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discretization is carried out by a fourth-order accurate compact difference scheme in which
fast Fourier transform can be utilized for efficient implementation. The resulting semi-
discretized problem consists of a system of ordinary differential equations whose solution
can be explicitly expressed in term of time integrators, and a desired numerical method is

I;:i/nvivﬁrrldezr evolution equation then obtained by further adopting multistep approximations of the nonlinear terms based
Time integrator on the solution formula. Linear stability analysis is performed for the method for second-
Compact difference scheme order in time evolution equations. Extensive numerical experiments with applications are
Fast Fourier transform also presented to demonstrate efficiency, accuracy, and stability of the proposed method in
Multistep approximation practice.

Sine-Gordon equation © 2019 Elsevier Inc. All rights reserved.

1. Introduction

Many important problems in science and engineering can be modeled as a n-th order in time semilinear evolution
equation of the following standard form:

Lyc(u(x, t)) =DAu(x,t) + f(u,x,t), x,t) e 2 x(0,T],

aku " (11)
W(x,O):uO(x), xeQ, 0<k<n-1,

where © € R? is an open domain, the diffusion coefficient D > 0, and the linear operator

o"u a1y du
Lne(U) = —— 4+ a1 o + -+ g — 1.2
n,t( ) 9tn ]at"’1 n lat ( )
with {ak}z;} being real numbers. Assume that Dirichlet or periodic boundary conditions are imposed. The equation (1.1)
with n =1 or 2 includes some typical mathematical equations in a variety of real-world applications, for instance, diffusion-
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reaction problems in chemical reactions and population dynamics [28,46], the Allen-Cahn equation for phase transition/sep-
aration modeling [2], hyperbolic equations [19] such as the sine-Gordon equation [8] in differential geometry and relativistic
field theory; for n = 3, an equation with slightly modified form can be found in [34,39], which is used to describe the prop-
agation of weakly nonlinear waves in relaxing media.

During the past decades, a lot of researches were devoted to developing numerical methods for numerically solving
the problem (1.1). Finite element method [37], finite volume method [5,29], and differential quadrature method [19,33]
were frequently used for its spatial discretization, and in particular compact difference schemes have been a very popular
approach in recent years due to their flexibility and spectral-like resolution. In [25], Li and Tang developed a fourth-order
compact difference scheme to solve a vorticity equation, which was also used to solve one dimensional Burger’s equation
in [27]. In [44], Xie et al. proposed two compact difference schemes to solve the one-dimensional nonlinear Schrédinger
equation. In [9] Ding et al. introduced a three-level compact difference scheme for two-dimensional second-order hyperbolic
equation. The stability and convergence of a compact difference for the heat conduction problem with Neumann boundary
conditions was studied in [36]. Since the time discretizations are all done by implicit schemes in these methods, solutions of
large-scale linear systems are needed, which is often time-consuming in general. Thanks to the development of algorithms
for fast matrix inversion, compact difference schemes are proving more advantageous when the solution domain is regular.
For instance, Wang at al. [41] proposed a fast implementation for the Poisson equation by using the fast discrete sine
transform, and in [26] Li et al. further implemented this compact difference scheme in an adaptive refinement framework.

On the other hand, the exponential integrator-based methods have enjoyed great popularity due to its numerical sta-
bility and high-order accuracy for time discretization of stiff problems. The integrating factor (IF) method [20,24,31,32,40]
applies quadrature rules directly to the whole integrands, while the exponential time differencing (ETD) method utilizes the
Runge-Kutta or multistep approaches to approximate the nonlinear terms and then compute the resulting integrals exactly
[6,15,16,21,23,42,43]. In [11,12], Du et al. studied stability properties of the ETD method for parabolic equations. More re-
cently, Ju et al. [22] proposed a discrete fast Fourier transform (FFT) based algorithm to efficiently solve a wide class of
semilinear parabolic equations, where the second-order central compact difference and the explicit multistep exponential
time integration was integrated together to discretize the spatial and temporal variables. Later in [47] efficient numerical
methods were proposed which combines exponential time differencing Runge-Kutta approximations with a fourth-order
compact difference for spatial discretization.

However, to the best of our knowledge, there are few efficient numerical methods for high-order in time (n > 2) semi-
linear evolution problems such as (1.1). A routine way is to reformulate the original problem as a first-order system by
introducing auxiliary variables and then devise numerical methods for solving the produced system. A weakness of such
an approach is that the size of the discrete problem could become very large, leading to lower computational efficiency. In
this paper, we propose a fast compact time integrator (FCTI) method for solving the equation (1.1). We use a fourth-order
accurate compact difference method for spatial discretization, yielding a diagonalizable matrix system of ordinary differ-
ential equations (ODEs) whose solution can be explicitly expressed in term of the time integrator. By approximating the
nonlinear terms in the integrands using Lagrange interpolation functions, and then performing exact integrations just like
the approach used by the ETD method, we obtain a fully discrete scheme for solving the model problem. This technique
can be viewed as a generalization of the fast compact exponential integrator method studied in [22]. Following the ideas in
[11,12], we also perform a linear stability analysis of the method for the second order evolution equation. Furthermore, the
proposed FCTI method can also be easily adapted with minor modifications to solve some nonstandard high order semilinear
evolution equations efficiently as derived in the appendix.

The rest of the paper is organized as follows. In Section 2, we derive the FCTI method with details for two types of
boundary conditions (Dirichlet and periodic) in two dimensions and then present its extension to three dimensions in Sec-
tion 3. In Section 4, we present the linear stability analysis of the method for the second order evolution equation. Extensive
experiments with applications are also reported to numerically demonstrate accuracy and efficiency of the proposed method
in Section 5. Some concluding remarks are finally given in Section 6.

2. A compact time integrator method in two dimensions and fast implementation

Let us consider the model problem (1.1) in an open rectangular domain in the two-dimensional space

Q={Xp <X<Xe,Yp <Y < Yel-

We partition the spatial domain Q by a rectangular grid which is uniform in each direction, i.e., hy = Xelgxxb,hy = ”"’N;yyb

respectively. Grid points are defined as (x;, yj) = (xp + ihyx, yp + jhy) for 0 <i <Ny and 0 < j < Ny, and denote the semi-
discretized (in space) solution by u; j = u; j(t) ~ u(x;, y;, t). Similarly, uf’s and ulyi' are denoted as the semi-discretized
approximations of the second-order partial derivatives uxx(x;, yj, t) and uyy(x;, y;, ), respectively.

2.1. Spatial discretization: a fourth-order compact finite difference and discrete sine transform

Assume that the Dirichlet boundary condition is imposed as follows:

u=ub,  (x,y)edQ, tel0,TI. (2.1)
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We shall construct a spatial discretization which is fourth-order accurate in space by using the compact finite difference
scheme [41,45] as shown below:

1
E(Ufiu +10ui +uiy ) = h—z(um,j —2ujj + Uit1,j),
X
1 1 (2.2)
5 W 10w ) = 2 (Uij=1 = 201 + Ui 1),
y
fori=1,2,---Ny—1,j=1,2,---,Ny, — 1. In order to write (2.2) in the two-dimensional array (i.e., matrix) form, we
introduce the following notations: the approximate solution matrix
U1 ui,2 U1,Ny—1
Uz Uz Uz, N,—1
U= ) . , ) (2.3)
UNy—1,1 UNy—1,2 -+ UNy—1,Ny—1 (Ne—1)x (Ny—1)

and similarly the corresponding second order derivatives matrices along x-axis and y-axis, U and UYY respectively. We
also define two special operators “®” and “®” as follows [20]: for any Ay € RNx=Dx(MNx=1) and 4, € RNy=DxNy=1,

Nyx—1 Ny—1
(Ax®U); j = Z (Ax)i (Ay@U); j = Z (Ay)jiui. (2.4)
I=1 I=1
Let
10 1 -2 1
d 1 10 d 1 -2
Apxp = ) Bpyxp= ’
1 1
1 10 PxP T =2 PxP
and set

