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ABSTRACT: We present a time-dependent formulation of coupled
cluster theory. This theory allows for direct computation of the free
energy of quantum systems at finite temperature by imaginary time
integration and is closely related to the thermal cluster cumulant theory
of Mukherjee and co-workers [Chem. Phys. Lett. 1992, 192, 55−61; Phys.
Rev. E 1993, 48, 3373−3389; Chem. Phys. Lett. 2001, 335, 281−288;
Chem. Phys. Lett. 2002, 352, 63−69; Int. J. Mod. Phys. B 2003, 17,
5367−5377]. Our derivation of the finite-temperature theory highlights
connections to perturbation theory and to zero-temperature coupled
cluster theory. We show explicitly how the finite-temperature coupled
cluster singles and doubles amplitude equations can be derived in analogy
with the zero-temperature theory and how response properties can be
efficiently computed using a variational Lagrangian. We discuss the
implementation for realistic systems and showcase the potential utility of
the method with calculations of the exchange correlation energy of the uniform electron gas under warm dense matter
conditions.

1. INTRODUCTION

In calculations of the electronic structure of molecules and
materials, the effects of a finite electronic temperature are
usually not considered. This is sufficient for nearly all molecular
systems and for many systems in the condensed phase, because
only a small number of electronic states are thermally populated
at typical temperatures. However, there are cases where the
electronic temperature plays a crucial role. In correlated
electron materials, interactions lead to low-energy electronic
excitations and electronic phase transitions.1−5 Differences in
the electronic free energy can also drive structural transitions,
both in molecules, such as in spin crossover complexes,6 and in
crystals.7 Hot electrons can be used to drive new types of
reactions, as seen in hot electron-driven chemistry on
plasmonic nanoparticles.8 And finally, the properties of
materials under extreme conditions,9 including at high
electronic temperatures,10 is also of interest for a variety of
applications. For all these problems, a quantum many-body
theory at finite temperature is required, and this has led to
renewed interest in computational approaches.
The simplest treatment of many-body systems is mean field

theory, and mean field theory at finite temperature, in the form
of Hartree−Fock11 or density functional theory (DFT),12,13 is
routinely used. In recent years, experimental interest in matter
at high temperatures has spurred much activity in finite-
temperature DFT.14−17 However, a description of electron
correlations beyond the mean-field/DFT level is often required
for accurate computation of chemical and material properties.
Methods for the approximate treatment of correlations based

on finite-temperature perturbation theory and finite-temper-
ature (Matsubara) Green’s functions have been known for
many years,18−20 and there has been some recent interest in
applying these techniques in an ab initio context.21,22 They are
commonly used as impurity solvers within dynamical mean field
theory (DMFT)5,23,24 and the related dynamical cluster
approximation (DCA).1−4,25 Finite-temperature quantum
Monte Carlo (QMC) methods such as determinantal QMC
and path integral Monte Carlo (PIMC) have also been studied
for many years.26−30 However, for Fermionic systems, QMC
methods display a sign problem, limiting simulations to high
temperatures, or requiring the introduction of additional
constraints, such as the fixed node approximation in PIMC
(called restricted PIMC (RPIMC)).31,32 There has been recent
work to explore formulations of QMC where the sign problem
is less severe under the conditions of interest, including the
configuration path integral Monte Carlo (CPIMC)33 and
density matrix quantum Monte Carlo (DQMC).34,35 Much of
this research has been motivated by calculations on the uniform
electron gas for the benchmarking and/or parametrization of
finite temperature density functionals.17,36,37 We will return to
this topic in Section 4.2.
The coupled cluster method, which is widely used for its

accuracy at zero temperature,38−42 has not seen widespread
application at finite temperatures. Kaulfuss and Altenbokem
were the first to try to extend coupled cluster theory to finite

Received: July 26, 2018
Published: September 27, 2018

Article

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. 2018, 14, 5690−5700

© 2018 American Chemical Society 5690 DOI: 10.1021/acs.jctc.8b00773
J. Chem. Theory Comput. 2018, 14, 5690−5700

D
ow

nl
oa

de
d 

vi
a 

C
A

L
IF

O
R

N
IA

 I
N

ST
 O

F 
T

E
C

H
N

O
L

O
G

Y
 o

n 
Ju

ly
 2

8,
 2

01
9 

at
 1

2:
23

:3
4 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

pubs.acs.org/JCTC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.8b00773
http://dx.doi.org/10.1021/acs.jctc.8b00773


temperatures by means of an exponential ansatz for the density
matrix.43 However, their formalism requires knowledge of the
spectrum of the interacting Hamiltonian and is therefore ill-
suited to computations on realistic systems. Mukherjee and co-
workers have developed a more practical method, which they
have termed the thermal cluster cumulant (TCC) method.44−48

