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ABSTRACT: We describe an algorithm to reduce the cost of
auxiliary-field quantum Monte Carlo (AFQMC) calculations
for the electronic structure problem. The technique uses a
nested low-rank factorization of the electron repulsion integral
(ERI). While the cost of conventional AFQMC calculations in
Gaussian bases scales as N( )4 , where N is the size of the
basis, we show that ground-state energies can be computed
through tensor decomposition with reduced memory require-
ments and subquartic scaling. The algorithm is applied to
hydrogen chains and square grids, water clusters, and
hexagonal BN. In all cases, we observe significant memory savings and, for larger systems, reduced, subquartic simulation time.

1. INTRODUCTION
Correlated electronic structure calculations often require one to
store and manipulate tensors that have high rank and act on
vector spaces of high dimension. Frequently, the input−output
and algebraic operations involving such high-rank tensors
constitute a computational bottleneck of the calculations.
The cost of tensor manipulations and storage can be

significantly reduced by low-rank decompositions,1−5 in which
a higher-rank tensor is represented by contractions of lower-rank
tensors. The most common tensor appearing in Gaussian basis
calculations is the rank-4 electron-repulsion integral (ERI)

∫ χ χ χ χ= ′ ′
| − ′|

′V d dr r r r
r r

r r( ) ( )
1

( ) ( )prqs p q r s (1)

where the real-valued Gaussian atomic orbitals (AOs)
{χp(r)}p = 1

M form a nonorthogonal basis for the one-electron
Hilbert space. In eq 1, and in the remainder of the paper, we
employ atomic units (a.u.) unless otherwise specified. Density-
fitting (DF)1,6−8 and modified Cholesky (CD)2,9,10 are
commonly applied to obtain a low-rank decomposition of the
ERI in the AO basis in terms of a rank-3 tensor Lpr

γ
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γ

γ γ

=

γ

v L Lprqs

N

pr qs
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(To obtain the form eq 2 in DF, one can apply a Cholesky
decomposition or eigenvalue decomposition to the inverse
density fitting metric, as is done in density fitted exchange
algorithms.11,12) Importantly, it is known that the error in such
approximations of the ERI decays exponentially with the
number of vectors Nγ and requires only =M N( ) vectors

for a fixed error per atom as a function of increasing system
size.13 Using the DF or CD approximations reduces the cost of
storing the ERI from N( )4 to N( )3 ,13 although the
computational scaling of most electronic structure methods
using DF or CD integrals is not changed.
More recently, several strategies to represent the ERI by

contractions of rank-2 tensors have been introduced. One well-
known scheme is tensor hyper-contraction, which4,14−18 unlike
CD or DF, can be used to obtain lower-computational scaling in
many different electronic structure methods, including coupled-
cluster17,19−22 and Møller−Plesset perturbation theory.18

Another recently proposed scheme is nested matrix diagonaliza-
tion, introduced in ref 23. This has been used to improve
quantum computing algorithms for simulating the electronic
structure Hamiltonian.24

In the present work, we explore nested matrix diagonalization
in the context of the auxiliary-field quantum Monte Carlo
(AFQMC) method in a Gaussian basis.25−27 While the cost of
conventional Gaussian basis AFQMC scales as N( )4 even after
using CD or DF,28 we find that low-rank nested matrix
diagonalization reduces the computational complexity to
subquartic (asymptotically cubic), while retaining the N( )3

storage cost of CD and DF. As we show, this is because nested
matrix diagonalization effectively implements a form of integral
screening, by exposing it as a low-rank tensor structure. While
cubic scaling is only achievable for very large systems, in the
applications presented we always observe a reduction of
computation time and subquartic scaling.
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It is well-known that cubic computational scaling is also
achieved in AFQMC calculations with plane-waves as the one-
electron basis, where the ERI is naturally represented in a
factorized form, and the fast Fourier transform leads to the
reduced scaling.29 However, in most scenarios, Gaussian basis
sets are more compact than plane-wave bases.30 Thus, the
current algorithm has the potential to exhibit reduced
computational times because of a smaller prefactor than plane
wave implementations.
The rest of the paper is organized as follows. In Section 2, we

provide a brief description of the AFQMCmethod. In Section 3,
we describe some of the properties of the nested matrix
decomposition and show how a low-rank approximation can be
used to accelerate the most expensive part of an AFQMC
simulation, namely, the calculation of the local energy. In
Section 4, we assess the performance and accuracy of AFQMC
calculations using Gaussian bases and low-rank decompositions,
and conclusions are drawn in Section 5.

2. THE AFQMC METHOD
In this section, we introduce the AFQMCmethod and illustrate
that the origin of its quartic cost for general electronic structure
problems lies in the local energy calculation. Throughout the
rest of the paper, we use letters pqrs to indicate a general basis
function χp (part of an orthogonal or nonorthogonal set over the
range 1···N), ijkl for particles (indices range from 1···O), γμν for
auxiliary indices associated with the low-rank decompositions
(range 1···M for γ, 1··· ργ for μν). Spin labels are suppressed for
compactness.
AFQMC25,27 is a projective quantum Monte Carlo (QMC)

method, which estimates the ground-state properties of a many-
Fermion system by statistically sampling the ground-state wave
function

|Ψ ⟩ =
|Φ ⟩

⟨Φ | |Φ ⟩
⎯ →⎯⎯⎯⎯

|Ψ ⟩
⟨Φ |Ψ ⟩β

β

β

β− ̂

− ̂
→∞e

e

H
T

T
H

T T

0

0 (3)