_ 1 ad _ 1 ad
Ax= AN xN-10 Ay = AN, 1Ny -1y

_ Dapd D pd (2.5)
By = 12 B(Nx—l)x(NX—l)’ By = n2 B(Ny—l)x(Ny—l)'
Then one can check that (2.2) can be written in the following compact representation:
DAx®UXX + Ux2 = BX®U + UxO, (2 6)
DA,@U” +U,, = B,@U + Uy, '
where
Uy = UyO —
uo,1 up,2 uoyNy_1 Uio 0 .0 Uqi.N
0 0 0 ’ Y
D uzo 0 .0 uz,Ny
h2 : : : : ) : ’
0 0 0 U ’ 0 O u
Nx—1,0 Nx—1,N _ _
UNel UNy2 o oo UNeNy=1/ (v 1y Ny —1) ’ ¥ (N DX (Ny=1)
Up= Uyz =
XX XX XX
Up1 Uoz -+ Uony—1 w0 ... 0 ul
1,0 1,Ny
0 0 0 ul? 0o ... 0 ul?
D . . . D 2,0 : 2,Ny
12 : : : : > 12 . .
0 0 0 0 ) 0 u ’
XX XX XX u u
Nx—1,0 Ny—1,N _ _
UNo1 UN2 ”NX,N,,—] (Na—1)x (Ny=1) x X ¥/ (Nx=1)x(Ny—1)

Thus we obtain a semi-discretization in space of the model equation (1.1) as follows:

Ln:(U) — (A;'®B:®U + A, ' @B,®U) = F(U,t) + W (1), (2.7)
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where
Ly (W) =U™ @) +a UV () +--- +a,_1U'(0),
FWU,t) = (f Wi j®),Xi, ¥, D)) (Ny=1)x (Ny—1)5
W) =A"®@Ux —Ux)+A,'@WUy0 —U,).

Remark 1. From the Dirichlet boundary condition (2.1), it is clear that ug; = ugj = uP(x0,yj,0), un,j = u'ﬁ,xj =

ub(xn,, yj,0), uio = uﬁo =ub(x;, yo.1), and u; n, = uﬁNy =ub(x;, yn,.t) in Uy and Uyo. To get the corresponding val-

ues of Uy, and U,,, we can make use of the equation (1.1) together with the boundary condition (2.1). For example, to
calculate u§¥,, notice that the equation holds at x =0 and one then obtains

Lo WP (X0, y1,0) = Dy +ud’)) + Fwb, xo, y1.0), 28)
”01 —(”b)or .

which yields u§*; = £ (Lncu? (xo. y1.1)) — f U, x0, y1. 1)) — b)Y,

It is easy to find that there exist the following spectral decompositions
Ax=P:D. P!, A,=P,D,,P,', By=P.D,,P,', B,=P,D,,P,",
where Dg x, Dg,y and Dy, Dy are diagonal matrices given by
Doy =diag(d]™, d5*,--- ,dy* ), Dqy=diagd{”’,d3”, - ,a‘,’vvyy_l),
Dy = diag(@™, db*,--- . d}* ), Dy, =diagd}”.dy” - ,d*,gyy_l),
with
di*=1- %sinz(%), d?’x 4"1'3 sin? (- o), d?’y =1- %sinz(ij”y), dlj.’y 7‘1'3 sin ( ).

and Py and P are orthonormal matrices consisting of corresponding eigenvectors. Plugging the above equations into (2.7),
and multiplying P;1 from the left hand side and (P;1)T from the right hand side, we immediately obtain

Lot (V) — (D y®Dyx®V + D, , @Dy ,@V) = P, ' @P; ' ®(F(Py@Px®V. 1) + W (1)), (2.9)

where V = P,'@P,;'®U. We also note that the operations P,@P,®V and P,'@P;'®V are exactly the two-
dimensional discrete sine transform (DST) and the inverse DST respectively, and can be efficiently calculated by Fast Fourier
Transform (FFT) [22]. It is easy to check that (2.9) is a matrix system of ODEs. Define H = (h; j)(n,—1)xn,—1) With

and denote by the special operator “©” the element-wise multiplication between two matrices of the same size. Then the
equation (2.9) can be rewritten as

LWV)=fV,1),

where
LOV):=V® 4qv®D 4. 4q, 1V -HOV,
fW.0):=P'@P,'®[F(Py,@P:®V.t) + W(©)],

with VO =&Y for k=1,2,... .n

We are now left with solving the following system of ODEs:
LV)= f(V,1), te(0,7),

©0) v (D (n—1) (n—1) (2.10)

Vo=V, Vo=V, -,V 0=V,

(k) -1 -1 () (i (k) I
where Vo” = P,'@P,'®U,’ with Uy =(ué(x,-,yj))(NX_UX(Ny_U.
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Remark 2. For the purpose of numerical stabilization, a linear splitting scheme sometimes could be used as suggested in
[22,31] for the semilinear parabolic equation (n =1) to get £L(V) = f(V,t) with
LWV):=L+kV, fV,t):=f(V,t)+«V,

where the parameter « is often required to be at least

. %me{O, fu)).

2.2. Temporal discretization: a time integrator multistep approximation

Next we develop a time integrator approach for temporal discretization of the semi-discrete in space problem (2.10). Our
key idea is first to obtain an explicit formulation for the solution of (2.10) with the help of time integrators, then make use
of multistep approximations of the nonlinear terms and perform exact integrations.

2.2.1. The time integrator formula
Let us recall some well-known results from the theory of ODEs. First we consider a homogeneous ODE in the following
form:

L) =y™ +a1y™ P +ay"? + -+ an1y +a,y =0. (2.11)
Its characteristic equation is given by
P ="+ A" A" 4+t ap1A +a, =0. (212)
Lemma 1 (Theorem 2.27, [3]). Suppose that the characteristic equation (2.12) has k* > 1 distinct roots (i1, L2, ..., g (could be
real or complex valued), each of which has the multiplicity respectively equal to ny,ny, - - - , Ny« (Z;ﬁ:] n, = n). Then the initial value
problem
Lne(y) =0,
YO =y ©@=-=y"?©O=0 y"PO)=1

has a unique solution g(t) given by

g(t) = P] (t)e:ult + .o 4 Pk*(t)eﬂ'k*a

where

Pe(®) =Crk+Cokt +- - +epit™ ™, 1<k<k"

Note that we just need solve a n x n linear system determined from the coefficients of in,t(y) to find all values of
{C1 s Coks i Ik_; and thus get g.

Lemma 2 (Theorem 2.19, [3]). Suppose that the differential operator in,[ satisfies all the conditions given in Lemma 1. Let my € R, 0 <
k<n—1andt, € [0, T]. Then the initial value problem

L) = f(y.0).

yt)=mo, y'(t)=mq, -+, y"V(t) =mp4

has a unique solution y(t) given by
t

n—1
y®) = f gt —5)f(y(s),s)ds+ kayi?(t — ), (213)
t k=0

where
04 — / (n-3) (n-2) (-1
Yo®) =an_1g() +an2g8 () +---+axg ) +ag ®+g ®,
Vi) =an_28(t) +an_3g' () +--- +a18"D(©) + g2 (0,
(2.14)
Vi) =a1g(t) +g'(t),
yr_1() =g().
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Observing each (i, j)-entry of the system (2.10) is an independent ODE corresponding to the differential operator L ;
in (2.11) with a, = —h; j, thus we can use Lemmas 1 and 2 to derive its solution explicitly. Let us write the function g in

Lemma 1 as g; j, and the corresponding y; in (2.14) with t, =0 as yé‘j. Denote g :=(gi,j) and y, = (y{.‘j). Then we can
obtain an explicit solution formulation for the semi-discrete problem (2.10) as follows.

Corollary 3. The initial value problem (2.10) has a unique solution V (t) = (Vi j)(N,—1)x(N,—1) given by

¢ n—1

V() = /g(t —5)0O f(V(s),s)ds+ Zyk(t) O] V(()k). (2.15)
0 k=0
Note that g;;(0) = g;j(O) =...= gi(j'.l_z) (0) =0, so we further have
t n—1
vO() = / ght-90fVE).ds+ > yPwovy, 1<i<n-1. (2.16)
0 k=0
Next let us discretize the time interval [0, T] by t = mAt for m=0,1,---, Ny with At = T/N;. Then a recursive time
integrator formula for the solution of (2.10) can be expressed as: for m=0,1,---, Ny — 1,
tm+1 n—1
VO (tmin) = / g0(tmi1 =90 FV (). 9ds+ >y Ao VW (),  0<l<n-1. (217)
tn k=0

By the change of variable s — t; + T, we can rewrite (2.17) as

At

n—1
VO (tmi1) :/g(l)(At — DO fV i+ tn+DdT+ Yy (ADOVI (),  0=l=n—1. (218)
0 k=0

Finally, at each time step tp the exact solution of the semi-discrete in space system (2.7) satisfies U®(ty) =
Py@Px®V " (tm).