This method is based on a thermally normal ordered
exponential ansatz for the interaction picture imaginary-time
propagator. The TCC method has a formal similarity to single
reference and multireference coupled cluster theories, but the
applications have been limited to very small systems and
semianalytical problems. Hermes and Hirata have recently
presented a finite-temperature coupled cluster doubles (CCD)
method49 based on “renormalized” finite-temperature pertur-
bation theory.50 Hummel has independently developed a time-
dependent coupled cluster theory,51 which is closely related to
Hirata’s renormalized perturbation theory. We will discuss
some aspects of these methods in Section 2.2.
In this paper, we present an explicitly time-dependent

formulation of coupled cluster theory applicable to calculations
at zero or finite temperature. Imaginary time integration
generates a coupled cluster approximation to the thermody-
namic potential in the Grand Canonical ensemble. This theory,
which we will call f inite-temperature coupled cluster (FT-CC),
represents the finite temperature analogue of traditional
coupled cluster, in that it has the same diagrammatic content.
We highlight this fact by showing how the theory may be
derived directly from many-body perturbation theory. This
theory is also equivalent to a particular realization of the TCC
method. In addition to the theory, we discuss the
implementation including analytic derivatives for response
properties. Some benchmark calculations are presented as a
means of validating the implementation and evaluating the
accuracy of the method. Finally, we present calculations of the
exchange-correlation energy of the uniform electron gas (UEG)
under conditions in the warm dense matter regime.

2. THEORY
2.1. Finite-Temperature Coupled-Cluster Equations.

Before discussing the details of the derivation of the FT-CC
equations, it is instructive to state the result and discuss the
analogy with the zero-temperature theory. Conventional, zero-
temperature, coupled-cluster theory has been described in
detail in a variety of reviews and monographs.39,41,52,53 We will
review the basic aspects of the theory in order to facilitate
comparison with the finite-temperature theory developed in
this paper. Recall that the coupled-cluster method can be
derived from an exponential wave function ansatz:

|Ψ ⟩ = |Φ ⟩eT
CC 0 (1)

where |Φ0⟩ is a single determinant reference. The T-operator is
defined in some space of configurations, {Φμ}, such that

∑=
μ

μ μT t a
(2)

where tμ is an amplitude and aμ is an excitation operator, such
that

|Φ ⟩ = |Φ ⟩μ μa 0 (3)

Generally, the T-operator is truncated at some finite
excitation level. For example, letting T = T1 + T2 yields the
coupled-cluster singles and doubles (CCSD) approximation.

The coupled-cluster energy and amplitudes are then
determined from a projected Schrodinger equation:

⟨Φ | |Φ ⟩ = +− He E Ee T T
0 0 HF CC (4)

⟨Φ | |Φ ⟩ =μ
− Hee 0T T

0 (5)

These equations can be written explicitly in terms of the T-
amplitude and molecular integral tensors using diagrammatic
methods38,53 or computer algebra.54,55 The correlation
contribution to the energy has a particularly simple form, in
terms of the T1 and T2 amplitudes:

∑ ∑= + ⟨ || ⟩ +E t f ij ab t t t
1
4

( 2 )
ia

i
a

ia
ijab

ij
ab

i
a

j
b

CC
(6)

Although this wave-function-based derivation is usually
favored, the resulting energy has a well-understood connection
to perturbation theory (see, for example, Chapters 9.4 and 10.4
of ref 53).
In finite-temperature coupled-cluster theory, we use an

explicitly time-dependent formulation. The time-dependent
analogues of the T-amplitudes are functions of an imaginary
time τ, and will be denoted by sμ(τ). At finite temperature and
chemical potential, we denote the coupled-cluster contribution
to the grand potential as ΩCC, such that, given a particular
reference,

Ω = Ω + Ω + Ω(0) (1)
CC (7)

The coupled-cluster contribution is given by

∫

∫ ∫

∑

∑ ∑

β
τ τ τ τ

β
τ τ

β
τ τ

Ω = ⟨ || ⟩ [ + ]

+ +

β

β β

ij ab s s s

f s f s

1
4

d ( ) 2 ( ) ( )

1
d ( )

1
d ( )

ijab
ij
ab

i
a

j
b

ia
ia i

a

ia
ia i

a

CC
0

0 0 (8)

where β is the inverse temperature. In the limit β → ∞, eq 8
reduces to

∑

∑

τ τ τ

τ

Ω = ⟨ || ⟩ [ + ]

+

β τ

τ

→∞ →∞

→∞

ij ab s s s

f s

lim
1
4

lim ( ) 2 ( ) ( )

lim ( )

ijab
ij
ab

i
a

j
b

ia
ia i

a

CC

(9)

In this limit, Ω → E − μN. For an insulator, the correlation
contribution toN will vanish at zero temperature, assuming that
μ can be chosen such that the noninteracting and correlated
systems have the same number of particles. This requires the
noninteracting and correlated energy gaps to have nonvanishing
overlap, which is typically the case, from which it follows that

