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Abstract

In this paper, we propose and analyze a stabilized semi-implicit Euler gauge-invariant method
for numerical solution of the time-dependent Ginzburg—Landau (TDGL) equations in the
two-dimensional space. The proposed method uses the well-known gauge-invariant finite
difference approximations with staggered variables in a rectangular mesh, and a stabilized
semi-implicit Euler discretization for time integration. The resulted fully discrete system
leads to two decoupled linear systems at each time step, thus can be efficiently solved.
We prove that the proposed method unconditionally preserves the point-wise boundedness
of the solution and is also energy-stable. Moreover, the proposed method under the zero-
electric potential gauge is shown to be equivalent to a mass-lumped version of the lowest
order rectangular Nédélec edge element approximation and the Lorentz gauge scheme to a
mass-lumped mixed finite element method. These indicate the method is also effective in
solving the TDGL problems in non-convex domains although the solutions are often of low-
regularity in such situation. Various numerical experiments are also presented to demonstrate
effectiveness and robustness of the proposed method.
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1 Introduction

The governing equations for type-II superconductors in an external magnetic field are the
following time-dependent Ginzburg—Landau (TDGL) equations:

. 2
%+mqm+<iv+A) v+ (lY)> =Dy =0, inQx 0,71, (L)

9A ;
-+ VO + curlcurl A + Re [w* (ivw n A¢>] —curlH, inQx0,T], (12)
K

with the boundary and initial conditions as

' A
(ivw+A>-n:0, curlA = H, <§+Vd>)-n:0, on 3 x [0, T], (1.3)
K

¥ (x,0) = Yo(x), A(x,0) = Ag(x), in Q. (1.4)

where € is a bounded domain in R2, n is the unit outer normal vector to €2, k is the Ginzburg—
Landau parameter, the unknown v is a scalar complex function which denotes the order
parameter and ¥ * denotes its conjugate, the real vector unknown A is the magnetic potential,
® is the electric potential, and H stands for a constant external applied magnetic field. Here,
Re[-] denotes the real part of the content in bracket. In this model, [{/| = 1 corresponds to
the superconducting state and || = 0 denotes the normal state, while 0 < || < 1 stands
for the mixed (or vortex) state. For a vector function # = [u1, u2]” and scalar function f,the
standard calculus operators in the two dimensional space in (1.1)—(1.4) are defined as follows:

ax dy’

3 3 ar afi’ 3 3 3 ari’
“ 12 Vf= —f —f , curlu = 12 ll curl f = f s f .
ay dx

diva = S+ 22, :
v 8x+3y dx  dy

The above TDGL system was first deduced by Gorkov and Eliashberg [20] from the
microscopic Bardeen—Cooper—Schrieffer theory. We refer to [5,12,37] for more discussion
on the superconductivity model. One of the most important issues in superconductivity is to
investigate the vortex motion. To obtain the correct vortex pattern, it is crucial to make sure
that the key physical quantities are conserved, and relevant physical principles are retained at
the discrete level. There have been tremendous numerical methods for the TDGL equations
(1.1)—(1.4). For conventional finite difference methods, we refer to [29,34] and reference
therein; for finite element methods, we refer to [4,6,7,10,12,16-19,25-28,31-33]. However,
none of the numerical methods mentioned above can preserve the point-wise boundedness
in the discrete sense, || < 1 (a property satisfied by the exact solution ). Motivated
by this, gauge-invariant schemes have been developed and widely used in practice, which
can preserve the point-wise boundedness. One of the typical examples is the gauge-invariant
finite difference method, see [3,9,11,15,21-24,35] for its analysis and applications. We shall
also mention that a co-volume approximation for the steady state GL equation had been
studied in [14]. The first rigorous analysis of the gauge-invariant schemes was done in [11]
for a rectangular domain with a uniform mesh partition, in which a fully nonlinear backward
Euler gauge-invariant scheme was studied and the point-wise boundedness and stability of
the scheme were proved under certain conditions. In particular, under the assumption that the
exact solution (¥, A) is sufficiently smooth, a priori error estimate for the gauge-invariant
scheme under Lorentz gauge was derived there. However, it is well-known that the curl curl
operator in (1.2) will introduce strong singularities near the re-entrant corner region for
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non-convex domains [27]. Thus, it also remains an interesting question whether the gauge-
invariant schemes are still feasible for non-convex domains.

In this paper, we propose a stabilized semi-implicit Euler gauge-invariant scheme for the
TDGL Egs. (1.1)—(1.4). Ateach time step, the proposed scheme only needs to solve two linear
systems, and thus dramatically reduces the computational cost compared to the solution of a
coupled nonlinear system required by the classic fully nonlinear approach proposed in [11].
Moreover, the proposed scheme unconditionally preserves the point-wise boundedness of
¥ and also satisfies the energy stability property under a very relaxed condition. Extensive
numerical experiments are also tested to investigate the performance of the proposed scheme.
We use the proposed method to study the vortex pattern in non-convex superconductors,
which has many applications in industry [1]. More importantly, it is shown in this paper
that the proposed scheme under the zero electric potential gauge is equivalent to a mass-
lumped version of the lowest order rectangular Nédélec edge-element approximation; and
the scheme under Lorentz gauge can be viewed as a mass-lumped version of a mixed finite
element method. For the non-convex polygon, the exact solution A in the TDGL equations
only belongs to H* (2) for % < s < 1. Itis well-known that the H(curl) conforming Nédélec
edge element can solve for the curl curl problem correctly on non-convex geometries, which
has attracted much attention and been successfully used for simulating electromagnetics.
Thus, the equivalence of these two approximations implies that the proposed schemes could
also effectively solve the TDGL equations on non-convex domains.

This paper is organized as follows. In Sect. 2, we propose the stabilized semi-implicit Euler
gauge-invariant scheme for solving the TDGL equations and its forms under the zero-electric
potential gauge and the Lorentz gauge respectively. In Sect. 3, we prove that the proposed
scheme satisfies the point-wise boundedness unconditionally and the energy stability. Their
equivalences to the lowest order rectangular Nédélec edge finite element approximation and
a mass-lumped mixed finite element method respectively are discussed in Sect. 4. In Sect. 5,
various numerical examples on convex and non-convex domains are presented and the results
demonstrate that the proposed schemes are effective and provides correct vortex patterns for
superconductors in all cases. Some concluding remarks are finally given in Sect. 6.