2.2.2. Evaluation of the integrals based on multistep approximations

In order to obtain a fully discrete solution V,S? ~ VD (t,), we are left with the problem of evaluating the integrals on the
right side hand of (2.18). We will adopt the multistep approach. Note that the integrand is g (At—7)© f(V (tm+71), tm +7)
with

fV(s),5 =P, @P;'®F(Py@Px®V(5),5 + P, @P; ' @W (s).

Adams-Moulton approximation of the integral related to the boundary condition term W. We first evaluate the integrals associated
with the inhomogeneous boundary condition

At

QIW = (qxvj’l)(Nx—l)x(Ny—w = / gat-1 0o (P;1®P;1®W(tm + 1)) dr.
0

Notice that each term of g;j(At — ) has the form of tker (A=) "wwe will develop accurate evaluations of the above integrals
using the approach taken in [22]. Let W (ty; 4+ 7) = P! @ P, '® W (tm + 7). We use the Lagrange interpolation polynomial

P}’V (t) of degree r to approximate W (tm + 1), based on the values of W (t) at tm+1, tmy - - - s Em1—r, 1€,
r—1
PY(tm+T)= Y wrs(D)W(tms),
s=—1

r—1 T+kAL

k=1 kets Tems)AL" Thus we can get

where w; (1) =

At

r—1 r—1
Wl — I . — sl
G ¥ ) Wi jtns) / gL (AL = Dwrs(T)dT | = 3 Wi j(tm-s)e;™.
s=—1 s=—1
0
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(rsl)

Note that o; is independent of the time steps t; with a uniform time step size At being used. For simplicity, we only

present the values of oc,.(.rjis”) forr=0,1,2:

(o -1, ¢(o b))

(1 U (L) 100 @) (1D
@ j ‘pij Q= = (219)
Q@1 _ (Lh @D (2 0D _ 0D _ 42D 21D _ 1 an @b
l] (d’ +¢ ) ¢i,j ¢,] ) l] ———(¢,-,j _d)ij )!
where
At
.
g fg,(lz(At—r)( t) dr. (2.20)
0
Denote SXVS = (ai(fjis’l))(Nx_1>x(Ny_1). then we have the approximation of
r—1
~ Y Wns0S), (2.21)
s=—1

which is (r + 1)-th order accurate in time.

Adams-Bashforth approximation of the integral related to the nonlinear term F. Now we evaluate the integrals Qf resulted from
the nonlinear reaction and source term

At
F__ , Fl _ 0 _ d
Q=@ PwNe-xNy-1) = [ 87 (At =T) O Ftm +7)d7
0
where F(tp, + 1) = P;](@P;]@F(PY@PX@V(tm + T),tm + 7). We use an explicit multistep approach since V(s) is

unknown at time tp41, i.e.,, we interpolate F(t;; + 7) using its values at tp, tm—1,...,tm—r. The corresponding Lagrange
interpolation polynomial PrF (t) of degree r to approximate F(ty, + T) is

P{(tn+7) =) 1rs(D)F(tm-s)
s=0

: kA
with 7y s(T) = [Tizo ks (iirs)m-

Thus we can approximate ti ]’ by

At

.
Qf}‘l%Zfi,j(tm—s) /gla;’?rs(f)df —Zfzj(tm S)ﬂ(rsl).
s=0

0 s=0

We again find that ,Bi(r]?s’l) is independent of the time steps t;; when a uniform time step size At is used. We only present
the value of ﬂi(rjls”) for r=0, 1,2 below:

0,0,1 0,1
,3( ) ¢( )7

101 O,I 11 10! 1,1

where {¢>,.(r]11)}f:0 are defined in (2.20). Denote SF

Fel= (ﬁ,.(rjts‘l))(,\,x_])X(Ny_]), then we have the approximation of

)
Q[ ~) FnsOS[,, (2.23)

which is (r + 1)-th order accurate.
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Finally we obtain a fast compact time integrator (FCTI) scheme for solving the n-th order evolution equation (1.1) with
the Dirichlet boundary condition (2.1) in the rectangular domain as follows:

n—1 r—1
Ul = P@P@(Zy,ﬁ”(m) O (P;'@P;'®UR) + Y (P} @P; ' ®@Win_o) © S

k=0 s=—1 (2‘24)

;
+Z(P;1®P;]®F(Um—5atm—s))@STF’S,,>7 0<l<n-1,
s=0

which is fourth-order accurate in space and (r 4+ 1)-th order accurate in time. The overall complexity is O(N2log(N)) per
time step where N = max(Ny, Ny) based on the FFT implementation. Later on, we also call (2.24) as the FCTI-(r 4 1) scheme
in order to highlight its (r + 1)-th order accuracy in time.

Remark 3. When the model equation (1.1) is a semilinear parabolic equation (n = 1), the above FCTI method is identical to
the compact exponential time differencing method studied in [22].

2.3. The problem with the periodic boundary condition
If the periodic boundary condition as

ak ak
u(t,xp, y) =u(t,xe, y), Sht, x5, y) = Lt %, y) for k=1,2,3,  yelyp, yel, t €lto, to+ T,

‘ ’ (2.25)
Ut % Yp) = Ut X, o), TRE X yp) = SHEX, o) for k=1,2.3,  x€lxp,Xel. L€ [0, fo +T]
is imposed, then we denote the unknowns as
Up,0 Uo,1 Uo,Ny—1
ui,0 Ui U1,Ny—1
U= (Ui-1,j-1)NyxN, =
UNy—1,0 UNy=1,1  --- UN—1,Ny—1 NyxNy
and define U** and UYY correspondingly. Let
10 1 ... 0 1 -2 1 ... 0 1
1 10 ... 0 O 1 -2 ... 0 O
p . . . p . . .
AP><P= .. .. .. s Bp><p= . . . >
0O 0 ... 10 1 o o0 ... =2 1
1 0 ... 1 10/,., 1 0 1 =2)..p
and
1 AP 1 AP D pp D pp
Ax= 178NN Ay =13 AN xn,. Bx= 2By, By= @BNnyy~ (2.26)
Then the compact finite difference approximations in the two-dimensional array form are given by
DA,QU* = B,®U, DA,®U”"’ =B,®U. (2.27)
Then we can obtain the semi-discretization in space of (1.1) with the periodic boundary condition (2.25) as follows:
Ly (U) — (A;'®B,®U + A,'@B,®U) = F(U.1). (2.28)

Note that there is no boundary condition related term W appeared anymore. Then the corresponding FCTI-(r + 1) scheme
can be obtained as:

n—1 r
1 1 — — k _ _
Uiy = P@P@(Zy,i)mr) o (P, '@P'®UL) + > (P} @P; ' ®F (Un_s.tm—s)) O SE |
k=0 s=0
0<l<n-1,

)’ (2.29)

which is fourth-order accurate in space [25] and (r 4+ 1)-th order accurate in time. Under the periodic boundary condition,
we have
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, . i—1 b, . i—1 , : j—1 b, . j—1
di* =1 Jsin?(52%), d7* = —% sin?(U20), dfY =1 — 3sin*(U5T Ny)”), dj? = —% smz(—(’Ny)”),
and the corresponding operations P,®P,®V and P;1®P;1®V are exactly the two-dimensional discrete Fourier trans-
form (DFT) and the inverse DFT respectively, which again can be efficiently calculated by the FFT technique.

Remark 4. The proposed FCTI method also can be naturally generalized with some modifications to solve the general or-
der evolution equation (1.1) with Neumann boundary condition by following the approach in [17] developed for handling
semilinear parabolic problems.