Ω =
β→∞

Elim CC CC (10)

Comparing eq 9 with eq 6, it is clear that

τ τ= =
τ τ→∞ →∞

s t s tlim ( ) lim ( )i
a

i
a

ij
ab

ij
ab

(11)

This is true as long as both amplitudes correspond to the
same solution of the nonlinear amplitude equations. This
correspondence also implies that the β→∞ limit of these time-
dependent amplitudes is related to the imaginary-time version
of the amplitudes that appear in time-dependent, wave
function-based coupled-cluster formulations.56−60
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The FT-CC amplitude equations closely resemble the
amplitude equations of zero-temperature coupled cluster, and
they are diagrammatically identical, as we will discuss in Section
2.3. This allows the equations to be written in precise analogy
with the zero-temperature amplitude equations:

• replace tμ with sμ(τ′)
• for each contraction, sum over all orbitals instead of just

occupied or virtual orbitals
• include an occupation number from the Fermi−Dirac

distribution (ni or 1 − na) with each index not associated
with an amplitude

• multiply each term by −1
• for each term contributing to sμ(τ), multiply by an

exponential factor exp[Δμ(τ′ − τ)] and integrate τ′ from
0 to τ

As an example, we compare the zero-temperature and finite-
temperature versions of a term linear in T1 (or S1(τ′) at finite
temperature), which contributes to T2 (or S2(τ) at finite
temperature):

∑←
Δ

⟨ || ⟩t P ij ab cj t
1

( )ij
ab

ij
ab

c
i
c

(12)

∫

∑τ

τ τ

← − − − ⟨ || ⟩

× ′ ′ ′
τ

ε ε ε ε τ τ+ − − −

s P ij n n n ab cj

s

( ) ( ) (1 )(1 )

d e ( )

ij
ab

c
a b j

i
c

0

( )( )a b i j

(13)

The full FT-CCSD amplitude equations are given in
Appendix A. We discuss the origin of these specific rules in
Sections 2.3 and 2.4.
2.2. Perturbation Theory at Zero and Finite Temper-

ature. Perturbation theory for the many-body problem has a
long history in chemistry and physics. Time-independent
Rayleigh−Schrodinger perturbation theory, time-dependent
(or frequency-dependent) many-body perturbation theory at
zero temperature, and imaginary time-dependent (or imaginary
frequency-dependent) many-body perturbation theory at finite
temperature have been discussed in a variety of mono-
graphs.18−20,53,61,62 For completeness, in Appendix B, we give
explicit rules for the diagrammatic derivation of time-domain
expressions for the shift in the grand potential in the form most
relevant to coupled-cluster theory. As an example, applying
these rules at second order yields
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−
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(1 )

1 e
( )

ijab
i j a b

i j a b i j a b

ia
ai i a

i a i a

(2) 2

( )

2

2
( )

2

i j a b

i a

(14)

In this expression, all sums run over all orbital indices. We use
f pq and ⟨pq||rs⟩ to indicate the one-particle and antisymme-
trized, two-particle elements of the interaction. We have
analytically performed the time integrals to obtain the final,
time-independent expressions.
The terms containing exponential factors vanish when

summed. However, one must be careful when evaluating the
terms where the energy denominators appear to vanish. Such

cases were called “anomalous” by Kohn and Luttinger,63 and
they require special consideration to obtain the proper finite
result. Since each term is an integral of a nonsingular function
over a finite interval, each term in the sum should be
individually finite. We explicitly include the exponential factors
in this discussion, so that eq 14 is finite term-by-term for finite
β. The second-order correction can diverge as β→∞, but such
divergences are well-known in systems that are metallic at
zeroth order. In such cases, finite-temperature perturbation
theory will not reduce to perturbation theory at zero
temperature, as first observed by Kohn and Luttinger.63 This
is hardly surprising, since the two perturbation theories
compute different quantities. This is particularly clear if we
express the second-order energy corrections in terms of
derivatives of the exact energy E, with respect to a coupling
constant λ:

λ λ
= ∂

∂
= ∂

∂λ λ μ=
−

=

E
E

E
E

.
N

MP2

2

2
0,

FT MP2

2

2
0, (15)

For a metallic system, the derivative at fixed μ will differ from
the derivative at fixed N, even as T → 0, simply because the
chemical potentials of the Hartree−Fock reference system and
the interacting system are different. Santra and Schirmer
published a pedagogical discussion that elaborates on this
particular aspect of finite-temperature perturbation theory.64

In light of this discussion, it is clear that the distinction
between the two quantities in eq 15, termed the Kohn−
Luttinger conundrum by Hirata and He,50 does not imply any
particular problem with FT-MBPT; it simply reflects the
different conditions under which the partial derivative is taken,
from the different ensembles in the zero- and finite-temperature
theories. For this reason, we do not discuss the “renormalized”
finite-temperature MBPT of Hirata and He50 and the related
coupled-cluster doubles method,49 which incorrectly modify
finite-temperature perturbation theory to force these two
derivatives to be the same in the limit of zero temperature.

