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Abstract
In this paper, we propose and analyze a stabilized semi-implicit Euler gauge-invariantmethod
for numerical solution of the time-dependent Ginzburg–Landau (TDGL) equations in the
two-dimensional space. The proposed method uses the well-known gauge-invariant finite
difference approximations with staggered variables in a rectangular mesh, and a stabilized
semi-implicit Euler discretization for time integration. The resulted fully discrete system
leads to two decoupled linear systems at each time step, thus can be efficiently solved.
We prove that the proposed method unconditionally preserves the point-wise boundedness
of the solution and is also energy-stable. Moreover, the proposed method under the zero-
electric potential gauge is shown to be equivalent to a mass-lumped version of the lowest
order rectangular Nédélec edge element approximation and the Lorentz gauge scheme to a
mass-lumped mixed finite element method. These indicate the method is also effective in
solving the TDGL problems in non-convex domains although the solutions are often of low-
regularity in such situation. Various numerical experiments are also presented to demonstrate
effectiveness and robustness of the proposed method.
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1 Introduction

The governing equations for type-II superconductors in an external magnetic field are the
following time-dependent Ginzburg–Landau (TDGL) equations:

∂ψ

∂t
+ iκ�ψ +

(
i

κ
∇ + A

)2

ψ + (|ψ |2 − 1)ψ = 0 , in � × (0, T ], (1.1)

∂A
∂t

+ ∇� + curl curlA + Re

[
ψ∗
(
i

κ
∇ψ + Aψ

)]
= curl H , in � × (0, T ], (1.2)

with the boundary and initial conditions as(
i

κ
∇ψ + A

)
· n = 0, curlA = H ,

(
∂A
∂t

+ ∇�

)
· n = 0, on ∂� × [0, T ], (1.3)

ψ(x, 0) = ψ0(x), A(x, 0) = A0(x), in �. (1.4)

where� is a bounded domain inR2,n is the unit outer normal vector to ∂�, κ is theGinzburg–
Landau parameter, the unknown ψ is a scalar complex function which denotes the order
parameter andψ∗ denotes its conjugate, the real vector unknownA is the magnetic potential,
� is the electric potential, and H stands for a constant external applied magnetic field. Here,
Re[·] denotes the real part of the content in bracket. In this model, |ψ | = 1 corresponds to
the superconducting state and |ψ | = 0 denotes the normal state, while 0 < |ψ | < 1 stands
for the mixed (or vortex) state. For a vector function u = [u1, u2]T and scalar function f , the
standard calculus operators in the two dimensional space in (1.1)–(1.4) are defined as follows:

div u = ∂u1
∂x

+ ∂u2
∂ y

, ∇ f =
[

∂ f

∂x
,
∂ f

∂ y

]T
, curl u = ∂u2

∂x
− ∂u1

∂ y
, curl f =

[
∂ f

∂ y
,−∂ f

∂x

]T
.

The above TDGL system was first deduced by Gorkov and Eliashberg [20] from the
microscopic Bardeen–Cooper–Schrieffer theory. We refer to [5,12,37] for more discussion
on the superconductivity model. One of the most important issues in superconductivity is to
investigate the vortex motion. To obtain the correct vortex pattern, it is crucial to make sure
that the key physical quantities are conserved, and relevant physical principles are retained at
the discrete level. There have been tremendous numerical methods for the TDGL equations
(1.1)–(1.4). For conventional finite difference methods, we refer to [29,34] and reference
therein; for finite element methods, we refer to [4,6,7,10,12,16–19,25–28,31–33]. However,
none of the numerical methods mentioned above can preserve the point-wise boundedness
in the discrete sense, |ψh | ≤ 1 (a property satisfied by the exact solution ψ). Motivated
by this, gauge-invariant schemes have been developed and widely used in practice, which
can preserve the point-wise boundedness. One of the typical examples is the gauge-invariant
finite difference method, see [3,9,11,15,21–24,35] for its analysis and applications. We shall
also mention that a co-volume approximation for the steady state GL equation had been
studied in [14]. The first rigorous analysis of the gauge-invariant schemes was done in [11]
for a rectangular domain with a uniform mesh partition, in which a fully nonlinear backward
Euler gauge-invariant scheme was studied and the point-wise boundedness and stability of
the scheme were proved under certain conditions. In particular, under the assumption that the
exact solution (ψ,A) is sufficiently smooth, a priori error estimate for the gauge-invariant
scheme under Lorentz gauge was derived there. However, it is well-known that the curl curl
operator in (1.2) will introduce strong singularities near the re-entrant corner region for
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non-convex domains [27]. Thus, it also remains an interesting question whether the gauge-
invariant schemes are still feasible for non-convex domains.

In this paper, we propose a stabilized semi-implicit Euler gauge-invariant scheme for the
TDGLEqs. (1.1)–(1.4). At each time step, the proposed scheme only needs to solve two linear
systems, and thus dramatically reduces the computational cost compared to the solution of a
coupled nonlinear system required by the classic fully nonlinear approach proposed in [11].
Moreover, the proposed scheme unconditionally preserves the point-wise boundedness of
ψ and also satisfies the energy stability property under a very relaxed condition. Extensive
numerical experiments are also tested to investigate the performance of the proposed scheme.
We use the proposed method to study the vortex pattern in non-convex superconductors,
which has many applications in industry [1]. More importantly, it is shown in this paper
that the proposed scheme under the zero electric potential gauge is equivalent to a mass-
lumped version of the lowest order rectangular Nédélec edge-element approximation; and
the scheme under Lorentz gauge can be viewed as a mass-lumped version of a mixed finite
element method. For the non-convex polygon, the exact solution A in the TDGL equations
only belongs toHs(�) for 1

2 < s < 1. It is well-known that theH(curl) conforming Nédélec
edge element can solve for the curl curl problem correctly on non-convex geometries, which
has attracted much attention and been successfully used for simulating electromagnetics.
Thus, the equivalence of these two approximations implies that the proposed schemes could
also effectively solve the TDGL equations on non-convex domains.

This paper is organized as follows. In Sect. 2, we propose the stabilized semi-implicit Euler
gauge-invariant scheme for solving the TDGL equations and its forms under the zero-electric
potential gauge and the Lorentz gauge respectively. In Sect. 3, we prove that the proposed
scheme satisfies the point-wise boundedness unconditionally and the energy stability. Their
equivalences to the lowest order rectangular Nédélec edge finite element approximation and
a mass-lumped mixed finite element method respectively are discussed in Sect. 4. In Sect. 5,
various numerical examples on convex and non-convex domains are presented and the results
demonstrate that the proposed schemes are effective and provides correct vortex patterns for
superconductors in all cases. Some concluding remarks are finally given in Sect. 6.

2 A Stabilized Semi-Implicit Euler Gauge-Invariant Method for the
TDGL Equations

2.1 Preliminaries

For simplicity and clarity of exposition, let us take a uniform time partition {tn = n�t}Nn=0
with�t = T

N together with a uniform rectangular mesh �h of size h for the two-dimensional
domain �. Follow the notations defined in [11], assume that for the mesh �h , there are N0

nodes {x j }, N1 edges {s jk}where s jk connects x j and xk , and N2 cells {τ jklm}which has four
counterclockwise labeled nodes x j , xk , xl and xm . The center of the cell τ jklm is denoted
by x jklm . From the original mesh �h , we can obtain a dual mesh �′

h by shifting each cell
h
2 (see Fig. 1). The cell in �′

h containing x j is denoted by τ ′
j with area |τ ′

j |. Let h′
jk be

the length of the edge in �′
h that bisects s jk . It is easy to see that h′

jk = h in the interior

domain while h′
jk = h

2 on the boundary. Consequently, |τ ′
j | will take one of the four values

{h2, 3h2
4 , h2

2 , h2
4 }, see Fig. 1 for each case.
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Fig. 1 An illustration of the rectangular mesh and its duality

Nextwe shall define some discrete norms. For a vector−→v ∈ U = R
N0 with the component

v j corresponding to the vertex x j , define the discrete L p norm on U by

∥∥−→v ∥∥U ,p =
(∑

j

|v j |p|τ ′
j |
)1/p

, 1 ≤ p < ∞, and
∥∥−→v ∥∥U ,∞ = max

j
|v j |.