2 A Stabilized Semi-Implicit Euler Gauge-Invariant Method for the
TDGL Equations

2.1 Preliminaries

For simplicity and clarity of exposition, let us take a uniform time partition {z, = nAt}fIVZO
with At = % together with a uniform rectangular mesh I', of size & for the two-dimensional
domain 2. Follow the notations defined in [11], assume that for the mesh I'j,, there are Ny
nodes {x ;}, N1 edges {5z} where s j; connects x ; and x, and N3 cells { x;,, } which has four
counterclockwise labeled nodes x j, x, x; and x,,. The center of the cell tjk, is denoted
by X jiim. From the original mesh I',, we can obtain a dual mesh F;l by shifting each cell
% (see Fig. 1). The cell in I containing x; is denoted by ‘L']/» with area |‘c}|. Let h’jk be
the length of the edge in I'; that bisects si. It is easy to see that h’j « = h in the interior
domain while h’j = g on the boundary. Consequently, Ir.;.l will take one of the four values

2 32 32 .
{(h?, %, %, hT}, see Fig. 1 for each case.
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Fig. 1 An illustration of the rectangular mesh and its duality

Next we shall define some discrete norms. For a vector ¥ € U = R0 with the component
v; corresponding to the vertex x ;, define the discrete L” norm on U by

1/p
- / -
HUHU,p=(Z|vJ'|p|Tj|) , 1<p<oo, and Hv”U’m=mjax|vj|.
j
Here Y j denotes the sum over all possible index j. Moreover, define (-, -);7 to be the inner

product which yields the natural norm || - ||y 2. For a vector field 7‘) defined by its value
fjkim at the center of each primal cell 7, we use the convention that fjx, = — fiuxj if
the vertices are labeled clockwise and denote the set of all vectors with this convention by
V, where V is a vector space isomorphic to RV2. Define the discrete L” norm on V by

1/
||f| (Z|f/k1m| Ifjkzml) " l<p<oo, and ||7)}|V7oo=%?é|fjklm|~

Jjklm

For a vector field 1_4) defined at the midpoint x j; = XitEk of each edge s i, its component
aji denotes a vector a it ;; where tjy is a unit vector in the direction x ; — x;. We also use
the convention that ajx = —ay;. Then, {ai} constitute a space W which is isomorphic to
RN, Define the discrete L” norm on W by

/p
1], <Z|a,k|hh1k> . l<p<oo, and HX”W’oo:rrﬁxlajkL

@ Springer



Journal of Scientific Computing (2019) 80:1083-1115 1087

Table 1 The staggered discrete variables

Physical variables Notations Location on the mesh
Order parameter 1,_0)” Vertices {x ;}

Electric potential E))" Vertices {x ;}

Magnetic potential An Midpoints of edges {sx}
Induced magnetic field " Center of cells {x jx/p, }
External applied magnetic field H Center of cells {x i }

Now, we define some discrete operators which will be frequently used in the rest part of
the paper. As the discrete variables are staggered on nodes, edges and cells, we list in Table
1 the variables and their locations on the mesh.

For 1 € U, wedefine W =V, 7 € W by

U —Uj

A (2.1)

%
wjk = (Vp h) jx =
on each edge s, where Vj, is the gradient matrix. For ? € V, we introduce a matrix Vhl
and define W = Vhl? e Wby

8jkim — &jkl'm’
7
Jjk

wik = (Vi §)jk = 2.2)
on the common edge s ji of two neighboring cells Tk, and Ty . If 5 i lies on the boundary,
we define

8kl
wik = (ViF g = 252 (2.3)

jk
Let A € W be a vector field defined at the midpoint of each edge. The circulation in the cell
Tjxim With four vertices x j, xx, x; and x,, is given by

_ajktap +ap + apj
Cikim = ,

h

which can be rewritten in matrix form
—
Ch A =7, (2.4)

where Cj, might be viewed as an approximation of the curl operator. We approximate the
divergence on each dual cell rj’. containing the vertex x ; by

1 ’
dj = 7|‘L'/| Zajkhjk’
J k—j

which can be rewritten in the matrix form
- =
Dy A=4d, 2.5
where Dj, could be viewed as an approximation of the operator div. The following lemma

provide a discrete version of integration by parts formulas and the orthogonality of vector
fields.
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Lemma2.1 Let @ € W, Dy, Cp, be matrices defined as in (2.4), (2.5), and Vj, Vfl‘ as defined
in (2.1), (2.2)—~(2.3). Then

(it 7), ==(@. 7). vFeu (2.6)
<c,,—u’, ?)V - (7 vj?)w, VZev 2.7)
CVif=0. YfeU ad DyVig=0., VZeV. 2.8)

In the continuous setting, the Ginzburg—Landau energy functional is defined by

oo a = [ (; (Lv+a)y

Then, with the above notations, its corresponding discrete version can be written into the
following form

2

1 1
+7 (1- |w|2)2 +3 |curlA — H|2> dx. (29

’ . 2 ’
ho= L PG [ ycexp(—ikajih) — r; |7}l =
G A =32 3 - +2_ A=l
Jk J
1
+§ Z (ajk + ax + aim + amj — ijlmh)z . (2.10)
Jjklm

2.2 A Stabilized Semi-Implicit Euler Gauge-Invariant Method

Based on the above notations, we present a stabilized semi-implicit Euler gauge-invariant
method for the time-space discretization of the TDGL Egs. (1.1)—(1.4) as follows: forn = 1,

..., N, solve
v - w;?_l exp(—ik D Ar) 1 Z h’l Vi — Wy exp(—ikah)
At |t} ~ K2 h
] k—j

+a (v =y exp(—ik @A) + (11— Dyt =0, 2.11)
at —ad'7l o — 1

k k k - . — _ . _

! A[j ; !y (V,ﬂ‘(_c)” — H))jk = HRe [l(w,? l)*l//;’ lexp(z/ca;lk lh)] ,

(2.12)

with ©" = C, A", where « > 0 is a stabilizing parameter, and the initial condition for v
is taken to be

¥ = {Yo(x))). (2.13)
and an initial A © such that
CLA =20 eV, DyA°=T0 eU, (2.14)
where _c)(O) on cell 7y, is defined as ¢ k1, (0) = ﬁ / curlAg dx.
I ikim

Here we propose to use the popular stabilization technique for solving . That is, a term
a(l//}? - w;lil exp(—ik ®" Ar)) is added in the scheme (2.11) for v. We will show in Sect.
3.1 that the above scheme (2.11)—(2.12) preserves |w]’.’| < 1 unconditionally, i.e., for any
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At > 0. We refer to [13,38] for more discussion on the stabilization technique for phase field
equations. Fully decoupled schemes can be obtained by linearizing more nonlinear terms.
For instance, using (WH |2 — 1)1#'}*1 in (2.11) at #,, gives another semi-implicit scheme.
However, the proposed scheme (2.11)—(2.12) preserves a discrete gauge-invariant property,
which is a crucial feature of the original TDGL Egs. (1.1)—(1.2).

Remark2.2 The TDGL Egs. (1.1)-(1.4) enjoy a gauge-invariant property, namely, if
(¥, A, @) is a solution to (1.1)—(1.4), then for any given real scalar function f(x,t) sat-
isfying f(x, 0) = 0, the transformation

Gr: (W, A, ®)r— (wei"f, A+ VL, <I>—%> (2.15)
provides a more general solution (Wei‘(f, A+Vf, & — %) for (1.1)—(1.4). The physical
quantities are invariant under the above gauge transformation, i.e., the density of supercon-
ducting pairs |¢’*/| = || and the magnetic field curl (A + V ) = curl A. The proposed
scheme (2.11)—(2.12) preserves a discrete gauge-invariant property. Given ? e [RNN,
with f/Q = 0 for any j, We define

- = —> - = =
T/ (Y, A, ®)=((,0,6) (2.16)
where
fr— gl o
¢ =yl explic f7), ®';=¢j_%, q;k=a;’k+7~’. (2.17)

- = = . . iy di-d
If (v, A, ®)isasolution of the numerical method (2.11)—(2.12), then sois Tf(w, A, D).