In eq 3,Ψ0 is the ground-state wave function of the system,ΦT is
an initial wave function not orthogonal to Ψ0, which for
simplicity we assume to be a single Slater determinant, and Ĥ is
the Hamiltonian of the system, which without loss of
generality27 can be written in the form

∑ ∑̂ = + ̂ + ̂ ̂H E t E V E E
1
2pq

pq pq
prqs

prqs pr qs0
(4)

Ĥ is composed of a constant term, a one-body part written in
terms of the excitation operator Êpq = ap̂

† aq̂, and a two-body part.
The underlying single-particle basis in eq 4 must be an
orthonormal basis. Thus, when employing a Gaussian AO
basis, the AO ERI in eq 1 must first be transformed to an
orthogonal basis, as must the DF or CD vectors in the
decomposition (eq 2). Using the transformed CD vectors, the
two-body part can be written as a sum of squares of one-body
operators

∑ ∑ ∑̂ ̂ = ̂ ̂ = ̂
γ

γ γ
γV E E v v L E,

prqs
prqs pr qs

pr
pr pr

2

(5)

These are illustrated in Figure 1a,b. For sufficiently large β,
expectation values computed over Ψβ yield ground-state
averages. AFQMC projects ΨT toward Ψ0 iteratively, writing

=β τ− ̂ −Δ ̂e e( )H H n (6)

where τΔ = β
n
is a small imaginary-time step. The propagator is

represented, through a Hubbard−Stratonovich transforma-
tion,31,32 as

∫= ̂τ−Δ ̂e d p Bx x x( ) ( )H
(7)

where

∑τ τ̂ = −Δ ̂ + Δ ̂
γ

γ γ
=

γ

B H i x vx( ) exp
N

1
1

i

k

jjjjjjj
y

{

zzzzzzz (8)

is an independent-particle propagator that depends on the
vector of fields x, p(x) is the standard normal M-dimensional
probability distribution, and Ĥ1 = ∑pq tpq Êpq is the one-body
part of Ĥ. The representation (eq 7) maps the original
interacting many-Fermion system onto an ensemble of non-
interacting systems subject to a fluctuating potential. The
imaginary-time projection can be realized as an open-ended
random walk over paths of auxiliary-fields x.25 Importance
sampling the trajectories of the random walk leads to a
representation of Ψβ as a stochastic weighted average of Slater
determinants

∑|Ψ ⟩ ≃
∑

|Φ ⟩
⟨Φ |Φ ⟩β W

W
1

w w w
w

w

T w (9)

Because the phase in v̂γ can be complex for general two-body
interactions, AFQMC suffers from a phase problem. This can be
controlled using a trial state |ΦT⟩ and imposing the phaseless
approximation (Ph) and a real local energy estimator;25,27 the
error of these approximations vanishes if the trial state is exact.
The accuracy of Ph-AFQMC calculations of ground- and

excited-state energies has been extensively benchmarked both in
ab initio studies33−36 and lattice models of correlated
electrons.37,38 The random walks take place in the overcomplete
manifold of Slater determinants, in which Fermion antisymme-
try is maintained by construction in each walker. Recently, the
Ph-AFQMC has also been extended to the calculation of general
ground-state properties, energy differences, and interatomic
forces in realistic materials.39−41

In ab initio computations, the electron repulsion integrals
entering into the AFQMC calculation can be obtained in
different computational bases, such as plane-waves and
pseudopotentials25,42 or Gaussian type orbitals.26 This choice
of representation is important because it affects the cost of the
AFQMC algorithm. When plane-waves are used, the standard

Figure 1. Pictorial illustrations (a) of the rank-4 electron repulsion
integral (ERI) tensor Vprqs, (b) of its Cholesky (CD) or density-fitting
(DF) decomposition Vprqs = ∑γ = 1

M Lpr
γ Lqs

γ , and (c) of the low-rank
decomposition Vprqs =∑γ = 1

M ∑μν = 1
ργ Xp

γμ Ur
γμ Xq

γν Us
γν used in the present

work. Lines emerging from colored blocks indicate free indices, and
lines connecting blocks, indices summed over. Approximate decom-
positions in (b, c) break the original ERI into tensors of low rank,
decreasing the memory requirements and cost to evaluate the local
energy.
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AFQMC methodology is known to scale as ̃ N( )3 , as
documented in Appendix A. (Note: Here we use the soft-
notat ion, wel l -es tabl i shed in complex i ty theory:

= ̃g x f x( ) ( ( )) if there exists an integer k such that

=g x f x x( ) ( ( )log ( ))k .) When using a Gaussian basis, on the

other hand, state-of-the-art calculations feature N( )4 cost. The
computational bottleneck in both cases tends to be the local
energy calculation, which we describe below.
2.1. Local Energy Calculation. AFQMC calculations

require the computation of the following local energy functional
for each sample

Φ =
⟨Φ | ̂ |Φ⟩
⟨Φ |Φ⟩

H
( )loc

T

T (10)

from which the total energy is obtained as = ∑ ΦE W ( )w w loc w .
The local energy is also needed to determine the weights in Ph
calculations.25,27,34 The most demanding part of its calculation
comes from the two-body term Ĥ2 which, from the generalized
Wick’s theorem,43 can be written as

