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ABSTRACT

Designers make process-level decisions to (i) select designs
for performance evaluation, (ii) select information source, and
(iii) decide whether to stop design exploration. These decisions
are influenced by problem-related factors, such as costs and un-
certainty in information sources, and budget constraints for de-
sign evaluations. The objective of this paper is to analyze indi-
viduals’ strategies for making process-level decisions under the
availability of noisy information sources of different cost and un-
certainty, and limited budget. Our approach involves a) con-
ducting a behavioral experiment with an engineering optimiza-
tion task to collect data on subjects’ decision strategies, b) elic-
iting their decision strategies using a survey, and c) perform-
ing a descriptive analysis to compare elicited strategies and ob-
servations from the data. We observe that subjects use specific
criteria such as fixed values of attributes, highest prediction of
performance, highest uncertainty in performance, and attribute
thresholds when making decisions of interest. When subjects
have higher budget, they are less likely to evaluate points having
highest prediction of performance, and more likely to evaluate
points having highest uncertainty in performance. Further, sub-
Jjects conduct expensive evaluations even when their decisions
have not sufficiently converged to the region of maximum per-
formance in the design space and improvements from additional
cheap evaluations are large. The implications of the results in
identifying deviations from optimal strategies and structuring de-
cisions for further model development are discussed.
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1 INTRODUCTION

In decision-based design, the engineering design process is
perceived as a decision making process where different design
options are identified, options are evaluated sequentially, and the
design option with highest performance is selected [1]. Under
this framework, designers make process-level decisions such as
1) selecting a design at every iteration to evaluate performance,
2) selecting a model or information source for performance eval-
uation, and 3) deciding whether the best performance is achieved.

External factors related to the design problem, budget con-
straints, and incentives to designers influence process-level deci-
sions decisions. These decisions are inherently dependent upon
problem-specific factors such as uncertainty in performance, and
costs of evaluation for different information sources. The num-
ber of design evaluations are limited by budget constraints [2, 3].
In such scenarios, the objective of maximizing utility is satisfied
by maximizing the profit from the final design. The higher the
resources spent on evaluations to get the same final performance,
the lower is the profit. Therefore, design decisions are made un-
der the constraints of limited budget and a decision maker’s goal
is to maximize the design performance while minimizing the cost
of design evaluations.

Many theoretical studies have proposed optimal strategies
for the above decisions [2,4,5]. However, there is a lack of under-
standing about what strategies individuals actually follow in the
design process. Some strategies are computationally intensive,
and therefore unlikely to represent actual human decisions. Also,
there is a lack of understanding about how individuals’ strategies
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change when the budget is fixed, or designers’ payoff is tied to
their performance and how much budget they save. Towards ad-
dressing this gap, our objective in this paper is to understand
what strategies individuals use to make design decisions with in-
formation sources of different cost and noise, and how budget
constraints affect these decisions.

1.1 Relevant Literature

Numerous optimization methods for optimal design have
been developed in literature [6,7, 8]. In recent studies in design
literature, optimal strategies based on meta-modeling of perfor-
mance observations have been proposed [4, 9, 10, 5, 11]. The
optimal decisions are defined as picking alternatives in design
space that maximize the expectation of payoff. However, human
decision making literature has found that thinking ahead to pre-
dict expectation of utilities is a cognitively difficult task [12, 13].
Humans may be unable to follow normative models of optimal
strategies due to their computationally intensive nature.

Prior work on human strategies in design has compared
human subjects’ decisions against proposed rational strategies
based on the expected utility theory and game theory [14, 15].
Studies have estimated human strategies in terms of the param-
eters of Bayesian optimization (BO). They found that the esti-
mated strategies closely represent actual decisions [16] and can
provide better outcomes than default BO algorithms [17].