Here
∑

j denotes the sum over all possible index j . Moreover, define 〈·, ·〉U to be the inner

product which yields the natural norm ‖ · ‖U ,2. For a vector field
−→
f defined by its value

f jklm at the center of each primal cell τ jklm , we use the convention that f jklm = − fmlk j if
the vertices are labeled clockwise and denote the set of all vectors with this convention by
V , where V is a vector space isomorphic to RN2 . Define the discrete L p norm on V by

∥∥−→f ∥∥V ,p =
(∑

jklm

| f jklm |p|τ jklm |
)1/p

, 1 ≤ p < ∞, and
∥∥−→f ∥∥V ,∞ = max

jklm
| f jklm |.

For a vector field
−→
A defined at the midpoint x jk = x j+xk

2 of each edge s jk , its component
a jk denotes a vector a jkt jk where t jk is a unit vector in the direction x j → xk . We also use
the convention that a jk = −akj . Then, {a jk} constitute a space W which is isomorphic to
R

N1 . Define the discrete L p norm on W by

∥∥−→A ∥∥W ,p =
(∑

jk

|a jk |ph h′
jk

)1/p
, 1 ≤ p < ∞, and

∥∥−→A ∥∥W ,∞ = max
jk

|a jk |.
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Table 1 The staggered discrete variables

Physical variables Notations Location on the mesh

Order parameter
−→
ψ n Vertices {x j }

Electric potential
−→
� n Vertices {x j }

Magnetic potential
−→
A n Midpoints of edges {s jk }

Induced magnetic field −→c n Center of cells {x jklm }
External applied magnetic field

−→
H Center of cells {x jklm }

Now, we define some discrete operators which will be frequently used in the rest part of
the paper. As the discrete variables are staggered on nodes, edges and cells, we list in Table
1 the variables and their locations on the mesh.

For −→u ∈ U , we define −→w = ∇h
−→u ∈ W by

w jk = (∇h
−→u ) jk = uk − u j

h
(2.1)

on each edge s jk , where ∇h is the gradient matrix. For −→g ∈ V , we introduce a matrix ∇⊥
h

and define −→w = ∇⊥
h

−→g ∈ W by

w jk = (∇⊥
h

−→g ) jk = g jklm − g jkl ′m′

h′
jk

(2.2)

on the common edge s jk of two neighboring cells τ jklm and τ jkl ′m′ . If s jk lies on the boundary,
we define

w jk = (∇⊥
h

−→g ) jk = g jklm

h′
jk

. (2.3)

Let
−→
A ∈ W be a vector field defined at the midpoint of each edge. The circulation in the cell

τ jklm with four vertices x j , xk , xl and xm is given by

c jklm := a jk + akl + alm + amj

h
,

which can be rewritten in matrix form

Ch
−→
A = −→c , (2.4)

where Ch might be viewed as an approximation of the curl operator. We approximate the
divergence on each dual cell τ ′

j containing the vertex x j by

d j := 1

|τ ′
j |
∑
k→ j

a jk h
′
jk ,

which can be rewritten in the matrix form

Dh
−→
A = −→

d , (2.5)

where Dh could be viewed as an approximation of the operator div. The following lemma
provide a discrete version of integration by parts formulas and the orthogonality of vector
fields.
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Lemma 2.1 Let−→u ∈ W, Dh, Ch be matrices defined as in (2.4), (2.5), and∇h,∇⊥
h as defined

in (2.1), (2.2)–(2.3). Then〈
Dh

−→u ,
−→
f
〉
U

= −
〈−→u , ∇h

−→
f
〉
W

, ∀−→
f ∈ U (2.6)〈

Ch
−→u ,

−→g
〉
V

=
〈−→u , ∇⊥

h
−→g
〉
W

, ∀−→g ∈ V (2.7)

Ch ∇h
−→
f = −→

0 , ∀−→
f ∈ U and Dh ∇⊥

h
−→g = −→

0 , ∀−→g ∈ V . (2.8)

In the continuous setting, the Ginzburg–Landau energy functional is defined by

G(ψ, A) =
∫

�

(
1

2

∣∣∣∣
( i

κ
∇ + A

)
ψ

∣∣∣∣
2

+ 1

4

(
1 − |ψ |2)2 + 1

2
|curlA − H |2

)
dx . (2.9)

Then, with the above notations, its corresponding discrete version can be written into the
following form

Gh(
−→
ψ ,

−→
A ) = 1

2

∑
jk

hh′
jk

κ2

∣∣∣∣ψk exp(−iκa jkh) − ψ j

h

∣∣∣∣
2

+
∑
j

|τ ′
j |
4

(1 − |ψ j |2)2

+1

2

∑
jklm

(
a jk + akl + alm + amj − Hjklmh

)2
. (2.10)

2.2 A Stabilized Semi-Implicit Euler Gauge-Invariant Method

Based on the above notations, we present a stabilized semi-implicit Euler gauge-invariant
method for the time-space discretization of the TDGL Eqs. (1.1)–(1.4) as follows: for n = 1,
. . ., N , solve

ψn
j − ψn−1

j exp(−iκ�n
j�t)

�t
+ 1

|τ ′
j |
∑
k→ j

h′
jk

κ2

(
ψn

j − ψn
k exp(−iκanjkh)

h

)

+ α
(
ψn

j − ψn−1
j exp(−iκ�n

j�t)
)+ (|ψn−1

j |2 − 1)ψn
j = 0 , (2.11)

anjk−an−1
jk

�t
+ �n

k − �n
j

h
+
(
∇⊥
h (

−→c n − −→
H )
)
jk

= 1

h κ
Re
[
i(ψn−1

k )∗ψn−1
j exp(iκan−1

jk h)
]

,

(2.12)

with −→c n = Ch
−→
A n , where α > 0 is a stabilizing parameter, and the initial condition for ψ

is taken to be

ψ0 = {ψ0(x j )}, (2.13)

and an initial
−→
A 0 such that

Ch
−→
A 0 = −→c (0) ∈ V , Dh

−→
A 0 = −→

0 ∈ U , (2.14)

where −→c (0) on cell τ jklm is defined as c jklm(0) = 1
|τ jklm |

∫
τ jklm

curlA0 dx.

Here we propose to use the popular stabilization technique for solving ψ . That is, a term
α
(
ψn

j − ψn−1
j exp(−iκ�n

j�t)
)
is added in the scheme (2.11) for ψn

j . We will show in Sect.
3.1 that the above scheme (2.11)–(2.12) preserves |ψn

j | ≤ 1 unconditionally, i.e., for any

123



Journal of Scientific Computing (2019) 80:1083–1115 1089

�t > 0. We refer to [13,38] for more discussion on the stabilization technique for phase field
equations. Fully decoupled schemes can be obtained by linearizing more nonlinear terms.
For instance, using (|ψn−1

j |2 − 1)ψn−1
j in (2.11) at tn gives another semi-implicit scheme.

However, the proposed scheme (2.11)–(2.12) preserves a discrete gauge-invariant property,
which is a crucial feature of the original TDGL Eqs. (1.1)–(1.2).