2.2.1 Under the Zero-Electric Potential Gauge

By imposing
af .
q>—§:0, with f|_, =0, (2.18)
the TDGL Eqgs. (1.1)—(1.4) under the zero-electric potential gauge become
a i 2
aLi’Jr(;vJFA) v+ (Y =y =0, nQx 071, (219

9A ;
- +eurleurl A + Re [w*(ivw + Aw)] —curlH, nQx©OT], (2.20)
K

with the boundary and initial conditions

%:0, A-n=0, curlA=H, on a2 x [0, T, (2.21)
Y(x,0) = Yo(x), A(x,0) =Ap(x), in Q. (2.22)

Similar to (2.18), by setting

n __ rph—l1
fi =7

RPN/ : 0 _
Ar _ij, with fj =0, (2.23)
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in the proposed scheme (2.11)—(2.12), we obtain the following stabilized semi-implicit zero-
electric potential gauge scheme for solving the TDGL Egs. (2.19)—(2.20):

n n—1 / n n s ]
wj _wj " 1 Zhl(wj -y CXP(—lKajkh)
At |7/ : k2

)+ —yih

7' k— h
+ (YR =Dy} =0, (2.24)
aly — a;’k_l

1
L+ (V@ = H) = —Re [ explinal '] @25)

It should be noted that the above system of (2.24)—(2.25) is decoupled and linear. At
— —
each time step, for given (¥ n=1 " An=1) one shall first solve for A" from (2.25), and then

compute 1_0)" from (2.24). The linear system (2.25) for {a j;} can be rewritten into the matrix
form

1 1
AN K A= — A"y B H + NG AT, (2.26)
At At
where K denotes the coefficient matrix derived from the following expression
I 9 1 2 e
hTW{Z Z (a?k +a1r(ll+alnm +a;,’1j _ijlmh) } = K; A", (2.27)
Jjk "7 jk jkim

: ; i N (o n—=1 Fn—1 i :
E; is the matrix generated by V-, and N (¢ "7, A"™") denotes the remaining nonlinear
term.

2.2.2 Under the Lorentz Gauge

By requiring
8 _Af=®+divA,  inQx[0,T],
%:—A~n, on dQ2 x [0, T,
f(x,0)=0, in Q,
the TDGL Egs. (1.1)—(1.4) under the Lorentz gauge become
oy . i 2 2 .
W—lK(leA)l/f—l-(fV—}-A) v+ (P =Dy =0, inQ x (0, T1,
K
(2.28)

A ;
S+ = VdivA + curlcurl A + Re [w*(ivw n Aw)] —curlH, inQx(0,T],
K

(2.29)
with the following boundary and initial conditions
il
ai —0, A-n=0, culA=H ondQ x[0,T],  (230)
n
V(x,0) =vo(x), A(x,0) = Ao(x), in Q. (2.31)

Correspondingly, for the discrete variables, we impose

1

q>l’l — n p/ _ n

J 7] ( Z ajkhjk> dj
J k—j
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where 70 — 0 and

=0t =
_ = — = h.=d" 447, 2.32
At |,L,J/| i hk/ k/ J + j ( )
k—j -

which results in the following stabilized semi-implicit Lorentz gauge scheme for solving the
TDGL Egs. (2.28)—(2.29):

v - w}’_l exp(ikdjAt) | h/jk (W7 - exp(—ika’;kh))
2
K

At Il = h

o (P — i explind! An) + (YT~ Dyt =0, (2.33)

n n—1
a, —a" N — 1 . _ _ . _
L L X LIRSS (vh c1>") (vi(—)” - H))jk = —Re [z(w,ﬁ Dyl explicaly; lh)] ,
(2.34)

with " = —Dj A" = —d". The initial condition (2.13)~(2.14) can also be used here.
It is easy to see that the above system of (2.33)—(2.34) is again decoupled and linear. At

each time step, for given (E)”_l, 1_4)”‘1 ), one shall first solve for A" from (2.34) and then
—
compute ¥ " from (2.33).

Remark 2.3 We note that a fully implicit backward Euler Lorentz gauge scheme was first
studied by Du [11], where a point-wise bound and energy stability of the scheme were derived.
Moreover, a priori error estimate was also obtained under a strong regularity assumption in

[11].

3 Stability Analysis
3.1 Unconditional Point-Wise Boundedness

We below show that the proposed semi-implicit Euler gauge-invariant scheme (2.11)—(2.12)
is unconditionally point-wise bounded when the stabilizing parameter o > 2.

Theorem 3.1 Let( 1// n ”) be the solution of the stabilized semi-implicit Euler gauge invari-
ant scheme (2.11)—(2.12) and assume that the stabilizing parameter o > 2. If | Yo (x)| < 1,
then for any At > 0 it holds

_)Vl
¥ llv.co <1
foralln > 0.
Proof Ttis easy to verify that || ?0 l .00 < 1 attheinitial time step fy. We will prove Theorem

3.1 by mathematical induction. Assume that ||$’" lu,0o < 1holds forindexm =0,1, ...,
n — 1. We shall prove ||$"||U,<>o < 1 also holds.
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The scheme (2.11) can be rewritten into

At Wy (W — U} exp(—ika'l, h)
1+ As n=12 _ 4 ) n Tk T J
(14 @+ P =1 wj+|1;|k§K2 ;

= (1+ Ata)y~  exp(—ik @A) .

Let jo be the index such that W;lo | = max; [ ;‘ |. Then, at x j;, multiplying the above equation
by (¥1)" gives

n—12 _ ny2 _
(14 ar@+ 1y ' P =) v o 2 h

At 3 Wik (|z/f;0|2 — Wy exp(—im;,km)
k— jo

nyx g n—1 . n
+ (1 +Ata)(¢j0) Iﬂj{] exp(—lkd>j0At),

which further leads to the following inequality

h'. n ny __ n 2)
(14 Ara+ 1w = D) i < 553 ,ok(w,ouw ¥ )

< — )
|tj0| k= jo K h

n—1
+ 1+ Ate) [y 15
< (1 + At) [y [1y7!). 3.1)
The above estimate (3.1) then yields
n—1
e (L + Ata) |y 11V | .
P At TR =)

[y (3.2)

If|w;'0| = 0, the bound Iw;’UI < 1 naturally holds. If|1//;’0| #0,denote 1 > g =1— |1//}-’071| >
0 and the inequality (3.2) gives us

| < I+ AV (4 Aty )

DT A+ TR — D) T L At + (= B = 1)
(I +Ate) — (1+ At (1 + Atar) — (& + )AL _
T+ Ate)— 2—-BAE T 1+ Ata) — 2 —BAE ~

where we have used the fact that « > 2. The proof is then completed. O

)

Thus in the remaining part of the paper, we always assume « > 2.