3. Extension to three dimensions

The extension of the above FCTI method for solving the general order semilinear evolution problem (1.1) to three di-
mensions is straightforward. Let Q = {xp <X <Xe,¥p <y < Ye,Zp <Z < Ze} and Ny, Ny, N, be some positive integers.
The mesh sizes in x-, y-, z-direction are hy = (Xe — Xp)/Nx, hy = (ye — y»)/Ny, and h; = (z. — z)/N;, respectively. Let
Ui j ko “?‘)Sk u,??;’k, uizj’k denote the approximations of u(x, y, z, t), uxx(x, y,z,t), uyy(x, y,z,t), uz;(x, y, z, t) at the grid point
(Xi, ¥, z). Let us again use the Dirichlet boundary condition (2.1) as an illustration. Define Ay, Ay, By, By as before and
A= %A?er)xuvzq)- B, = 11_2B((1szl)><(szl)'

Similar to the analysis for the two dimensional system, we can obtain a semi-discretization in space system of (1.1) in
three dimensions as follows:

Ly (U) — (A;'®B.®@U + A, '@B,®U + A; ' @B,@U) = F(U,t) + W(1), (3.1)
where the above special operators are defined as
Nx—1 Ny-1 N,—1
ARV jk= Y _ (A je, AQW)ijx= Y (Ajliie. (AU k= Y (At
I=1 =1 =1
and
FWU, t) = (f Wi jksXis ¥js Zks D) (Ny—1) x (Ny=1) x (N;—1) 5
W=A"®Ux—Ux)+A,'@Uy—Uy) +A;'@Uz —Uz)
with

b ub(xo, yj,ze, ),  i=1,
x,0 x0 _ .
UX0= h_Z(yi,j,k) . yi,j,k_ 0, 1<i <NX—1,
X (Nx=1)x(Ny—1)x (N;—1) b .
U’ (XN, ¥jr Zkst),  1=Nyx—1,
o b (xi, yo, zk, ),  j=1,
_ y.0 0 .
Uyo_h_2<yi,j$k> , Yiik= 0, 1<j<Ny—1,
y (Nx=1)x(Ny—T1)x(Nz—1) b .
u’(xi, YNy 2k, ),  j=Ny—1,

ub(xi, yj.20.6), k=1,

D 0 0
UZO = h_z ('}/",Z",’k> s y{’z}’k = 07 1< k < Nz — 1,
Ny—1)x(Ny—1)x(N,—1
z (Nx=1)x(Ny—=1)x(Nz—1) ub(Xi,}’j,ZNZ’t)7 k=N;—1,
5 ux(X0, ¥j> 2k, t),  i=1,
x,2 X2 _ .
Up= P (%’,j,k) , Yiik=10 1<i<Ny—1,
(Nx=1)x(Ny—T1)x(Nz—1) .
Uxx(XNys Vs Zk, t), 1=Ny—1,
b Uyy(Xi, Yo, Zk, t),  j=1,
_ y.2 v.2 _ .
Up=1 (%‘,j,k) o Yijk=10 I<j<Ny-1,
(Nx—1)x(Ny—1)x(Nz—1)

Uyy(X,',yNy,Zk,t), j:Ny—l,

Uz (X, ¥j, 20, t), k=1,

D 2,2 Z,Z
U= ﬁ(%’,],k) , Vijk= 0, 1<k<N,-1,
(Nx—1)x(Ny—1)x(N;—1)
Uz (Xi, ¥j,Zn,,t), k=N;—1.
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The values of Uy, Uy, and U, again can be obtained by combining the equation (1.1) and the Dirichlet boundary condition
(2.1). Following the same derivations in the case of two dimensions, we can obtain a FCTI-(r + 1) scheme of fourth-order
accurate in space and (r + 1)-th order accurate in time as follows:

n—1 r—1
ul,, = PZ@P@PX@(Z;',&”(AO o (P;'@P;'@P;'®UY) + Y (P'@P, ' @P; ' ®@Wn_s) O S|
k=0

s=—1
:
£ (P @ O OF WU tn-) ©SEy). O=l=n-1. 32)
s=0

Note the operations P,@P,®Px®V and P;l@P;1®P;l®V are exactly the three-dimensional discrete sine transform

(DST) and the inverse DST respectively, and again can be efficiently calculated by FFT. The overall complexity is O (N3 log(N))
per time step where N = max(Ny, Ny, N).

4. Linear stability analysis

For the proposed FCTI method, we perform its stability analysis for the following second order (n = 2) linear evolution
equation

Ug + pur = Lu 4+ Au (4.1)

with a homogeneous Dirichlet boundary condition, where p > 0 is a sufficiently small number and Lu = —qu. For its linear
stability analysis for the case of n =1, we refer to [22] for details. As is done in [11,12,22], we consider the cases where A is
complex-valued and Au represents the linearization of the nonlinear term, and q is a positive real number that corresponds
to a Fourier mode of the self-adjoint elliptic operator A.

Let @ = —p/2, B =+/q— p?/4. Assume that ¢ — p?/4 > 0. Let us consider the FCTI-1 scheme (r = 0) applied to (4.1),
which leads to

Umt1 = e*™ (cos(BAL) — o) um + e @oVm + @1 Alm,

(4.2)
Vi1 = —qe* ot + e (cos(BAL) + o) Vi + e o,
where
. 1 — e*2(cos(BAL) — asin(BAL)/B)
wo =sin(BAt)/B, ¢1= p
and uy ~ u(tm), Vm = Ue(tm). The corresponding amplification matrix (i.e., (Ums1, Vime1)T = A(Um, vi)T) can be written as
A e*A(cos(BAL) — ago) + p14 e®AM g (43)
B —qe“? g + el e*M(cos(BAL) +agg) ) ’

Define
by := trace(A/2) = e*2 cos(BAL) + @11/2,
by := det(A) = e?*At 4+ xe®At(cos(BAL) + gy — e*2l)/q.

Then, the eigenvalues are

(1,2(A) =by £ (b3 —by)!/2.

To ensure the stability of the scheme (4.2), we need to block magnification of A™ as m increases. Based on the spectral
decomposition of A, we shall discuss the eigenvalues of A in the following.

Case 1: If 1(A) = u2(A) = n(A) and A = u(A)I. Then, according the expression of A, we easily know ¢g = ¢1 =0 must
hold and A is an identity matrix in this case. Hence, the FCTI-1 scheme is stable.
Case 2: If (1(A) = u2(A) = u(A) and

_ —1 _(mA) 1
amaset a=("0 ).
then it holds

m_ ool gm (HA™ muAym
A"=qQJme . 1—(0 MW)
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Fig. 1. Stability regions of the first-order time integrator scheme (FCTI-1) in the complex plane of LAt for qAt? =2, 4, 6. Left: p At = 0; right:
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Fig. 2. Stability regions of the first-order time integrator scheme (FCTI-1) in the complex plane of 1 At? with qAt? =6 for pAt =0.04,0.16, 0.28.

Case 3:

Noted that the scheme is stable if [;t(A)| <1 and unstable if [i(A)| > 1. If |[w(A)| =1, we find [mu(A)™ 1| - oo
as m — oo, thus the FCTI-1 scheme is also unstable in this case.

If ;£1(A) # p12(A) and

A"=QJmQ !, 1=(

)

it is easy to see that the scheme is stable if and only if

p(A) =max{|u1], [u2|} < 1.

We also can obtain the boundary locus curve equation of the stability region as

Re(i1)? +Im(u1)* =1,
Re(2)? +Im(up)? = 1.

(4.4)

(4.5)

The stability regions of the FCTI-1 scheme with pAt = 0 for different values of gAt? are given in Fig. 1-(left). It can
be seen that the stability region gets larger obviously when the value of gAt? gets bigger. Fig. 1-(right) shows the
case with pAt = 0.16; it is observed that Re(AAt2) can be smaller than zero. The stability regions with qAtZ =6
for pAt =0.04,0.16, 0.28 are plotted in Fig. 2. We observe that the stability region grows larger with the increasing

of pAt.
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Table 1

The Lo errors of the approximate solution by the FCTI-1 scheme in Example 1 with different A.
Time p=0 p=1

r=-10 A=10 A=30 Ar=-10 A=10 A=30

t=0.1 1.5341e-02 1.0847e-02 6.2936e-03 1.4815e-02 1.0465e-02 6.0569e-03
t=12.5 3.6510e-02 1.7913e-02 1.4124e-02 2.7157e-02 2.2159e-02 1.4141e-02
t=25.0 3.4587e-01 2.1519e-02 1.3886e+04 2.7103e-02 2.2047e-02 9.4677e-01
t=50.0 3.6521e+00 2.1538e-02 6.2126e+24 2.6440e-02 2.1520e-02 4.0863e+16

5. Numerical experiments

In this section, we perform various numerical experiments to illustrate the performance of the proposed FCTI method. All
computations are done using Matlab R2016b software on an Intel(R) i7-8750H, 2.20GHz CPU Laptop with 8 GB of memory.
All reported CPU times are measured in seconds.