Remark 2.2 The TDGL Eqs. (1.1)–(1.4) enjoy a gauge-invariant property, namely, if
(ψ,A,�) is a solution to (1.1)–(1.4), then for any given real scalar function f (x, t) sat-
isfying f (x, 0) = 0, the transformation

G f : (ψ, A, �) �−→
(

ψeiκ f , A + ∇ f , � − ∂ f

∂t

)
(2.15)

provides a more general solution (ψeiκ f ,A + ∇ f ,� − ∂ f
∂t ) for (1.1)–(1.4). The physical

quantities are invariant under the above gauge transformation, i.e., the density of supercon-
ducting pairs |ψeiκ f | = |ψ | and the magnetic field curl (A + ∇ f ) = curlA. The proposed
scheme (2.11)–(2.12) preserves a discrete gauge-invariant property. Given

−→
f ∈ [RN0 ]N ,

with f 0j = 0 for any j , We define

T h
f (

−→
ψ ,

−→
A ,

−→
�) = (

−→
ζ ,

−→
Q ,

−→
�) (2.16)

where

ζ n
j = ψn

j exp(iκ f nj ), �n
j = �n

j − f nj − f n−1
j

�t
, qnjk = anjk + f nk − f nj

h
. (2.17)

If (
−→
ψ ,

−→
A ,

−→
�) is a solution of the numericalmethod (2.11)–(2.12), then so isT h

f (
−→
ψ ,

−→
A ,

−→
�).

2.2.1 Under the Zero-Electric Potential Gauge

By imposing

� − ∂ f

∂t
= 0 , with f

∣∣
t=0 = 0, (2.18)

the TDGL Eqs. (1.1)–(1.4) under the zero-electric potential gauge become

∂ψ

∂t
+
( i

κ
∇ + A

)2
ψ + (|ψ |2 − 1)ψ = 0 , in � × (0, T ], (2.19)

∂A
∂t

+ curl curlA + Re

[
ψ∗( i

κ
∇ψ + Aψ

)]
= curl H , in � × (0, T ], (2.20)

with the boundary and initial conditions

∂ψ

∂n
= 0, A · n = 0, curlA = H , on ∂� × [0, T ], (2.21)

ψ(x, 0) = ψ0(x), A(x, 0) = A0(x), in �. (2.22)

Similar to (2.18), by setting

f nj − f n−1
j

�t
= �n

j , with f 0j = 0, (2.23)
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in the proposed scheme (2.11)–(2.12), we obtain the following stabilized semi-implicit zero-
electric potential gauge scheme for solving the TDGL Eqs. (2.19)–(2.20):

ψn
j − ψn−1

j

�t
+ 1

|τ ′
j |
∑
k→ j

h′
jk

κ2

(ψn
j − ψn

k exp(−iκanjkh)

h

)
+ α (ψn

j − ψn−1
j )

+ (|ψn−1
j |2 − 1) ψn

j = 0 , (2.24)

anjk − an−1
jk

�t
+ (∇⊥

h (
−→c n − −→

H )
)
jk = 1

h κ
Re
[
i(ψn−1

k )∗ψn−1
j exp(iκan−1

jk h)
]
. (2.25)

It should be noted that the above system of (2.24)–(2.25) is decoupled and linear. At

each time step, for given (
−→
ψ n−1,

−→
A n−1), one shall first solve for

−→
A n from (2.25), and then

compute
−→
ψ n from (2.24). The linear system (2.25) for {a jk} can be rewritten into the matrix

form
1

�t

−→
A n + K1

−→
A n = 1

�t

−→
A n−1 + E1

−→
H + −→

N (
−→
ψ n−1,

−→
A n−1), (2.26)

where K1 denotes the coefficient matrix derived from the following expression

1

h h′
jk

∂

∂anjk

{1
2

∑
jklm

(
anjk + ankl + anlm + anmj − Hjklmh

)2} �⇒ K1
−→
A n, (2.27)

E1 is the matrix generated by ∇⊥
h , and

−→
N (

−→
ψ n−1,

−→
A n−1) denotes the remaining nonlinear

term.

2.2.2 Under the Lorentz Gauge

By requiring ⎧⎪⎪⎨
⎪⎪⎩

∂ f
∂t − � f = � + divA, in � × [0, T ],
∂ f
∂n = −A · n, on ∂� × [0, T ],
f (x, 0) = 0, in �,

the TDGL Eqs. (1.1)–(1.4) under the Lorentz gauge become

∂ψ

∂t
− iκ(divA)ψ +

( i
κ

∇ + A
)2

ψ + (|ψ |2 − 1)ψ = 0 , in � × (0, T ],
(2.28)

∂A
∂t

− ∇divA + curl curlA + Re

[
ψ∗( i

κ
∇ψ + Aψ

)]
= curl H , in � × (0, T ],

(2.29)

with the following boundary and initial conditions

∂ψ

∂n
= 0, A · n = 0, curlA = H on ∂� × [0, T ], (2.30)

ψ(x, 0) = ψ0(x), A(x, 0) = A0(x), in �. (2.31)

Correspondingly, for the discrete variables, we impose

�n
j = − 1

|τ ′
j |
(∑
k→ j

anjkh
′
jk

)
= −dnj
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where
−→
f 0 = −→

0 and

f nj − f n−1
j

�t
− 1

|τ ′
j |
∑
k→ j

f nk − f nj
hk j

h′
k j = �n

j + dnj , (2.32)

which results in the following stabilized semi-implicit Lorentz gauge scheme for solving the
TDGL Eqs. (2.28)–(2.29):

ψn
j − ψn−1

j exp(iκdnj �t)

�t
+ 1

|τ ′
j |
∑
k→ j

h′
jk

κ2

(ψn
j − ψn

k exp(−iκanjkh)

h

)

+ α (ψn
j − ψn−1

j exp(iκdnj �t)) + (|ψn−1
j |2 − 1)ψn

j = 0 , (2.33)

anjk − an−1
jk

�t
+
(
∇h

−→
� n
)
jk

+
(
∇⊥
h (

−→c n − −→
H )
)
jk

= 1

h κ
Re
[
i(ψn−1

k )∗ψn−1
j exp(iκan−1

jk h)
]

,

(2.34)

with
−→
� n = −Dh

−→
A n = −−→

d n . The initial condition (2.13)–(2.14) can also be used here.
It is easy to see that the above system of (2.33)–(2.34) is again decoupled and linear. At

each time step, for given (
−→
ψ n−1,

−→
A n−1), one shall first solve for

−→
A n from (2.34) and then

compute
−→
ψ n from (2.33).

Remark 2.3 We note that a fully implicit backward Euler Lorentz gauge scheme was first
studied byDu [11],where a point-wise bound and energy stability of the schemewere derived.
Moreover, a priori error estimate was also obtained under a strong regularity assumption in
[11].

3 Stability Analysis

3.1 Unconditional Point-Wise Boundedness

We below show that the proposed semi-implicit Euler gauge-invariant scheme (2.11)–(2.12)
is unconditionally point-wise bounded when the stabilizing parameter α ≥ 2.

Theorem 3.1 Let (
−→
ψ n,

−→
A n)be the solutionof the stabilized semi-implicit Euler gauge invari-

ant scheme (2.11)–(2.12) and assume that the stabilizing parameter α ≥ 2. If |ψ0(x)| ≤ 1,
then for any �t > 0 it holds

‖−→ψ n‖U ,∞ ≤ 1

for all n ≥ 0.

Proof It is easy to verify that ‖−→ψ 0‖U ,∞ ≤ 1 at the initial time step t0.Wewill prove Theorem

3.1 by mathematical induction. Assume that ‖−→ψ m‖U ,∞ ≤ 1 holds for index m = 0, 1, . . .,

n − 1. We shall prove ‖−→ψ n‖U ,∞ ≤ 1 also holds.
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The scheme (2.11) can be rewritten into

(
1 + �t(α + |ψn−1

j |2 − 1)
)

ψn
j + �t

|τ ′
j |
∑
k→ j

h′
jk

κ2

(
ψn

j − ψn
k exp(−iκanjkh)

h

)

= (1 + �tα)ψn−1
j exp(−iκ�n

j�t) .