An alternative approach to studying human decision mak-
ing is to analyze decision criteria or heuristic rules that humans
use to make decisions based on information processing [18, 19].
This approach conceptualizes humans as information processors
who search for information and integrate acquired information
to identify problem structure. Based on the inference from the
acquired information, humans use simple rules to select search
strategy and decide when to stop information search [20]. In the
literature, models of explicit rules used by humans to stop ac-
quiring information have been studied. Common stopping rules
identified are stopping on the basis of the first cue found (take-
the-best), list of criteria satisfied (mental List), the key amount
accumulated (magnitude threshold), and problem structure iden-
tified (representational stability) [21, 12]. Further, common rules
for choosing among alternatives are to choose the best alternative
(dominance rule), exclude alternatives that do not satisfy a crite-
rion (elimination by aspects rule), select the alternative which
has the highest utility in all attributes (addition of utilities rule),
etc. [22].

1.2 Approach

In this study, we employ a behavioral experiment to assess
the effects of budget constraints on designers’ decisions. The
behavioral experiment provides a way to control external factors
that may influence designers’ decisions [23]. In an experimental
task, various external influences can be mitigated while main-

taining realism by using humans as designers and real money as
incentives [24]. Based on this methodology, we (i) collect data
on human subjects’ decision strategies using a behavioral experi-
ment with engineering optimization task, (ii) elicit their decision
strategies using a survey in the experiment, and (iii) perform a
descriptive analysis comparing elicited strategies with observa-
tions from the experimental data.

The experimental task used in the behavioral experiment
simulates iterative evaluations in engineering design optimiza-
tion in a manner consistent with the decision-based design pro-
cess. In this task, designers have control over different decisions
and strategies they want to use. We control how each individual
processes the acquired information by showing them acquired
samples and corresponding surrogate models at each instance
they make a decision. The task involves a simulated problem, and
not a real problem for the reasons that: 1) subjects’ knowledge
of the problem does not interfere with the experimental task, 2)
design space is well defined, and 3) design costs, uncertainty, and
budget can be controlled to observe their effects on subjects’ de-
cisions. The experimental task is still a design optimization task
because finding the best solution requires evaluations of different
designs, assessing their values, and deciding the best design [1].
Also, despite a well-defined design space, the best design is not
known until an information search, processing of the acquired
information, and stopping are completed [19].

The rest of the paper is outlined as follow. Section 2 details
the experimental task used in the behavioral experiment and its
underlying assumptions. Section 3 describes the behavioral ex-
periment which uses the experimental task. Section 4 lists strate-
gies subjects used and corresponding decision models identified.
Section 5 present descriptive analysis of the experimental data
using decision models from Section 4. Section 6 summarizes the
conclusions from this study.

2 AN EXPERIMENTAL TASK REPRESENTING TYPI-

CAL DESIGN OPTIMIZATION PROBLEMS

The experimental task represents a hypothetical design sce-
nario of a designer who makes design decisions, and a statisti-
cian who develops a surrogate model for processing the acquired
information. The designer receives the payment as a function of
outcomes of her decisions. The roles of designer and statistician
are separated to maintain uniformity in how all designers process
acquired information. Also, in the actual experiment, a subject
acts as a designer while the back-end of the user interface acts as
a statistician.

2.1 The Designer

Consider a designer designing a component by evaluating
performance at various points in the design space. The designer’s
objective is to find a design that maximizes the performance.

Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 07/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



We represent the design space as X and a point in the design
space as x. Let denote the actual performance at x by f(x)
which is unknown to the designer. The designer’s task is to find
x* = argmax f(x).

xeX

Assumption 1 (Continuous design space) The design per-
formance f(x) is a one-dimensional continuous function of a sin-
gle design parameter x. The design space X is a finite interval,
and the designer can evaluate f(x) at any point x € X

Assumption 2 (Sequential design process) We assume that
the designer evaluates multiple designs sequentially. Each eval-
uation takes one unit of time to run. However, the designer may
take varying units of time to choose design point x in the design
space. But, once a design is chosen to be evaluated, the designer
may not begin another evaluation until the previous evaluation is
complete.

