Consistent Multi-Robot Object Matching via
QuickMatch

Zachary Serlin, Brandon Sookraj, Calin Belta, and Roberto Tron

Boston University, Boston MA 02446, USA,
zserlin@bu.edu

Abstract. In this work, we present a novel solution and experimental
verification for the multi-image object matching problem. We first review
the QuickMatch algorithm for multi-image feature matching and then
show how it applies to an object matching test case. The presented
experiment looks to match features across a large number of images
and features more often and accurately than standard techniques. This
experiment demonstrates the advantages of rapid multi-image matching,
not only for improving existing algorithms, but also for use in new
applications, such as object discovery and localization.

Keywords: Computer vision, Feature matching, Object matching

1 Motivation

In this paper, we propose a solution to the following problem: given a set of
images taken from a team of robots (or camera network), match unique object
features, from multiple perspectives, as they enter and exit the images. This
problem is fundamental to both computer vision and robotics applications, where
feature matching can be used for object matching, localization, and tracking
[2,22], homography estimation [16], structure from motion [7], and formation
control [11]. Solutions to this problem are classically computational complex and
often mismatch features when considering more than two images [2,9]. Multi-
image correspondences allow for greater match reliability, and a more accurate
representation of objects in the universe. The proposed solution leverages the
novel QuickMatch algorithm [18], to quickly and reliably discover correspondences
across many images. The presented experiment tests QuickMatch’s utility by
implementing an object matching framework in a realistic scenario (i.e. images
with clutter, repeated structures, and poor image quality).

2 Problem Statement

Given a set of images Z = {1,2,...,4,...,N}, and a set of K; feature vectors
extracted from each image, with each feature denoted x;;, determine matches
(Tiyky > Tiyk, @ 11 # i2) between features from separate images, such that
matched features represent the same entity in the universe.

2 Zachary Serlin et al.

3 Related Work

Feature matching is a basic process in many computer vision algorithms. Pairwise
matching is the classical approach to this task, where features between two
images are compared based on a distance metric (e.g. Euclidean or Manhattan
distance) and declared a match if this distance is below some threshold [9, 19].
Two standard algorithms, Brute Force matching (BF), and Fast Library for
Approzimate Nearest Neighbors matching (FLANN) both determine pairwise
matches in this way. Pairwise matching has difficulties matching entities with
repetitive structure or similar appearance (e.g. windows) because the distance
metric alone does not consider the distinctiveness of the features. Including
distinctiveness of features has been explored in [9] to mitigate the effect of
repeated structures. For multi-image matching, pairwise matches scale poorly
with the number of images, and across multiple images, match correspondences
often do not belong to the same ground truth object.

Beyond pairwise matching, a number of other approaches exist for feature
matching that are based on optimization, graphs, and clustering. Optimiza-
tion based approaches solve a global non-convex problem where optimization
constraints must often be relaxed to reliably obtain solutions [13,21]. These
approaches require an a priori known number of objects, which is often unknown,
and do not consider distinctiveness of the features. Cycles in graphs and graph
matching are early predecessors to the QuickMatch algorithm and have largely
been used to remove inconsistent matches [8]. Clustering approaches such as
k-means [10] and spectral clustering [12] have been explored, but also often
require a predefined number of objects and do not consider that a unique object
only occurs once in an image.

QuickMatch builds primarily on density-based clustering algorithms [5, 20],
which find clusters by estimating a non-parametric density distribution of data
[14]. These approaches do not require prior knowledge of the number or shape of
clusters, and can include feature distinctiveness by construction. This paper is
an experimental extension of [18], where QuickMatch is initially introduced.

4 Technical Approach

A two part, offline and centralized, solution is implemented on a system of
distributed ground robots and a central computer. Features are first extracted
using off-the-shelf feature extraction methods (SIFT), and the features are then
matched, on a centralized computer, using the QuickMatch algorithm to find a
given reference object. This approach is a precursor to an online, distributed,
and decentralized approach.

4.1 Feature Extraction

Feature extraction aims to extract representative points from high dimensional
data, such as an image [1,9,22]. In this experiment, the scale invariant feature
transform (SIFT) feature is used, which extracts K; 128 dimensional vectors that

Consistent Multi-Robot Object Matching 3

represent the change in pixel value over small patches of each image. This is a
standard technique and more detail can be found in [9, 19].