Let j0 be the index such that |ψn
j0
| = max j |ψn

j |. Then, at x j0 , multiplying the above equation
by (ψn

j0
)∗ gives

(
1 + �t(α + |ψn−1

j0
|2 − 1)

)
|ψn

j0 |2 = − �t

|τ ′
j0
|
∑
k→ j0

h′
j0k

κ2

( |ψn
j0
|2 − (ψn

j0
)∗ψn

k exp(−iκanj0kh)

h

)

+ (1 + �tα)(ψn
j0 )

∗ψn−1
j0

exp(−iκ�n
j0�t),

which further leads to the following inequality

(
1 + �t(α + |ψn−1

j0
|2 − 1)

)
|ψn

j0 |2 ≤ �t

|τ ′
j0
|
∑
k→ j0

h′
j0k

κ2

( |ψn
j0
||ψn

k | − |ψn
j0
|2)

h

)

+ (1 + �tα)|ψn
j0 ||ψn−1

j0
|

≤ (1 + �tα)|ψn
j0 ||ψn−1

j0
|. (3.1)

The above estimate (3.1) then yields

|ψn
j0 |2 ≤ (1 + �tα)|ψn

j0
||ψn−1

j0
|

1 + �t(α + |ψn−1
j |2 − 1)

. (3.2)

If |ψn
j0
| = 0, the bound |ψn

j0
| ≤ 1 naturally holds. If |ψn

j0
| �= 0, denote 1 ≥ β = 1−|ψn−1

j0
| ≥

0 and the inequality (3.2) gives us

|ψn
j0 | ≤ (1 + �tα)|ψn−1

j0
|

1 + �t(α + |ψn−1
j |2 − 1)

= (1 + �tα)(1 − β)

1 + �t(α + (1 − β)2 − 1)

= (1 + �tα) − (1 + �tα)β

(1 + �tα) − (2 − β)�tβ
= (1 + �tα) − ( 1

�t + α)�tβ

(1 + �tα) − (2 − β)�tβ
≤ 1 ,

where we have used the fact that α ≥ 2. The proof is then completed. ��
Thus in the remaining part of the paper, we always assume α ≥ 2.

3.2 Energy Stability

In this subsection, we establish the energy stability for the stabilized semi-implicit zero-
electric potential gauge scheme (2.24)–(2.25).

Theorem 3.2 Let (
−→
ψ n,

−→
A n) be the solution of the stabilized semi-implicit zero-electric

potential gauge (2.24)–(2.25). Then, there exists a positive constant C independent of h,
�t and the stabilizing parameter α, such that for any �t < 1/4

Gh(
−→
ψ n,

−→
A n) ≤ CGh(

−→
ψ 0,

−→
A 0) . (3.3)
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Proof Multiplying (2.24)–(2.25) by |τ ′
j |(ψn

j − ψn−1
j )∗ and hh′

jk(a
n
jk − an−1

jk ), respectively,
and then summing up the resulting equations, we have

∑
j

|τ ′
j |

|ψn
j − ψn−1

j |2
�t

+
∑
j

∑
k→ j

h′
jk

κ2

(
ψn

j − ψn
k exp(−iκanjkh)

h

)
(ψn

j − ψn−1
j )∗

+
∑
j

|τ ′
j |
(
α(ψn

j − ψn−1
j ) + (|ψn−1

j |2 − 1)ψn
j

)
(ψn

j − ψn−1
j )∗ +

∑
jk

hh′
jk

|anjk − an−1
jk |2

�t

+
∑
jk

hh′
jk

(
∇⊥−→c n − −→

H
)
jk

(anjk − an−1
jk )

=
∑
jk

hh′
jkRe

[
i

hκ
(ψn−1

k )∗ψn−1
j exp(iκan−1

jk h)

]
(anjk − an−1

jk ) . (3.4)

For short notations, we denote the above Eq. (3.4) by
∑5

m=1 LHSm = RHS, and next let
us estimate them term by term. First, it is easy to see that

LHS1 + LHS4 = 1

�t
‖−→ψ n − −→

ψ n−1‖2U ,2 + 1

�t
‖−→A n − −→

A n−1‖2W ,2 .

The the real part of the term LHS2 can be rewritten by

Re
[
LHS2

]
= 1

2

∑
jk

hh′
jk

κ2

{ |ψn
j − ψn

k exp(−iκanjkh)|2
h2

− |ψn−1
j − ψn−1

k exp(−iκan−1
jk h)|2

h2

}

−1

2

∑
jk

h′
jk

hκ2

{
|ψn

k |2 + |ψn
j |2 − 2Re[ψn

k exp(−iκanjkh)(ψn
j )

∗] − |ψn−1
k |2 − |ψn−1

j |2

+2Re[ψn−1
k exp(−iκan−1

jk h)(ψn−1
j )∗] + 2Re[ψn

k exp(−iκanjkh)(ψn
j )

∗] − 2|ψn
j |2

−2Re[ψn
k exp(−iκanjkh)(ψn−1

j )∗] + 2Re[ψn
j (ψ

n−1
j )∗] + 2Re[ψn

j exp(iκa
n
jkh)(ψn

k )∗]
−2|ψn

k |2 − 2Re[ψn
j exp(iκa

n
jkh)(ψn−1

k )∗] + 2Re[ψn
k (ψn−1

k )∗]
}

= 1

2

∑
jk

hh′
jk

κ2

{ |ψn
j − ψn

k exp(−iκanjk)|2
h2

− |ψn−1
j − ψn−1

k exp(−iκan−1
jk )|2

h2

}
+ I ,

where

I = 1

2

∑
jk

h′
jk

hκ2

{
2Re[ψn−1

k (ψn−1
j )∗

(
exp(−iκan−1

jk h) − exp(−iκanjkh)])

− |(ψn
k − ψn−1

k ) exp(−iκanjkh) − (ψn
k − ψn−1

k )2|2
}

.

By using the fact that Re[iψn
j (ψ

n
j )

∗] = Re[iψn−1
j (ψn−1

j )∗] = 0, we then get

I ≤ 1

2

∑
jk

h′
jk

hκ2

{
2Re[ψn−1

k (ψn−1
j )∗

(
exp(−iκan−1

jk h) − exp(−iκanjkh)])}

=
∑
jk

h h′
jk

κ2 Re
[(ψn−1

k exp(−iκan−1
jk h) − ψn−1

j

h2

)
(ψn−1

j )∗
(
1 − exp

(− iκ(anjk − an−1
jk )h

)]
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+
∑
jk

h h′
jk

κ2 Re
[
ψn−1

j (ψn−1
j )∗

(1 − exp
(− iκ(anjk − an−1

jk )h
)− iκ(anjk − an−1

jk )h

h2

)]

≤
∑
jk

h h′
jk

κ2

{ |ψn−1
k exp(−iκan−1

jk h) − ψn−1
j |

h
κ|anjk − an−1

jk | + κ2|anjk − an−1
jk |2

}

≤ �t
∑
jk

h h′
jk

κ2

|ψn−1
k exp(−iκan−1

jk h) − ψn−1
j |2

h2
+
∑
jk

h h′
jk(1 + 1

4�t
)|anjk − an−1

jk |2 .

(3.5)

Therefore, taking (3.5) into the estimate for LHS2, we arrive at

Re
[
LHS2

] ≥ 1

2

∑
jk

hh′
jk

κ2

{ |ψn
j − ψn

k exp(−iκanjk)|2
h2

− |ψn−1
j − ψn−1

k exp(−iκan−1
jk )|2

h2

}

−�t
∑
jk

h h′
jk

κ2

{ |ψn
k exp(−iκanjkh) − ψn

j |2
h2

+ |ψn−1
k exp(−iκan−1

jk h) − ψn−1
j |2

h2

}

−
∑
jk

h h′
jk

(
1 + 1

4�t

)
|anjk − an−1

jk |2 .