2.3. Time-Dependent Coupled Cluster from Perturba-
tion Theory. The interpretation of coupled-cluster theory in
the context of many-body perturbation theory can be used to
directly define FT-CC theory. The essential point is to require
that the energy and amplitude equations reproduce exactly the
diagrammatic content of the zero-temperature theory. How-
ever, the time-dependent perturbation theory generally will
necessitate the consideration of different time orderings.
Consider the open diagrams shown in Figure 1 as an example.

We must consider both diagrams A and B, and each
corresponds to nested integrals of the form

∫ ∫τ τ τ τ τ≈ ′ ′ ″ ″
τ τ′

A v f v( ) d ( ) d ( )bc
jk

j
b

ki
ca

0 0 (16)

Figure 1. Different time orderings of a term relevant to CCSD.
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∫ ∫τ τ τ τ τ≈ ′ ′ ″ ″
τ τ′

B v v f( ) d ( ) d ( )bc
jk

ki
ca

j
b

0 0 (17)

where we have omitted the summation and the factors of
occupation numbers, which will be common in both terms. We
have used vrs

pq(τ) and f pq(τ) to represent the one and two-
electron matrix elements in the interaction picture:

τ

τ

≡ ⟨ || ⟩

≡

ε ε ε ε τ

ε ε τ

+ − −

−

v pq rs

f f

( ) e

( ) e

rs
pq

pq pq

( )

( )

p q r s

p q
(18)

These nested integrals can be simplified in a manner
analogous to the factorization of perturbation theory denom-
inators in coupled cluster at zero temperature. (See Chapters
5−6 in ref 53.) By defining

∫ ∫τ τ τ τ τ τ≡ ′ ′ ≡ ′ ′
τ τ

V v F f( ) d ( ) ( ) d ( )rs
pq

rs
pq

pq pq0 0
(19)

such that

τ
τ

τ τ
τ

τ= =f F v V( )
d

d
( ) ( )

d
d

( )pq pq rs
pq

rs
pq

(20)

The reverse of the product rule can be applied to the sum of the
two time orderings to yield an expression where all quantities
are evaluated at a single time:

τ τ τ+ ∝A B v F V( ) ( ) ( )bc
jk

j
b

ki
ca

(21)

which we represent as diagram C of Figure 1. This is the time-
domain equivalent of the denominator factorization that allows
zero-temperature coupled-cluster diagrams to be written
without regard to the ordering of the different factors of T.
Given this factorization, we may define S-amplitudes at first
order, such that

τ τ≡ − −[ ]s n n F( ) (1 ) ( )i
a

i a aiI
1

(22)

τ τ≡ − − −[ ]s n n n n V( ) (1 )(1 ) ( )ij
ab

i j a b ij
ab

I
1

(23)

where we use the subscript “I” to emphasize that we are using
the interaction picture. The superscript indicates that they are
first order in the interaction. The finite-temperature coupled-
cluster equations at some truncated order (usually singles and
doubles) then follow directly from their diagrammatic
representation. This guarantees by construction that the FT-
CC amplitude equations reproduce the diagrammatic content
of the corresponding zero temperature theory exactly.
For the purposes of this derivation, we have used the

interaction picture. However, there is a numerical difficulty
associated with the time-dependent exponential factors which,
at long times, will be become exponentially large or small. This
leads to problems of overflow or underflow when storing the
amplitudes as floating point numbers. This difficulty can be
largely overcome by moving to the Schrodinger picture:

τ τ≡μ μ
τ−Δμs s( ) ( ) eI (24)

At first order, the Schrodinger-picture singles and doubles
amplitudes are proportional to the Schrodinger-picture matrix
elements, which are time-independent in the usual case.
Furthermore, these amplitudes are well-behaved in the limit
as τ→∞, in that they reduce to the zero-temperature coupled-
cluster amplitudes. The FT-CCSD amplitude equations for the
Schrodinger-picture amplitudes are given in Appendix A.

2.4. Relationship to Thermal Cluster Cumulant
Theory. The finite-temperature coupled-cluster method that
we have presented here can also be viewed as a particular
realization of the thermal cluster cumulant (TCC) theory
developed by Mukherjee and others.44−48 If we denote the
thermal normal ordering of a string of operators by N[···]0, then
the TCC method uses a normal-ordered ansatz for the
imaginary-time propagator:

τ = [ ]τ τ+U N( ) eS X
I

( ) ( )
0 (25)

Here, S(τ) is an operator and X(τ) is a number. The imaginary
time propagator obeys a Bloch equation,

τ
τ τ−

∂
∂

=
U

V U( ) ( )I
I I (26)

from which differential equations for S(τ) and X(τ) may be
determined. The expression for the thermodynamic potential
follows directly from the ansatz of eq 25:

i
k
jjjj

y
{
zzzzβ

βΩ = Ω − X
1

( )(0)