3.2 Energy Stability

In this subsection, we establish the energy stability for the stabilized semi-implicit zero-
electric potential gauge scheme (2.24)—(2.25).

Theorem 3.2 Let (?”, 7”) be the solution of the stabilized semi-implicit zero-electric
potential gauge (2.24)—(2.25). Then, there exists a positive constant C independent of h,
At and the stabilizing parameter «, such that for any At < 1/4

gy, A" < cgh(y 0, AY). (3.3)
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Proof Multiplying (2.24)—(2.25) by |r}|(1//;? — 1/f;’_1)* and hh/ik (a;‘k - a';k_l), respectively,
and then summing up the resulting equations, we have ' '

W—w" 12 — Yl exp(—ikalih)
g U (L -y
Jj k—>J
/ n n—1 n—1,2 n n n—1\x* / Jk _ajk |2
+Z|r-\a(w-—x/f- )+ (WP = DY) W - v >+j2khhjkT
+Zhh (VL—”’—_’) (@ — ')
= Zhh kRe[ 1)*107*1 exp(imj,;'h)] (@} —a;!,;l). (3.4)

For short notations, we denote the above Eq. (3.4) by an:  LHS™ = RHS, and next let
us estimate them term by term. First, it is easy to see that

1 — - 1 — —
LHS' + LHS = " = 9" Mg+ A" = A7 5.

The the real part of the term L H S? can be rewritten by

27 L M 1 = exp(=ikaly P T — g exp(—inal P

e L] - 3 . |
|

-3 h-—K’kz{wmz + Y] P = 2Relyy exp(—ikal )W) 1= 1y~ P = [y

Jjk

+2Re[y} ! exp(— mak'h)(w" 1+ 2Re[y exp(—ikalh) (¥} ] — 2|y}

—2Re[y} exp(— t/ca h)(l//" by ]+2Re[¢/ (1//" hyr ]+2Re[1l/" exp(zka]kh)(w

20 P = 2Rely] explixalyh) (W) ~)*] + 2Rel v (v ™"}

hhy (W5 =9t exp(—ucajk)l2 |1//.'/-’71 -y eXP(—iKa;l;:l)\z
2 Z { h2 B h2 } o

where

!/

1 h
I=3 > = v [2R [ D (exp(—ika ' h) — exp(—ikah)])

Jjk

— 1 = v exp(—ixalyh) — =y R

By using the fact that Re[i y/} (¥/})*] = Re[w;—l(w;’—l)*] = 0, we then get

h
=3 ij T/ch {2Re[w;—1(1//;’—‘>*(exp(—im’;,;1h) - exp(—im/".kh)])}
J

:Zhh/ije[(v/,:’ exp(— uca ~Th) — 1//]

> - )(w_’;—l)*( —exp(—ix(aly —d'y )h)]
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1 —exp (—ik(a? —ay Hh) —ix@”, —a" Hh
n—1c n— l J J J J
Rel v i )]

hh/lk |Iﬂk7 exp(—ika’, Thy — w I
=2 P sl a1+ 2l — ' P
Ry W™ exp(—incal )y — g2
1,2
= AIZ K2 h2 J +Zhh1k(l+ )|ajk—a |

Jjk

(3.5)

Therefore, taking (3.5) into the estimate for L H S?, we arrive at

1o iy (10— W exp(—idf) P 197" — 9 exp(—ikal DI

2 J J J J J

Re[LA?) 2 5 3 S [ - 7 |
Jk

l : 2 n—1 2 on—1 n—12
—Atz hhjk { e eXP(—lKa;-'kh) - Wﬂ + [y CXP(—lKajk h) — wj |

K2 h? h?

jk
e (14 no_ -1
=D o hh (1 g ) — @i
jk
The real part of the cubic nonlinear term L H S> can be bounded by

|71
Re[LHS*] = 3 == (" R = ()P = 1)~ P+ 1w =)' B) +adv) — vt D)

/ /

:Zl%l(‘lﬁ}"”lz—1)(|¢f;\2—1)_z'J (v 1)

J
|T]/| n—1,2 n n—12 |‘L’]/\ n n—1,2
3 (v P =) =T P e Y g -

J J

- ) S )

J

.

7]
+y {(z|w;?“|2—z+za)w;’—w}?‘llz—(|w7‘1|+|w;'|)2<\w;?“|—w;’bz}

J
Z—’/(W )2—Z‘r—ﬂ(|w’?*1|2—) <f——)2| Nyt =yt P
J 4 J 4 !

where the fact of |1//;l| < 1 has been used. By Lemma 2.1, we have that

LHSS = (Vi(e" = H), A" - 7\’"—1>W

1 — — — — — —
S(Ieh A =TH1} o =10 A" = H I+ 1k (A" = A DI ,)
Next, we turn to the right hand side of (3.4). Note that

Reli /' (¥} ™)*1=0 and [y} <1,
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thus R H S can be bounded by

hh, v exp(—ina 'hy =yt
RHS =" KJkRe[—i k ; L = dly )]
Jjk
Rh o 1pp " exp(— ik “hy — v~ I
Jjk 1
52 2 h Klalk_a;lk |
jk

n 1 n lexp(—iica” ]h) ,(//;L—]|2

<Zhh]k ’k ’k Achh e

Finally, taking all the above estimates for {L H Sk}z:1 and RH S into (3.4) gives

—>n— — -
Gy, A = gh g AT + — [W"—uf" NP P A S T
7n 3 - 1 — —
S“-At(gh(wn7 An)_,r_gh(l//nfl’ Anil))+<l+4A >”An_ Anfl”%/,2
3 o 1 — e
+<f——+—> " =" i,

Thanks to the discrete Gronwall’s inequality, for any fixed « > 0, we can conclude that for
At < 1/4

n
hegn R ! H—>m —>m_1H2 H—>m —>m_1H2 h70 R0
A — — A™— A <C A
gy, H;Af{w A P wa SCI" W0 AT,
(3.6)
which directly gives the energy estimate (3.3). O

Remark 3.3 1t should be noted that the above energy stability (3.6) does not rely on the
stabilizing parameter «. A similar energy stability result like that stated in Theorem 3.2 also
can be proven for the stabilized semi-implicit Lorentz gauge scheme (2.33)—(2.34).

4 Relations to the Lowest Order Rectangular Nédélec Edge Element
Approximation

4.1 The Zero-Electric Potential Gauge Scheme

A key observation is that the discretization (2.25) for A in the zero-electric potential gauge
scheme can be interpreted within the framework of the finite element method using the
Nédélec edge element [30]. The four basis functions of the lowest order rectangular Nédélec
edge element defined on the reference element [0, 1] are shown in Fig. 2.