5.1. Stability tests

In this subsection, we numerically investigate the stability of the FCTI method following the linear stability analysis
presented in Section 4.

Example 1. Consider the following second-order linear hyperbolic evolution equation with the Dirichlet boundary condition
in one dimension:

9%u au
S5 +p5r =Dum+iu+ f(xD,  0<x<2m (>0, (5.1)

The initial and boundary conditions and the source function f(x,t) are determined accordingly from the given exact solution

u(x, t) = sin(x) sin(t).

After spatial discretization by fourth-order compact difference scheme, we can obtain a semi-discretization of (5.1) as
U”(t)+pU’(t)—A;]BxU:AU+F(t), (5.2)
where U e RNx=Dx1_ Multiplying P;! from the left hand side yields the ODE system
V' +pV =—Q OV +AV+F(), (5.3)
where V = P;'U, F(t) = P;'F(t) and Q = (qi)(n,_1)x1 With

48D sin*(im/(2Ny) _ 12DN}  sin®(i/(2Ny)
7= h2 12 —4sin®(in /2Ny)) T2 12— 4sin?(i7/(2Ny))’

=1,2,...,Nxy— 1.

We fix D =100, Ny =32 and At = 0.05. Assume that the parameter A is a real number. We first study the case of
p = 0. According to the previous linear stability analysis and the stability criterion (9.1.52)-(9.1.53) in [18, p. 498], we can
see that the stability interval for the i-th equation in (5.3) is A € [0, g;], and the stability interval for the system (5.3) is then
obtained as A € [0, q] with g =minj<;j<n,—1 gi. It easy to verify q =25 in this example. Table 1 reports the L, errors of the
approximate solutions obtained by using the FCTI-1 scheme with different » when p = 0. It is observed that if A = 10 (resp.
A = —10, 30), the FCTI-1 scheme is stable (resp. unstable), the Lo, errors with respect to t are convergent (resp. divergent).
This demonstrates the validity of our stability analysis. For comparison, we also check the case of p =1, in which there
exists a damping term in the underlying equation. Hence, it is expected that the stability interval should be larger than that
of the p =0 case from the physical point of view. As a matter of fact, using the similar arguments given above, one can find
the stability interval now is A € [—40.55, 25], which does contains [0, 25]. Results on p =1 reported in Table 1 also confirm
this analysis.

5.2. Convergence and efficiency tests

In this subsection we first investigate the convergence and efficiency of the proposed FCTI method for second and third
order evolution equations in two dimensions with Dirichlet or periodic boundary conditions.
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Numerical errors, convergence rates and the CPU times at T =1 of Example 2 with Dirichlet or periodic boundary conditions by using the FCTI schemes.

(Nx x Ny) x N¢

Dirichlet boundary condition

Periodic boundary condition

Ly error CR Lo error CR CPU Ly error CR Loo error CR CPU
Accuracy test of space discretization
(8%) x 1024 3.0133e-03 - 1.2216e-03 - 0.396 4.6582e-03 . 1.3620e-03 - 0.102
(162) x 1024 1.9105e-04 3.98 7.9303e-05 3.95 0.463 2.6501e-04 414 8.4979e-05 4.00 0.195
(322) x 1024 1.1963e-05 4.00 5.0997e-06 3.96 0.910 1.5827e-05 4.07 5.4762e-06 3.96 0.432
(64%) x 1024 7.4880e-07 4.00 3.1993e-07 3.99 2.938 9.6875e-07 4.03 3.4283e-07 4.00 1.146
(128%) x 1024 4.7664e-08 3.97 2.0958e-08 3.93 7.828 6.1372e-08 3.98 2.2385e-08 3.94 3.688
Accuracy test of time discretization: FCTI-1 (r =0)
(512%) x 4 1.8393e-01 - 2.6377e-01 - 1.001 1.3695e-01 - 5.7609e-02 - 0.339
(512%) x 8 8.8637e-02 1.05 1.2207e-01 111 1.900 6.8759e-02 0.99 3.0256e-02 0.93 0.679
(512%) x 16 4.2203e-02 1.07 4.9362e-02 131 3.828 3.4608e-02 0.99 1.5599e-02 0.96 1375
(512%) x 32 1.9399e-02 112 1.4647e-02 175 7.612 1.7384e-02 0.99 7.9333e-03 0.98 2.794
(512%) x 64 9.6058e-03 1.01 6.5981e-03 115 15.394 8.7151e-03 1.00 4.0022e-03 0.99 5.480
(512%) x 128 4.7817e-03 1.01 3.2903e-03 1.00 30.566 4.3637e-03 1.00 2.0103e-03 0.99 10.935
Accuracy test of time discretization: FCTI-2 (r=1)
(512%) x 4 2.6259e-02 - 1.9592e-02 - 1.007 3.4760e-02 - 2.1509e-02 - 0.406
(512%) x 8 7.5548e-03 1.80 5.6038e-03 1.81 1.983 1.0156e-02 1.78 6.4097e-03 1.75 0.819
(512%) x 16 1.9984e-03 192 1.4848e-03 192 3.965 2.7163e-03 1.90 1.7272e-03 1.89 1.662
(512%) x 32 5.1189e-04 1.96 3.8288e-04 1.96 7.992 7.0012e-04 1.96 4.4657e-04 1.95 3.326
(512%) x 64 1.2941e-04 1.98 9.7135e-05 1.98 15.889 1.7757e-04 1.98 1.1343e-04 1.98 6.645
(512%) x 128 3.2524e-05 199 2.4470e-05 199 31.896 4.4704e-05 1.99 2.8576e-05 1.99 13.311
Accuracy test of time discretization: FCTI-3 (r = 2)
(512%) x 4 1.6012e-02 - 1.2685e-02 - 1.073 2.2089e-02 - 1.3846e-02 - 0.468
(512%) x 8 2.1945e-03 2.87 2.7079e-03 223 2.295 3.2384e-03 2.77 2.0135e-03 2.78 0.996
(512%) x 16 3.0707e-04 2.84 6.3837e-04 2.08 4.247 4.2947e-04 291 2.6222e-04 294 2.029
(512%) x 32 4.4023e-05 2.80 1.0365e-04 2.62 8.543 5.5211e-05 2.96 3.3287e-05 298 4109
(512%) x 64 5.9269e-06 2.89 1.3929e-05 2.90 17.031 6.9982e-06 298 4.1886e-06 2.99 8.307
(512%) x 128 7.5923e-07 2.96 1.7109e-06 3.03 34.335 8.8093e-07 2.99 5.2525e-07 3.00 16.566
Example 2. Consider the following second-order nonlinear evolution problem
yu_+1au Autu—u?+ fxy.t), (xy)eQ te@©T
9tz 49t R Y esh te©.1),
T . (5.4)
u(0,x, y) = sin(x) sin(y), (x,y) €,
ut(O»X,J’):O, (XJ’)EQ,

where Q = (—1, 2r — 1)2. The exact solution is chosen to be

u(x, y,t) = cos(t) sin(x) sin(y)

and the source term f(x, y,t) is determined correspondingly.

Numerical results on L, and Lo, errors by using the FCTI schemes at the final time T =1 and corresponding convergence
rates and CPU times are reported in Table 2. For all spatial accuracy tests, we use the FCTI-3 scheme. We can clearly see
the fourth order convergence in space from the results. For the temporal accuracy tests, we use a fixed spatial grid with
Ny =N, =512. We observe as expected the first, second, and third order convergences in time for FCTI-1, FCTI-2 and FCTI-3,

respectively.

Example 3. Consider the following third-order linear evolution problem

3u  ou
a3 ot

u(0, x, y) = sin(x) sin(y),

us(0, x, y) = —2sin(x) sin(y),
ug (0, x, y) = 4sin(x) sin(y),

= Au — 2u — 2e~?t sin(x) sin(y),

x,y) e,

x,y) €,
x,y) €L,

where Q = (—1, 2 — 1)2. The exact solution is given by

u(x, y,t) = e *tsin(x) sin(y).

x,y)eQ, te(0,T],

(5.5)
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Numerical errors, convergence rates and the CPU times at T = 0.25 of Example 3 with Dirichlet or periodic boundary conditions by using the FCTI schemes.