(27)

As shown in ref 45, eq 26 implies coupled differential
equations for S and X. Solving these equations by integration
yields the FT-CC equations

∫τ τ τ τ= − Ω − ′[ [ ] ]
τ

τX V N( ) d ( ) eN S(1)

0
I

( )
0 fully contracted

(28)

∫τ τ= − ′[ [ ] ]
τ

τS V N e( ) d N S

0
I

( )
0 C (29)

VI
N(τ) is the thermally normal-ordered component of the

interaction, and the first-order contribution to the free energy,
Ω(1), is the number component of V. The subscript “C” in eq 29
indicates that we only consider terms in which V is connected
to all the amplitudes by at least one contraction. Inserting eq 28
into eq 27 yields the first-order contribution to the grand
potential plus the interaction picture version of the FT-CC
contribution to the grand potential (eq 8). A minor difference is
that, in our formulation, we have absorbed the occupation
numbers into the definition of the S-amplitudes, whereas in the
TCC method, the occupation numbers arise as a result of
thermal contractions involving the S operators. The connected
cluster form of eq 29 leads to the same set of diagrams obtained
in coupled cluster. When properly interpreted, these diagrams
reproduce the FT-CC amplitude equations in the interaction
picture. Using the relation

τ τ τ= +S S S( ) ( ) ( )1 2 (30)

leads to the FT-CCSD method that we have described.
2.5. Response Properties. The primary utility of the

thermodynamic potential is that differentiation will generate
ensemble averages. In practice, we most often require the
average energy, entropy, and number of particles:

μ⟨ ⟩ = Ω + ⟨ ⟩ + ⟨ ⟩E T S N (31)

μ
⟨ ⟩ = − ∂Ω

∂
⟨ ⟩ = − ∂Ω

∂
S

T
N

(32)

The partial derivatives in eq 32 are partial thermodynamic
derivatives but still require the inclusion of the response of any
parameters that determine the form of Ω. Generally, an
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observable corresponding to an operator O can be computed by
defining a new Hamiltonian,

α α[ ] ≡ +H H O (33)

and taking the derivative of the thermodynamic potential

α
α

⟨ ⟩ = Ω[ ]

α=
O

d
d 0 (34)

Just like the coupled-cluster energy at zero temperature, ΩCC
is not a variational function of the amplitudes. This complicates
the implementation of analytic derivatives, but this difficulty
can be largely mitigated by using a variational Lagrangian, as in
the zero-temperature theory.52,53,65 The finite-temperature free-
energy and amplitude equations have the form

∫τ τ τ+ ′ ′ ′ =μ

τ
τ τ

μ
Δ −μs S( ) d e ( ) 0

0

( )
(35)

∫β
τ = Ω

β
E

1
( )

0
CC

(36)

The precise forms of E and S are given in Appendix A. The
computation of properties can be simplified by defining a
Lagrangian, , with Lagrange multipliers λμ(τ),

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ∫ ∫ ∫β

τ
β

τ λ τ τ τ τ≡ − + ′ ′ ′
β β

μ
μ

τ
τ τ

μ
Δ −μE s S1

( )
1

d ( ) ( ) d e ( )
0 0 0

( )

(37)

such that variational optimization of , with respect to the λ-
amplitudes, yields the FT-CC amplitude equations. Variational
optimization, with respect to the S-amplitudes, yields equations
for λμ. The solution of the FT-CC λ-equations is discussed in
Appendix C.
Once the λ-amplitudes have been determined, any first-order

property may be computed from the partial derivative of the
Lagrangian. In practice, the specifics of the numerical evaluation
of the time integrals must be considered. Some details of the
implementation of analytic derivatives are discussed in
Appendix C.

3. IMPLEMENTATION
We have developed a simple pilot implementation of FT-CCSD
interfaced to the PySCF electronic structure package.66 In our
implementation, the numerical integration is performed on a
uniform grid using Simpson’s rule for the quadrature weights
(see Appendix D for details). Although effective at high
temperatures, this integration scheme is far from optimal at low
temperatures and can be improved considerably by taking into
account the structure of the S amplitudes at low temperature.
For example, we know that

τ =
τ

μ
→

slim ( ) 0
0 (38)