Let S, € H' be the lowest order bilinear finite element space and let V;, € H(curl(2))
be the finite element space with the lowest order Nédélec edge element on I'j,. We can easily
verify that the degrees of freedom of V}, equals to N, which is the same to the unknowns
{ajx}, and S;, has the Ny unknowns which equals to that of {®}(or {d;}). If the unknowns
{aji} for (2.25) and Aj, € V), are ordered in the same fashion globally, then there exists a

— . - =
one to one map A, — A for each A; € V. Moreover, for given (" 1 An=1, we can
define a unique function F;, € V}, such that
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Fig.2 An illustration of the four basis functions of the lowest order rectangular Nédélec edge element of first
family

F, — LR . n—I\x ;n—1 . n—1 .
h = eli(y, )" exp(ika’y "h)| atthe center of edge {sji}.
hi J J
A semi-implicit finite element method for (2.20) is to look for A} € V}, such that
-1
(AZ — A,
At

where we have used the boundary condition curlA, = H on 92. To build a connection
between the above FEM (4.1) and (2.25), we shall introduce a mass-lumped version FEM
for A. To simply the presentation, we define the quadrature formula

,vh) + (curl A} — H, curlvy) = (Fj, v) , Yop € Vp, 4.1)

1
Qei(f) = qurea(m) £+ flx) + £+ fexm)| ~ [ Fa
T
Moreover, we define approximations of the inner products in S, and V, by

W h =Y Qealu-v), Yu,veS (W h= ) Qua(w-v), Yw,veV,
tel’y, tel’y

4.2)

where one can easily verify that (4.2) give a diagonal mass matrix for both finite element
spaces S;, and V},. For an element 74, with nodes {x ;, x, X;, x,;} and edge length £, its
element stiffness and mass matrices are defined respectively by

1 1 -1 -1
1 1 -1 -1

logn = =1 =1 11 @.3)
-1 -1 1 1
oo 2 9
h 2 2
0 h 0 L mass lumping ~ h2
7j = ’ n? 0 |r' =51 “.4)
jklm LS 0 5 0 jklm 2
n? n?
0 % 0 7

Based on the above quadrature rule, we can rewrite (4.1) into a mass-lumped FEM as follows

A _Anfl
h h n —
<T’ vh>h + (curl A7 — H . curlvy) = (Fp, vp)y . Yop € Vi (4.5)
The matrix form of the above mass-lumped FEM is
I = | Sl n L = Sie T, -1
EA +M Ky A :EA +M E;H+M F, (4.6)
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— ~

where F' denotes the nonlinear term. In (4.6), K3 is the stiffness matrix and M is the lumped
mass matrix, respectively, which are generated by assembling the element mass and stiffness
matrices in (4.3) and (4.4). We finally have the following equivalence

M 'K, =K, M'E;=E,, M 'F=N@G""!, A", 4.7)

where the matrices K;, E; and the vectors 1_\/> (E)”’l , 1_4>”’1) are define in (2.26). Therefore,
the proposed semi-implicit gauge-invariant finite difference scheme (2.25) in space can be
viewed as the mass-lumped lowest order Nédélec edge finite element methods by lumping
all masses in one row into the diagonal entry (or using a special numerical quadrature).
We refer to [36, Chapter 15] for more discussion on mass-lumped FEMs. We also remark
that Christiansen and Halvorsen [8] proposed a gauge invariant finite element method for
the Schrodinger eigenvalue problem in an electromagnetic field by using the mass-lumping
technique, where certain requirement is needed for the mesh. It also should be noted that the
covariant gradient of v used in [8] is defined as grad 4 = V¢ + i Ay, which is similar to
the term ”(QVW + Ay in the TDGL equations. Therefore, the numerical methods developed
in [8] might be applied to the TDGL Egs. (1.1)—(1.2).

4.2 The Lorentz Gauge Scheme

The main difference between the zero-electric potential gauge and the Lorentz gauge is
that a term —VdivA appears in (2.29) for A under the Lorentz gauge, which implies that
A € H(div) N H(curl) in space. However, at first glance, the term —(V;, Dy A™) ji in (2.34)
denoting the discretization of —VdivA is not compatible in the framework of Nédélec edge
element, which is only H(curl) conforming. To this end, we turn to mixed FEMs to show
the equivalence. In [26], a class of mixed FEMs is investigated for the Lorentz gauge TDGL
equations, where the basic idea is to introduce ® = —divA as an extra variable. Then,
Lagrange elements and Nédélec edge elements are used to approximate ¢ and A, respectively.
To incorporate with the current rectangular mesh, we consider a mixed method based on the
lowest order bilinear element and lowest order rectangular Nédélec edge element.

By introducing ® = —div A as an extra variable, a semi-implicit mixed FEM for (2.29)
is to look for (&}, A}) € S x Vi, such that

(@), wp) — (A}, Vwp) =0, Vwp € Sy, (4.8)
Al — An—l
h h n n _
<T’ o) + (V" vy) + (curl A} — H, curlvy) = (B, v) . Yoy € Vi,

4.9)

where we have used the boundary condition curlA;, = H and A-n = 0 on 2. A mass-lumped
version of the above FEM is to look for (@}, A}) € Sy x Vj such that

(P, wp)p — (AL, Vwp)p, =0, Ywp € Sy, (4.10)
Al — An—l
( hiAt h__ vh)h + (VO , vp)p + (curl Ay — H, curlvy) = (Fy, i), . Yop € V.
4.11)

It should be pointed out that, due to the fact V.S, C Vj [2], the two terms (A, Vwy,);, and
(VO™ | vy); are well-defined. We shall give a more compact matrix form for (4.11)—(4.11)
later. Before going further, we present the local mass matrix for the lowest order bilinear
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element space Sy,. Given an element 7, with and edge length £, its element mass matrix
and the corresponding mass-lumping version are defined by

1 1 1
9 18 36 18
= 5 & 4 mass lumping ~ h2
Mbilinear|rjklm — LIS i lf i Mbitinear Tikim = ZI4.
36 18 9 18
o1 1 1
18 36 18 9
(4.12)
Then, we can rewrite (4.10) into a matrix form
~ — ~—> . — ~ ~—>
Mpilinear " =D A", ie., @"= MbillinearD A",
which immediately yields the following matrix form for A}
1 — ~ ~po ] o~ ~ 1 = I -, =
A—tA"—i—M D'M, e PA" +M KzAn:At A" +M T E;H M F,
(4.13)

where IVI, Ky, E», ﬁ and 7?) are the same to those in the zero-electric potential gauge case.
Recall the definition of V, in (2.1) and Dy, in (2.5), we claim that

AatT =20 Contour of |¢] at T = 20

02 04 06 08
X

Fig. 3 Simulation results at 7 = 20 by the stabilized semi-implicit zero-electric potential gauge scheme
(2.24)—(2.25) with At = 0.1 and h = é for Example 5.1
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6 B T T T T T T T T T I_
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Fig.4 Energy evolution obtained by the stabilized semi-implicit zero-electric potential gauge scheme (2.24)—
(2.25) with At =0.1and h = 611 for Example 5.1

Contour of || at T =1 Contour of || at T =5 Contour of || at T' = 10

Contour of |[¢| at T =15 Contour of |[¢] at T = 20 Contour of |[¢] at T =40
— N~ ! ~

Fig.5 Plots of the contour of simulated || at time 7 = 1, 5, 15, 20, 20 and 40 by the stabilized semi-implicit
zero-electric potential gauge scheme (2.24)—(2.25) with At = 0.1 and h = 61—4 for Example 5.2 with H =5
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curlA at T'= 40 divA at T =40
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4.95 \ -1

4.94 :z

493 4
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Fig. 6 Plots of simulated A, curlA and divA at time 7 = 40 by the stabilized semi-implicit zero-electric
potential gauge scheme (2.24)—(2.25) with At = 0.1 and h = 6L4 for Example 5.2 with H =5
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Fig.7 Energy evolution obtained by the stabilized semi-implicit zero-electric potential gauge scheme (2.24)—
(2.25) with At =0.1 and h = 6L4 for Example 5.2 with H =5

Vi = M_lf)T, —Dy = M2 D

bilinear™ >

and therefore —V; D), = f/l_lf)TlVIgﬂlinearf). Thus, we observe that the Lorentz gauge scheme
(2.34) is a mass-lumped mixed FEM.