The real part of the cubic nonlinear term LHS3 can be bounded by

Re
[
LHS3

]
=
∑
j

|τ ′
j |
2

(
(|ψn−1

j |2 − 1)
(|ψn

j |2 − |ψn−1
j |2 + |ψn

j − ψn−1
j |2)+ α(|ψn

j − ψn−1
j |2)

)

=
∑
j

|τ ′
j |
2

(
|ψn−1

j |2 − 1
)(

|ψn
j |2 − 1

)
−
∑
j

|τ ′
j |
2

(
|ψn−1

j |2 − 1
)2

+
∑
j

|τ ′
j |
2

(
|ψn−1

j |2 − 1
)
|ψn

j − ψn−1
j |2 + α

∑
j

|τ ′
j |
2

|ψn
j − ψn−1

j |2

=
∑
j

|τ ′
j |
4

(
|ψn

j |2 − 1
)2 −

∑
j

|τ ′
j |
4

(
|ψn−1

j |2 − 1
)2

+
∑
j

|τ ′
j |
4

{(
2|ψn−1

j |2 − 2 + 2α
)

|ψn
j − ψn−1

j |2 −
(
|ψn−1

j | + |ψn
j |
)2

(|ψn−1
j | − |ψn

j |)2
}

≥
∑
j

|τ ′
j |
4

(
|ψn

j |2 − 1
)2 −

∑
j

|τ ′
j |
4

(
|ψn−1

j |2 − 1
)2 +

(
α

2
− 3

2

)∑
j

|τ ′
j ||ψn

j − ψn−1
j |2

where the fact of |ψn
j | ≤ 1 has been used. By Lemma 2.1, we have that

LHS5 =
〈
∇⊥
h (

−→c n − −→
H ),

−→
A n − −→

A n−1
〉
W

= 1

2

(
‖Ch

−→
A n − −→

H ‖2V ,2 − ‖Ch
−→
A n−1 − −→

H ‖2V ,2 + ‖Ch(
−→
A n − −→

A n−1)‖2V ,2

)
.

Next, we turn to the right hand side of (3.4). Note that

Re[i ψn−1
j (ψn−1

j )∗] = 0 and |ψn
j | ≤ 1 ,
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thus RHS can be bounded by

RHS =
∑
jk

h h′
jk

κ
Re
[

− i
ψn−1
k exp(−iκan−1

jk h) − ψn−1
j

h
(ψn−1

j )∗(anjk − an−1
jk )

]

≤
∑
jk

h h′
jk

κ2

|ψn−1
k exp(−iκan−1

jk h) − ψn−1
j |

h
κ|anjk − an−1

jk |

≤
∑
jk

h h′
jk

|anjk − an−1
jk |2

4�t
+ �t

∑
jk

h h′
jk

|ψn−1
k exp(−iκan−1

jk h) − ψn−1
j |2

κ2h2
.

Finally, taking all the above estimates for {LHSk}5k=1 and RHS into (3.4) gives

Gh(
−→
ψ n,

−→
A n) − Gh(

−→
ψ n−1,

−→
A n−1) + 1

�t

{
‖−→ψ n − −→

ψ n−1‖2U ,2 + ‖−→A n − −→
A n−1‖2W ,2

}

≤ 4�t
(
Gh(

−→
ψ n,

−→
A n) + Gh(

−→
ψ n−1,

−→
A n−1)

)
+
(
1 + 1

4�t

)
‖−→A n − −→

A n−1‖2U ,2

+
(
3

2
− α

2
+ 1

4�t

)
‖−→ψ n − −→

ψ n−1‖2U ,2 .

Thanks to the discrete Gronwall’s inequality, for any fixed α > 0, we can conclude that for
�t < 1/4

Gh(
−→
ψ n,

−→
A n) +

n∑
m=1

1

�t

{∥∥∥−→ψ m − −→
ψ m−1

∥∥∥2
U ,2

+
∥∥∥−→A m − −→

A m−1
∥∥∥2
W ,2

}
≤ CGh(

−→
ψ 0,

−→
A 0) ,

(3.6)

which directly gives the energy estimate (3.3). ��
Remark 3.3 It should be noted that the above energy stability (3.6) does not rely on the
stabilizing parameter α. A similar energy stability result like that stated in Theorem 3.2 also
can be proven for the stabilized semi-implicit Lorentz gauge scheme (2.33)–(2.34).

4 Relations to the Lowest Order Rectangular Nédélec Edge Element
Approximation

4.1 The Zero-Electric Potential Gauge Scheme

A key observation is that the discretization (2.25) for A in the zero-electric potential gauge
scheme can be interpreted within the framework of the finite element method using the
Nédélec edge element [30]. The four basis functions of the lowest order rectangular Nédélec
edge element defined on the reference element [0, 1]2 are shown in Fig. 2.

Let Sh ∈ H1 be the lowest order bilinear finite element space and let Vh ∈ H(curl(�))

be the finite element space with the lowest order Nédélec edge element on �h . We can easily
verify that the degrees of freedom of Vh equals to N1, which is the same to the unknowns
{a jk}, and Sh has the N0 unknowns which equals to that of {� j }(or {d j }). If the unknowns
{a jk} for (2.25) and Ah ∈ Vh are ordered in the same fashion globally, then there exists a

one to one map Ah → −→
A for each Ah ∈ Vh . Moreover, for given (

−→
ψ n−1,

−→
A n−1), we can

define a unique function Fh ∈ Vh such that
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Fig. 2 An illustration of the four basis functions of the lowest order rectangular Nédélec edge element of first
family

Fh = 1

h κ
Re
[
i(ψn−1

k )∗ψn−1
j exp(iκan−1

jk h)
]

at the center of edge {s jk}.
A semi-implicit finite element method for (2.20) is to look for An

h ∈ Vh such that

(An
h − An−1

h

�t
, vh

)
+ (curlAn

h − H , curl vh) = (Fh, vh) , ∀vh ∈ Vh, (4.1)

where we have used the boundary condition curlAh = H on ∂�. To build a connection
between the above FEM (4.1) and (2.25), we shall introduce a mass-lumped version FEM
for A. To simply the presentation, we define the quadrature formula

Qτ,h( f ) = 1

4
area(τ )

[
f (x j ) + f (xk) + f (xl) + f (xm)

]
≈
∫

τ

f dx .

Moreover, we define approximations of the inner products in Sh and Vh by

(u, v)h =
∑
τ∈�h

Qτ,h(u · v), ∀ u, v ∈ Sh; (w, v)h =
∑
τ∈�h

Qτ,h(w · v), ∀w, v ∈ Vh,

(4.2)

where one can easily verify that (4.2) give a diagonal mass matrix for both finite element
spaces Sh and Vh . For an element τ jklm with nodes {x j , xk, xl , xm} and edge length h, its
element stiffness and mass matrices are defined respectively by

K2
∣∣
τ jklm

=

⎡
⎢⎢⎣

1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1

⎤
⎥⎥⎦ (4.3)

M
∣∣
τ jklm

=

⎡
⎢⎢⎢⎣

h2
3 0 h2

6 0

0 h2
3 0 h2

6
h2
6 0 h2

3 0

0 h2
6 0 h2

3

⎤
⎥⎥⎥⎦

mass lumping−−−−−−−→ M̃
∣∣
τ jklm

= h2

2
I4, (4.4)

Based on the above quadrature rule, we can rewrite (4.1) into a mass-lumped FEM as follows

(An
h − An−1

h

�t
, vh

)
h

+ (curlAn
h − H , curl vh) = (Fh, vh)h , ∀vh ∈ Vh . (4.5)

The matrix form of the above mass-lumped FEM is

1

�t

−→
A n + M̃−1K2

−→
A n = 1

�t

−→
A n−1 + M̃−1E2

−→
H + M̃−1−→F , (4.6)
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where
−→
F denotes the nonlinear term. In (4.6),K2 is the stiffness matrix and M̃ is the lumped

mass matrix, respectively, which are generated by assembling the element mass and stiffness
matrices in (4.3) and (4.4). We finally have the following equivalence

M̃−1K2 = K1, M̃−1E2 = E1, M̃−1−→F = −→
N (

−→
ψ n−1,

−→
A n−1), (4.7)

where the matricesK1, E1 and the vectors
−→
N (

−→
ψ n−1,

−→
A n−1) are define in (2.26). Therefore,

the proposed semi-implicit gauge-invariant finite difference scheme (2.25) in space can be
viewed as the mass-lumped lowest order Nédélec edge finite element methods by lumping
all masses in one row into the diagonal entry (or using a special numerical quadrature).
We refer to [36, Chapter 15] for more discussion on mass-lumped FEMs. We also remark
that Christiansen and Halvorsen [8] proposed a gauge invariant finite element method for
the Schrödinger eigenvalue problem in an electromagnetic field by using the mass-lumping
technique, where certain requirement is needed for the mesh. It also should be noted that the
covariant gradient of ψ used in [8] is defined as gradAψ = ∇ψ + i Aψ , which is similar to
the term i

κ
∇ψ + Aψ in the TDGL equations. Therefore, the numerical methods developed

in [8] might be applied to the TDGL Eqs. (1.1)–(1.2).

