Commun. Comput. Phys. Vol. 26, No. 4, pp. 1071-1097
doi: 10.4208/ cicp.OA-2018-0237 October 2019

Linear and Unconditionally Energy Stable Schemes
for the Multi-Component Two-Phase Diffuse
Interface Model with Peng-Robinson Equation of State

Chenfei Zhang!, Hongwei Li?, Xiaoping Zhang? and Lili Ju!/*

! Department of Mathematics, University of South Carolina, Columbia, SC 29208,
USA.

2 School of Mathematics and Statistics, Shandong Normal University, [inan,
Shandong 250358, P.R. China.

3 School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei 430072,
P.R. China.

Received 14 September 2018; Accepted (in revised version) 3 December 2018

Abstract. In this paper we consider numerical solutions of the diffuse interface model
with Peng-Robinson equation of state for the multi-component two-phase fluid sys-
tem, which describes real states of hydrocarbon fluids in petroleum industry. A major
challenge is to develop appropriate temporal discretizations to overcome the strong
nonlinearity of the source term and preserve the energy dissipation law in the discrete
sense. Efficient first and second order time stepping schemes are designed based on
the “Invariant Energy Quadratization” approach and the stabilized method. The re-
sulting temporal semi-discretizations by both schemes lead to linear systems that are
symmetric and positive definite at each time step, and their unconditional energy sta-
bilities are rigorously proven. Numerical experiments are presented to demonstrate
accuracy and stability of the proposed schemes.
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1 Introduction

Many problems in the fields of science and engineering, particularly in materials science
and fluid dynamics, involve flows with multiple constitutive components [11,22,28,29].
A typical well-known application is the subsurface gas and oil reservoir, which contains
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gas phase, oil phase and water phase, together with the solid phase [9]. From mathe-
matical modeling and numerical algorithmic points of view, it is a challenge to perform
numerical simulations of multiphase flows and study interfaces between phases, due to
inherent nonlinearities, topological changes, and complexities of dealing with unknown
moving interfaces.

There are many approaches to categorize the moving interfaces. The first method
to simulate multiphase and multi-component flows is interface tracking (sharp inter-
face modeling [24], front-tracking [10], immersed boundary [27]), and the interface is
described as a zero-thickness two-dimensional entity. This approach can successfully
predict the shape and dynamics of the interface, assuming that the interface tension is
given. However, it can not provide information within the interface itself. The second
method is the phase field model (interface capturing, diffuse interface theory) to simulate
multiphase and multi-component flows [1,2,4,5,21,23], which is an increasingly popular
choice for modeling the motion of multiphase and multi-component fluids. In the phase
field model, a conserved order parameter such as a mass concentration that varies con-
tinuously over thin interfacial layers is introduced, and the order parameter is mostly
uniform in the bulk phases. Based on this idea, sharp fluid interfaces are replaced by
thin but nonzero thickness transition regions where the interfacial forces are smoothly
distributed. The free interface can be automatically tracked without imposing any math-
ematical conditions on the moving interface. One advantage of the phase field model is
that the governing system of equations in the model can be derived from the variational
principle. Moreover, the phase field model usually leads to well-posed nonlinear systems
that satisfy the energy dissipation law. Therefore, this model has become a well-known
simulation tool to resolve the motion of free interfaces in multiple components, and has
also been successfully applied to many problems in the fields of science and industry
(see [12,13,30,31] and the references cited therein).

In order to study the interface between phases, the development of energy stable
schemes for phase field model is an important issue. There are several popular numer-
ical approaches to construct energy stable schemes. The first approach is the convex
splitting method, which is introduced by Elliott and Stuart [3, 6] and popularized by
Eyre [7]. The main idea is assuming the free energy density can be split as the differ-
ence of two convex functions, where the convex part is treated implicitly and the concave
part is treated explicitly. Although the convex splitting method is unconditionally energy
stable and uniquely solvable, it reduces to a nonlinear system at each time step and the
implementation is complicated and the computational cost is high. The second widely
used approach is the stabilized method which treats the nonlinear terms explicitly, and
adds an artificial stabilization term to overcome strict temporal step constraint [39, 40].
This method is also energy stable and produces a linear system at each time step which is
easy to implement. However, it is not easy to find the stabilization term for all problems,
and it can not be unconditionally energy stable for second order scheme.