In “Appendix A”, we provide a concrete example with explicit matrices and entries on a
uniform 2 x 2 mesh to demonstrate the equivalence of the gauge invariant finite difference

approximation and the mass-lumped mixed finite element method.
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Contour of [¢] at T' =1 Contour of || at T =5 Contour of [¢| at T = 10
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Fig.8 Plots of the contour of simulated || attime 7 = 1, 5, 15, 20, 20 and 40 by (2.24)—(2.25) with Az = 0.1
and h = ¢y for Example 5.2 with H = 7.2

Aat T =40 curlA at T = 40 divA at T = 40
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7.19
4

7.185
7.18 2

7175
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747
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7.16

EN

7.1556
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Fig. 9 Plots of simulated A, curlA and divA at time 7 = 40 by the stabilized semi-implicit zero-electric
potential gauge scheme (2.24)—(2.25) with At = 0.1 and h = é for Example 5.2 with H = 7.2

5 Numerical Experiments

In this section, we provide some numerical experiments on vortex motion simulations for
convex, non-convex and multi-connected domains to test the performance of the stabilized
semi-implicit zero-electric potential gauge scheme (2.24)—(2.25) and the stabilized semi-
implicit Lorentz gauge scheme (2.33)—(2.34). We set the stabilized parameter « = 2 in all
tests.

5.1 Tests of the Zero-Electric Potential Gauge Scheme

We first test the the stabilized semi-implicit zero-electric potential gauge scheme (2.24)—
(2.25) for solving the TDGL equations.

Example 5.1 In the first example, we solve the TDGL equations to simulate the vortex motion
in a unit square superconductor. Here we set 2 = (0, 1)2, the Ginzburg—Landau parameter
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18} -

16 |
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12|

gh 10 |

L

0 5 10 15 20 25 30 35 40

time

0

Fig. 10 Energy evolution obtained by the stabilized semi-implicit zero-electric potential gauge scheme (2.24)—
(2.25) with At =0.1 and h = & for Example 5.2 with H = 7.2

« = 10 and the external applied magnetic field H = 3.5. In the simulations, we set the
time step size At = 0.1 and the spatial mesh size h = 6—14. This benchmark problem has
been used to test many other methods, e.g., conventional Lagrange finite element methods
[10,16,31,32], mixed finite element methods [17], a method based on Hodge decomposition
[27], and a method based on mixed formulation [18].

The simulation results of ¥ and A at T = 20 computed by the zero-electric potential
gauge scheme (2.24)—(2.25) are presented in Fig. 3 (top row). We observe that there are
four vortices in the domain and the vortex pattern are stable near 7 = 20, which agree very
well with the previous results reported in [10,16-18,27,31,32]. Moreover, Fig. 3 (bottom
row) shows that the proposed stabilized semi-implicit gauge-invariant scheme is also able to
compute the magnetic field curlA and the electric potential divA accurately. Furthermore, we
plot the energy evolution in Fig. 4, which clearly shows that the discrete Ginzburg—Landau

he T TN . .
energy G" (¢, A) is decreasing as time evolves.

Example 5.2 In the second example, we use the proposed scheme (2.24)—(2.25) to study
the TDGL equations in an L-shape domain, where @ = (—0.5,0) x (—0.5,0.5) U
(0,0.5) x (0,0.5). We set «k = 10 and H = 5 and 7.2 respectively. This problem was
also tested previously in [17,18,27], in which the main challenge is the low regularity of A
due to the re-entrant corner; in particular, conventional finite element methods may converge
to a “spurious” vortex pattern. In the simulations, we used the time step size At = 0.1 and
the mesh size h = é.
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Contour of [¢] at T = 20
2

divA at T'= 20

Fig. 11 Plots of the contour of simulated ||, curlA and divA at time 7 = 20 by the stabilized semi-implicit
zero-electric potential gauge scheme (2.24)—(2.25) with At = 0.05 and h = % for Example 5.3

30 |- B
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0 2 4 6 8 10 12 14 16 18 20
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Fig. 12 Energy evolution obtained by the stabilized semi-implicit zero-electric potential gauge scheme (2.24)—
(2.25) with At =0.05and h = 81*0 for Example 5.3

The external applied magnetic field was first set to H = 5. The contour plots of simulated
[y at time T = 1, 5, 15, 20, 20 and 40 are presented in Fig. 5, which agree well with the
results reported in [17,18,27]. There is only one vertex in the stationary state for . We also
present plots of simulated A in Fig. 6, which clearly shows that A is singular near the origin
(0, 0). The magnetic field curlA and div A also agree well with the results obtained in [17].
Moreover, we plot the energy evolution in Fig. 7, which demonstrates that G” (E), 1_4)) is
decreasing as time evolves for this non-convex domain.

It is well-known that a larger applied magnetic field H (under a certain critical value) can
give more vortices. We show in Fig. 8 the results of simulated || attime T = 1, 5, 15, 20, 20
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and 40 under the same physical settings except the external applied magnetic field H = 7.2
now. It is observed that there are three vortices at the stationary state. The plots of A, curl A
and div A are shown in Fig. 9. The energy evolution plot is shown in in Fig. 10, which again
confirms that the proposed scheme is energy stable.

Example 5.3 1Inthe third example, we study the TDGL equations in a multi-connected domain.
Here we set Q = (0, 2)2 /10.8, 1 2)2, the Ginzburg-Landau parameter k = 10 and the
external applied magnetic filed H = 4. In the simulations, we set the time step size At = 0.05

and the mesh size h = %.

Plots of the contour of simulated ||, curlA and div A at T = 20 are shown in Fig. 11,
which agree well with the results obtained by the mixed finite element method in [17]. The
plots of numerical results obtained by the mixed finite element method [17] are omitted here.
We also plot the energy evolution in Fig. 12, which shows the energy stability of the stabilized
semi-implicit zero-electric potential gauge scheme (2.24)—(2.25).