Assumption 3 (Multiple Noisy Information Sources) The
designer may evaluate performance at any design using either
cheap simulations, or expensive physical prototypes. We refer to
them as information sources. We assume that both information
sources provide noisy observations. In simulations, observations
may be noisy due to approximations such as discretization of
design space, computational limitations, and errors from theoret-
ical inadequacy. In physical prototypes, the noise may arise from
manufacturing defects, or machining tolerances when preparing
test specimen. Therefore, the evaluation at design point x gener-
ates an observation y which may be different from the true f(x).
We assume that observation y is distributed with fixed variance
about f(x).

The observation from information sources are distributed as
a normal distribution about the true performance function.

Yalx ~ N (f(x),07) (1)

where y, is an observation at design point x from information
source a. The variance of observation 6 is known to the de-
signer. Let us assume that the cheap simulations are denoted
with a = [, and the expensive prototypes with a = h. G[2 and G,%
are respective noise variances. By the assumption, 612 > Ghz.

Assumption 4 (Known costs) The evaluation of the perfor-
mance of any design costs a fixed amount for either information
source known apriori to the designer. The total cost is the sum of
costs for all evaluations. If ¢; and ¢, are the costs of a simulation
and a physical prototype respectively, then ¢; < ¢j,.

2.2 The Statistician

For reasons such as evaluations are expensive, time consum-
ing, and performance function is rugged, a statistician accom-
panies the designer whose task is to characterize a meta-model
of the true performance function. At the time of any evalua-
tion, the statistician co-worker has access to all previous de-

sign points, observations, and noisy information sources. Af-
ter n € N* evaluations, n; is the number of observations from
cheap simulations and #n; is the number of observations from
expensive prototypes, such that n = n; +nj,. We assume that de-
signs x, = {xél),xﬁf),.
Va = {yél) , yf,z) yees yc(l”“)} are known for both information sources
a=landa=h.

Since the engineer and the statistician do not know f(x), we
assume that they assign zero mean Gaussian prior on f(x),

..xfl"“) } and corresponding observations

f~GP(0,k) 2

1 (x-x")2
2 2
function with parameters lengthscale / and variance v.

The predictive probability that y is the true performance at x
conditional on all of the available data is

where k(x,x") = vexp{ - } is aradial basis covariance

p(y|x,D) :N(y|.u'n(x)’6r%(x))a 3

where D = {(x,y;), (xn,yn) ). p(x) = k(x,X)(K +X)7'Y and
0% (x) =k(x,x) —k(x,X)(K+X)'k(X,x) are the predictive mean
and predictive variance functions respectively. X and Y repre-
sent the matrices containing simulations and prototype inputs and
function outputs, respectively, k(x,X) is the cross-covariance be-
tween x and X, K is the covariance at X, and X is a diagonal ma-
trix with the first n; elements of the diagonal equal to GZZ, and the
remaining ny, elements equal to G}%. For example, the predictive
distribution of y over all x’s, given [ =2,v =600, 6; = 10,and o}, =
0.1, is shown in Figure 1 in terms of the predictive mean and 95"
percentile bounds.

Assumption 5 (Surrogate model) The statistician provides
a surrogate model to the designer in terms of the mean estimate
of true performance, and the 5 and 95" percentile bounds along
with it. It is assumed that the designer understands this informa-
tion.

2.3 Performance-based Payment

Assumption 6 (Fixed budget) The total budget B assigned
to the designer for performance evaluations is fixed. The de-
signer can spend at most B on all evaluations. The designer may
stop before exhausting the entire budget B. Therefore, the total
cost incurred, b, = c;n; + c;ny, is less than B.

The designer receives a fixed salary for her effort. Addition-
ally, she may receive bonuses proportional to her best physical
prototype, and the amount of budget she saved. At least one
physical prototype is required because the noise in simulations is
large but the noise in physical prototypes is small.