τ = [ ]
τ

μ
→∞

slim ( ) constant
(39)

and this information can be used to develop much more
efficient quadrature schemes at low temperatures. However, we
have not pursued this in this work.
In our implementation, the integrals are contracted with the

occupation numbers once before the start of the iterations. A
guess for the S amplitudes is obtained from the MP2 amplitudes
or from a previous calculation. Using the modified integrals and
the guess, the coupled cluster iterations proceed in two steps.
First, S1i

a(τ′) and S2ij
ab(τ′) of eqs A-5 and A-6 are evaluated at

each time point. Second, these quantities are integrated as
described in Appendix D to obtain new amplitudes. In our
implementation, we compute the amplitudes for all times at
each iteration. It is possible to invert this algorithm so that the
amplitudes are converged in a point-by-point manner, starting
with τ = 0. The number of iterations needed to achieve
convergence is strongly temperature-dependent: more iter-
ations are generally required at lower temperatures. In practice,
it is also sometimes necessary to damp the iterations to achieve
convergence at lower temperatures. Direct inversion of the
iterative subspace (DIIS) convergence acceleration67−69 could
potentially be used to accelerate convergence at the cost of
additional storage.
We used the formulation of Stanton and Gauss70 to

implement the amplitude equations efficiently. Similar inter-
mediates are used in the solution of the λ-equations. At low
temperatures, the FT-CCSD equations can be somewhat
simplified in that summations over all orbitals can be restricted
to those terms, where the products of occupation numbers are
non-negligible. In other words, if 1 − ni or na are small enough,
some terms can be ignored in the sums. Unfortunately, this
threshold must be very tight in practice, and this simplification
did not provide any noticeable gains for the systems considered
in this study. However, this approximation will be absolutely
necessary in the limit as β → ∞ to prevent overflow.

4. RESULTS
4.1. Benchmark Calculation. In order to validate the

implementation of the method and test its accuracy, we report
calculations on an exactly solvable system: the Be atom in a
minimal basis. It does not make physical sense to consider a
vacuum system in the Grand Canonical ensemble, but the
model is nonetheless well-defined in a finite basis. This model
system involves five spatial orbitals and thus can be solved
exactly. In the Grand Canonical ensemble, an exact solution
requires, at least in principle, tracing over all possible particle
number and spin sectors. In all calculations, we use the orbitals
computed at zero temperature.
For this particular system, FT-CCSD performs very well.

Figure 2 shows the correlation contribution to the thermody-

namic potential computed with FT-MP2, FT-CCSD, and exact
diagonalization. The temperature range was chosen to be high
enough that the finite temperature effects are quite significant,
but not so high that the noninteracting system becomes exact.
FT-CCSD universally outperforms FT-MP2, as we might
expect, and the energies are, at worst, in error by 13%. The good

Figure 2. FT-MP2, FT-CCSD, and exact correlation contributions to
the grand potential in Eh for the Be model. FT-CCSD, at the worst,
underestimates the correlation contribution by ∼13%.
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performance of FT-CCSD persists even in the problematic
cases where Ω(2) is a significant overestimate of the exact
correlation contribution.
We have also used this model system to study the

convergence with respect to the grid used for numerical
integration. The relative error in the computed value ΩCC due
to numerical integration is shown in Figure 3, as a function of

the number of grid points. The number of grid points required
to obtain a specified accuracy is strongly dependent on the
temperature. Generally, it will also be dependent on the energy
spectrum of the particular problem. In this case, acceptable
accuracy can be obtained at high temperatures (kBT ≥ 1.0 Eh)
with ∼10 grid points. At lower temperatures, more grid points
are required, and, in practice, one should ensure convergence of
the property of interest, with respect to the quadrature grid.
Also, we have observed that the amplitude equations require
less damping and converge in fewer iterations when more grid
points are used.

4.2. The Uniform Electron Gas at Finite Temperature.
The regime of “warm dense matter” has been the subject of
much recent theoretical and experimental interest.9,37,71 Warm
dense matter is loosely characterized by an electron Wigner−
Seitz radius (rs) and reduced temperature (θ = kBT/EF), both of
order 1. The theoretical description of matter under these
conditions is challenging, because of the similar importance of
thermal effects and quantum exchange and correlation. The
uniform electron gas at warm dense matter conditions has
emerged as an essential test for theory and an ingredient for the
parametrization of various flavors of finite temperature
DFT.17,36,72−74 Reference 37 offers a comprehensive review
that highlights progress in quantum Monte Carlo (QMC)
calculations in particular. In the past, some calculations have
been reported in the Grand Canonical ensemble,72,73,75,76 but
recent work has focused on high-quality QMC calculations on
both the polarized32,77−79 and unpolarized32,80,81 UEG in the
canonical ensemble. The fixed node approximation of RPIMC
is a source of uncontrolled error,82 and, since the work of
Brown et al.,32 there has been considerable effort to obtain
more-accurate results over a wider range of rs.