4.2 The Lorentz Gauge Scheme

The main difference between the zero-electric potential gauge and the Lorentz gauge is
that a term −∇divA appears in (2.29) for A under the Lorentz gauge, which implies that

A ∈ H(div) ∩ H(curl) in space. However, at first glance, the term −(∇h Dh
−→
A n) jk in (2.34)

denoting the discretization of −∇divA is not compatible in the framework of Nédélec edge
element, which is only H(curl) conforming. To this end, we turn to mixed FEMs to show
the equivalence. In [26], a class of mixed FEMs is investigated for the Lorentz gauge TDGL
equations, where the basic idea is to introduce � = −divA as an extra variable. Then,
Lagrange elements andNédélec edge elements are used to approximate� andA, respectively.
To incorporate with the current rectangular mesh, we consider a mixed method based on the
lowest order bilinear element and lowest order rectangular Nédélec edge element.

By introducing � = −divA as an extra variable, a semi-implicit mixed FEM for (2.29)
is to look for (�n

h,A
n
h) ∈ Sh × Vh such that

(�n
h , wh) − (An

h,∇wh) = 0, ∀wh ∈ Sh, (4.8)
(An

h − An−1
h

�t
, vh

)
+ (∇�n , vh) + (curlAn

h − H , curl vh) = (Fh, vh) , ∀vh ∈ Vh,

(4.9)

wherewehave used the boundary condition curlAh = H andA·n = 0 on ∂�. Amass-lumped
version of the above FEM is to look for (�n

h,A
n
h) ∈ Sh × Vh such that

(�n
h , wh)h − (An

h,∇wh)h = 0, ∀wh ∈ Sh, (4.10)
(An

h − An−1
h

�t
, vh

)
h

+ (∇�n
h , vh)h + (curlAn

h − H , curl vh) = (Fh, vh)h , ∀vh ∈ Vh .

(4.11)

It should be pointed out that, due to the fact ∇Sh ⊂ Vh [2], the two terms (An
h,∇wh)h and

(∇�n , vh)h are well-defined. We shall give a more compact matrix form for (4.11)–(4.11)
later. Before going further, we present the local mass matrix for the lowest order bilinear
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element space Sh . Given an element τ jklm with and edge length h, its element mass matrix
and the corresponding mass-lumping version are defined by

Mbilinear
∣∣
τ jklm

= h2

⎡
⎢⎢⎢⎢⎣

1
9

1
18

1
36

1
18

1
18

1
9

1
18

1
36

1
36

1
18

1
9

1
18

1
18

1
36

1
18

1
9

⎤
⎥⎥⎥⎥⎦

mass lumping−−−−−−−→ M̃bilinear
∣∣
τ jklm

= h2

4
I4 .

(4.12)

Then, we can rewrite (4.10) into a matrix form

M̃bilinear
−→
� n = D̃

−→
A n, i.e.,

−→
� n = M̃−1

bilinearD̃
−→
A n,

which immediately yields the following matrix form for An
h

1

�t

−→
A n + M̃−1D̃T M̃−1

bilinearD̃
−→
A n + M̃−1K2

−→
A n = 1

�t

−→
A n−1 + M̃−1E2

−→
H + M̃−1−→F ,

(4.13)

where M̃, K2, E2,
−→
H and

−→
F are the same to those in the zero-electric potential gauge case.

Recall the definition of ∇h in (2.1) and Dh in (2.5), we claim that

Contour of |ψ| at T = 20
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Fig. 3 Simulation results at T = 20 by the stabilized semi-implicit zero-electric potential gauge scheme
(2.24)–(2.25) with �t = 0.1 and h = 1

64 for Example 5.1
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time
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Fig. 4 Energy evolution obtained by the stabilized semi-implicit zero-electric potential gauge scheme (2.24)–
(2.25) with �t = 0.1 and h = 1

64 for Example 5.1
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Fig. 5 Plots of the contour of simulated |ψ | at time T = 1, 5, 15, 20, 20 and 40 by the stabilized semi-implicit
zero-electric potential gauge scheme (2.24)–(2.25) with �t = 0.1 and h = 1
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Fig. 6 Plots of simulated A, curlA and divA at time T = 40 by the stabilized semi-implicit zero-electric
potential gauge scheme (2.24)–(2.25) with �t = 0.1 and h = 1
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∇h = M̃−1D̃T , −Dh = M̃−1
bilinearD̃,

and therefore−∇h Dh = M̃−1D̃T M̃−1
bilinearD̃. Thus, we observe that the Lorentz gauge scheme

(2.34) is a mass-lumped mixed FEM.
In “Appendix A”, we provide a concrete example with explicit matrices and entries on a

uniform 2 × 2 mesh to demonstrate the equivalence of the gauge invariant finite difference
approximation and the mass-lumped mixed finite element method.
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Fig. 8 Plots of the contour of simulated |ψ | at time T = 1, 5, 15, 20, 20 and 40 by (2.24)–(2.25) with�t = 0.1
and h = 1
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Fig. 9 Plots of simulated A, curlA and divA at time T = 40 by the stabilized semi-implicit zero-electric
potential gauge scheme (2.24)–(2.25) with �t = 0.1 and h = 1
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5 Numerical Experiments

In this section, we provide some numerical experiments on vortex motion simulations for
convex, non-convex and multi-connected domains to test the performance of the stabilized
semi-implicit zero-electric potential gauge scheme (2.24)–(2.25) and the stabilized semi-
implicit Lorentz gauge scheme (2.33)–(2.34). We set the stabilized parameter α = 2 in all
tests.

5.1 Tests of the Zero-Electric Potential Gauge Scheme

We first test the the stabilized semi-implicit zero-electric potential gauge scheme (2.24)–
(2.25) for solving the TDGL equations.

Example 5.1 In the first example, we solve the TDGL equations to simulate the vortexmotion
in a unit square superconductor. Here we set � = (0, 1)2, the Ginzburg–Landau parameter

123



1102 Journal of Scientific Computing (2019) 80:1083–1115

time
0 5 10 15 20 25 30 35 40

Gh

0

2

4

6

8

10

12

14

16

18

0.5 1 1.5

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 10 Energy evolution obtained by the stabilized semi-implicit zero-electric potential gauge scheme (2.24)–
(2.25) with �t = 0.1 and h = 1

64 for Example 5.2 with H = 7.2

κ = 10 and the external applied magnetic field H = 3.5. In the simulations, we set the
time step size �t = 0.1 and the spatial mesh size h = 1

64 . This benchmark problem has
been used to test many other methods, e.g., conventional Lagrange finite element methods
[10,16,31,32], mixed finite element methods [17], a method based on Hodge decomposition
[27], and a method based on mixed formulation [18].

The simulation results of ψ and A at T = 20 computed by the zero-electric potential
gauge scheme (2.24)–(2.25) are presented in Fig. 3 (top row). We observe that there are
four vortices in the domain and the vortex pattern are stable near T = 20, which agree very
well with the previous results reported in [10,16–18,27,31,32]. Moreover, Fig. 3 (bottom
row) shows that the proposed stabilized semi-implicit gauge-invariant scheme is also able to
compute the magnetic field curlA and the electric potential divA accurately. Furthermore, we
plot the energy evolution in Fig. 4, which clearly shows that the discrete Ginzburg–Landau

energy Gh(
−→
ψ ,

−→
A ) is decreasing as time evolves.