5.2 Tests of the Lorentz Gauge Scheme

Now, we turn to the stabilized semi-implicit Lorentz gauge scheme (2.33)—(2.34). We first
test its performance for Example 5.1. Note that the square domain is convex in this example
and the exact solution satisfies the regularity assumption in [11]. The numerical results at
T = 20 computed by the stabilized semi-implicit Lorentz potential gauge scheme (2.33)—
(2.34) are presented in Fig. 13. It is easy to see that the vortex pattern agrees very well with

AatT =20 Contour of |[¢| at T = 20
7 N
77 SRR
= =N
7 ey
po NN
= NIY)
A Ay X
47 \
[
&
RN 2441
W=
NS
S
N =
\\\ //
N
N
0 02 04 06 08 1
X

02 04 06 08
X

Fig. 13 Simulation results at 7 = 20 computed by stabilized semi-implicit Lorentz gauge scheme (2.33)—
(2.34) with At = 0.1 and h = & for Example 5.1
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that in Fig. 3. Moreover, we observe that the amplitude of div A is relatively small in this case,
which is around O (1077). The energy evolution plot obtained by the Lorentz gauge scheme
(2.33)—(2.34) are shown in Fig. 14. We can see that it is the same to that in Fig. 4 computed by
the zero-electric potential gauge scheme (2.24)—(2.25), which also confirms that the discrete

Ginzburg—Landau energy G" (¥, A ) defined in (2.10) is gauge-invariant at the discrete level.

We next test Example 5.2. Note that the L-shape domain is non-convex in this example.
We first set H = 5 and the contour plots of simulated || at time T = 1, 5, 15, 20, 20 and
40 are shown in in Fig. 15, together the plots of simulated A, curlA and div A in Fig. 16. It
should be noted that, the vortex pattern plots for H = 5 agree well with the results presented
in Fig. 5 and in [17,18,27]. Moreover, the energy evolution figure is also the same to that of
the zero-electric potential gauge scheme, see Fig. 17.

Then, we increase the external applied magnetic field to H = 7.2 and present in Fig. 18
the vortex pattern attime 7 = 1, 5, 15, 20, 20 and 40. We observe from Fig. 18 that there are
three vortices, which is the same to the result of vortices in Fig. 8 obtained by the zero-electric
potential gauge scheme. Moreover, the plots of simulated curlA and div A shown in Fig. 19
also agree with that in Fig. 9 obtained by the zero-electric potential gauge scheme. Thus, this
example indicates that the Lorentz gauge scheme (2.33)—(2.34) is also able to give correct
solutions for the TDGL equations in non-convex domains. We show the energy evolution in
Fig. 20 and observe that it is the same to that in Fig. 10 obtained by the zero-electric potential
gauge scheme.

6 B T T T T T T T T T I_
0.55
5 = -
0.5
0.45 |
4t 0.4 i
0.35
g 03|
3 - -
0.25 |
02|
2 L -
1 15
1 -
O 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

time

Fig. 14 Energy evolution obtained by the stabilized semi-implicit Lorentz gauge scheme (2.33)—(2.34) with
At =0.1and h = é for Example 5.1
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Contour of || at T =1 Contour of || at T =5 Contour of || at T = 10
— ‘ e 4 !
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Contour of || at T =15 Contour of || at T = 20 Contour of | at T = 40
N~ ! — ! >

Fig. 15 Plots of the contour of simulated || at time 7' = 1, 5, 15, 20, 20 and 40 by stabilized semi-implicit
Lorentz gauge scheme (2.33)—(2.34) with At = 0.1 and h = 6L4 for Example 5.2 with H =5

AatT=40 curlA at T = 40 divA at T =40 .

4.99 ;
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4.95

4.94
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Fig. 16 Plots of simulated A, curlA and divA at time 7' = 40 by the stabilized semi-implicit Lorentz gauge
scheme (2.33)—(2.34) with At = 0.1 and h = 6L4 for Example 5.2 with H =5

Finally, we test the performance of the Lorentz gauge scheme (2.33)—(2.34) for Example
5.3, where a multi-connected domain is used. It is easy to see that the inner square introduces
four re-entrant corners, where the exact solution might be singular. Plots of the contour of
simulated ||, curlA and divA at T = 20 are shown in Fig. 21, which shows the same vortex
pattern and vortex number in Fig. 11. The energy evolution is plot in Fig. 22, which is the
same to that in Fig. 12. Thus, we demonstrate that the discrete Ginzburg-Landau energy
(2.10) is gauge invariant for multi-connected domains. Numerical results indicate that the
Lorentz gauge scheme (2.33)—(2.34) also works well for multi-connected domains.

6 Conclusions
In this paper we propose a stabilized semi-implicit Euler gauge-invariant method for solving

the TDGL equations in the two-dimensional space. The proposed scheme is linear and pre-
serves the point-wise bound |Y,| < 1 unconditionally and the energy stability. For the first

@ Springer



Journal of Scientific Computing (2019) 80:1083-1115 1107

T T T T T T T T

9 - -

8 0.35 . T

T 0.3 1 ]

6 - -
0.25 ]

ho5f i
g 02 -

4 b |
0.15 ]

3 - -

15

2 - -

| i

o . . . . . . . .

0 5 10 15 20 25 30 35 40

time

Fig. 17 Energy evolution obtained by the stabilized semi-implicit Lorentz gauge scheme (2.33)—(2.34) with
At =0.1and h = ¢; for Example 5.2 with H =5

Contour of [¢] at T =1 Contour of ] at T =5 Contour of 4] at T = 10
s " u " .
(7 o.‘ — :' A :'

Contour of 1] at T = 15 Contour of || at T'= 20 Contour of |¢| at T'= 40

Fig.18 Plots of the contour of simulated || attime 7 = 1, 5, 15, 20, 20 and 40 by the Lorentz gauge scheme
(2.33)—(2.34) with At = 0.1 and h = 6L4 for Example 5.2 with H = 7.2
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Fig. 19 Plots of simulated A, curlA and divA at time 7 = 40 computed by the Lorentz gauge scheme
(2.33)—(2.34) with At =0.1and h = é for Example 5.2 with H = 7.2
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Fig. 20 Energy evolution obtained by the stabilized semi-implicit Lorentz gauge scheme (2.33)—(2.34) with
At=0.land h = & for Example 5.2 with H = 7.2

time, we establish a connection between the gauge-invariant scheme and the lowest order
rectangular Nédélec element in space. That is, the widely-used gauge-invariant discretization
on a staggered mesh under the zero-electric potential gauge can be viewed a mass-lumped
version of Nédélec element approximation, and the Lorentz gauge finite difference scheme as
a mass-lumped mixed FEM. Numerical results show that the stabilized semi-implicit gauge-
invariant schemes under both zero-electric potential gauge and Lorentz gauge can provide
accurate vortex pattern simulations of superconductors on non-convex and multi-connected
domains. Although the method considered here is for the two-dimensional superconduc-
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divA at T'= 20

Contour of |¢| at T = 20
2

1 x10°

0.8

06

04

0.2

S

Fig. 21 Plots of the contour of simulated ||, curlA and divA at time 7 = 20 by the stabilized semi-implicit
Lorentz gauge scheme (2.33)—(2.34) with At = 0.05 and h = 81—0

30 | T T T T T T T T T I_

25 |

Ggh 15|
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0 2 4 6 8 10 12 14 16 18 20

time

Fig. 22 Energy evolution obtained by the stabilized semi-implicit Lorentz gauge scheme (2.33)—(2.34) with
At =0.05and h = g for Example 5.3

tivity model, our work provides a fundamental understanding of the gauge-invariant finite
difference approximation, and we expect to generalize it to the three-dimensional space
problems and in more general settings in the future research. Due to the low regularity of
the exact solution on non-convex domains and the gauge-invariant approximation, a rigorous
error analysis is challenging and desirable, which will also be conducted in our ongoing
work.
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Appendix
A An Example with Explicit Coefficient Matrices

In this appendix, we provide an example on a 2 x 2 mesh to show the equivalence of the
gauge invariant finite difference approximation and the mass-lumped mixed finite element
method. To this end, we shall only consider the Lorentz gauge scheme for A (2.34) and the
mixed FEM (4.8)—(4.9). For simplicity, we take Q2 = (0, 1)? and set h = % There are 9
degrees of freedom (DOFs) for @ and 12 DOFs for A, see Fig. 23.