In this paper, we focus on the diffuse interface modeling of multi-component and
multiphase fluid systems, and consider the energy stable schemes for a more realistic
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model with Peng-Robinson equation of state (EOS). The Peng-Robinson EOS as a dif-
fuse interface model to describe the real states of hydrocarbon fluids in the petroleum
industry has become one of the most useful and successfully applied models for thermo-
dynamic and volumetric calculations in both industrial and academic fields [20]. It has
been considered as one of the best two constants third degree equations of state appli-
cable to vapor-liquid equilibria, and volumetric and thermodynamic properties calcula-
tions for pure substances and mixtures. The structure of its energy functional is highly
nonlinear and more complicated than many conventional phase field models. Therefore,
the development of accurate, efficient, easy-to-implement, and energy stable numerical
schemes is a very important and challenging issue. Many efforts have been devoted to
designing numerical schemes with energy stability. In the work by Qiao and Sun [23],
an efficient scheme for single-component systems of Peng-Robinson EOS is developed.
The authors established a clean convex splitting of the total Helmholtz free energy and
treated the convex and concave parts separately. However, it is not straightforward to ex-
tend the convex splitting method from single-component to multi-component systems.
Fan and his collaborators designed a componentwise convex splitting scheme for dif-
fuse interface models with Peng-Robinson EOS in [8]. Kou and Sun proposed a modified
Newton’s method to solve the nonlinear model and proved the maximum principle of
the molar density with multi-component in [14]. Some recent developments in numeri-
cal algorithms for the multi-component diffuse interface model with Peng-Robinson EOS
can be referenced to [13,15-18].

In this work, we are devoted to designing efficient linear unconditionally energy sta-
ble numerical schemes to solve the multi-component diffuse interface model with Peng-
Robinson EOS. Combining the stabilized method, the “Invariant Energy Quadratization”
(IEQ) approach, which is a novel method and applicable to a large class of free energies,
is adopted to develop the numerical schemes for Peng-Robinson EOS. Yang and his col-
laborators designed the IEQ approach by generalizing the Lagrange multiplier approach,
and many phase field models have been solved by this approach [32-38]. The main idea
of the IEQ method is to transform the free energy into a quadratic form of a set of aux-
iliary variables. Then, a new but equivalent system is obtained, which still retains the
energy dissipation law in terms of the auxiliary variables. This approach enjoys the fol-
lowing advantages: (i) all nonlinear terms in the new system can then be discretized by
semi-explicit schemes in time to produce a linear system at each time step, thus it is very
efficient; (ii) the energy dissipation laws in the discrete sense are also preserved; (iii) it can
be easily extended to higher-order schemes. Based on the IEQ approach, we have suc-
cessfully designed the first and second order linear schemes for single-component diffuse
interface model with Peng-Robinson EOS, and rigorously proved the unconditional en-
ergy stabilities [19]. Recently, Shen and his collaborators developed the scalar auxiliary
variable (SAV) approach which is built upon the IEQ method. It enjoys all advantages
of the IEQ approach but overcomes most of its shortcomings [25,26]. In a future work,
we shall design the unconditionally energy stable schemes for the Peng-Robinson EOS
by applying the SAV approach.
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The rest of this paper is organized as follows. In Section 2, the model of multi-
component Peng-Robinson EOS is presented, and a linear transformation is introduced
to decouple the system. In Section 3 we develop numerical schemes with respective first
and second orders for time discretization of the problem, and then prove well-posedness
of the resulting linear systems as well as the unconditional energy stabilities. Various 2D
and 3D numerical simulations are presented to validate the proposed numerical schemes
in Section 4. Finally some concluding remarks are given in Section 5.

2 Mathematical model of fluid systems with multi-component
diffuse interface

A fluid system consisting of a fixed number of species on a fixed domain with a spatially
uniform-distributed given temperature is considered. The total Helmholtz free energy
achieves a global minimum at the equilibrium state, according to the second law of ther-
modynamics. We are interested in the equilibrium state of the system in this work.

We denote by M the number of components in the fluid mixture and n; the molar
concentration of the component i. Let n=(ny,n,---,n M)T be the molar concentrations of
all components and n=mn;+mny+---+n) be the molar density of the fluid. According to
the gradient theory, one of the most popular thermodynamic theories for inhomogeneous
fluid, the total Helmholtz energy density has two contributions, one from the thermody-
namic theory of homogeneous fluids and the other one from inhomogeneity of the fluid.
That is

F(n):/Qf(n}T)dXZPO(n}T/Q)+PV(H}T,Q):/Qfo(n,‘T)dX—F/va(n;T)dX, (2.1)

where T is the temperature, Fy(n;T,Q)) is the contribution of Helmholtz free energy
density from the homogeneous fluid theory, and the Fy(n;T,Q)) is the contribution of
Helmholtz free energy density from the concentration gradient. The inhomogeneous
term or the gradient contribution fv (n;T) can be modeled by a simple quadratic relation

1M
FolmT) =3 3. eV,
ij=

where ¢;; is the influence parameter. The parameter c;; is a function of molar concentra-
tions and temperature. The influence parameter depends on molar concentrations only
weakly, thus it is often justified to assume that c;; is a constant for a given fixed tempera-
ture T.

Since the molar concentration n at equilibrium minimizes the total Helmholtz free
energy F for a closed and conserved fluid system with temperature T, the mathematical
statement of the problem is formulated as follows: find n* € H satisfying

F(n*)=minF(n), (2.2)

neH
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subject to the constraint

/ ndx=N, 2.3)
@)

where H be a space of functions with certain regularity, N= (Ni,Np,---,Ny)7 is a given
constant vector representing the fixed amount of material mass for each component in
the system.