Assumption 7 (Performance-based payment) The engi-
neer’s payment is performance-based that includes a fixed salary,
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FIGURE 1. The predictive distribution of function values given ob-
servations from cheap simulations and expensive physical prototypes.
Assumed that / =2,v =600, 0; = 10, and 05, =0.1.

and bonuses based on her best performance and the budget she
saves. If she stops after n observations with observations D
where n = {1,2,3...}, then her payment I, is:

1,(D,B) = o+ 8(my > 1) {Hy () + Hy(B=ba)} ()

where Iy is a fixed salary. Hy and H), respectively, are bonuses
from the best performance and remaining budget. y; = 1m_ax y}(ll)
<i<ny

being the best physical prototype. And, d(ny; > 1) is the Kro-
necker delta function which is 1 if nj, > 1 and 0 otherwise.

3 BEHAVIORAL EXPERIMENT TO GATHER DATA

ABOUT SUBJECTS’ DECISION STRATEGIES

A total of 63 student subjects were recruited from the in-
troductory machine design class (ME352: Machine Design I) in
the School of Mechanical Engineering, Purdue University. The
participation was voluntary and was not considered towards stu-
dents’ grades. All subjects were asked to stay until at least 45
minutes even if they finished early so that other students com-
pleting their tasks were not disturbed. Subjects were paid $15 on
average.

3.1 Tasks and Treatments

In the experiment, the subjects performed 18 runs of the ex-
perimental task described in Section 2 each with different perfor-
mance function f(x). A run of the experimental task was called

120 4
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FIGURE 2. The plot of 18 unknown functions used in the experiment.

a period. The objective in each period was to find a maximum
of the unknown function f(x). Each period involved multiple
sequential iterations, and at each iteration, every subject was re-
quired to 1) choose a value for a design parameter x, 2) select a
model to evaluate f(x) at x, i.e., either simulation (model /) or
physical prototype (model #), and 3) decide whether to stop eval-
uations. Some parameters of the experimental task were fixed at
Cc|= 2,Ch = 8,(7[ = 10,6}, =0.,and X = [—107 ]0].

18 distinct functions were used in the periods (shown in Fig-
ure 2). They were randomly generated prior to the experiment
and fixed for all subjects. The order in which these 18 functions
were assigned to different periods was randomized to minimize
interactions between functions and treatments.

The experiment was divided into three treatments'.

1. Trial (2 periods): The first treatment involved two trial peri-
ods to help the subjects get familiar with the user interface
before starting the actual experiment. The outcomes of these
functions were not considered towards subjects’ payment.

2. Use-or-lose budget (9 periods): For this treatment, a sub-
ject was allocated a fixed budget per period. Any remaining
budget after evaluations were stopped was discarded and not
added to the subject’s payment. In this treatment, a subject
evaluated 9 different unknown functions in 9 different peri-
ods, with 3 functions each for three categories of fixed bud-
get (B) per period equal to 20, 40 and 60.

3. Save-remaining budget (9 periods): In this treatment, a sub-
ject evaluated 9 different unknown functions in 9 different
periods, with 3 functions each for the three categories of
fixed budget per period equal to 20, 40 and 60. Any re-

'We have also gathered data about subjects’ risk preferences in an additional
treatment using a set of lottery questions. Its analysis, however, will be reported
elsewhere.
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maining budget after evaluations were stopped was added to
the subject’s payment.

At the end of the above three treatments, the subjects were
presented with a survey on their computer screens. In the sur-
vey, the subjects gave responses to three questions asking them
to list strategy or strategies they used when 1) choosing next x, b)
choosing between cheap simulations and expensive prototypes,
and 3) deciding to stop function evaluations.