4.2 QuickMatch

The QuickMatch algorithm is a density based clustering algorithm. It begins
by calculating the Euclidean distance between all features. For each image, the
minimum distance between any two features is used as the distinctiveness of
features for that image ;. Recall, from above, x;; is a point in a high dimensional
feature space. The feature density D(x;;) (see (1)) is then calculated for each
point based on a kernel function h (see (2)), distinctiveness o;, and density
contributions from all other features.

K;
D(x) =YYz, v 00), (1)
i=1 k=1
s 2a:0) = eap(~ 122 2)

With this feature density, the features are organized into a tree structure, with
parent nodes being the nearest neighbor with a higher density.

parent(xz;;) = arg min d(zk, Tiks), (3)
irtkreJ
J = {i/k/ k 7é k’/7D($i/k/) > D({L‘Zk)} (4)

This causes parent edges to be directed up the gradient of feature density, and
ultimately toward the center of its parent cluster or to another distant cluster.
Once the tree has been constructed, edges are broken if either of two criteria are
true; 1) if the parent and child groups of nodes are in the same image, or 2) if
the edge is larger than a user defined threshold (p) times ;. This method results
in a forest of trees, where each tree is a cluster representing a unique object in
the universe. Objects can also be discovered from these trees.

5 Experiment

The experiment consists of a team of five iRobot Create2 ground robots, each
with a forward facing camera, distributed throughout the experimental area
shown in Fig. 1. Each camera has a 62° x 48° field of view, and takes a 640 x 480
pixel image every two seconds. Through the center of the area, the target object is
driven along the path shown in Fig. 1a over ten seconds. All cameras are triggered
simultaneously and the images are sent to a central computer for feature extraction
and matching. The central computer has an Intel i7-7800x 3.5GHz processor,
and runs Ubuntu 16.04 LTS and ROS Kinetic. Features are extracted using the
SIFT algorithm with an octave layer of 12, a contrast threshold of 0.1, an edge
threshold of 3, and sigma of 1. The matches from QuickMatch (using p = 1.5)
are used to determine which cameras see the target object at each time step,
based on the number of matches with a target object image.

4 Zachary Serlin et al.

(a)

Fig. 1: (a) Overhead view of experimental area with trajectory of the target object,
position of the robots, and the approximate field of view for the camera network
(shown in yellow). (b) Prospective view of experimental area with modified iRobot
Create2 platform, target object, and overhead motion capture system.

5.1 Planned Experiment Modifications

The current experiment takes a matching centered approach to the multi-image
matching problem. Four extensions to this experiment are planned in the coming
weeks. First, feature matches will be used to also localize the reference object in
each image. With object localization, an approximate trajectory can be generated
for the target object’s motion and compared to ground truth measurements
taken from the motion capture system shown in Fig. 1b. Second, the algorithms
will be tested for individual feature match accuracy. Finally, time permitting,
we plan to both implement QuickMatch in C++ to reduce its runtime and to
extract features via hyper-column feature extraction to tailor features to specific
applications [6].

6 Results

The QuickMatch algorithm is compared to the standard matching algorithms
in the OpenCV Software Package [2], Brute Force (BF), and FLANN. Both
algorithms use Euclidean distance and a threshold match distance of 0.75 [2,9].
Unlike QuickMatch, both algorithms cannot consider matches across more than
two sets of features but do have very low execution times.

QuickMatch is implemented in Python and takes 5.6 seconds to find matches
between 6254 SIFT features (from 115 images), while BF and FLANN are both
implemented in C++, and both take approximately 0.05 seconds to find the
matches between the reference image features, and the same 6254 features. This
time difference arises from two factors, the inherently slower runtime of Python
compared to C++ [4], and the extra comparisons done by QuickMatch to solve the
entire Multi-match problem. If BF and FLANN compared all images combinato-
rially (as QuickMatch implicitly does) their computation times would be ~ 5.75s
seconds, which is comparable to QuickMatch’s slower Python implementation.

Consistent Multi-Robot Object Matching 5

Although QuickMatch is slower, it out performs both BF and FLANN in
the number of matches correctly found, and generally in terms of precision
vs. recall (PR) and precision-recall area under the curve (PR AUC), which
are common metrics for evaluating matching algorithms [17]. Fig. 2a shows
the precision (fraction of correctly matched images) versus recall (fraction of
possible matches found) curves for QuickMatch, BF, and FLANN. Note for any
recall level, QuickMatch maintains a higher precision level than either BF or
FLANN. These curves are non-monotonic because mismatched features appear
at a higher rate than correctly matched features at higher thresholds. PR AUC is
a threshold agnostic metric used for comparing overall performance of matching
algorithms [17]. In terms of PR AUC, QuickMatch achieves 0.64, while BF and
FLANN reach 0.49 and 0.45 respectively. The overall increase in precision stems
for QuickMatch’s ability to consider more instances of the reference object, by
matching cycles of features across images. It is therefore able to find the reference
object not only more consistently, but with many more matched features. An
example of these matches is shown in Fig. 2b.