∑

Φ =
⟨Φ | ̂ |Φ⟩

⟨Φ |Φ⟩
=

= −

H

V G G G G

2 ( ) 2

( )

loc
T

T

prqs
prqs pr qs ps qr

,2
2

(11)

where the one-body reduced density matrix (RDM1)

∑

=
⟨Φ | ̂ ̂ |Φ⟩

⟨Φ |Φ⟩
= [Φ Φ Φ Φ ]

= Θ Φ

†
−G

a a
( )pr

T p r

T
T T rp

i
ri T ip

1

(12)

is defined in terms of the matricesΦ (of dimension N × O) and
ΦT (O ×N) parametrizing the Slater determinant and trial wave
function, respectively

∏ ∑

∏ ∑

ϕ χ

ϕ χ
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i
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T
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i
T

p
T p

i

i
T

ip

(13)

In eq 12, Θ = Φ (ΦT Φ) −1. Note that the expression eq 12 for
the RDM1 sample resembles the expression for the RDM1of the
trial Slater determinant, GT = ΦT

† ΦT, with one ΦT matrix
(walker independent) replaced byΘ (dependent on the walker).
Explicit evaluation of eq 12 costs ON( )2 per sample while the
summation in the two-body local energy costs N( )4 per
sample. For N ≫ O, it is more efficient26 to first contract the
two-body matrix elements with ΦT

∑̅ = Φ ΦV Virjs
pq

T ip T jq prqs
(14)

which may be carried out once and stored at the start of the
AFQMC calculation at a cost of +ON O N( )4 2 3 . The local
energy then follows as the sum

∑Φ = ̅ Θ Θ − Θ ΘV2 ( ) ( )loc
irjs

irjs ri sj si rj,2
(15)

at a cost of O N( )2 2 per sample. When memory is not a
limitation, this is the most efficient conventional algorithm for
local energy evaluation and is the one we compare against here.
As mentioned in the introduction, the Cholesky decomposition
(eq 2) allows one to significantly reduce the storage require-
ments by replacing the 4-index integrals by a truncated set of 3-
index quantities. However, it does not reduce the computational
cost of local energy evaluation. Inserting eq 12 into eq 11 and
using the CD form in (eq 2) (after transformation to an
orthogonal basis) gives

∑Φ = −
γ

γ γ γ γf f f f2 ( )loc
ij

ii jj ij ij,2
(16)

with the intermediate f ij
γ defined as

∑= Φ Θγ γf L( )ij
pr

T ip pr rj
(17)

This is computed most efficiently by precomputing and storing
the quantity in brackets, L̅ir

γ =∑pΦTip Lpr
γ , at the beginning of the

AFQMC run, at cost ON M( )2 , and subsequently carrying out
the s econd con t r a c t i on fo r each s amp le w i th

∼O NM N( ) ( )2 4 cost. However, as M > N, the reduced
memory cost afforded by CD is offset by an increased
computational cost of the local energy evaluation, compared
with the conventional algorithm in (11). The operations
described so far are illustrated diagrammatically in Figure 2.

To overcome this increased cost, we now describe howwe can
exploit additional structure in the Cholesky vector Lpr

γ .

3. LOW-RANK FACTORIZATION VIA NESTED MATRIX
DIAGONALIZATION AND ACCELERATION OF
LOCAL ENERGY EVALUATION

Ref 23 introduced a truncated nested matrix diagonalization,
corresponding to an additional truncated factorization of Lγ.
This starts from a truncated CD of the ERI, eq 2, such that all
elements of the residual

Figure 2. (a) Pictorial representation of the local energy calculation
based on the CD decomposition of the ERI. (b) Separable structure of
the RDM1, as used in precomputing the tensors L̅ and f. (c) Expression
of the local energy based on the f tensor.
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∑= −
γ

γ γR V L Lprqs prqs pr qs
(18)

are kept smaller in absolute value than a predefined threshold
εCD. Note that, since |Rprqs| ≤ Rprpr,

2 bounding R requires
computing and bounding its diagonal only.
Then, after transformation to an orthogonal basis, we carry

out an eigenvalue decomposition of the matrix Lpr
γ for each γ

∑ σ=γ

μ
μ

γ
μ
γ

μ
γL U Upr p r

(19)

and only eigenvalues larger in absolute value than a predefined
threshold εET are kept, |σμ

γ | ≥ εET. This additional eigenvalue
truncation (ET) leads to the approximation

∑ ∑

∑ ∑

σ σ≃

=

γ μν
μ

γ
μ
γ

μ
γ

ν
γ

ν
γ

ν
γ

γ μν
μ

γ
μ
γ

ν
γ

ν
γ

V U U U U

X U X U

( ) ( )prqs p r q s

p r q s
(20)

where ργ ≤ N is the number of retained eigenvalues for the
matrix Lγ and Xpμ

γ = Upμ
γ σμ

γ . The decomposition (eq 20) is
diagrammatically illustrated in Figure 1c.