The order of treatments was varied across the subjects to ad-
just for order effects. After the trial treatment, use-or-lose and
save-remaining budget treatments were conducted in four differ-
ent orders: 1) Use-or-lose: budgets 20, 40, 60; Save-remaining:
budgets of 20, 40, 60; 2) Use-or-lose: budgets of 60, 40, 20;
Save-remaining: budgets of 60, 40, 20; 3) Save-remaining: bud-
gets of 20, 40, 60; Use-or-lose: budgets of 20, 40, 60; 4) Save-
remaining: budgets of 60, 40, 20; Use-or-lose: budgets of 60,
40, 20.

3.2 Payment Rule

The payment was calculated according to Eq. 4. The fixed
salary for every subject was 5 USD (I, =5). A subject’s per-
formance in a period was defined as a function of his/her best
physical prototype in that period, called gross payoff. If y, was
the best observation in physical prototypes, then the gross payoff
Hy was calculated as,

Hf(y;):loo_(fmax_y;) 5)

where fi,,x was the true maximum value of a given unknown
function. The gross payoff was revealed after all evaluations
were ended for the period. For periods in the save-remaining
treatment, any remaining budget was added to the gross payoff
such that Hj, = B-b,,. For periods in the use-or-lose budget treat-
ment, H, =0.

A subject’s bonus payment, additional to the fixed salary,
was his/her net payoffs (Hy(y;; ) + Hp) in two randomly selected
periods, one each in use-or-lose budget and save-remaining bud-
get treatments. The payment was based on random periods to
encourage subjects to put their best effort in every period. Also,
the payment was revealed at the end of the experiment, mandat-
ing participation in all parts to receive any payment. This rule
minimized effects on future effort due to winnings from previous
periods called wealth effects. 1t also reduced the selection bias
that could discourage participation in future treatments once the
payment from previous treatments was received.

4 DECISION MODELS IDENTIFIED FROM THE SUR-
VEY RESPONSES
For a comparison to subjects’ actual strategies, we first pro-
vide a brief overview of optimal strategies of designers’ decisions

described in past literature.

4.1 Optimal Strategies for Designers’ Decisions

The optimal strategies specify decisions that maximize the
expectation of payoff. For the decision to choose next x, the
optimal strategy is to select x where the expected improvement
(EI) in the maximum of predictive mean is the highest [25, 10].
This strategy is however independent of fixed budget and en-
codes next x only based on previous observations. For the de-
cision to choose information source, the optimal strategy is to
pick the source which has the highest value of information (max-
imum of EI in the current function maximum minus the cost of
additional evaluation using the source) [4]. For our case, both in-
formation sources have the true performance as mean (Eq. 1). As
a result, the EI from an additional evaluation using either of the
sources is the same. Therefore, the optimal strategy is to only
select cheap simulations, and perform one expensive prototype
at the end when the EI is small. For the decision to stop, the
optimal strategy is to stop when the value of information from
an additional evaluation is negative for either of the information
sources [4, 14].

4.2 Decision Models and Corresponding Survey Re-
sponses

In this section, we identify decision models for the three de-
cisions of interest from the survey responses.

For the decision to choose next x, few examples of re-
sponses to the survey which asked subjects to list their strategies
are as follows: (1) “I (chose x in) intervals of 2 and then built
a physical prototype on the highest peak.”, (2) “-5,0,5 were usu-
ally always my first guesses to get a general shape of the entire
graph...” (3) “I sampled 5 points -8 -4 0 4 8 for fasted relatively
detailed general view.”, and 4) “I picked x values around large
uncertainty boundaries to reduce them”.

Based on the survey responses, we identify three decision
models for the decision to choose x. Subjects, in reality, may use
a combination of the following strategies, as evident from some
of their responses. However, we identify distinct rules that may
be common.

1. Fixed Interval Model: According to this model, points are
sampled at fixed intervals across the design space.

2. Dominant Prediction Model: According to this model,
points are sampled where the prediction of the function is
the highest. That is, the next x is selected where the predic-
tive mean function u,(x) (Eq. 3) is maximum during that
sample.