Example 5.2 In the second example, we use the proposed scheme (2.24)–(2.25) to study
the TDGL equations in an L-shape domain, where � = (−0.5, 0) × (−0.5, 0.5) ∪
(0, 0.5) × (0, 0.5). We set κ = 10 and H = 5 and 7.2 respectively. This problem was
also tested previously in [17,18,27], in which the main challenge is the low regularity of A
due to the re-entrant corner; in particular, conventional finite element methods may converge
to a “spurious” vortex pattern. In the simulations, we used the time step size �t = 0.1 and
the mesh size h = 1

64 .
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Fig. 11 Plots of the contour of simulated |ψ |, curlA and divA at time T = 20 by the stabilized semi-implicit
zero-electric potential gauge scheme (2.24)–(2.25) with �t = 0.05 and h = 1
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Fig. 12 Energy evolution obtained by the stabilized semi-implicit zero-electric potential gauge scheme (2.24)–
(2.25) with �t = 0.05 and h = 1
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The external applied magnetic field was first set to H = 5. The contour plots of simulated
|ψ | at time T = 1, 5, 15, 20, 20 and 40 are presented in Fig. 5, which agree well with the
results reported in [17,18,27]. There is only one vertex in the stationary state for ψ . We also
present plots of simulated A in Fig. 6, which clearly shows that A is singular near the origin
(0, 0). The magnetic field curlA and divA also agree well with the results obtained in [17].

Moreover, we plot the energy evolution in Fig. 7, which demonstrates that Gh(
−→
ψ ,

−→
A ) is

decreasing as time evolves for this non-convex domain.
It is well-known that a larger applied magnetic field H (under a certain critical value) can

give more vortices. We show in Fig. 8 the results of simulated |ψ | at time T = 1, 5, 15, 20, 20
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and 40 under the same physical settings except the external applied magnetic field H = 7.2
now. It is observed that there are three vortices at the stationary state. The plots of A, curlA
and divA are shown in Fig. 9. The energy evolution plot is shown in in Fig. 10, which again
confirms that the proposed scheme is energy stable.

Example 5.3 In the third example,we study theTDGLequations in amulti-connecteddomain.
Here we set � = (0, 2)2/[0.8, 1.2]2, the Ginzburg–Landau parameter κ = 10 and the
external appliedmagnetic filed H = 4. In the simulations, we set the time step size�t = 0.05
and the mesh size h = 1

80 .

Plots of the contour of simulated |ψ |, curlA and divA at T = 20 are shown in Fig. 11,
which agree well with the results obtained by the mixed finite element method in [17]. The
plots of numerical results obtained by the mixed finite element method [17] are omitted here.
We also plot the energy evolution in Fig. 12, which shows the energy stability of the stabilized
semi-implicit zero-electric potential gauge scheme (2.24)–(2.25).

5.2 Tests of the Lorentz Gauge Scheme

Now, we turn to the stabilized semi-implicit Lorentz gauge scheme (2.33)–(2.34). We first
test its performance for Example 5.1. Note that the square domain is convex in this example
and the exact solution satisfies the regularity assumption in [11]. The numerical results at
T = 20 computed by the stabilized semi-implicit Lorentz potential gauge scheme (2.33)–
(2.34) are presented in Fig. 13. It is easy to see that the vortex pattern agrees very well with
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Fig. 13 Simulation results at T = 20 computed by stabilized semi-implicit Lorentz gauge scheme (2.33)–
(2.34) with �t = 0.1 and h = 1
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that in Fig. 3.Moreover, we observe that the amplitude of divA is relatively small in this case,
which is around O(10−5). The energy evolution plot obtained by the Lorentz gauge scheme
(2.33)–(2.34) are shown in Fig. 14.We can see that it is the same to that in Fig. 4 computed by
the zero-electric potential gauge scheme (2.24)–(2.25), which also confirms that the discrete

Ginzburg–Landau energyGh(
−→
ψ ,

−→
A ) defined in (2.10) is gauge-invariant at the discrete level.

We next test Example 5.2. Note that the L-shape domain is non-convex in this example.
We first set H = 5 and the contour plots of simulated |ψ | at time T = 1, 5, 15, 20, 20 and
40 are shown in in Fig. 15, together the plots of simulated A, curlA and divA in Fig. 16. It
should be noted that, the vortex pattern plots for H = 5 agree well with the results presented
in Fig. 5 and in [17,18,27]. Moreover, the energy evolution figure is also the same to that of
the zero-electric potential gauge scheme, see Fig. 17.

Then, we increase the external applied magnetic field to H = 7.2 and present in Fig. 18
the vortex pattern at time T = 1, 5, 15, 20, 20 and 40. We observe from Fig. 18 that there are
three vortices, which is the same to the result of vortices in Fig. 8 obtained by the zero-electric
potential gauge scheme. Moreover, the plots of simulated curlA and divA shown in Fig. 19
also agree with that in Fig. 9 obtained by the zero-electric potential gauge scheme. Thus, this
example indicates that the Lorentz gauge scheme (2.33)–(2.34) is also able to give correct
solutions for the TDGL equations in non-convex domains. We show the energy evolution in
Fig. 20 and observe that it is the same to that in Fig. 10 obtained by the zero-electric potential
gauge scheme.
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Fig. 14 Energy evolution obtained by the stabilized semi-implicit Lorentz gauge scheme (2.33)–(2.34) with
�t = 0.1 and h = 1
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Fig. 15 Plots of the contour of simulated |ψ | at time T = 1, 5, 15, 20, 20 and 40 by stabilized semi-implicit
Lorentz gauge scheme (2.33)–(2.34) with �t = 0.1 and h = 1
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Fig. 16 Plots of simulated A, curlA and divA at time T = 40 by the stabilized semi-implicit Lorentz gauge
scheme (2.33)–(2.34) with �t = 0.1 and h = 1
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Finally, we test the performance of the Lorentz gauge scheme (2.33)–(2.34) for Example
5.3, where a multi-connected domain is used. It is easy to see that the inner square introduces
four re-entrant corners, where the exact solution might be singular. Plots of the contour of
simulated |ψ |, curlA and divA at T = 20 are shown in Fig. 21, which shows the same vortex
pattern and vortex number in Fig. 11. The energy evolution is plot in Fig. 22, which is the
same to that in Fig. 12. Thus, we demonstrate that the discrete Ginzburg–Landau energy
(2.10) is gauge invariant for multi-connected domains. Numerical results indicate that the
Lorentz gauge scheme (2.33)–(2.34) also works well for multi-connected domains.

6 Conclusions

In this paper we propose a stabilized semi-implicit Euler gauge-invariant method for solving
the TDGL equations in the two-dimensional space. The proposed scheme is linear and pre-
serves the point-wise bound |ψh | ≤ 1 unconditionally and the energy stability. For the first

123



Journal of Scientific Computing (2019) 80:1083–1115 1107

time
0 5 10 15 20 25 30 35 40

Gh

0

1

2

3

4

5

6

7

8

9

0.5 1 1.5

0.15

0.2

0.25

0.3

0.35

Fig. 17 Energy evolution obtained by the stabilized semi-implicit Lorentz gauge scheme (2.33)–(2.34) with
�t = 0.1 and h = 1
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Fig. 18 Plots of the contour of simulated |ψ | at time T = 1, 5, 15, 20, 20 and 40 by the Lorentz gauge scheme
(2.33)–(2.34) with �t = 0.1 and h = 1
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Fig. 19 Plots of simulated A, curlA and divA at time T = 40 computed by the Lorentz gauge scheme
(2.33)–(2.34) with �t = 0.1 and h = 1
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Fig. 20 Energy evolution obtained by the stabilized semi-implicit Lorentz gauge scheme (2.33)–(2.34) with
�t = 0.1 and h = 1
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time, we establish a connection between the gauge-invariant scheme and the lowest order
rectangular Nédélec element in space. That is, the widely-used gauge-invariant discretization
on a staggered mesh under the zero-electric potential gauge can be viewed a mass-lumped
version of Nédélec element approximation, and the Lorentz gauge finite difference scheme as
a mass-lumped mixed FEM. Numerical results show that the stabilized semi-implicit gauge-
invariant schemes under both zero-electric potential gauge and Lorentz gauge can provide
accurate vortex pattern simulations of superconductors on non-convex and multi-connected
domains. Although the method considered here is for the two-dimensional superconduc-
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Fig. 21 Plots of the contour of simulated |ψ |, curlA and divA at time T = 20 by the stabilized semi-implicit
Lorentz gauge scheme (2.33)–(2.34) with �t = 0.05 and h = 1
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Fig. 22 Energy evolution obtained by the stabilized semi-implicit Lorentz gauge scheme (2.33)–(2.34) with
�t = 0.05 and h = 1
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tivity model, our work provides a fundamental understanding of the gauge-invariant finite
difference approximation, and we expect to generalize it to the three-dimensional space
problems and in more general settings in the future research. Due to the low regularity of
the exact solution on non-convex domains and the gauge-invariant approximation, a rigorous
error analysis is challenging and desirable, which will also be conducted in our ongoing
work.
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Appendix