In ref 23, it was suggested, without detailed analysis, that the
average number of eigenvalues of the Cholesky vectors

∑ρ ρ⟨ ⟩ =γ
γ

γM
1

(21)

grows logarithmically with increasing system size.23 In fact, we
have found that the data presented in ref 23 can be fit just as well
by a variety of functional forms, including by αNβ with β ∼ 1/2.
However, we now argue that in large systems, ρ⟨ ⟩ → ̃

γ (1),
because the number of eigenvalues above a given threshold is
related to

N
1 times the number of Coulomb integrals above an

integral threshold, which is asymptotically (1). To see this,
assume the Gaussian basis has minimum exponent α. Then, on
length scales longer than α−1/2, we can simplify Vprqs to a two-
index quantity

=
| − | ≠

=

−

V
c P Q P Q

V P QPQ

1

0

l
m
ooo
n
ooo (22)

Here V0 controls the strength of the on-site repulsion and c is
related to the maximum exponent of the basis. In particular, c
controls the rate at which VPQ decays to zero so that, for smaller

Figure 3.Main plots: Growth of the average number of eigenvalues ⟨ργ ⟩, on a log−log scale, for the model electron repulsion integral (eq 22) in 1D,
2D, 3D (top to bottom), using ε = 10−2, 10−3, 10−4 (red, green, blue). The parameters in eq 22 are c,V0 = 1/2,1. We either perform a truncated CD over
the exact ERI (left, empty symbols) or an untruncated CD over the truncated ERI (right, filled symbols). Note that on the log−log scale, the slope α
gives ⟨ργ⟩ ∼ Nα; in all cases, α < 1 and asymptotically approaches 0. Insets: the same quantities, on a log−linear scale.
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c, VPQ is a more diagonally dominant matrix, and saturations of
⟨ργ⟩ is reached faster. The Cholesky decomposition VPQ =
∑γLP

γLQ
γ yields Cholesky vectors that are already “diagonal” for

each γ (in other words, eq 22 expresses that Vprqs is
approximately nonzero for p = r and q = s). Thus, eigenvalue
truncation in eq 20 truncates elements of the Cholesky vectors
by absolute value, and the average number of significant
eigenvalues ργ is the average number of significant elements of
the Cholesky vectors LP

γ (controlled by the magnitude of c).
We now introduce a simple model to understand the behavior

of ργ. First consider a one-dimensional lattice of Gaussian
functions (e.g., 1s functions) evenly spaced for simplicity. If
integral screening is used with threshold ε, we truncate VPQ in
such a way as to obtain a bandedmatrix of width w(ε). Then, the
Cholesky vectors are also strictly banded, that is, LP

γ = 0, |γ−P|>
w(ε), and we rigorously obtain ρ =γ (1). This is not precisely a
statement about truncating Cholesky elements of the full
(untruncated) Coulomb matrix, but as we see in Figure 3 and
Figure 4, the behavior of ⟨ργ⟩ in these two settings is exactly the
same. For VPQ corresponding to a general graph, the number of
nonzeros of the Cholesky vectors above a threshold is well-
studied as the problem of fill-in generated by threshold-based
incomplete Cholesky factorization.44 While rigorous bounds are
difficult to prove, we numerically compute ⟨ργ⟩ for 2D and 3D
cubic lattices for VPQ truncated by a threshold ε and for the
untruncated VPQ. The behavior is very similar in both cases.

While we cannot rule out nested logarithmic factors such as
log(N) or log(log(N)), this numerical evidence strongly
suggests that ⟨ργ⟩ saturates at ̃ (1), just as it does in 1D.
Finally, the same numerical behavior can be seen when
decomposing the 4-index integral tensor, which we show in
Figure 5 for hydrogen chains, where we can reach sufficiently
large sizes to see saturation unambiguously for sufficiently large
thresholds. For a fixed truncation accuracy and up to possible
logarithmic factors, we consider the evidence to be strong that
⟨ργ⟩ saturates to become independent of system size.

3.1. Accelerated Local Energy Evaluation. The low-rank
structure revealed in the Cholesky vectors directly reduces the
computational and memory costs of the AFQMC algorithm. In
the present work, we choose εCD = εET, although the two
thresholds can in principle be chosen separately.23

In the case of the local energy, the intermediate f ij
γ can be built

as (see also Figure 6)

∑

∑

σ= Φ Θ

=

γ

μ
μ

γ
μ
γ

μ
γ

μ

γμ γμ

f U U

A B

( )( )ij
pr

T ip p r rj

i j
(23)

where A can be evaluated at the beginning of the AFQMC run
with cost ρ⟨ ⟩γNM( ), B is evaluated for each sample with cost

ρ⟨ ⟩γONM( ), and the assembly into f ij
γ is ρ⟨ ⟩γO M( )2 per

Figure 4. Same as Figure 3 but with parameters c, V0 = 1/10, 1.
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sample. For a sublinear (constant) ⟨ργ⟩, this gives subquartic
(cubic) cost for the energy evaluation.
The memory reduction from the low-rank factorization is

shown in Figure 7, where the ratio between the size of the
tensors V̅ and A, B is shown for hydrogen chains and grids. As
seen, for a large system, the size of A, B is only ≃5% of that of V̅.
Note that eigenvalue truncation should not be performed for

the mean-field energy, because it effectively truncates the
Coulomb interaction, leading to an incorrect treatment of the
classical electrostatics of the electron distribution (overall
charged without the nuclei) because of the truncation of
charge−charge terms. Consequently, we compute the mean-
field energy with and without CD+ET, and add the

corresponding correction to the local energy computed from
eq 23

= − ++ +E E E E( )AFQMC AFQMC
ET

RHF
ET

RHF
CD CD

(24)