3. Highest Uncertainty Model: In this model, the next design
is evaluated at the design point where the prediction of un-
certainty is the highest. The next point is chosen at x where
the predictive variance function 62 (x) (Eq. 3) is maximum.
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For the decision to choose an information source, exam-
ples of survey responses are: (1) “I would fill in some gaps ...,
until I had 8 or 16 or 24 currency left to make prototypes.”, (2)
“...once high values were found, I built prototypes...”, (3) “First
run (a simulation) until I had an image of what the function may
look like-Once I knew what the image might look like I guessed
with (a prototype) where I thought the maximum of the function
would be”, and (4) “Once the computer simulations kept result-
ing in consistent values, I picked the one that appeared to be the
highest along the predicted graph to find x.”

From the survey responses, we identify three decision mod-
els for choosing an informations source. In all three models, we
assume that subjects begin using cheap simulations, and shift to
using expensive prototypes.

1. Fixed Sample Model: According to this model, cheap simu-
lations are used for a fixed number samples, expensive phys-
ical prototypes are used thereafter. The number of sam-
ples for both simulations and prototypes are fixed before the
search begins.

2. Fixed Maxima-Region Entropy Model: In this model, we as-
sume that subjects use the acquired information to decide
whether the region of function maximum has been suffi-
ciently identified. Once the information entropy of such re-
gion reduces to a fixed value, subjects start evaluations using
physical prototypes. Evidently, subjects in survey responses
mention that they use physical prototype when “high values
are found” or “it appeared that the maximum is around”.

3. Fixed Expected Improvement Model: In this model, cheap
simulations are used for initial samples. With more number
of cheap simulations, the expectation of improvement in the
current best observation reduces. When this expectation re-
duces to some fixed values, expensive prototypes are used
thereafter.

For the decision to stop evaluations, common survey re-
sponses are: (1) “I stopped after I saw the (best performance) go
up to a high number or stop changing when I added more proto-
types.”, (2) “I stopped evaluations when my physical prototype
seemed to reach the local maximum of the area I was searching.”,
(3) “(I stopped when) marginal gain from cost of new prototype
to potential gain in the final result (was low.)” (4) “When sav-
ing budget however I tried to get the most out of about half the
budget”

We identify the following four decision models for the deci-
sion to stop evaluations based on survey responses.

1. Dominant Prototype Model: Evaluations are stopped if the
best observation from physical prototypes is higher than the
predictive mean over the entire design space, i.e., stop if y;, >
max, U, (x) (Eq. 3).

2. Constant Maxima-Region Entropy Model: Here, evaluations
are stopped when the region of maximum is sufficiently

identified. Specifically, when the information entropy of
the region of function maximum predicted by the surro-
gate model reduces to a constant value, i.e., evaluations are
stopped when additional evaluations are not expected to re-
duce entropy further.

3. Fixed Budget Model: In this model, evaluations are stopped
after spending a fixed amount. The amount to spend is a
priori fixed and can be less than the total budget.

4. Constant Expected Improvement Model: In this model,
when the predictive mean function (Eq. 3) is not expected
to improve further by additional samples, evaluations are
stopped.

5 DESCRIPTIVE ANALYSIS OF THE EXPERIMENTAL

DATA

In this section, we analyze how decisions of all subjects in
aggregate are affected by the total fixed budget, and incentive
to save budget. For this, we quantify all subjects’ decisions in
different treatments into metrics that specify closeness of their
decisions to different models identified in Section 4. The effects
of interest are observed by analyzing the variation in values of
closeness metrics across different treatments. The findings of
this descriptive analysis are summarized in Table 1.