2.1 Peng-Robinson equation of state

The Peng-Robinson equation of state is the most popular model for computing the fluid
equilibrium property of petroleum fluids in reservoir engineering and oil industries,
since its publication in 1976. We briefly review the Peng-Robinson EOS in this part. The
Helmbholtz free energy fo(n;T) of a homogeneous fluid in this model is given by

fo(m;T) = fo1(n) + fo2(n) (2.4)
with
M
fo1(n)=RTY "n;(Inn;—1) —nRTIn(1—bn), (2.5)
i=1

fo2(n) =

a(T)n <1+(1—ﬁ)bn>, (2.6)

22 14+ (14+/2)bn

where T is the temperature of the mixture and R is the universal gas constant and n =
Y M n;. The two parameters, energy parameter a=a(T) which depends on temperature
T, and the co-volume parameter b, are utilized in the Peng-Robinson EOS. We refer to the
“Appendix” for details of these parameters.

2.2 Transformed system

Consider a fluid mixture composed of M (M >2) components. In order to decouple the
relations between different components, a linear transformation is introduced, and as a
result, the models are simplified.

The crossed influence parameters c;; are generally described as the modified geomet-
ric mean of the pure component influence parameters c; and c; by

cij=(1—PBij)\/cicj, (2.7)

where the parameters f;; are binary interaction coefficients for the influence parame-
ters. The influence parameter matrix is denoted by C = (ci]-)f-\;l:l. In this work, suitable
parameters f3;; are chosen such that C is symmetric positive definite. Thus there exists

Q7Q=QQ" =1 such that C=QAQT, where A =diag(Ay,--,Ay) and A; (i=1,2,---,M)
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denote the real positive eigenvalues of C. We can define a transformation matrix Q =
[q1,--+,qm] where q; (i=1,2,---,M) are orthonormal eigenvectors corresponding to eigen-
values A; (i=1,2,---,M). Applying this orthonormal transformation, we define a vector

D=1, -, pum]" as
®=Q'n, n=0Q%. (2.8)

Denote ¢(®) = fo(n) = fo(Q®). Using the relations given by (2.8), we have

M M
Z CijVﬂi-Vle:Z)\i’V(Pi’z. (29)
i=1

ij=1

The free energy then can be represented as

1¥ >
E@)= [ (GLAMIT0 +5(0)))ax (2.10)
Based on the variational approach, we have
Opi _ _OE(P) _y a8
TR =AiAQ; 0; i=12,--,M, (2.11)

which is equivalent to

0pi o (0g(¢)
g—(AZA(pl Kig;) (—5¢i Kl(pl> (2.12)

2

g’qu I, Correspondingly,

after introducing stabilizer x; which satisfies x; > 3 max{0,max, 2

the free energy (2.10) can be rewritten as

1M

E(9)= [ {5 LiIVoiP+xig?)+8(6) pax, .13)

i=1

where 3(¢) =g(¢) —3 LI ki
Assuming that function §(¢) is bounded from below, that is, §(¢) > —By for some
constant By > 0. The free energy can be reformed as

M

E(¢)= /Q {%Z(AirwiFH@?H( g”(4>>+Bo)2—Bo}dx. (214)

i=1

Since we only add a zero term By— By therein, we emphasize that the free energy is in-
variant.
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By introducing the auxiliary variables W = \/g(¢)+Bo and ¢; = [,¢pidx—N; (i =
1,2,---,M), the modified free energy functional can be expressed as the following func-
tional

E(¢ W¢):/ {lﬁ(/\‘W(p‘]z—kx-(p-z)—FWz—B }dx+lﬁp‘¢.2 (2.15)
AV o 21-:1 i i i?i 0 2‘:1 iYir .

where N; =q!N and P, are penalty parameters to retain mass constraint for all compo-
nents.
Based on the variational approach, we have

oo; OE(p,W,
%Z—% :)LiA(l)i—Kigbi—W(gb)H((l)i)—Pl'I,UZ', (216)
%) _
where H(¢;)= \/‘;(77’4; Then, we obtain a new, but equivalent partial differential system
as follows:
op;
j:AiA(Pi_Ki(Pi_W((P)H((Pi)_Pilgbz'/ (217)
1M .
1 Z aq;z , (2.18)
alpl / 84’1 —Ldx, (2.19)
\
with the initial conditions
Pili—0y=di0, Wli—0y=1/&(di0)+Bo, ¥il(i—0)=0, (2.20)
fori=1,2,---,M.
Denoted by (h( = [oh x)dx the L*-inner product of two arbitrary func-
tions h(x) and g(x ) and || gl = ( g) the L?>-norm of any function g(x). Taking the

L-inner product of (2.17) with 2 at , of (2.18) with W, and taking the simple multiplica-
tion of (2.19) with P;ip;, summing them up, we then get the energy dissipation law of the
modified system (2.17)-(2.19) as follows

M 2

ﬁE(Qb/W/lP):—Z

i=1

oo,

<0. .
o0 || <0 (2.21)

In the following, we focus on designing numerical schemes for time stepping of the
transformed system (2.17)-(2.19), that are linear and satisfy discrete energy dissipation
laws.