(Nx x Ny) x N¢

Dirichlet boundary condition

Periodic boundary condition

Ly error CR Lo error CR CPU Ly error CR Lo error CR CPU
Accuracy test of space discretization
(8%) x 1024 2.0026e-05 - 7.7910e-06 - 0.587 2.7776e-05 - 7.1711e-06 - 0133
(16%) x 1024 1.3439e-06 3.90 4.8472e-07 4.01 0.675 1.5783e-06 414 4.4706e-07 4.00 0.262
(322) x 1024 8.6898e-08 3.95 2.8727e-08 4.08 1.583 9.4209e-08 4.07 2.8707e-08 3.96 0.586
(64%) x 1024 5.5261e-09 3.97 1.7919e-09 4.00 4.890 5.7559e-09 4.03 1.7919e-09 4.00 1.690
(128%) x 1024 3.5597e-10 3.96 1.4269e-10 3.65 13.208 3.5506e-10 4.02 1.1183e-10 4.00 5.833
Accuracy test of time discretization: FCTI-1 (r =0)
(5122) x 4 1.1486e-01 - 4.4166e-01 - 1.654 9.9518e-04 - 3.1589e-04 - 0.599
(5122) x 8 5.4659e-02 1.07 2.2583e-01 0.97 3.253 4.7760e-04 1.06 1.5160e-04 1.06 1172
(512%) x 16 2.6761e-02 1.03 1.1511e-01 0.97 6.535 2.3346e-04 1.03 7.4104e-05 1.03 2.356
(5122) x 32 1.3249e-02 1.01 5.8167e-02 0.98 12.980 1.1535e-04 1.02 3.6615e-05 1.02 4.768
(512%) x 64 6.5925e-03 1.01 2.9241e-02 0.99 26.575 5.7327e-05 1.01 1.8197e-05 1.01 9.469
(5122) x 128 3.2884e-03 1.00 1.4661e-02 1.00 52.099 2.8575e-05 1.00 9.0704e-06 1.00 18.780
Accuracy test of time discretization: FCTI-2 (r=1)
(5122) x 4 2.2274e-03 - 1.0400e-02 - 1.703 1.8767e-05 - 5.9569e-06 - 0.685
(5122) x 8 5.4947e-04 2.02 2.4889e-03 2.06 3.398 4.7337e-06 1.99 1.5026e-06 1.99 1377
(512%) x 16 1.3686e-04 2.01 6.1496e-04 2.02 6.783 1.1861e-06 2.00 3.7648e-07 2.00 2.733
(5122) x 32 3.4183e-05 2.00 1.5328e-04 2.00 13.629 2.9668e-07 2.00 9.4173e-08 2.00 5.475
(5122) x 64 8.5438e-06 2.00 3.8292e-05 2.00 27.448 7.4180e-08 2.00 2.3546e-08 2.00 10.979
(5122) x 128 2.1358e-06 2.00 9.5712e-06 2.00 54.519 1.8545e-08 2.00 5.8864e-09 2.00 22.014
Accuracy test of time discretization: FCTI-3 (r = 2)
(5122) x 4 2.0104e-03 - 8.0884e-03 - 1.771 1.1177e-05 - 3.5478e-06 - 0.765
(5122) x 8 2.8940e-04 2.80 1.1081e-03 2.87 3.573 1.6195e-06 2.79 5.1408e-07 2.79 1574
(5122) x 16 3.7976e-05 2.93 1.6598e-04 2.74 7193 2.1732e-07 2.90 6.8982e-08 2.90 3.216
(5122) x 32 4.8647e-06 2.96 2.2346e-05 2.89 14.411 2.8125e-08 2.95 8.9274e-09 2.95 6.467
(5122) x 64 6.1637e-07 2.98 2.8864e-06 2.95 29.103 3.5754e-09 2.98 1.1349e-09 2.98 13.146
(5122) x 128 7.7608e-08 2.99 3.6636e-07 2.98 58.760 4.4955e-10 2.99 1.4270e-10 2.99 26.521

Numerical results at the final time T = 0.25 for Example 3 are reported in Table 3. As expected, we again observe the
four-order accuracy of space discretization, and the first, second and third-order accuracy of time discretization for FCTI-1,
FCTI-2 and FCTI-3, respectively. Moreover, from Tables 2 and 3 we can observe that all CPU times are quite small due to the
use of FFT.

5.3. Comparison with the Fourier spectral IFRK method

The proposed FCTI method with the Fourier spectral IFRK method proposed in [1] will be compared in this subsection,
while the FCTI can be used for solving problems with different types of boundary conditions, the Fourier spectral IFRK
method usually only can handle the periodic boundary condition. In the following we will investigate their performance in
accuracy and numerical stability under the periodic boundary condition, in particular, we take the FCTI-3 scheme with the
Fourier spectral IFRK4 scheme for comparison.

Example 4. Consider the following second order linear hyperbolic equation in two dimensions

2

u
FZAU‘i‘f(X,y,t),

imposed with the periodic boundary condition.

(x,y) € Q=(0,2m)%, t (0,1, (5.6)

Note that the Fourier spectral IFRK method formulates the second order evolution equation as a system of first order
evolution equations. It is well known [4,14] that the performance of Fourier spectral method depends strongly the regu-
larity and the period conditions of the exact solution of the underlying problem. Hence, we discuss two cases with the
exact solutions given respectively by Case (I): u(x, y,t) = sin(x)sin(y)sin(t) and Case (II): u(x, y,t) = x?(x — 2mw)%y?(y —
2m)? sin(x) sin(y) sin(¢). The right side function f(x, y,t) is determined accordingly for each case. We report in Table 4 nu-
merical results on Ly, Ly, errors, and corresponding convergence rates and CPU times for both cases, computed by using
the Fourier spectral IFRK4 scheme and the FCTI-3 scheme with Ny = 2048 and different values of Ny x N,. It is observed
that the FCTI-3 scheme obtain fourth-order accuracy in space for both cases. The Fourier spectral IFRK4 scheme has the
spectral accuracy for Case (I) and but only fourth-order accuracy for Case (II). Such behaviors can be explained as follows.
For Case (I), the exact solution u is sufficiently smooth, ie., u € CSO(Q), which indicates the periodic extension of u is a

C*°-smooth function in the plane R2, and thus the Fourier spectral method gives spectral accuracy in space [4,14]. However,
such smoothness condition is sometimes too strong for practical applications. For Case (II), the exact solution u only has
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Table 4
Numerical errors, convergence rates and CPU times of Example 4 by using the Fourier spectral IFRK4 scheme and the FCTI-3 scheme with N; = 2048,
respectively.

Case (I)
Ny x Ny Fourier spectral IFRK4 FCTI-3

Ly Error CR Lo error CR CPU Ly error CR Lo Error CR CPU
42 2.4425e-15 - 7.6734e-15 - 0.137 2.4616e-02 - 7.8355e-03 - 0.134
82 2.4425e-15 0.00 7.6336e-15 0.01 0.178 1.4582e-03 4.08 4.6415e-04 4.08 0.156
162 2.4425e-15 0.00 7.5431e-15 0.02 0.351 8.9581e-05 4.02 2.8514e-05 4.02 0.283
322 2.4425e-15 0.00 7.5903e-15 —0.01 0.783 5.5735e-06 4.01 1.7741e-06 4.01 0.603
642 2.4425e-15 0.00 7.6260e-15 —0.01 1974 3.4794e-07 4.00 1.1075e-07 4.00 1.589
1282 2.4425e-15 0.00 7.6669e-15 —0.01 5.869 2.1735e-08 4.00 6.9185e-09 4.00 4.690
2562 2.8866e-15 —0.24 7.7256e-15 —0.01 44.652 1.3534e-09 4.01 4.3976e-10 4.01 16.564
5122 2.7756e-15 0.01 7.7903e-15 —0.01 286.532 7.9930e-11 4.09 2.5211e-11 4.09 133.133
Case (II)
Ny x Ny Fourier spectral IFRK4 FCTI-3

L, error CR Lo error CR CPU L error CR Lo error CR CPU
42 1.5468e+02 - 4.8594e+02 - 0.155 5.6122e+02 - 1.7864e+02 - 0.142
82 1.2099e+01 3.68 3.8519e+01 3.66 0.271 6.8185e+01 3.04 2.6498e+01 2.75 0.198
162 1.4247e+00 3.09 2.8761e+00 3.74 0.571 4.2155e+00 4.02 1.7113e+00 3.95 0.342
322 1.0561e-01 3.75 1.8439e-01 3.96 1.308 2.6074e-01 4.02 1.1149e-01 3.94 0.761
642 7.2262e-03 3.87 1.1732e-02 3.97 3.733 1.6246e-02 4.00 6.9456e-03 4.00 2.063
1282 4.7244e-04 3.94 7.4017e-04 3.99 12.397 1.0146e-03 4.00 4.3529e-04 4.00 6.451
2562 3.0217e-05 3.97 4.6483e-05 3.99 70.221 6.3365e-05 4.01 2.7185e-05 4.00 28.037
5122 1.9101e-06 3.98 2.9122e-06 4.00 390.054 3.9269e-06 4.10 1.6831e-06 4.01 158.719

Table 5

Numerical errors, convergence rates and CPU times for Case (II) in Example 4 by using the Fourier spectral IFRK4 scheme and the FCTI-3 scheme, respec-
tively.