Since we achieve a reduction in cost because the truncated low-
rank factorization implements a form of integral screening, we
briefly compare the low-rank factorization to directly screening
the local energy evaluation in eq 11. A direct screening of the
sum in eq 11 will give N( )2 cost for moderate sized and
systems, and asymptotically N( ) cost (although formation of
the Green’s function and other operations still require N( )3

cost). However, unless one evaluates the ERI on the fly, this
requires N( )4 storage, and, for larger basis sets, there will be a
very large number of significant ERIs, as one does not achieve
the basis compression afforded by CD or DF. Thus, except for
large systems in small basis sets, we expect the CD+ET approach
to be superior to simple integral screening.
A hybrid strategy would be to use the sparsity of the Cholesky

vectors directly (e.g., implement the construction of all
intermediates in the local energy using sparse matrix multi-
plication). Compared with low-rank factorization, sparse matrix
multiplication often incurs overhead for smaller problem sizes.
However, a detailed comparison between the direct use of
sparsity in the Cholesky vectors versus the nested matrix
factorization is an interesting question to explore in the future.

Figure 5.Average number ⟨ργ⟩ of eigenvalues for H chains on a log−log
scale, at the representative bond length R = 1.8 aB, at the STO-6G level,
using thresholds ε between 10−4 and 10−2 a.u. The black dotted line
represents the number N of basis functions, providing an upper bound

for ⟨ργ⟩. Colored lines are the result of a fit to β γ+

α

α
x

x
. Sublinear growth is

visible in all cases, and saturation is reached for the looser thresholds.

Figure 6. Pictorial illustrations (a) of the local energy calculation based
on the CD+ET decomposition of the ERI, (b) of the precomputed and
intermediate tensors involved in the calculation. The final expression
for the local energy coincides with the one in Figure 2c.

Figure 7. Ratio between the memory required for local energy
precomputing for AFQMCwith CD (MCD) and AFQMCwith CD+ET
(MCD+ET), as a function of the number NH of hydrogen atoms for H
chains (top) and square grids (bottom) at the representative bond
length R = 1.8 au at STO-6G level of theory. Three different truncation
thresholds, ε = 10−4, 10−5, 10−6 a.u. are explored (red circles, green
squares, blue diamonds).
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4. RESULTS

We now apply the formalism outlined in Section 3 to several test
systems, including both molecules and crystalline solids. In each
case, we compare the local energy evaluation time TEloc from
conventional AFQMC and AFQMC with CD+ET, assess the
accuracy of the ET procedure, and investigate the scaling with
system size. Timing calculations were performed on a cluster
with nodes having 2 CPUs with 14 cores each (Intel E5−2680,
2.4 GHz).
4.1. Networks of HAtoms.We first consider the test case of

hydrogen (H) chains,36,45 at a representative bond length R =
1.8 aB, using the minimal STO-6G basis and RHF trial wave
function. We use identical thresholds for CD and eigenvalue
truncation, εCD = εET = 10−4, 10−5, 10−6 a.u. The local energy
evaluation time (per walker, averaged over many walkers) using
the conventional AFQMC formula with Cholesky decom-
position, eq 15, and CD+ET-based AFQMC (CD+ET-
AFQMC) of Section 3, is shown in Figure 8. The reported
times reflect the cumulative impact of floating-point and
fundamental memory operations (e.g., allocations of arrays).
The overhead due to memory operations, which we estimate of
the order of ∼1 ms, becomes increasingly less important as the
size of the studied system increases. Local energy calculations
times are reproduced well by the formulas

≃ ≃α β
+T t N T t N,CD ET0 CD 0 (25)

We observe exponents α = 3.91(2), 3.99(1), 3.99(1) and β =
3.46(3), 3.54(2), 3.74(3) for ε = 10−4, 10−5, 10−6 a.u.
respectively. The untruncated local energy calculation displays
the anticipated quartic scaling, while the looser CD+ET
truncation thresholds reach subquartic scaling for these system
sizes. Given the relationship between ET and integral screening,
it is unsurprising that saturation of ⟨ργ⟩ (responsible for cubic
scaling) is not reached for the tightest threshold. Nonetheless,
the local energy evaluation time is still reduced relative to using
only CD. The prefactors in the two functions determine the
numberNH* of H atoms required for the two curves to cross. We
find that NH* ≃ 25, 35,40 for the three thresholds we have
considered.
In the insets, we compute the difference ΔEc between the

correlation energies per atom from AFQMC and CD+ET, as a
function of the number of H atoms, using the estimator

∑Δ = [ Φ − ′ Φ ]E
N

E E
1

( ) ( )c
w w

loc c w loc c w, ,
(26)

where Eloc,c(Φ) = Eloc(Φ) − EHF is defined in terms of the
standard local energy functional (eq 15), but using integrals
reconstructed from the CD vectors, while Eloc,c′ (Φ) = Eloc′ (Φ) −
EHF′ is formulated in terms of the CD+ET expression, Section 3,
for the local energy. In Figure 8, ΔEc is evaluated on six
independently generated populations of walkers equilibrated for
β = 2 EHa