Remark 2.1. For the regularity relation between n and ®, we have the following con-
clusion from the property of the linear transformation. If ® € (H*(Q))™ (s >0), then
ne (H*(Q))M (s >0), and vice versa.
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3 Linear numerical schemes for time integration

In this section we present linear time stepping schemes of first and second order respec-
tively, to solve the system (2.17)-(2.19). Let us assume a uniform time partition with the

time step size ot.

3.1 First order scheme

Assuming that ¢¥, W* and ¢ are already known, then we solve 4>f.‘+1, Wk and lpfﬂ

from the following first order temporal semi-discretized system: fori=1,2,---,

k+1 — ¢k k1 k+1 k+1 k+1
5 L = N AGT —wip T — W H(¢F) — T
Wk+1 Wk M k+1_¢1

Y ZH 4)1
k+1 k k+1
=y .

From (3.2) and (3.3), we have

Wk—‘rl ZH (Pl ¢l+ ZH (Pl k+1 A AW1+AW2( k—‘rl),

k+1_¢z /<pf‘dx+/ ¢k+1dx—A3l+A4l( k+1)

Then the system (3.1)-(3.3) can be rewritten as

k+1
¢

ot
¢k

/\A(l)k+1_|_x ¢k+1+H(¢Z)AW2( k+1)+PA i( §<+l)
(‘Pl)AWl_PASz/ 1§1§M

The above linear system can be denoted as A¢ =b.
Theorem 3.1. The linear operator A is symmetric positive definite.
Proof. Assuming p=[p1,02,"++,0m]", we have

M

M M
(Ag,p) = ;tZ (¢iipi) ZA (Agi,pi) + ) xi(ipi) + ZH(#)(sz(fPi),pi)

i=1 i=

+ZP1'(A41'(471')/P1’)

i=1

(3.1)

(3.2)

(3.3)

(3.4)
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1 M M M M ‘
=57 2(Puoi) = YA doi) + ) ri(pi i)+ ) H(97) (Awa (o) i)
i=1 i=1 i=1 i=1
M
+)  PiAsi(¢i) Agi(pi)
i=1
=(Ap,9),
and
1 M M ‘
(Ag9) =57 L(#i90) ZA Bigi)+ L Ki(pigi) + L H(9E) (Awal 1))
i= i=1
+ZP1'(A41‘(<P1‘)/¢:')
1 M M M 1 M . M .
=5 (@) +) A i(V¢i,V¢i>+Zm(¢i,¢i)+§(ZH(@)%ZH(@)@)
i= i=1 i=1 i=1 i=1
M
Z A4z(¢z)A4l(¢z)
i=1
1 M
=5 Lol
Therefore, the operator A is symmetric positive definite. O

Let us define the norm ||¢[| , = \/(A¢,¢) for any ¢ € Lper(ﬂ) and the subset X={¢ €
L3 (Q) ][9]l o < oo}, where L3,,(Q)) denotes the subspace of all functions ¢ € L*(Q2) with
periodic or no-flux boundary conditions.

Remark 3.1. Itis easy to show that ||| 5 is a norm for L%,,(Q) and X is a Hilbert subspace
associated with the norm ||¢|| 5. Then the well-posedness of the linear system A¢ =D in
the weak sense comes from the Lax-Milgram theorem, i.e., the linear system (3.4) admits
a unique weak solution in X.

Theorem 3.2. The first order linear scheme (3.1)-(3.3) is unconditionally energy stable, i.e.,
satisfies the following discrete energy dissipation law

2
Ef <Ef,— ZH¢"“ oF|I°, (3.5)

where

1M 2
Efu=3 Y (M +rillgf P+ Pi(yh)?) + W 2. (36)

i=1
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Proof. By taking the L2-inner product of (3.1) with (,bf-‘+l —¢¥, and summing from i =1 to
M, we have

&ZHQDkH 4’1” _ZA( k1 k+1 ) ZKI( k+1 k+1 (Ibl)

<Wk+1H(<P1 k1 ) ZP( k1 pktl 4)1) 3.7)

Mi

Il
=

i

By taking the L?-inner product of (3.2) with W**1, we have

2<Wk+l_wklwk+1) %(WkJrlH (95), k+l (Pf) (3.8)
i=1

By taking the simple multiplication of (3.3) with P; lpk+1 and summing from i=1 to M,
we obtain

%Pi( 55+1 > k+1_ ZP( k+1’ k+1_ 1) (3.9)

