx,

where S+= 4Sk−Sk−1

3 .
Then, we have the following reduced linear system

3

2δt
φk+1

i −λi∆φk+1
i +κiφ

k+1
i +H(φ∗

i )B2(φ
k+1)+PB4i(φ

k+1
i )

=
1

2δt
(4φk

i −φk−1
i )−H(φ∗

i )B1−PB3i, 1≤ i≤M. (3.15)

The above linear system can be expressed as Âφk+1= b̂, and we need solve for φk+1 from
it.

Theorem 3.3. The linear operator Â is symmetric positive definite.

Remark 3.2. Define ‖φ‖
Â
=
√

(Âφ,φ) for any φ∈L2
per(Ω) and the subset X={φ∈L2

per(Ω):

‖φ‖
Â
<∞}, where L2

per(Ω) denotes the subspace of all functions φ∈L2(Ω) with periodic

or no-flux boundary condition. It is easy to show that ‖φ‖
Â

is a norm for L2
per(Ω) and

X is a Hilbert subspace associated with the norm ‖φ‖
Â

. Then the well-posedness of the

linear system Âφ= b̂ in the weak sense comes from the Lax-Milgram theorem, i.e., the
linear system (3.15) admits a unique weak solution in X.
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Theorem 3.4. The second order linear system (3.12)-(3.14) is unconditionally energy stable,
that is, satisfies the following discrete energy dissipation law

Ek+1,k
BDF2≤Ek,k−1

BDF2−δt
M

∑
i=1

‖3φk+1
i −4φk

i +φk−1
i

2δt
‖2, (3.16)

where

Ek+1,k
BDF2=

1

4

M

∑
i=1

(λi(‖∇φk+1
i ‖2+‖2∇φk+1

i −∇φk
i ‖2)+κi(‖φk+1

i ‖2+‖2φk+1
i −φk

i ‖2)

+Pi((ψ
k+1
i )2+(2ψk+1

i −ψk
i )

2))+
1

2
(‖Wk+1‖2+‖2Wk+1−Wk‖2).

4 Numerical experiments

A two-phase (liquid and gas) binary components fluid mixture is simulated to demon-
strate the accuracy and efficiency of the first and second order linear schemes in this sec-
tion. We consider a mixture of two components, namely isobutane (C4H10) and decane
(C10H22) in the domain Ω=(0,L)d (d=2,3) with L = 2.0E-8 meters. The critical properties
and parameters used to compute parameters in Peng-Robinson EOS for each component
are listed in Table 1.

Table 1: Critical properties and parameters.

Component Tc(K) Pc ω m

C4H10 425.2 3.80 MPa 0.199 0.6708

C10H22 617.7 2.10 MPa 0.484 1.0578

The numerical experiments are presented to illustrate the temporal accuracy of our
numerical schemes. For initial configuration, we first use the case of one single droplet,
that is, the liquid density of the mixture under a saturated pressure condition at the tem-
perature 450K is imposed in a subregion, and the rest of domain is filled with a saturated
gas of the mixture under same temperature (Table 2).

Table 2: Initial densities in liquid and gas phases.

Component Liquid Gas

C4H10 4000 500

C10H22 3000 500
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4.1 Accuracy tests

In order to test the convergence order, starting from a fixed initial configuration obtained
by the first order scheme at time t0=0.5, we perform our simulations on the time interval
t=[0.5,0.6] with refinement time step size ∆t=2.0E−2,1.0E−2,··· ,3.125E−4 for both the
first order (IEQ-1) and the second order (IEQ-BDF2) schemes. We choose the stabilizer
coefficients κi=180, together with a lower bound 1E+12 and use a 256×256 mesh grid in
2D. We compare each simulated solution with the benchmark obtained by each scheme
with δt= 1E-5. The L2 relative errors and convergence rates are listed in Table 3.

Table 3: L2 relative errors and convergence rates in 2D.