−1. Using all thresholds, the energies per atom agree to
within 0.02% of the total correlation energy extrapolated to the
thermodynamic limit (TDL), confirming the good accuracy of
the CD+ET decomposition for conservative choices of the
threshold ε.
As a simple application, we next study the asymmetric

dissociation of the infinite H chain using the STO-6G basis in
Figure 9. Note that, as seen in Figure 8, the cost of CD+ET
calculations is reduced by a factor of roughly 10 forNH = 100, so
the full study of the asymmetric dissociation can be carried out at

appreciably reduced computational cost, comparable with the
cost of studying the symmetric dissociation only.
More specifically, we compute the potential energy surface of

a network of H atoms at positions Rk,± = (0,0,zk,±) with
= ± + ′ +±z k R R( )k

R
, 2

, = −k 0 ... 1N
2

, for a total number of

atoms between NH = 10 and NH = 100, as a function of the
intrabond and interbond lengths R, R′. We use the UHF Slater
determinant as a trial wave function. For all R, R′ in a mesh of
points between 1.2 and 3.6 aB, we extrapolate the energy per
atom E(R, R′, N) to the TDL using standard procedures,36 and
we compute correlation energies using AFQMC with CD+ET
and the truncation threshold ε = 10−5 a.u. The extrapolated
potential energy surface E(R, R′) = limN→∞ E(R, R′,N) is shown
in Figure 9, and values forR′ =1.6, 2.4, 3.2 aB are given in Table 1.

Figure 8.Main figures: Log−log plot of the local energy evaluation time
TEloc

as a function of the number NH of hydrogen atoms for H chains at
the representative bond lengthR = 1.8 au at the STO-6G level of theory,
from AFQMC with CD (empty markers) and AFQMC with CD+ET
(filled markers). Truncation thresholds, ε = 10−4, 10−5, 10−6 a.u. (top to
bottom) are explored. Solid, dashed lines are the result of fit of AFQMC
with CD, CD+ET to eq 25. Insets: average difference in the correlation
part of the local energy, per atom, between AFQMC with CD and CD
+ET.
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The diagonal of Figure 9 corresponds to the symmetric
dissociation of the chain, R = R′,36 the minimum energy being
reached at the saddle point R = R′ ≃ 1.83 aB. For large R, R′ the
potential energy surface increases toward the energy EH = 0.471
EHa of a single H atom in the STO-6G basis, and the global
minimum of the energy is reached for R′ → ∞, R ≃ 1.4 aB,
corresponding to a collection of uncoupled H2 molecules, with
energy EH2

=−0. 573 EHa. This illustrates the well-known Peierls
instability of equally spaced atomic chains under lattice
distorsions.
We continue our assessment of accuracy and performance by

studying, in Figure 10, two-dimensional square grids of H atoms,
where theH atoms occupy positionsRij= (0, i R, j R), i, j = 0···n−
1. Here n is related to the numberNH of atoms in the grid as NH
= n2, and we work at the representative bond length R = 1.8 aB.
The trends seen for H chains are confirmed: the standard and

CD+ET-based local energy calculation times are well described
by eq 25 with exponents α = 4.09(2), 4.14(3), 4.11(3) and β =
3.14(2), 3.25(1), 3.47(2) for ε = 10−4, 10−5, 10−6 a.u.
respectively. (Note that the β exponents here are slightly
lower than in 1D. This may seem surprising, but the model
analysis shows that ⟨ργ⟩ as a function of system size in 1D and
2D can actually crossover before saturation, with the 1D curve

growing more steeply, but saturating at smaller system size than
the 2D curve.) Crossover between the two approaches is seen for
NH* ≃ 50, 120, 170 for increasingly small threshold. The
discrepancy ΔEc between correlation energies based on
AFQMC with CD and AFQMC with CD+ET is consistently
below 0.01% of the correlation energy per atom extrapolated to
the TDL, further confirming the accuracy of the truncation
scheme.

4.2. Water Clusters. To test larger basis sets and heavier
elements, in Figure 11, we investigate 38 water clusters
(motivated by studies of water clusters in the terrestrial
atmosphere) containing 2−10 water molecules,46 using the
heavy-augmented cc-pVDZ basis (aug-cc-pVDZ for O, cc-
pVDZ for H), a truncation threshold ε = 10−4 a.u. and a RHF
trial wave function. Also in this case, the average number of
retained eigenvalues ⟨ργ⟩ grows sublinearly with the size of the
system, as measured by the number of H2O molecules, leading

Figure 9. Energy per atom of theH chain at the STO-6G level of theory,
as a function of the intrabond and interbond lengths R, R′. Results are
obtained for R, R′= 1.2, 1.4, 1.6, 1.8, 2.0, 2.4, 2.8, 3.2, 3.6 au, and the
potential energy surface is produced via cubic spline interpolation.

Table 1. Energy per Atom of the H Chain at the STO-6G
Level of Theory, Extrapolated to the Thermodynamic Limit,
as a Function of the Interbond Length R′ for R = 1.6, 2.4, 3.2
a.u. (Left to Right)

R′ E(R = 1.6, R′) E(R = 2.4, R′) E(R = 3.2, R′)
1.2 −0.51517(6) −0.55578(9) −0.5652(1)
1.4 −0.52857(9) −0.5619(2) −0.5704(1)
1.6 −0.53362(6) −0.5582(2) −0.5660(3)
1.8 −0.54288(8) −0.5507(2) −0.5569(4)
2.0 −0.5498(1) −0.5411(1) −0.5454(3)
2.4 −0.5582(2) −0.5233(1) −0.5223(1)
2.8 −0.5634(2) −0.5219(1) −0.5037(1)
3.2 −0.5660(2) −0.5223(1) −0.4915(1)
3.6 −0.5672(2) −0.5228(1) −0.4902(1) Figure 10. Main figures: local energy evaluation time as a function of

the number NH of hydrogen atoms, for H square grids at the
representative bond length R = 1.8 au at the STO-6G level of theory,
from AFQMC with CD (empty markers) and AFQMC with CD and
ET (filledmarkers). Crossover between the two strategies is seen forNH
≃50, 100, 150 for increasingly small threshold. Insets: average
difference in the correlation part of the local energy, per atom, between
state-of-the-art AFQMC and AFQMC with eigenvalue truncation.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00996
J. Chem. Theory Comput. 2019, 15, 3510−3521