Combining (3.7)-(3.9), and applying the identity
2(a—b,a)=|a|®—|b]*+|a—b|?, (3.10)

we obtain

—ZA [V P+ W24 ZP AR ZA IV = Vi[> + W —wH|2
z 1 1 1 1

+5 ZP A ZKH¢k“H2+ Zxrlqb"“ s
=52Ai|lwfllz+I\Wk|\2+§ZPi(¢if>2 Z 11— 5t2|l¢k” 912 (3.11)
i=1 i=1 25
Finally, we obtain result (3.5) after dropping some positive terms from Eq. (3.11). O

3.2 Second order scheme

The second order time stepping scheme to solve the system (2.17)-(2.19) is developed
based on the second order backward differentiation formulas (BDF2). Assuming that

k 1wk=1 yk =1, and ¢f, Wk, ¢¥ are already known, then we solve (])5‘“, Wk+1 and lprrl
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from following second order temporal semi-discretized system: fori=1,2,---,M,

R

5 =LA —rigf T =W H (9f) - P, (3.12)

A A e 3kl — gk gk

+ :_ZH P Ml /' (3.13)

20t 20t

Sy 4yl gl [ 34>"“ agftolt (3.14)
20t 0 20t ’ '

where ¢ =2¢ — 5‘_1
For (3.13) and (3.14), we have
AWk wk 114 4 A
Wk+1 __ZH 4)1 (Ib (Ib + ZH (Pl k+l/

4yt ¢“ 49f—gf !
k+l i i i k+1
i 3 /Q 3 dx+/n¢f e

Set

M

1M 1
Bi=W'—2) H(¢)¢f, Ba9)=5) H(¢))¢s
z 1

i=1

Bsi=9; / ¢ dx, Bai(¢i)= /Q ¢idx,

where St = %.
Then, we have the following reduced linear system

3
@W AAsb"“+K1-4>f“+H(¢7>Bz<¢"“>+PB41-(4>§“>

k+1

The above linear system can be expressed as A¢*t! =b, and we need solve for ¢**! from

it.
Theorem 3.3. The linear operator A is symmetric positive definite.

Remark 3.2. Define ||¢|| s =1/ (A, ) for any ¢€Lper(()) and the subset X= {(,DELW(Q)'
Pl 4 < oo} where L%,er(()) denotes the subspace of all functlons ¢ € L?(Q) with periodic
per(Q) and
X is a Hilbert subspace assoc1ated with the norm . Then the well-posedness of the
linear system A¢ = b in the weak sense comes from the Lax-Milgram theorem, i.e., the
linear system (3.15) admits a unique weak solution in X.
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Theorem 3.4. The second order linear system (3.12)-(3.14) is unconditionally energy stable,
that is, satisfies the following discrete energy dissipation law

k k—
o _44)5‘(—'_4)1' ! HZ

ERHLE < phi-] —5t% I 59 , (3.16)
= 26t

BDE2 >LBDF2
where

1 M
Ebbia =7 1 Ai(IVOT P12V = VkP) +xi(llgf I+ 129 —9117)

i
i=1

R+ U~ g (IWH 24 W - W),

4 Numerical experiments

A two-phase (liquid and gas) binary components fluid mixture is simulated to demon-
strate the accuracy and efficiency of the first and second order linear schemes in this sec-
tion. We consider a mixture of two components, namely isobutane (C4Hj) and decane
(C10H2,) in the domain Q= (0,L)? (d=2,3) with L = 2.0E-8 meters. The critical properties
and parameters used to compute parameters in Peng-Robinson EOS for each component
are listed in Table 1.

Table 1: Critical properties and parameters.

H Component ‘ T.(K) ‘ P, ‘ w ‘ m H
C4Hyo 425.2 | 3.80 MPa | 0.199 | 0.6708
C10H22 617.7 | 210 MPa | 0.484 | 1.0578

The numerical experiments are presented to illustrate the temporal accuracy of our
numerical schemes. For initial configuration, we first use the case of one single droplet,
that is, the liquid density of the mixture under a saturated pressure condition at the tem-
perature 450K is imposed in a subregion, and the rest of domain is filled with a saturated
gas of the mixture under same temperature (Table 2).

Table 2: Initial densities in liquid and gas phases.

H Component ‘ Liquid ‘ Gas H
C4Hip 4000 | 500
CioH 3000 | 500
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4.1 Accuracy tests

In order to test the convergence order, starting from a fixed initial configuration obtained
by the first order scheme at time £, =0.5, we perform our simulations on the time interval
t=10.5,0.6] with refinement time step size At=2.0E—2,1.0E—2,---,3.125E —4 for both the
first order (IEQ-1) and the second order (IEQ-BDF2) schemes. We choose the stabilizer
coefficients x; =180, together with a lower bound 1E+12 and use a 256 x 256 mesh grid in
2D. We compare each simulated solution with the benchmark obtained by each scheme
with §t= 1E-5. The L? relative errors and convergence rates are listed in Table 3.

Table 3: L2 relative errors and convergence rates in 2D.