Mathematically, the decision to choose next x after n'* eval-
uations is quantified by x*1) ¢ X the decision to choose in-
formation source by a,;; which is 1 if expensive prototype is
selected and O otherwise, and decision to stop by s, which is 1
if stopped, and O otherwise. Each decision model depends upon
a single criterion such as information entropy, fixed number of
samples, expected improvement, etc. Let us denote this criterion
for each decision model by statistic M. To observe the effect of
budget and incentives, we need to observe how x("”), au+1, and
s, change as M is changed in different treatments. Therefore, for
every model, we categorize M into different intervals and esti-
mate the values of closeness metrics for each interval of M. The
closeness metrics for different decisions are defined as follows.

1. Closeness ratio (zpr): If a model describes choosing x where
statistic M(x) is maximum, and a subject’s choice of x at
sample number 7 is x"*1) | then the closeness of the sub-

M( x(n+] ))

max, M(x)

2. Probability of choosing expensive prototype (py): an+1 18
assumed to have a Bernoulli distribution with success prob-
ability equal to the probability of choosing physical proto-
type pg. For any interval of M, multiple data points for a,,+
are available from decisions of multiple subjects in multiple
periods. Therefore, we use Wilson Score Interval [26] to es-
timate the mean and error bounds for py in every interval of
M.

3. Probability of stopping (ps): The decision to stop s, is

ject’s decisions to the model is zy (x("*1)) =
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TABLE 1. The decision models of subjects’ strategies based on survey responses, and corresponding observations from the descriptive analysis.

4 .
S.u bJ‘ects Key observations based on Effect of increasing total Effect of saving remaining
Model of strategy who indicated . ..
. subjects’ decisions budget budget
this model
Decision to choose x
Common partitions for the first 5
a) Fixed Interval Model 43 samples: (-10, -9, -7.5, -5, -2.5, Intervals are finer. Intervals are coarse.
0,2.5,5,7.5,10)
b) Dominant Prediction . . . Dominant predictions are Dlomlgant P erlCth'n.S are chosen
17 Used in late stages of evaluations. . . with higher probability only at
Model chosen with lesser probability.
budget 60.
¢) Highest Uncertainty 7 Used in early stages of search. Highest u.ncertalnty pomt.s .are Unobser.ved due to high variance in
Model chosen with more probability. observations.
Decision to choose between two information sources
Common sequences for a) budget The fixed number for both Subiects use more simulations. and
a) Fixed Sample Model 10 20: (6/,1h), b) budget 40: simulations and prototypes ]essJ roloLybes ’
(91, 1h), ¢) budget 60: (107, 5h). increases. prototypes-
b) Fixed Maxima-Region 21 Fixed entropy for a) budget 20: Prototypes are chosen with At a given budget, prototypes are
Entropy Model [0,2), b) budgets 40 & 60: [0,1) higher probability. chosen with lower probability.
d) Fixed Expected 4 Fixed value not observed The pr(‘)bablllty of us.mg an The prob. of choosing prototype
Improvement (EI) Rule expensive prototype increases. decreases, but only at budget 60.
Decision to stop design evaluations
a) Dominant Prototype Common differences for a) budget The difference (best prototype
Model P 10 20 and 40: [-20,0), b) budget 60: minus maximum of predictive The difference reduces.
[0,20]. mean) at stopping increases.
5 C(?nstant . 13 Constant entropy value < 1 The probability of stopping at No effects observed.
Maxima-Region Entropy any entropy reduces.
Fixed values for a) budget 20: 20, No effect when using the The probability of stopping
¢) Fixed Budget Model 5 b) budget 40: (20,40], ¢) budget entire budget. The probability increases, but only for budgets 40
60: [20,40) or (40,50). of stopping increases. & 60.
d) Constant Expected The probability of stopping The probability of stopping
Improvement Model ? Constant El value <2 reduces. increases only for budgets 40 & 60.
modeled as a Bernoulli distribution with success probabil- 0,5,-5,-10 in decreasing frequency for the 1 sample. They
ity equal to the probability of stopping (ps). Also, for any sample at 5,5, 0 for the 2" sample in decreasing frequency, and
interval of M, multiple data points for s, are available from at 0,-5,5 for the 3" sample in decreasing frequency. The distri-
decisions of multiple subjects and multiple periods. There- bution of sampled point at the 5th sample is closer to the uniform
fore, we estimate a confidence interval for pg from these distribution. Out of the 12 possible sequences, the following 5
decisions for every category of M using the Wilson Score sequences are more likely for the first three samples: (0,5,-5),
Interval [26]. (-5,5,0), (~10,5,0), (-10,5,-5), (-10,-5,0), since O has a
small frequency to appear on the 2" sample, and 5 has a small
Overall, each subject sampled 165 points on average in all frequency to appear on the 3"/ sample. Some subjects in the sur-
18 periods. Therefore, for 63 subjects, a total of about 10395 vey mentioned that they use finer intervals when the fixed budget
data points on every decision are available. In the next section, is higher. This trend is not observed in Figure 3.