Time Step Size IEQ-1 IEQ-BDF2

∆t Error Conv. rate Error Conv. rate

2.0E-2 2.1943E-2 - 1.5156E-2 -

1.0E-2 1.8201E-2 0.27 5.9916E-3 1.34

5.0E-3 1.3570E-2 0.42 1.6472E-3 1.86

2.5E-3 8.9856E-3 0.59 4.4788E-4 1.88

1.25E-3 5.3502E-3 0.75 1.2479E-4 1.84

6.25E-4 2.9414E-3 0.86 3.4321E-5 1.86

3.125E-4 1.5298E-3 0.94 9.1366E-6 1.91

The accuracy in 3D is also tested. The stabilizer coefficient, the low bound and the
mesh grid are chosen as κi = 180, 1E+12 and 128×128×128, respectively. We compare
each simulated solution with the benchmark obtained by each scheme with δt = 1E-5.
The L2 relative errors and convergence rates are listed in Table 4.

From Table 3 and Table 4, it is easy to observe that both the IEQ-1 and IEQ-BDF2
schemes are very stable for all time step sizes, and have almost first and second order
accuracy, respectively. In addition, the second order scheme IEQ-BDF2 gives better accu-
racy than the first order scheme IEQ-1.

Table 4: L2 relative errors and convergence rates in 3D.

Time Step Size IEQ-1 IEQ-BDF2

∆t Error Conv. rate Error Conv. rate

2.0E-2 2.1490E-2 - 1.4738E-2 -

1.0E-2 1.7773E-2 0.27 5.7395E-3 1.36

5.0E-3 1.3205E-2 0.43 1.5698E-3 1.87

2.5E-3 8.7156E-3 0.60 4.3159E-4 1.86

1.25E-3 5.1768E-3 0.75 1.2147E-4 1.83

6.25E-4 2.8416E-3 0.87 3.3630E-5 1.85

3.125E-4 1.4766E-3 0.95 9.0771E-6 1.89
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4.2 Dynamical evolution in 2D

In this section, we investigate the time evolution of the molar density distribution and the
gas-liquid interface in 2D with one droplet and four droplets, respectively. The IEQ-BDF2
scheme with δt=5E-3 is adopted to perform the simulations. The stabilizer coefficients,
the lower bound and the mesh grid are chosen as κi =180, 1E+12 and 256×256, respec-
tively.

4.2.1 One droplet

The liquid density of the mixture (single droplet) is filled in the square subdomain of
( 3L

8 , 5L
8 )2, and a saturate gas of both components is full of the rest of the domain under

the temperature 450K. The simulations of evolution process are shown in Fig. 1 and Fig. 2
at different times (t=0,0.5,1,2,5,10) for both components. We can observe that the shape
of the droplet for the liquid phase is initially square, then corners are rounded and turn-
ing to a circle as system approaching to steady state, and finally the droplet becomes a
perfect circle. This coincides with Fig. 3 where the energy decreasing is significant at
the beginning and slows down as density of each species is distributed uniformly in all
directions and a circular interface is formed, and the mass conservation is well preserved.

Figure 1: Dynamical evolution of single droplet molar density distribution of C4H10 in 2D. The snapshots are
taken at the times t=0,0.5,1,2,5,10, respectively.

4.2.2 Four droplets

Next, we simulate the dynamical evolution of molar density distribution for the case of
having four droplets as initial configuration, that is, the liquid density of the mixture
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Figure 2: Dynamical evolution of single droplet molar density distribution of C10H22 in 2D. The snapshots are
taken at the times t=0,0.5,1,2,5,10, respectively.

Figure 3: Energy and mass evolutions for the single droplet case simulated by IEQ-BDF2 with δt=5E-3.

under a saturated pressure condition at the temperature 450K is imposed in the square
subregion of {( 3L

16 , 7L
16 ),(

9L
16 , 13L

16 )}2, and the rest of domain is filled with a saturated gas of
the mixture under same temperature (Table 2). The simulation of evolution process are
shown in Fig. 4 and Fig. 5. We observe that the shapes of four droplets are initially square,
then four corners are slowly rounded to become circular. Next when the interfaces of
droplets start to touch each other, these four droplets start to merge to form one circle-like
droplet. In Fig. 6 we plot the evolutions of total energy and mass, and again observe that
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Figure 4: Dynamical evolution of four droplets molar density distribution of C4H10 in 2D. The snapshots are
taken at the times t=0,0.5,1,2,5,10, respectively.