Time Step Size IEQ-1 IEQ-BDF2
At Error ‘ Conv. rate Error ‘ Conv. rate
2.0E-2 2.1943E-2 - 1.5156E-2 -
1.0E-2 1.8201E-2 0.27 5.9916E-3 1.34
5.0E-3 1.3570E-2 0.42 1.6472E-3 1.86
2.5E-3 8.9856E-3 0.59 4.4788E-4 1.88
1.25E-3 5.3502E-3 0.75 1.2479E-4 1.84
6.25E-4 2.9414E-3 0.86 3.4321E-5 1.86
3.125E-4 1.5298E-3 0.94 9.1366E-6 1.91

The accuracy in 3D is also tested. The stabilizer coefficient, the low bound and the
mesh grid are chosen as x; =180, 1IE4-12 and 128 x 128 x 128, respectively. We compare
each simulated solution with the benchmark obtained by each scheme with Jt = 1E-5.
The L? relative errors and convergence rates are listed in Table 4.

From Table 3 and Table 4, it is easy to observe that both the IEQ-1 and IEQ-BDF2
schemes are very stable for all time step sizes, and have almost first and second order
accuracy, respectively. In addition, the second order scheme IEQ-BDF2 gives better accu-
racy than the first order scheme IEQ-1.

Table 4: L2 relative errors and convergence rates in 3D.

Time Step Size IEQ-1 IEQ-BDF2
At Error | Conv. rate Error | Conv. rate
2.0E-2 2.1490E-2 - 1.4738E-2 -
1.0E-2 1.7773E-2 0.27 5.7395E-3 1.36
5.0E-3 1.3205E-2 0.43 1.5698E-3 1.87
2.5E-3 8.7156E-3 0.60 4.3159E-4 1.86
1.25E-3 5.1768E-3 0.75 1.2147E-4 1.83
6.25E-4 2.8416E-3 0.87 3.3630E-5 1.85
3.125E-4 1.4766E-3 0.95 9.0771E-6 1.89
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4.2 Dynamical evolution in 2D

In this section, we investigate the time evolution of the molar density distribution and the
gas-liquid interface in 2D with one droplet and four droplets, respectively. The IEQ-BDF2
scheme with 6t=5E-3 is adopted to perform the simulations. The stabilizer coefficients,
the lower bound and the mesh grid are chosen as x; =180, 1E+12 and 256 x 256, respec-
tively.

421 One droplet

The liquid density of the mixture (single droplet) is filled in the square subdomain of
(%,%)2, and a saturate gas of both components is full of the rest of the domain under
the temperature 450K. The simulations of evolution process are shown in Fig. 1 and Fig. 2
at different times (=0,0.5,1,2,5,10) for both components. We can observe that the shape
of the droplet for the liquid phase is initially square, then corners are rounded and turn-
ing to a circle as system approaching to steady state, and finally the droplet becomes a
perfect circle. This coincides with Fig. 3 where the energy decreasing is significant at
the beginning and slows down as density of each species is distributed uniformly in all
directions and a circular interface is formed, and the mass conservation is well preserved.

%108 t=1
3000
3000
2500
2500 1.5
2000
2000
> 1
S 1500
05
1000 1000
0
0 0.5 1 1.5
X %10%
%108 =10
2500
2500
15 2000
2000
1500
1500 > 1
1000
1000
05
i 500
0
0 0.5 1 1.5
X %10%

Figure 1: Dynamical evolution of single droplet molar density distribution of C4H1y in 2D. The snapshots are
taken at the times t=0,0.5,1,2,5,10, respectively.
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4.2.2 Four droplets

Next, we simulate the dynamical evolution of molar density distribution for the case of
having four droplets as initial configuration, that is, the liquid density of the mixture
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Figure 2: Dynamical evolution of single droplet molar density distribution of C19Hp; in 2D. The snapshots are
taken at the times t=0,0.5,1,2,5,10, respectively.
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Figure 3: Energy and mass evolutions for the single droplet case simulated by IEQ-BDF2 with §t=5E-3.

under a saturated pressure condition at the temperature 450K is imposed in the square
subregion of {(3£,2L), (2,2L)}2 and the rest of domain is filled with a saturated gas of
the mixture under same temperature (Table 2). The simulation of evolution process are
shown in Fig. 4 and Fig. 5. We observe that the shapes of four droplets are initially square,
then four corners are slowly rounded to become circular. Next when the interfaces of
droplets start to touch each other, these four droplets start to merge to form one circle-like

droplet. In Fig. 6 we plot the evolutions of total energy and mass, and again observe that
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Figure 4: Dynamical evolution of four droplets molar density distribution of C4Hyg in 2D. The snapshots are
taken at the times t=0,0.5,1,2,5,10, respectively.
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Figure 5: Dynamical evolution of four droplets molar density distribution of C19Hp in 2D. The snapshots are
taken at the times t=0,0.5,1,2,5,10, respectively.

the energy decreases monotonically and the mass of each species is accurately maintained
along the time.