3517

http://dx.doi.org/10.1021/acs.jctc.8b00996


to a subquartic scaling local energy evaluation (upper panel).
The dependence of the local energy calculation time on the
number of water molecules, shown in the inset of the upper
panel, is again well represented by eq 25 with α = 4.01(1) and β
= 3.21(3), so that crossover between conventional AFQMC
with CD and CD+ET local energy calculation times is seen at
NH2O* ≃ 13.
In the inset of the lower panel, we show the difference ΔEc

between the correlation energies per atom from AFQMC with
CD integrals and CD+ET, as a function of the number of
monomers. ΔEc is evaluated on six independently generated
populations of walkers, equilibrated for β = 2 EHa

−1, and, for a
given cluster size,ΔEc is averaged over all cluster structures with
the same number of monomers. For example, for N = 5, ΔEc is
averaged over the six water pentamers labeled CYC, CAA, CAB,
CAC, FRA, FRB, FRC in ref 46. The error is only a few μ kcal/
mol.
The binding energy per water molecule for the most stable

clusters, labeled 2Cs, 3UUD, 4S4, 5CYC, 6PR, 7PR1, 8D2d,
9D2dDD, 10PP1 in ref 46, is shown in the lower panel of Figure
11. As seen, the binding energy per molecule decreases almost
monotonically with the number of monomers in the cluster,
reaching Eb/NH2O ≃−9 kcal/mol for NH2O ≥ 8.
Numerical data supplied in Table 2 provide a comparisonwith

RHF, MP2, CCSD, and CCSD(T). Energies from these
methodologies are computed without performing any trunca-

tion on the Hamiltonian, while AFQMC energies are estimated
using eq 24. As seen, correlated methods are in relatively good
agreement with each other. AFQMC is in good agreement with
CCSD(T), with an average deviation of Δ = −0.59(29) kcal/
mol. Data for the different water pentamers are shown in Figure
12. Binding energies from correlated methods are in good

agreement with each other and display the same trends. The
average deviation between CCSD(T) and AFQMC is Δ =
0.06(61) kcal/mol.

4.3. Two-Dimensional Hexagonal Boron Nitride. We
now consider a crystalline solid, 2D hexagonal boron nitride
(BN). To perform these calculations, we used an underlying
single-particle basis of crystalline Gaussian-based atomic
orbitals, which are translational-symmetry-adapted linear
combinations of Gaussian atomic orbitals.47 Core electrons
were replaced with separable norm-conserving GTH-LDA
pseudopotentials,48,49 removing sharp nuclear densities. Matrix
elements for the Hamiltonian of the system were computed with
the PySCF50 package, using the GTH-DZVGaussian basis set.51

The RHF state was used as trial wave function.
Size effects were removed studying increasingly large

supercells at the Γ point. Supercells were obtained repeating
the primitive, two-atom cell Nx = Ny = 1, ...,5 times along
directions ax, ay sketched in Figure 13, and we operated at the
representative bond length RBN = 2.5 Å to illustrate the effects of
the eigenvalue truncation on top of the DF approximation. The
ERI was obtained using the Gaussian DF approximation52

Figure 11. Top: average number ⟨ργ⟩ of retained eigenvalues as a
function of the number of H2O molecules in small water clusters,46

using ε = 10−4 a.u. Inset: local energy calculation time from AFQMC
with CD and CD+ET (empty, filled symbols). Solid, dot-dashed lines
indicate fit to (25). Bottom: AFQMC binding energy per monomer, for
the most stable water clusters with given number NH2O of monomers.
Inset: difference ΔEc between correlation energy per monomer from
AFQMC with CD and with CD+ET, for all clusters.

Table 2. Binding Energy for the Most Stable Water Clusters
Reported in Ref 46, by RHF, MP2, CCSD, CCSD(T), and
AFQMC(CD+ET), in kcal/mol, Using the Heavy-
Augmented cc-pVDZ Basis

cluster Eb,RHF Eb,MP2 Eb,CCSD Eb,CCSD(T) Eb,AFQMC

2Cs −3.815 −5.217 −4.912 −5.179 −5.11(31)
3UUD −10.521 −15.833 −14.670 −15.619 −14.78(64)
4S4 −19.001 −28.358 −26.210 −27.865 −26.49(46)
5CYC −25.297 −37.482 −34.627 −36.776 −36.27(59)
6PR −29.917 −47.246 −43.727 −46.823 −46.25(66)
7PR1 −37.486 −59.149 −54.619 −58.470 −60.04(77)
8D2s −46.650 −74.924 −69.023 −74.044 −74.7(1.1)
9D2dDD −53.395 −84.816 −78.164 −83.739 −81.3(1.4)
10PP1 −60.449 −96.615 −89.029 −95.453 −93.7(1.4)

Figure 12. Binding energy for water pentamers by RHF, MP2, CCSD,
CCSD(T), and AFQMC(CD+ET), in kcal/mol, using the heavy-
augmented cc-pVDZ basis.
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∑ ∑| = | Ω | =
γ