34,35,77−81,81,83−85

In these studies, the N = 33 polarized UEG and N = 66
unpolarized UEG have emerged as benchmark systems.
In Figure 4, we show the total energy per electron of the

unpolarized UEG computed with FT-CCSD for several
relevant values of rs and θ. We use a basis of 57 plane waves,
and the chemical potential is adjusted so that N = 38. This one-
dimensional root finding problem, N(μ) − 38 = 0, is solved
with the secant method and takes 4−5 iterations on average.
Ten (10) grid points are used for all calculations. The error due
to the finite grid will be maximal at low temperatures and at
large rs, but even for rs = 4 and θ = 0.25, we estimate the impact
of this error on the exchange correlation energy be <1%.
Comprehensive tables of all our results are given in the
Supporting Information, where we also show results for N = 14

Figure 3. Convergence of the correlation contribution to the grand
potential of the Be model, with respect to the size of integration grid
for different temperatures.

Figure 4. Total energies per electron of the uniform electron gas computed with FT-CCSD. The RPIMC results are those of Brown et al.32
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and N = 66 electrons. In Figure 5, we show the exchange-
correlation energy for the warm-dense UEG. We also offer
comparisons with RPIMC calculations32 for all temperatures
and permutation-blocking PIMC81 for θ = 1. Note that, while
the fixed node approximation of RPIMC leads to significant
errors for the polarized UEG,77,84 the fixed node error for the
unpolarized UEG is much less severe.81 Therefore, RPIMC
provides a reasonable benchmark for the range of rs values
presented here.
Note that the QMC and FT-CCSD calculations compute

different quantities, as canonical and Grand Canonical
ensemble results will only agree in the thermodynamic limit,
and finite -size effects in both cases are large. In addition, the
FT-CC works within a (small) orbital basis, while both QMC
simulations have no basis-set error. Nonetheless, the compar-
ison between the two shows that the equation of state is
qualitatively similar. Thus, as improved implementations of FT-
CC appear, we expect it will become a promising tool for the
study of warm dense matter.

5. CONCLUSIONS

In this work, we have shown how an explicitly time-dependent
formulation of coupled cluster can be used to develop a finite-
temperature coupled-cluster theory. The resulting FT-CC
theory can be derived directly from many-body perturbation
theory and is formally equivalent to the normal-ordered ansatz
of the TCC method. In addition to the derivation of the FT-
CCSD amplitude equations, we have also shown how first-order
properties may be computed as analytic derivatives using a
variational Lagrangian. Preliminary calculations on the uniform
electron gas show that FT-CC methods are promising
candidates for nonperturbative, nonstochastic computation of
the properties of quantum systems at finite temperature.
For large-scale application, a variety of practical improve-

ments are still necessary:

• Specialization to restricted reference

• Use of disk to lower memory footprint

• MPI parallelization over time points

• More-stable iteration of the amplitude/λ equations

These improvements mimic the algorithmic advances that
have made efficient, black-box implementation of modern
coupled-cluster methods feasible. There is also further room for
improvement in the low-temperature regime, where the simple
structure of the S amplitudes should allow for a reduction of the
computational cost.
Finally, note that the time-dependent formulation of coupled

cluster presented here is remarkably general. We have shown
how it can be used to unify coupled-cluster, thermal-cluster
cumulant, and many-body perturbation theories into a
computational method well-suited to practical implementation.
However, further generalizations including the extension to
systems out of equilibrium, are possible and are the subject of
current investigation.

■ APPENDIX A: FT-CCSD AMPLITUDE EQUATIONS
The FT-CCSD contribution to the thermodynamic potential,
given in eq 8, can be written as

∫β
τΩ =

β
E

1
( )CC

0 (A-1)

where

∑ ∑τ τ τ τ τ= + ⟨ || ⟩[ + ]E f s ij ab s s s( ) ( )
1
4

( ) 2 ( ) ( )
ia

ia i
a

ijab
ij
ab

i
a

j
b

(A-2)

Note the analogy to the standard, zero-temperature, coupled-
cluster energy expression. The singles and doubles equations
similarly have the simple form

Figure 5. Exchange-correlation energies per electron of the uniform electron gas computed with FT-CCSD. The RPIMC results are those of Brown
et al.32
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where the integrands S1 and S2 are precisely the equations of a

zero-temperature CCSD iteration, except that each open line

that connects to a Hamiltonian fragment carries with it an

occupation number:
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These expressions are most easily obtained using the rules
given in Section 2.1. Note that the Fock matrix, f, is meant to
represent only the first-order part and therefore does not
include the diagonal (orbital energies).

■ APPENDIX B: RULES FOR FINITE-TEMPERATURE,
DIAGRAMMATIC PERTURBATION THEORY

The contributions to the free energy at some finite order, n, in
perturbation theory can be enumerated in the time domain by a
diagrammatic procedure. There are many different methods for
this purpose, but we will use diagrams that mimic the
antisymmetrized Goldstone diagrams common in quantum
chemistry. We will imagine a time axis going from bottom to
top and the basic diagrammatic components are the same as

those described in Chapter 4 of ref 53. The nth-order
contribution to the shift in the grand potential can be obtained
by the following procedure:
(1) Draw all topologically distinct diagrams with n

interactions. Diagrams differing by the time order of non-
equivalent interactions are considered distinct, as with other
types of Goldstone diagrams.
(2) Associate a unique orbital index with each directed line.
(3) Associate a unique imaginary time (τ1, τ2, ...) with each

interaction.
(4) With each one-electron interaction, associate a factor

such as f pqe
(εp−εq)τ, where p is the index of the outgoing line, q is

the index of the incoming line, and τ is the time associated with
the particular interaction.
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(5) With each two-electron interaction, associate a factor
such as ⟨pq||rs⟩f pqe