Figure 5: Dynamical evolution of four droplets molar density distribution of C10H22 in 2D. The snapshots are
taken at the times t=0,0.5,1,2,5,10, respectively.

the energy decreases monotonically and the mass of each species is accurately maintained
along the time.
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Figure 6: Energy and mass evolutions for the four droplets case simulated by IEQ-BDF2 with δt=5E-3.

4.3 Dynamical evolution in 3D

Some experiments are presented to simulate the dynamics of the molar density distri-
bution in 3D. We adopt the IEQ-BDF2 scheme with δt=5E-3 and a uniform mesh of
128×128×128 grid together with a lower bound 1E+12 and the stabilizer coefficients
κi =180.

4.3.1 Single droplet

The first simulation has a single droplet as the initial condition. The liquid density of the
mixture under a saturated pressure condition at the temperature 450K is imposed in the
cube subregion of ( 3L

8 , 5L
8 )3, and the rest of the cube is filled with a saturated gas of both

components under the same temperature.

Fig. 7 and Fig. 8 present the simulated molar density distribution for both components
in 3D at different times (t= 0,0.5,1,2,5,10) during the evolution, respectively. Similar to
the dynamical behaviors of a single droplet in 2D, we can observe that the droplet finally
forms a sphere and the steady state is reached. The evolutions of the total energy and
the mass are plotted in Fig. 9. We can see that the energy decreases monotonically and
the masses are accurately maintained along the time. Furthermore, there is a quite large
energy decay at the beginning.

4.3.2 Eight droplets

For the initial condition, the liquid density of both components under a saturated
pressure condition at the temperature 450K is imposed in the cube subregion of
{( 3L

16 , 7L
16 ),(

9L
16 , 13L

16 )}3, and the rest of the cube is filled with a saturated gas of the mixture
under the same temperature.

The simulated molar density distributions for the mixture in 3D at different times (t=
0,0.5,1,2,5,10) during the evolution are presented in Fig. 10 and Fig. 11. The eight droplets
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Figure 7: Dynamical evolution of single droplet molar density distribution of C4H10 in 3D. The snapshots are
taken at the times t=0,0.5,1,2,5,10, respectively. In each time panel, the top one represents the isosurface and
the bottom one represents the approximated solution across the three central planes of the 3D cubic domain.

first form to eight separate spheres, then start to merge when their interfaces touch one
another and finally become one bigger sphere in the steady state. The dynamical process
is very consistent with that of the four droplets case in 2D. We present the evolution
of the total energy and the mass with respect to the time in Fig. 12, and observe again
the energy monotonically decays and approaches an equilibrium state, and masses are
accurately maintained along the time.
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Figure 8: Dynamical evolution of single droplet molar density distribution of C10H22 in 3D. The snapshots are
taken at the times t=0,0.5,1,2,5,10, respectively. In each time panel, the top one represents the isosurface and
the bottom one represents the approximated solution across the three central planes of the 3D cubic domain.

5 Conclusions

In this paper, we have designed first and second order linear schemes for time discretiza-
tion of the multi-component two-phase diffuse interface model with Peng-Robinson
equation of state based on the IEQ approach and the stabilized method. The schemes are
accurate (up to the second order), unconditionally energy stable, and easy to implement
in practice. Moreover, the resulting linear systems in space at each time step are proven
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Figure 9: Energy and mass evolutions for the single droplet case simulated by IEQ-BDF2 with δt=5E-3.

to be symmetric positive definite so that one can implement the Krylov subspace meth-
ods to solve such system effectively and efficiently. Numerical experiments in two and
three dimensional spaces are also presented to demonstrate the accuracy and stability of
the schemes, and to illustrate the dynamical evolution of molar density distributions and
gas-liquid interfaces.
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Appendices