γ γ−pr qs pr L qs M D D( ) ( ) ( )
L

LM pr qs
1

(27)

with Dpr
γ = ∑L (pr|L) ΩLγ

−1/2, and eigenvalue truncation was
performed on the DF operatorsDpr

γ with truncation thresholds ε
= 10−4, 5 ·10−4, 10−3 a.u.
In the upper panel of Figure 13, we illustrate the local energy

evaluation time from AFQMC with DF and DF+ET as a
function of supercell size Nx ·Ny. Crossover is seen for Nx ≃5,6
for increasingly small thresholds. For a wide-bandgap semi-
conductor like BN, as discussed below, supercells of this size are
sufficient to converge mean-field and correlation energies to the
thermodynamic limit. We thus expect the DF+ET approach to
be even more beneficial for materials with smaller or vanishing
gap (e.g., metals), that require even larger supercells or Brillouin
zone meshes to reliably converge energies to the TDL. In the
lower panel of Figure 13, we extrapolate the AFQMCcorrelation
energy to the TDL using the power-law Ansatz Ec(Nx) = α + β
Nx

−1.47 We add to the extrapolated AFQMC correlation energy α
the extrapolated RHF energy, obtained following the procedure
in ref 47. The extrapolated total energy is shown in the inset of
the lower panel of Figure 13.
In the inset of the upper panel, we illustrate the differenceΔEc

between the correlation energy per cell from AFQMC with DF
and DF+ET, estimated on three populations of walkers
equilibrated for β = 4 EHa

−1. As naturally expected, ΔEc increases

monotonically with the truncation threshold, though remaining
consistently below 0.03% of the AFQMC correlation energy
extrapolated to the TDL.

5. CONCLUSIONS
In the present work we have shown that, through a simple and
efficient low-rank factorization of the ERI, it is possible to reduce
the asymptotic complexity of AFQMC calculations for
electronic structure problems in Gaussian bases from its
conventional quartic scaling with system size. While the
asymptotic cubic scaling is attained only for large systems, at
the intermediate sizes studied, we nevertheless observed
subquartic scaling accompanied by significant memory savings
and high accuracy. This reduction arises from exposing the
sparsity of ERI in Gaussian bases through a nested matrix
diagonalization. This approach will be useful in studies of larger
molecules, and of crystalline solids requiring extrapolations to
the thermodynamic limit. We also find that the memory
requirements using this approach are significantly reduced from
the conventional AFQMC algorithm using Cholesky decom-
position alone. The algorithmic advances may also be used in
conjunction with parallel efforts to accelerate AFQMC through
improved hardware implementations.53 While more work is
necessary to establish the relative benefits in AFQMC of
exposing sparsity through low rank, as in the current work,
versus the direct utilization of sparse operations, we expect such
combinations to greatly advance the practical possibilities for
AFQMC calculations on large systems.

■ RELATIONSHIP WITH PLANE-WAVE
FORMULATIONS

Many calculations in solid-state systems are performed using a
plane wave basis. AFQMC simulations using this computational
basis25,29 have an N( )3 scaling. We here briefly outline the
relationship between the cubic scaling achieved in the plane-
wave basis and that achieved using the factorization techniques
in this paper.
In the plane-wave basis, the Hamiltonian with pseudopoten-

tials takes the form

∑

∑

̂ = + ̂

+ ̂ ̂

′
′ ′

′
+ ′ ′+

†

H H t E

V E E
1
2

GG
GG GG

GG q
q G qG G G q

0

(28)

whereG is a wave-vector in the reciprocal lattice, corresponding

to the plane-wave state ⟨ | ⟩ =
Ω

·
r G eiG r

where Ω is the computa-

tional cell volume. The vectors q are the transfer momenta, and,
due to momentum conservation, their number is proportional to
number of plane-wavesN. Thus, eq 28 is a low-rank factorization
of the integrals (with q playing the role of γ) but it is not a
Cholesky factorization, because the analogous quantity

δ=′ ′+L VGG
q

q G G q, (29)

is not a lower triangular matrix for each q.
The local energy formula can be written analogously to eq 16

∑Φ = −− −f f f f( ) ii jj ij ji
q

q q q q
loc,2

ij (30)

with f ij
q defined formally as

Figure 13. Top: Local energy evaluation time TEloc
from AFQMC with

DF approximation for the ERI (purple stars), and AFQMC with DF
+ET (red circles, green squares, blue triangles for ε = 10−3, 5 ·10−4, 10−4

a.u. respectively), for 2D hexagonal BN at RBN = 2.5 Å, as a function of
supercell size. Inset: difference in the correlation part of the local energy
per unit cell. Bottom: extrapolation to the thermodynamic of AFQMC
correlation (main plot) and total (inset) energy (orange diamonds) per
unit cell. Extrapolations to the thermodynamic limit are indicated by
orange crosses.
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∑= Φ Θ
′

′ ′f Lij T i j
q

GG
GG
q

G G
(31)

Unlike in the case of the atomic orbital basis, the Lq matrices
contain N, rather than N(log ), elements, and do not display
the same low-rank structure. However, Lq encodes a periodic
delta function, which means that eq 29 is a convolution

∑= Φ Θσ σ
+f ij i j

q

G
G G q

(32)

Consequently, using the fast Fourier transform, computing f ij
q

requires only ∼ ̃O N N N( log ) ( )2 3 time.
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