(Nx x Ny) x N¢ Fourier spectral IFRK4 FCTI-3
Ly Error L error CPU Ly error L error CPU

(128%) x 4 6.3580e+07 9.5824e+07 0.029 5.1367e+00 2.4402e+00 0.013
(128%) x 8 7.7659e+10 1.7019e+11 0.057 6.3357e-01 3.0101e-01 0.025
(1282%) x 16 1.1039e+09 2.2767e+09 0.121 7.7793e-02 3.6989e-02 0.050
(128%) x 32 4.6163e-04 8.7341e-04 0.202 8.8332e-03 4.2268e-03 0.099
(128%) x 64 4.7155e-04 7.3569e-04 0.392 8.6708e-04 3.6296e-04 0.197
(128%) x 128 4.7238e-04 7.3981e-04 0.779 3.6971e-04 1.4936e-04 0.399
(256%) x 4 3.6222e+11 3.7293e+11 0.148 5.1377e+00 2.4406e+00 0.040
(256%) x 8 8.6325e+18 1.1010e+19 0.284 6.3449e-01 3.0142e-01 0.082
(256%) x 16 5.4973e+28 1.2390e+29 0.558 7.8712e-02 3.7395e-02 0.160
(256%) x 32 5.2208e+33 1.2253e+34 1107 9.7490e-03 4.6334e-03 0.315
(2562%) x 64 9.0234e+00 2.0771e+01 2214 1.1627e-03 5.5435e-04 0.645
(256%) x 128 3.0186e-05 4.6160e-05 4.578 9.3136e-05 4.5506e-05 1.270

finite regularity, i.e. u € H4(Q). In this case, the Fourier spectral IFRK4 scheme only gives fourth-order accuracy in space,
the same order as the FCTI-3 scheme, and in fact the produced L errors are even larger than those by the FCTI-3 scheme
as shown in the table. Hence, if the exact solution only has finite regularity, the two methods could enjoy the same approx-
imation accuracy in space. Compared with the FCTI-3 scheme, the Fourier spectral IFRK4 scheme also costs more CPU times
(more than twice on relatively large spatial meshes) since its computational complexity per time step is larger.

Furthermore, numerical results for Case (II) computed by the two methods with relative large time step sizes are pre-
sented in Table 5, in which we set the spatial grid size as Ny = 128 and 256, respectively. It is easy to see that the FCTI-3
scheme is more stable than the Fourier spectral IFRK4 scheme, for instance, the latter method is numerically unstable for
N¢ <16 when Ny =128 and for N; <64 when Ny = 256, while the FCTI-3 scheme always performs well.

5.4. Some application problems

5.4.1. The nonlinear sine-Gordon equation
The sine-Gordon equation takes the following form [8]:

92u u )
W—Fpg:DAu—sm(u), XxeQ, t>0, (5.7)
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where the parameter p > 0 is the dissipative coefficient. This equation appears in differential geometry, relativistic field the-
ory, and a number of other physical applications such as the propagation of fluxons in Josephson junctions and dislocations
in crystals. As a soliton wave equation, the sine-Gordon equation with the homogeneous Dirichlet boundary or the periodic
boundary condition has the property of conservation of energy for the undamped case (i.e., p =0), in which the energy is
defined by [10,13]:

E(t) = % /[IVHI2 +u? +2(1 - cosu)] dx.
Q

In this subsection, we will apply the FCTI method to simulate the sine-Gordon equation in two and three dimensions.

Example 5. Consider the behavior of a circular ring quasi-soliton [30,33,35] in two dimensions, arising from the sine-Gordon
equation (5.7) with D = 1. The initial condition is given by

u(x, y,0) =4arctan(exp(3 — /¥ + ¥2)), ur(x,y,0)=0,

and the boundary condition is set to be periodic.

In order to study the evolution of the ring solitons without damping (i.e., p = 0), numerical simulation of sin(u/2) at
different times, by using the FCTI-3 scheme with Ny = N, =256 and At = 0.005 over the domain © = (-14, 14)%, were
performed and the results are presented in Fig. 3. From the initial stage (t =0), a ring soliton is shrinking. Then oscillations
and radiations begin to form and continue until the time t = 8 as the time goes on. At t = 11.5, the ring soliton is nearly
formed and then appears to be in its shrinking process again at t = 12.6. We also find that the center of the circle ring
soliton does not move during the above process. The corresponding contour profiles can be found in Fig. 4. All simulated
results coincide very well with those in the literature. In Fig. 5-(left), we plot its evolution of the energy E(t) for t € [0, 60]
over the domain 2 = (—7,7)2, which demonstrates the proposed scheme conserves the energy quite well (with relative
oscillations up to 0.0908%) in the undamped case even for large time. In addition, we also tested some damped cases and
Fig. 5-(right) depicts the comparison of the energy evolutions with different damping coefficients p =0, 0.01,0.03 during
the time interval [0, 6]. It is observed that for p = 0.01 and 0.03, the energy decreases as t increases and the larger p is,
the faster E(t) decreases.

Example 6. Consider the three-dimensional modified sine-Gordon equation with extra source [7]

2u(x,y,z,t)
ot2
where = (0,1)3 and T = 1. The exact solution is chosen to be an expending sphere defined by

k=0 y-n* (Z—r)2>

=Au(x, y,z,t) —sin(u(x, y,z,t)) + f(x, ¥, z,t), (x,y,2)€Q, te(0,T],

B B B

with two constant parameters 8 > 0 and r > 0. The source function f and the initial and Dirichlet boundary condition are
determined accordingly from the exact solution.

ulx,y,zt)= t2 exp (

It is easy to see that the isosurface of u is initially a sphere, and as the time goes on, the radius of the sphere become
larger and gradually touch the domain boundary. To test the sphere expanding process, we set 8 =10, r = 0.5 and solve
the problem using the FCTI-3 scheme with Ny = Ny = N, =128 and At =1/256. The simulated isosurfaces of u = 0.05 at
times t =0.25, 0.5 and 1 respectively are illustrated in Fig. 6, which is in accordance with the exact solution.

5.4.2. A third-order nonlinear evolution equation
As shown in [34,38,39], the following differential equation can be used to describe the propagation of weakly nonlinear
waves in relaxing media.

9 (82u Au) L2 b BAWY), XeQ, t>0 (5.8)
o\ o T PYCT = ) , 1>V, .
ot \ 92 a2

where D € (0,1) and B are two dimensionless constants. As described in Appendix A the FCTI method can be slightly
modified to solve (5.8) efficiently.