(εp+εq−εr−εs)τ, where p, q, r, and s are the indices
of the left outgoing, right outgoing, left incoming, and right
incoming lines, respectively. τ is the time associated with the
interaction.
(6) Integrate each intermediate time from 0 to the next

labeled time. The final time is integrated from 0 to β:

∫ ∫ ∫τ τ τ
β τ τ

d ... d d ...f
0 0

2
0

1
3 2

(B-1)

(7) Sum over all orbital indices.
(8) Multiply the overall diagram by a factor of

(−1)n−1(−1)l+h/β, where l is the number of closed loops and
h is the number of hole lines.
(9) For antisymmetrized diagrams divide by 2s, where s is the

number of pairs of equivalent Fermion lines. If the standard
(direct) interactions are used, the diagram should be divided by
2 if it is symmetric, with respect to reflection across a vertical
line.
These rules can be used, at least in theory, to derive explicit

expressions for the shift in the grand potential at any finite order
in perturbation theory. In practice, performing the time
integrals becomes increasingly cumbersome at higher order.
This method can be viewed as an alternative to the frequency
space method, which will involve the evaluation of Matsubara
sums.

■ APPENDIX C: THE FT-CCSD λ EQUATIONS
The implementation of the FT-CCSD λ-equations mirrors that
of the zero-temperature theory, but we must explicitly take into
account the numerical integration scheme in order to faithfully
reproduce finite-difference differentiation (see Appendix D for
the notation and details pertaining to the numerical
integration). Using a vector notation, the Lagrangian can be
written as

λ
β β

= [ ] − ·{ + [ ]}τ τΔ −g E g Gs s S s
1 1

ey
y y

y
y y

x
y x x( )x y

(C-1)

where we have used the fact that all terms in the amplitude
equations are evaluated at the same time. Taking the derivative,
with respect to a particular amplitude at a specific time point
(sμ

x), yields an equation for the λ-amplitudes:
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where we have used index notation with implied summations. If
we define a quantity
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we can write the λ equations in a form closely resembling the
zero-temperature analogue:
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Since the amplitude equations are diagrammatically identical
to the zero-temperature amplitude equations, the λ equations
will also involve the same diagrams. The only difference is that
we must in each iteration first compute λ̃ from λ and then
compute the new λ amplitudes at each time point. Properties

can then be evaluated by evaluating with the appropriate
derivative integrals. For E, S, and N, we require derivatives of
the occupation numbers with respect to μ and β:
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μ ε
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n n(1 ) ( ) (1 )p
p p

p
p p p
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As in the zero-temperature formulation, this final step can be
accomplished by contraction with response-density tensors.
A slight complication arises when derivatives, with respect to

β (or T), are required. In this case, we must also consider the
terms which are proportional to the derivatives of g and G,
which will generally be dependent on β. The specific form of
these derivatives will be dependent on the particular quadrature
scheme. In this study, we have used Simpson’s rule on a
uniform grid, which makes these terms simple to compute.
Finally, there will some contributions from the locations of the
grid points, which will be dependent on β. These contributions
will vanish in the limit of a dense grid, but are necessary to
faithfully reproduce the finite difference derivatives when using
a small number of grid points.

■ APPENDIX D: NUMERICAL INTEGRATION
Our implementation is general enough to use a generic
numerical quadrature. A function, I(τ), evaluated at the grid
points, will be indicated as Ix ≡ I(τx); the n roots are labeled by
x, y, ... Integrals are then approximated as

∫ ∑τ τ ≈
β

I g I( ) d
x

x
x

0 (D-1)

∫ ∑τ τ ≈
τ

I G I( ) d
x

y
x

x
0

y

(D-2)

where g and G are the tensors of weights.
In this study, we have employed a uniform grid for the sake of

simplicity. For n grid points, the first grid point is located at τ =
0, the last is located at τ = β, and the spacing between the points
is given by δ = β/(n−1). Simpson’s rule is used for all
integrations:

∫ τ τ δ= [ + + + + + ]I I I I I I( ) d
3

4 2 4 ... 
a

n
0

1 2 3 4 (D-3)

This defines the weights g and G. The uniform grid means
that we only need to perform integrals from 0 to a, where a is a
grid point, and no interpolation is required.
To compute thermodynamic quantities, we furthermore

require the derivatives of the weight tensors, with respect to β.
Since the elements of these tensors are all linear in β, the
derivative is trivial.
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