A An Example with Explicit Coefficient Matrices

In this appendix, we provide an example on a 2 × 2 mesh to show the equivalence of the
gauge invariant finite difference approximation and the mass-lumped mixed finite element
method. To this end, we shall only consider the Lorentz gauge scheme for A (2.34) and the
mixed FEM (4.8)–(4.9). For simplicity, we take � = (0, 1)2 and set h = 1

2 . There are 9
degrees of freedom (DOFs) for � and 12 DOFs for A, see Fig. 23.

The Lorentz gauge scheme (2.33)–(2.34) can be written as

1

�t

−→
A n − ∇h Dh

−→
A n + K1

−→
A n = RHS, (A.1)

where∇h is a 12×9 gradient matrix and Dh is a 9×12 divergencematrix defined respectively
by

∇h = 1

h

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0
0 −1 1

−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

−1 1 0
0 −1 1

−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

−1 1 0
0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A1
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Fig. 23 An illustration of labeled global DOFs for A and � on a 2 × 2 mesh
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Dh = 1

h

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 2 0 0
−1 1 0 2 0
0 −2 0 0 2

−1 0 0 2 0 1 0 0
0 −1 0 −1 1 0 1 0
0 0 −1 0 −2 0 0 1

−2 0 0 2 0
0 −2 0 −1 1
0 0 −2 0 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and K1 is the coefficient matrix defined by

K1 = 1

h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 −2 2 0 −2 0
0 2 0 −2 2 0 −2

−2 0 2 −2 0 2 0
1 −1 −1 2 −1 −1 1
0 2 0 −2 2 0 −2

−1 0 1 −1 0 2 0 −1 1 0 −1 0
0 −1 0 1 −1 0 2 0 −1 1 0 −1

−2 0 2 −2 0 2 0
1 −1 −1 2 −1 −1 1
0 2 0 −2 2 0 −2

−2 0 2 −2 0 2 0
0 −2 0 2 −2 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let us recall that the mixed FEM introduces � = −divA as an extra variable. Based
on the lowest order bilinear element space Sh and lowest order rectangular Nédélec edge
element space Vh , we look for (�n

h,A
n
h) ∈ Sh × Vh such that

(�n
h, ωh) − (An

h,∇ωh) = 0, ∀ ωh ∈ Sh, (A.2)

1

�t
(An

h, vh) + (∇�n
h, vh) + (curlAn

h, curlvh) = RHS , ∀ vh ∈ Vh, (A.3)

which further can be represented by the following matrix equations

Mbilinear
−→
� n − Dh

−→
A n = 0, (A.4)

1

�t
M

−→
A n + DT

h
−→
� n + K2

−→
A n = RHS . (A.5)
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On the 2 × 2 mesh, the above mass matrix Mbilinear generated by the lowest order bilinear
Lagrange element space and the matrix Dh are defined by

Mbilinear = h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
9

1
18 0 1

18
1
36 0

1
18

2
9

1
18

1
36

1
9

1
36

0 1
18

1
9 0 1

36
1
18

1
18

1
36 0 2

9
1
9 0 1

18
1
36 0

1
36

1
9

1
36

1
9

4
9

1
9

1
36

1
9

1
36

0 1
36

1
18 0 1

9
2
9 0 1

36
1
18

1
18

1
36 0 1

9
1
18 0

1
36

1
9

1
36

1
18

2
9

1
18

0 1
36

1
18 0 1

18
1
9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Dh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
3 0 − 1

3 − 1
6 0 − 1

6 0
1
3 − 1

3 − 1
6 − 2

3 − 1
6

1
6 − 1

6

0 1
3 0 − 1

6 − 1
3 0 1

6

− 1
6 0 1

3
1
6 0 − 2

3 0 − 1
3 − 1

6 0 − 1
6 0

1
6 − 1

6
1
6

2
3

1
6

2
3 − 2

3 − 1
6 − 2

3 − 1
6

1
6 − 1

6

0 1
6 0 1

6
1
3 0 2

3 0 − 1
6 − 1

3 0 1
6

− 1
6 0 1

3
1
6 0 − 1

3 0
1
6 − 1

6
1
6

2
3

1
6

1
3 − 1

3

0 1
6 0 1

6
1
3 0 1

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the mass matrix M and stiffness matrix K2 generated by the lowest order rectangular
Nédélec edge element space are defined respectively by

M = h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3 0 1

6 0

0 1
3 0 1

6
1
3

1
6 0

1
6

2
3

1
6

0 1
6

1
3

1
6 0 2

3 0 1
6 0

0 1
6 0 2

3 0 1
6

1
3

1
6 0

1
6

2
3

1
6

0 1
6

1
3

1
6 0 1

3 0

0 1
6 0 1

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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K2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 1 0 −1 0

0 1 0 −1 1 0 −1

−1 0 1 −1 0 1 0

1 −1 −1 2 −1 −1 1

0 1 0 −1 1 0 −1

−1 0 1 −1 0 2 0 −1 1 0 −1 0

0 −1 0 1 −1 0 2 0 −1 1 0 −1

−1 0 1 −1 0 1 0

1 −1 −1 2 −1 −1 1

0 1 0 −1 1 0 −1

−1 0 1 −1 0 1 0

0 −1 0 1 −1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If the mass-lumping is used, then it holds

(�n
h, ωh)h − (An

h,∇ωh)h = 0, (A.6)

1

�t
(An

h, vh)h + (∇�n
h, vh)h + (curlAn

h, curlvh) = RHS , (A.7)

and we can obtain the following matrix equations

M̃bilinear
−→
� n − D̃h

−→
A n = 0 , (A.8)

1

�t
M̃

−→
A n + D̃T

h
−→
� n + K2

−→
A n = RHS , (A.9)

where M̃bilinear and M̃ are diagonal matrices as

M̃bilinear = diag
([ 1

4
1
2

1
4

1
2 1 1

2
1
4

1
2

1
4

]T )
,

M̃ = diag
([ 1

2
1
2

1
2 1 1

2 1 1 1
2 1 1

2
1
2

1
2

]T )
,

and

D̃h = h

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2 0 − 1

2 0 0
1
2 − 1

2 0 −1 0

0 1
2 0 0 − 1

2
1
2 0 0 −1 0 − 1

2 0 0

0 1 0 1 −1 0 −1 0

0 0 1
2 0 1 0 0 − 1

2
1
2 0 0 − 1

2 0

0 1 0 1
2 − 1

2

0 0 1
2 0 1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By taking matrices M̃bilinear, M̃ and D̃h into (A.9), we can deduce that

1

�t

−→
A n + M̃−1D̃T

h M̃
−1
bilinearD̃h

−→
A n + M̃−1K2

−→
A n = RHS .
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It is easy to verify the following matrix qualities

∇h = M̃−1D̃T
h , −Dh = M̃−1

bilinearD̃h, K1 = M̃−1K2,

which confirm our observation. Finally, we shall point out that similar equivalences also hold
for L-shape and multi-connected domains.
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