Example 7. Consider the numerical solution of problem (5.8) defined in Q = (0, 277)? with the periodic boundary condition
imposed. The initial conditions are given by

u(x, y,0) =sin(x)sin(y), ur(x,y,0) =0, uy(x,y,0)=—sin(x)sin(y).
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Fig. 3. Numerical simulations of sin(u/2) at times t =0, 4, 8, 11.5, 12.6, 15 respectively,

computed by the FCTI-3 scheme with Ny = Ny =256 and At=0.005 in Example 5.
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Fig. 4. Contour profiles of the simulated sin(u/2) at times t =0, 4, 8,11.5,12.6, 15 respectively, computed by the FCTI-3 scheme with Ny = Ny =256 and At =0.005 in Example 5.
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Fig. 5. Left: energy evolution of the approximate solution in the undamped case during the time interval [0, 60] in Example 5; right: comparison of the
energy evolutions of the approximate solutions under different damping coefficients during the time interval [0, 6] in Example 5. All results are computed
by the FCTI-3 scheme with Ny = Ny, =256 and At = 0.005. (For interpretation of the colors in the figure(s), the reader is referred to the web version of
this article.)
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Fig. 6. Visualization of the simulated isosurfaces of u =0.05 of the expanding sphere problem with 8 =10 and r =0.5 at times t = 0.25, 0.5, 1 respectively,
computed by the FCTI-3 scheme with Ny =Ny =N, =128 and At =1/256 in Example 6.

We solve this third order problem using the FCTI-3 scheme with Ny = N, =256 and At = 0.005. Fig. 7 shows the
approximate solution of the wave u for the case of D = 0.625 and 8 = 0.2 at some typical times and Fig. 8-(middle)
report the corresponding evolution of the amplitude of u (maxy, yye(u(x, y,t))) and mingy yyeq(u(x, y,t)))) during the
time interval [0, 25]. The crests in Fig. 8-middle appear at times t =2.66, 4.93, 7.305, 9.695, 12.035, 14.385, 16.79, 19.14,
21,485, 23.88 and the troughs at times t = 1, 1.675, 3.83, 6.255, 8.58, 10.945, 13.32, 15.68, 18.03, 20.405, 22.77. It can be
clearly observed that u shows a quasi-periodic behavior and its amplitude gradually shrinks to zero along the time. Starting
from the second line, from the first figure of each line to the first one of its successive line presents a quasi-period of
changes of u in Fig. 7. We found that the duration of a period is approximately 4.702.

To illustrate the effect of 8 and D on the behaviors of the wave, we perform some further investigations. We first fix
D = 0.625 and compare the results from the cases of 8 =0.1, 0.2 and 0.4 respectively (see Fig. 8). We observe that all
cases show quasi-periodic behaviors with almost the same period (approximately 4.702 for g =0.1, 4.702 for 8 =0.2 and
4.696 for B =0.4) and the amplitude of u also shrinks at almost the same speed for all cases except some differences at
the early stage of the evolution. Next we fix 8 =0.2 and compare the results from the cases of D = 0.375, 0.625 and 0.875
respectively (see Fig. 9). It is found that all cases show quasi-periodic behaviors but with different periods, approximately
4.801 for D =0.375, 4.702 for D = 0.625 and 4.522 for D = 0.875. The larger D is, the smaller the period is, and the much
slower the amplitude of u shrinks.

6. Conclusions

Many important problems in science and engineering can be expressed as semilinear evolution equations of different
orders. Generally speaking, no closed-form solutions are available for most of them, thus efficient numerical solution meth-



332 J. Huang et al. / Journal of Computational Physics 393 (2019) 313-336

=0 =1

t=1.675 t=2.66 t=3.83 t=4.93
05
50
05
6
4 6
> 4
y 0o x
t=6.255

2 2 2 2 2
y 00 b3 y (U] X y 0o X
t=12.035 t=13.32 t=14.385

2 2 2 2 2 2 2
y 00 X y 00 X y 00 X y 00 X
t=15.68 t=16.79 t=18.03 =19.14

05 0.5

05 05
6 6
4 6

4
2 2
y 0o X
1=20.405
05 05
-05 05
6
6
4 4
2 2
y 0o X

Fig. 7. Numerical simulation of the wave u for the case of D =0.625 and 8 = 0.2 at times t =0, 1.0, 1.675, 2.66, 3.83, 4.93, 6.255, 7.305, 8.58, 9.695,
10.945, 12.035, 13.32, 14.385, 15.68, 16.79, 18.03, 19.14, 20.405, 21.485, 22.77, 23.88 respectively, computed by the FCTI-3 scheme with Ny = N, = 256 and
At =0.005 in Example 7. Starting from the second line, from the first figure of each line to the first one of its successive line presents a quasi-period of
changes of u. The amplitude of u gradually shrinks to zero.
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Fig. 8. Simulated evolutions of min(u) and max(u) during the time interval [0, 25] with D =0.625 and different values of 8 (0.1, 0.2, and 0.4 respectively),
computed by the FCTI-3 scheme with Ny =Ny =256 and At =0.005 in Example 7. All cases show quasi-periodic behaviors with almost the same period

(approximately 4.702 for g = 0.1, 4.702 for 8 = 0.2 and 4.696 for g = 0.4) and the amplitude of u also shrinks at almost the same speed in all cases
except some differences at the early stage of the evolution.

ods are highly desired. This paper is intended for devising a fast and accurate compact time integrator method, the FCTI
method, for solving a family of general order semilinear equations in regular domains. More specifically, we discretize the
model evolution equation by a fourth-order accurate compact difference scheme in space, giving rise to a system of ODEs.
One advantage of such compact representation is that it can be implemented through FFT. We then express the solution of
the discrete problem explicitly in terms of time integrator based on the theory of ODEs. The fully discrete method is finally
obtained by approximating the boundary condition and the nonlinear term with multistep approximations and Lagrange
interpolations. We also present the linear stability analysis of the first order FCTI scheme for second order evolution prob-
lems. Extensive numerical experiments with applications are performed to demonstrate accuracy, stability and efficiency of
the proposed method. Although only Dirichlet and periodic boundary conditions are studied for the FCTI method in this
paper, it also can be naturally generalized with some modifications to the case of Neumann boundary condition as stated in
Remark 4. We also would like to note that the proposed FCTI method can be easily adapted to solve some nonstandard high

order semilinear evolution equations as derived in Appendix A. In the end, the convergence analysis of the FCTI method
remains an interesting topic to be studied in our next step.
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much slower the amplitude of u shrinks.

Appendix A

We here present how to modify the original FCTI method to solve the third-order nonlinear evolution equation (5.8). For

simplicity assume that the periodic boundary condition is imposed. Similar to (2.2), we use the fourth-order compact finite
differences for spatial discretization to u% and obtain

1 2 2 2 1 2 2 2
' ((“H,j)xx +10(ui p™ + (”i+1,j)xx) - E(”HJ — 22Ut U

1 2 2 2 1 2 2 2
15 (Wi =) + 10w P + (Ui ;. ") = Pl (ui,j—l —2ui ;i + ui,j-H) ;
y

(A1)

fori=0,1,---Ny—1,j=0,1,---Ny — 1. In order to write the above scheme in matrix notation, define

U?:=U0U =Wl j_Nen, =

and define (U2)¥ = ((ui{lyjfl)"")NxxNy and (U%)YY = ((U?,1_j,1)yy)NxxNy correspondingly.

2 2
Ud,0 Up 1 Up,Ny—1
2 2
Uto Ui UTNy—1
2 2 2
UNe—1,0 UNe—11 UN—1,Ny—1

NxxNy
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Then the above difference scheme can be formulated as
1 1
A (U = BBXUZ, A,@U?YY = BI;y@)uz, (A2)

where Ay, Ay and By, By are given in (2.26). Thus we can obtain a semi-discretization in space of (5.8) as follows:

u” @) +U" @) - %(A,j]@Bx@U’(t) + A;1®By@u’(t)> - (A;1®Bx®u + A;1®By@u>

(A.3)
_f A;'®B®U* + A,' @B, U’
- D X X y y .
Multiplying P;l (defined in (2.29)) to the left hand side and (P;1)T to the right hand side, we obtain
" " 1 / :3 T
Vi +v (t)—BHOV(t)—HOV(t)=BH®F(V), (A4)
where H = (h;;) with its (i, j)-th entry given by
A;D sin ((l 1)71) h D sin ((] 1)7'[)

h,‘j:—

e . 1=i=Nx,1=j=Ny,
1—gsin’(PT) 1 - §sin®(UT)

V=P,'@P;'®U and Fv) = P, '@P;'®(U?). Then the corresponding FCTI-(r + 1) can be formulated by

vl = Py®Px®<Zy(l)(At) o (P;'@P;'®URY) + > (P, ®P; ' ®W2)) O ST, ,) 0<l<2. (A5)
s=0

k=0
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