A Parameters

All the following parameters are classical definitions, and can be found in the refer-
ences [13, 14, 16, 23] and the references cited therein. The universal gas constant R has
a value of approximately 8.31432JK−1mol−1, and the (temperature-dependent) energy
parameter a = a(T) and the co-volume parameter b in the Peng-Robinson equation of
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Figure 10: Dynamical evolution of eight droplets molar density distribution of C4H10 in 3D. The snapshots are
taken at the times t=0,0.5,1,2,5,10, respectively. In each time panel, the top one represents the isosurface and
the bottom one represents the approximated solution across the three central planes of the 3D cubic domain.

state are defined as

a(T)=
M

∑
i=1

M

∑
j=1

(1−kij)yiyj

√

ai(T)aj(T), b=
M

∑
i=1

yibi,

with yi =
ni
n being the mole fraction of component i. The binary interaction coefficient

0 ≤ kij ≤ 1 is assumed to be a constant for a fixed species pair and usually computed
from experimental correlation. The Peng-Robinson parameters for the pure-substance
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Figure 11: Dynamical evolution of eight droplets molar density distribution of C10H22 in 3D. The snapshots are
taken at the times t=0,0.5,1,2,5,10, respectively. In each time panel, the top one represents the isosurface and
the bottom one represents the approximated solution across the three central planes of the 3D cubic domain.

component i, ai and bi, are calculated from the critical properties of the specie

ai(T)= 0.45724
R2T2

ci

Pci

(

1+mi

(

1−
√

T

Tci

))2

,

bi= 0.07780
RTci

Pci

,
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Figure 12: Energy and mass evolutions for the eight droplets case simulated by IEQ-BDF2 with δt=5E-3.

where Tci
and Pci

represent the critical temperature and pressure of the pure substance
component i respectively, which are intrinsic properties of the specie and available for
most substances encountered in engineering applications. The parameter mi for model-
ing the influence of temperature on ai is experimentally correlated to the acentric param-
eter of the specie ωi by

mi=

{

0.37464 +1.54226ωi −0.26992ω2
i , ωi≤0.49,

0.379642+1.485030ωi −0.164423ω2
i +0.016666ω3

i , ωi>0.49,

with

ωi=
3

7





log10(
Pci

14.695 PSI )
Tci
Tbi

−1



−1=
3

7





log10(
Pci

1 atm )
Tci
Tbi

−1



−1,

where Tbi
represents the normal boiling point of the pure substance i, “PSI” is “pounds

per square inch”, and “atm” refers to the standard atmosphere pressure (equal to
101325Pa).

The dependence of the influence parameter cij on the molar concentrations is in
practice very weak, thus it is common to assume that cij = cij(T) is just a temperature-
dependent parameter, which often can be obtained by adopting the modified geometric
mean

cij(T)=(1−βij)
√

ci(T)cj(T).

Note βij is the binary interaction coefficient for the influence parameter, usually required
to be included between 0 and 1 and βij=β ji to maintain the stability of the interfaces, and
ci is the influence parameter of the pure substance component i, computed by

ci= aib
2
3

i

(

mc
1,i

(

1− T

Tci

)

+mc
2,i

)
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with mc
1,i and mc

2,i being the coefficients correlated merely with the acentric factor ωi by

mc
1,i=− 10−16

1.2326+1.3757ωi
, mc

2,i=
10−16

0.9051+1.5410ωi
.