= QuickMatch
mmm EBrute Force
— FLANN

Precision

0.0 0.2 0.4 0.6 o 1.0
Recall

(a)

Fig.2: (a) Precision vs. recall curves for the QuickMatch, Brute Force, and
FLANN algorithms. All algorithms are run on the same feature vectors. A match
is considered to exist if the number of matched features is above a threshold.
(b) Example image matches between the reference object image (left) and an
experimental image (right). Each circle is the location of a SIFT feature, and
lines indicate a match between features.

7 Insights

This experiment highlights the utility of QuickMatch multi-image matching for
object matching. QuickMatch is able to find many more object feature matches
than standard methods by considering matches across all images, not just pairwise
matches. The presented experiment tested the QuickMatch algorithm in a realistic
setting, and shows that multi-image matching is superior to standard methods at
matching the reference object even as it enters and exits images across the entire
camera network. Our future work focuses on using multi-image matching for
online and distributed object discovery and localization, multi-agent localization
and formation control, and online multi-camera homography.

6 Zachary Serlin et al.

References

1. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speededup robust features (SURF).
Computer Vision and Image Understanding, 110(3):346359, 2008.

2. Bradski, G.: The OpenCV Library. Dr. Dobbs Journal of Software Tools, 2000.

3. Dollar P., Zitnick, C.L.: Structured forests for fast edge detection. In International
Conference on Computer Vision, 2013.

4. Fourment, M., Gillings, M.: A comparison of common programming languages used
in bioinformatics. BMC Bioinformatics, vol. 9, p. 82, Feb 2008.

5. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function,
with applications in pattern recognition. IEEE Transactions on Information Theory,
21(1):3240, 1975.

6. Hariharan, B., Arbelaez, P., Girshick, R., Malik, J.: Hyper-columns for object
segmentation and fine-grained localization. In IEEE Conference on Computer Vision
and Pattern Recognition, 2015.

7. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge
University Press, second edition, 2004.

8. Huang, Q., Guibas, L.: Consistent shape maps via semidefinite programming. Com-
puter Graphics Forum, 32(5):177-186, 2013.

9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91110, 2004.

10. MacKay, D.J.: Information theory, inference and learning algorithms. Cambridge
university press, 2003.

11. Montijano, E., Cristofalo, E., Zhou, D., Schwager, M., Sagues, C.: Vision-based
Distributed Formation Control without an External Positioning System. IEEE
Transactions on Robotics, vol. 32, no. 2, pp. 339-351, April 2016.

12. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm.
Neural Information Processing Systems, 2:849856, 2002.

13. Oliveira, R., Costeira, J., Xavier, J.: Optimal point correspondence through the
use of rank constraints. In IEEE Conference on Computer Vision and Pattern
Recognition, volume 2, pages 10161021, 2005.

14. Parzen, E.: On estimation of a probability density function and mode. The annals
of mathematical statistics, 33(3):1065 1076, 1962.

15. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function.
The Annals of Mathematical Statistics, 27(3):832837, 1956.

16. Szeliski, R.: Computer vision: algorithms and applications. Springer Science &
Business Media, 2010.

17. Ting, K.M.: Precision and Recall. In: Sammut C., Webb G.I. (eds) Encyclopedia of
Machine Learning. Springer, Boston, MA, 2011.

18. Tron, R., Zhou, X., Esteves, C., Daniilidis, K.: Fast Multi-Image Matching via
Density-Based Clustering. In: The IEEE International Conference on Computer
Vision, 2017

19. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer
vision algorithms. http: //www.vlfeat.org/, 2008.

20. Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In IEEE
European Conference on Computer Vision, pages 705718. Springer, 2008.

21. Yan, J., Cho, M., Zha, H., Yang, X., Chu, S.: Multi-graph matching via affinity op-
timization with graduated consistency regularization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2015.

22. Zhou, X., Zhu, M., Daniilidis, K.: Multi-Image Matching via Fast Alternating
Minimization. In: The IEEE International Conference on Computer Vision, 2015