C. Zhang, H. Li, X. Zhang and L. Ju / Commun. Comput. Phys., 26 (2019), pp. 1071-1097 1087

L x10°™

— EQ-BDF2
22 56
—CH,
—aH
215 5.4 —
5 21 o 52f
g o
o -

48

195 [N 46

1.9 - : 4.4
5

o 1 2 3 4 6 T B 9 0 o 1 2 3 4 6 T B 9 10

Time Time

Figure 6: Energy and mass evolutions for the four droplets case simulated by IEQ-BDF2 with 6¢t=5E-3.

4.3 Dynamical evolution in 3D

Some experiments are presented to simulate the dynamics of the molar density distri-
bution in 3D. We adopt the IEQ-BDF2 scheme with 6t=5E-3 and a uniform mesh of
128 x 128 x 128 grid together with a lower bound 1E+12 and the stabilizer coefficients
K; = 180.

4.3.1 Single droplet

The first simulation has a single droplet as the initial condition. The liquid density of the
mixture under a saturated pressure condition at the temperature 450K is imposed in the
cube subregion of (%,%)3, and the rest of the cube is filled with a saturated gas of both
components under the same temperature.

Fig. 7 and Fig. 8 present the simulated molar density distribution for both components
in 3D at different times (t =0,0.5,1,2,5,10) during the evolution, respectively. Similar to
the dynamical behaviors of a single droplet in 2D, we can observe that the droplet finally
forms a sphere and the steady state is reached. The evolutions of the total energy and
the mass are plotted in Fig. 9. We can see that the energy decreases monotonically and
the masses are accurately maintained along the time. Furthermore, there is a quite large
energy decay at the beginning.

4.3.2 Eight droplets

For the initial condition, the liquid density of both components under a saturated
pressure condition at the temperature 450K is imposed in the cube subregion of
{(3%,25), (35,213, and the rest of the cube is filled with a saturated gas of the mixture
under the same temperature.

The simulated molar density distributions for the mixture in 3D at different times (t=

0,0.5,1,2,5,10) during the evolution are presented in Fig. 10 and Fig. 11. The eight droplets
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Figure 7: Dynamical evolution of single droplet molar density distribution of C4H1y in 3D. The snapshots are
taken at the times +=0,0.5,1,2,5,10, respectively. In each time panel, the top one represents the isosurface and
the bottom one represents the approximated solution across the three central planes of the 3D cubic domain.

first form to eight separate spheres, then start to merge when their interfaces touch one
another and finally become one bigger sphere in the steady state. The dynamical process
is very consistent with that of the four droplets case in 2D. We present the evolution
of the total energy and the mass with respect to the time in Fig. 12, and observe again
the energy monotonically decays and approaches an equilibrium state, and masses are
accurately maintained along the time.
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Figure 8: Dynamical evolution of single droplet molar density distribution of C19Hp; in 3D. The snapshots are
taken at the times £=0,0.5,1,2,5,10, respectively. In each time panel, the top one represents the isosurface and
the bottom one represents the approximated solution across the three central planes of the 3D cubic domain.

5 Conclusions

In this paper, we have designed first and second order linear schemes for time discretiza-
tion of the multi-component two-phase diffuse interface model with Peng-Robinson
equation of state based on the IEQ approach and the stabilized method. The schemes are
accurate (up to the second order), unconditionally energy stable, and easy to implement
in practice. Moreover, the resulting linear systems in space at each time step are proven
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Figure 9: Energy and mass evolutions for the single droplet case simulated by IEQ-BDF2 with §t=5E-3.

to be symmetric positive definite so that one can implement the Krylov subspace meth-
ods to solve such system effectively and efficiently. Numerical experiments in two and
three dimensional spaces are also presented to demonstrate the accuracy and stability of
the schemes, and to illustrate the dynamical evolution of molar density distributions and
gas-liquid interfaces.
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Appendices

A Parameters

All the following parameters are classical definitions, and can be found in the refer-
ences [13, 14,16, 23] and the references cited therein. The universal gas constant R has
a value of approximately 8.31432JK 'mol ', and the (temperature-dependent) energy
parameter 2 = a(T) and the co-volume parameter b in the Peng-Robinson equation of
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Figure 10: Dynamical evolution of eight droplets molar density distribution of C4Hyg in 3D. The snapshots are
taken at the times +=0,0.5,1,2,5,10, respectively. In each time panel, the top one represents the isosurface and
the bottom one represents the approximated solution across the three central planes of the 3D cubic domain.

state are defined as

M M M
a(T)= leg(l—kij)]/ﬂ/j a;(T)a;(T), b= Z%]/ibi/
1= ]J= 1=

with y; = % being the mole fraction of component i. The binary interaction coefficient
0 <kjj <1 is assumed to be a constant for a fixed species pair and usually computed
from experimental correlation. The Peng-Robinson parameters for the pure-substance
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taken at the times +=0,0.5,1,2,5,10, respectively. In each time panel, the top one represents the isosurface and
the bottom one represents the approximated solution across the three central planes of the 3D cubic domain.