B Proof of Theorem 3.3

Proof. Assuming ρ=[ρ1,ρ2,··· ,ρM]T, we have

(Âφ,ρ)=
3

2δt

M

∑
i=1

(φi,ρi)−
M

∑
i=1

λi(∆φi,ρi)+
M

∑
i=1

κi(φi,ρi)+
M

∑
i=1

H(φ∗
i )(B2(φi),ρi)

+
M

∑
i=1

Pi(B4i(φi),ρi)

=
3

2δt

M

∑
i=1

(φi,ρi)−
M

∑
i=1

λi(φi,∆ρi)+
M

∑
i=1

κi(ρi,φi)+
M

∑
i=1

H(φ∗
i )(B2(ρi),φi)

+
M

∑
i=1

PiB4i(φi)B4i(ρi)

=(Âρ,φ),

and

(Âφ,φ)=
3

2δt

M

∑
i=1

(φi,φi)−
M

∑
i=1

λi(∆φi,φi)+
M

∑
i=1

κi(φi,φi)+
M

∑
i=1

H(φ∗
i )(B2(φi),φi)

+
M

∑
i=1

Pi(B4i(φi),φi)

=
3

2δt

M

∑
i=1

(φi,φi)+
M

∑
i=1

λi(∇φi,∇φi)+
M

∑
i=1

κi(φi,φi)+
1

2

(

M

∑
i=1

H(φ∗
i )φi,

M

∑
i=1

H(φ∗
i )φi

)

+
M

∑
i=1

PiB4i(φi)B4i(φi)

≥ 3

2δt

M

∑
i=1

‖φi‖2.

Therefore, the operator Â is symmetric positive definite.

C Proof of Theorem 3.4

Proof. By taking the L2-inner product of (3.12) with 3φk+1
i −4φk

i +φk−1
i , and summing from

i=1 to M, we have
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1

2δt

M

∑
i=1

‖3φk+1
i −4φk

i +φk−1
i ‖2

=
M

∑
i=1

[

λi

(

∆φk+1
i ,3φk+1

i −4φk
i +φk−1

i

)

−κi

(

φk+1
i ,3φk+1

i −4φk
i +φk−1

i

)

−
(

H(φ∗
i )W

k+1,3φk+1
i −4φk

i +φk−1
i

)

−Pi

(

ψk+1
i ,3φk+1

i −4φk
i +φk−1

i

)]

. (C.1)

By taking the L2-inner product of (3.13) with Wk+1, we obtain

(3Wk+1−4Wk+Wk−1,Wk+1)=
1

2

M

∑
i=1

H(φ∗
i )(3φk+1

i −4φk
i +φk−1

i ,Wk+1). (C.2)

By taking the L2-inner product of (3.14) with Piψ
k+1
i , and summing from i= 1 to M, we

get

M

∑
i=1

Pi(3ψk+1
i −4ψk

i +ψk−1
i )ψk+1

i =
M

∑
i=1

Pi(ψ
k+1
i ,3φk+1

i −4φk
i +φk−1

i ). (C.3)

By combining the (C.1)-(C.3), and applying the following identity

2(3a−4b+c,a)= |a|2−|b|2+|2a−b|2−|2b−c|2+|a−2b+c|2 , (C.4)

we have

1

2

M

∑
i=1

[

λi

(

‖∇φk+1
i ‖2−‖∇φk

i ‖2+‖2∇φk+1
i −∇φk

i ‖2−‖2∇φk
i −∇φk−1

i ‖2

+‖∇φk+1
i −2∇φk

i +∇φk−1
i ‖2

)

+κi

(

‖φk+1
i ‖2−‖φk

i ‖2+‖2φk+1
i −φk

i ‖2

−‖2φk
i −φk−1

i ‖2+‖φk+1
i −2φk

i +φk−1
i ‖2

)

+Pi((ψ
k+1
i )2−(ψk

i )
2+(2ψk+1

i −ψk
i )

2

−(2ψk
i −ψk−1

i )2+(ψk+1
i −2ψk

i +ψk−1
i )2

)]

+‖Wk+1‖2−‖Wk‖2+‖2Wk+1−Wk‖2

−‖2Wk−Wk−1‖2+‖Wk+1−2Wk+Wk−1‖2

=− 1

2δt

M

∑
i=1

‖3φk+1
i −4φk

i +φk−1
i ‖2. (C.5)

Dropping some positive terms from (C.5), we finally obtain the result (3.16).
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