The Lorentz gauge scheme (2.33)—(2.34) can be written as

1 — — —
EA"—V;,D;,A"—FKlA":RHS, (A.1)

where Vj, is a 12 x 9 gradient matrix and Dy, is a 9 x 12 divergence matrix defined respectively
by

-1 1 0
0 -1 1
-1 0 0 1 0 0
0 -1 0 0 1 0
0 0 -1 0 0 1
1 —1 1 0
V=1 0 -1 1 ’
—1 0 0 1 0 0
0 -1 0 0 1 0
0 0 -1 0 0 1
—1 1 0
i 0 —1 1]
> > q
An VA12 @7 Oy [N
| A A
Ag Ag Ay
> > ¢
AG A7 <I)4 ‘1)5 (bﬁ
A A
As Ay As
> > ¢
A1 Az ‘I)l (I)Z (I)QS

Fig. 23 An illustration of labeled global DOFs for A and ® on a2 x 2 mesh
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2 0 2 0 0
-1 1 0 2 0
0 -2 0 0 2
1 -1 0 0 2 0 1 0 0
D, = — 0 -1 0 -1 1 0 1 0 ,
h 0O 0 -1 0 -2 0 0 1
-2 0 0 2 0
0o -2 0 -1 1
L 0 0o -2 0 -2
and K is the coefficient matrix defined by
2 0o -2 2 0o -2 0 7
0 2 0o -2 2 0o -2
-2 0 2 =2 0 2 0
1 -1 -1 2 -1 -1 1
0 2 0o -2 2 0o -2
K, — i -1 0 1 -1 0 2 0 -1 1 0 -1 0
=2 0 -1 0 1 -1 0 2 0 -1 1 0 -1
-2 0 2 =2 0 2 0
I -1 -1 2 -1 -1 1
0 2 0o -2 2 0o -2
-2 0 2 =2 0 2 0
| 0 -2 0 2 =2 0 2 ]
Let us recall that the mixed FEM introduces & = —div A as an extra variable. Based

on the lowest order bilinear element space S; and lowest order rectangular Nédélec edge
element space V},, we look for (®}, A}) € S; x Vj such that

(P}, o) — (A}, Vo) =0, Yoy € Sp, (A.2)

1
E(A”, Vi) + (V@5 vy) + (curlAf, curlvy) = RHS, Vv, € Vp, (A3)
which further can be represented by the following matrix equations

_>Vl _)n
Mbitinear " —Dp A" =0, (A4)

1
EM_A’" +DIB" + K, A" = RHS. (A.5)
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On the 2 x 2 mesh, the above mass matrix Mp;jinear generated by the lowest order bilinear
Lagrange element space and the matrix D), are defined by

1 1 1 1
7 8 0 13 3% 0
12 11 1 1
18 9 18 36 9 36
o L L o L L
18 9 36 18
1 1 2 1 1 1
s % 0 5 5 0 5 35 O
g2l 11 41 111
Mbitinear = 1° | 3¢ 3 36 9 9 3 36 9 36 |°
1 1 1 2 1 1
0 % % 0 5 5 0 5%
1 1 1 1
s % 9 5 1 O
11 1 12 1
36 9 36 18 9 18
1 1 1 1
L 0 5% % 0 13 gl
— 1 1 1 1 -
-3 0 -5 -5 0 -5 0
11 1 _2 _1 1 _1
3 3 6 3 6 6 6
1 1 1 1
0 53 0 -5 -5 0 3¢
1 1 1 2 1 1 1
-5 0 5 5 0 -5 0 -5 -5 0 -5 0
D 11 1 2 1 2 _2 _1 _2 _1 1 _1
h = 6 6 6 3 6 3 3 6 3 6 6 6 s
1 1 1 2 1 1 1
o s 0 § 35 0 5 0 -5 -3 0 3
_1 0 1 1 o -1 0
6 3 6 3
1.1 1 2 1 1 _1
6 6 6 3 6 3 3
1 1 1 1
L o 5 0 5 3 0 5]

and the mass matrix M and stiffness matrix K, generated by the lowest order rectangular
Nédélec edge element space are defined respectively by

1 1
37 5 )
0 3 0 %
1 1
7 6 0
12 1
ol
1 0632 1
M:hza? 5(2) 6?
0 5 0311 0 3
5 6 0
12 1
ol
1 0631
5 ) 300
L 0 3 0 3]
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1 0 -1 1 0 -1 0

0 1 0 -1 1 0 -1

-1 0 1 -1 0 1 0

1 -1 -1 2 -1 -1 1

0 1 0 -1 1 0 -1
-1 0 1 -1 0 2 0 -1 1
0 -1 0 1 -1 0 2 0 -1
-1 0 I -1

0 1 0 -1
-1 0 1 -1

If the mass-lumping is used, then it holds

(@}, wn)n — (A}, Vo), =0,

1
E(AZ’ vion + (VO v, + (curlA%, curlvy,) = RHS,

and we can obtain the following matrix equations
v =n N 2
Mbitinear " —Dp A" =0,
1 ~ ~
EMX" +DIB" + K, A" = RHS,

where Myjlinear and M are diagonal matrices as

M : 11117111177
Mbi““ear=dlag([z 7a3l2474) )

7 : 11141 1111177
M:dlag([iiililliliii])’
and
r_ 1 1
-5 0 —5 0 0
1 1
5 —5 0 -1 0
o 4+ o o -}
1 1
0 o -1 o -1 o
D,=h 0o 1 0 1 -1 0 -1
o o L+ o 1 0 0
1
5 0
0 1
0 0

By taking matrices Mbi]inear, M and I~)h into (A.9), we can deduce that

1
At

o o O O

o —

— A"+ MBI ML D, A" + MK, A" = RHS.

O W= W=

TR ST

(=)

(A.6)

(A7)

(A.8)

(A.9)
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It is easy to verify the following matrix qualities

Vi :Milf)]];, —Dy, =M} ﬁh, K, :Mile,

bilinear

which confirm our observation. Finally, we shall point out that similar equivalences also hold
for L-shape and multi-connected domains.
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