component i, a; and b;, are calculated from the critical properties of the specie

2
R?T? T
a;(T)=0.45724 PC,CZ 14+m;| 1— T p
RT,,

b;=0.07780
1 Pcl- 7
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Figure 12: Energy and mass evolutions for the eight droplets case simulated by IEQ-BDF2 with §t=5E-3.

where T, and P, represent the critical temperature and pressure of the pure substance
component i respectively, which are intrinsic properties of the specie and available for
most substances encountered in engineering applications. The parameter m; for model-
ing the influence of temperature on 4; is experimentally correlated to the acentric param-
eter of the specie w; by

._ 0.37464 +1.54226w; —0.26992(4}%, w; <0.49,
"] 0.379642+1.485030cw; —0.164423w% +0.016666w?,  w;>0.49,
with
P, P,
3 log,o (1zs93p31) .3 10810 (13m) _
w;= N e 1= — = - amZ 1,
7 Iy 4 7 Iy 4
Tb- Tb'

1 1

where T), represents the normal boiling point of the pure substance i, “PSI” is “pounds
per square inch”, and “atm” refers to the standard atmosphere pressure (equal to
101325Pa).

The dependence of the influence parameter c;; on the molar concentrations is in
practice very weak, thus it is common to assume that Cij = cl-j(T) is just a temperature-
dependent parameter, which often can be obtained by adopting the modified geometric
mean

¢ij(T) = (1=pi)\/ei(T)e;(T).
Note B;; is the binary interaction coefficient for the influence parameter, usually required

to be included between 0 and 1 and B;;= f;; to maintain the stability of the interfaces, and
c; is the influence parameter of the pure substance component i, computed by

% c T C
Ci:aibl’ mlli 1—T— +m2,i
Ci



1094

C. Zhang, H. Li, X. Zhang and L. Ju / Commun. Comput. Phys., 26 (2019), pp. 1071-1097

with m] ; and m5 ; being the coefficients correlated merely with the acentric factor w; by

. 10716 . 10716

M 23264+ 1.37570; >4 0.9051+1.5410c0;

B Proof of Theorem 3.3

Proof. Assuming p=[p1,02,"+*,0m]", we have

(A

and

(Agp,p)=

Therefore,

3 M M M
‘PP) 25t2 ¢i,0i) Z)‘ Ai, i) Z; Ki(Pipi) + ZH(‘P?)(BZ(‘Pi)/Pi)
M
+)_Pi(Bsi(¢i).pi)
i=1
3 M M M M
=557 2 (P0i) = Y_Ai(@i8pi) + Y ki(pigi) + Y H(97) (Ba(pi). i)
i=1 i=1 i=1 i=1
M
+ ) PiBai(¢i) Bai(pi)
i=1
:(Ap’(l))/
3 M M M
2—&; i i) ZA Adi,¢i) in(qbi,gbi)+;H(¢§‘)(Bz(¢i),¢i)
. -
+ZP1 By (Pl (Pl)
i=1
3 M M 1 M M
2_51,2 (PZ/(PZ +ZA V(PZIV(Pl) ZKi(¢i/¢i)+§ (;H((ID;‘()QDZ/;H(QD:ﬁ)(Pl)
M
+ZP1B41((P1)B41((P1)
i=1
3¢ e
255 L Il
the operator A is symmetric positive definite. O

C Proof of Theorem 3.4

Proof. By taking the L2-inner product of (3.12) with 3<,karl 4k +<,bf-<*l, and summing from

i=1to M,

we have
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M
ZHquk“ ApF+pf 2
:1

-Mi cq‘

Il
—_

i (Bt 398 — g9l ) —ri (017 301 — gt 49l )
— (H(gn) W3 —agl o) —Pi (9} 301 —agf+9f1) . )

By taking the L?-inner product of (3.13) with W¥*1, we obtain
(3wk+l _4wk Wk 1 Wk+l ZH 4)1 3<Pk+1 4(])5F+4)5F71,Wk+1). (C2)

By taking the L2-inner product of (3.14) with Pz-zpf“, and summing from i =1 to M, we
get

M
Y PGyl g gkt = ZP L30T —agf 9l ). (€3)

i=1
By combining the (C.1)-(C.3), and applying the following identity
2(3a—4b+c,a)=|al* —|b|*+2a—b|> — |2b—c|* +|a—2b+c|?, (C4)

we have
1M
L [A (IV9F 2= Vef I+ 12V gl = Vg |2~ |2Vt — Vi |
i=1
+[ Y9k =29 gF+Vgk 1 2) i (llgh 12— g2+ 129 — g 2
— 126 = ¢ I gt =294k IR) + Pi(WE)? = ()2 + 2y — )2

— (2 )2 (9 2 k) | W2 W2 2w w2
—||2Wk—Wk_1H2+||Wk+1—2Wk+Wk_1H2

= 25t2|l34>k+l ar+ ¢ 1% (C5)
Dropping some positive terms from (C.5), we finally obtain the result (3.16). O
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