we compare the estimations of M for each decision model are
different in different treatments.
5.1.2 Dominant Prediction Model Here, M(x) =
W, (x), the prediction mean function over the design space X.

5.1 Decision to Choose x As observed from Figure 4, subjects increasingly sample points
5.1.1 Fixed Interval Model From the observation of closer to the highest predictive mean during later stages of evalu-
Figure 3, the subjects sample most number of times at (x =) ations. The mean and median values of z;,, increase as the num-
7 Copyright © 2018 ASME
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at 1" sample for # = 1,2,3, and 5 (Fixed Interval Model). The number
of (evenly-spaced) bins used is 20. Frequencies are normalized with
respect to the number of total samples. Peaks with frequency less than
10" fraction of the maximum frequency are ignored.

ber of samples n increases. Further, the fixed budget affects the
above behavior. In the Use-or-lose Budget treatments, subjects
begin using this model early as the fixed budget available de-
creases. For example in Figure 4, compare the mean value of z;,
(equal to 0.8) at interval n € (6,7) for total budget 20, and that
of (equal to 0.55) at the same interval for total budget 40. In the
Save-remaining Budget treatments, similar trends are observed
except for between the fixed budgets of 40 and 60 (compare at
ne (10,11)). This may be because subjects stop early in Save-
remaining Budget (60) treatment in expectation of saving larger
budget.

The group of subjects who indicated in the survey that they
used this strategy have higher z;,, values than the aggregate of all
subjects.

5.1.3 Highest Uncertainty Model For this model,
M(x) = 62(x), the predictive variance function. From Figure 5,
we observe that subjects sample near the point of highest predic-
tive variance during the initial stages of search but move away
from this strategy as more samples are accumulated®. Subjects
use this model more frequently when the fixed budget is higher.
For instance, in the Use-or-lose Budget treatments, the mean of
Zg2 atne (6,7) increases as the fixed budget increases. This trend
is observed for intervals (10,11) and (14, 15) of n between total

%Ignore intervals (10,11) and (14,15) in the treatments of total budget 20
and 40 respectively. Subjects who sampled this many points could do so because
they did not sample any physical observations. They are included in the plot to
convey the existence of such data points.
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FIGURE 5. The estimates of closeness ratio z,» for Highest Uncer-
tainty Model at different intervals of sample number n.

budgets of 40 and 60. In the Save-remaining Budget treatments,
the mean of z5> increases for interval (6,7) between budgets 20
and 40. But, this trend cannot be observed between budgets 40
and 60 due to large variance of 252 values.

5.2 Decision to Choose a Information Source

5.2.1 Fixed Sample Model For this model, M = n.
The amount of fixed budget affects the numbers of cheap simula-
tions and physical prototypes used by subjects (see Figure 6).
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type pg for Fixed Sample Model in different intervals of sample num-
ber.

According to the peaks observed in Figure 6, the most fre-
quent strategies for budget 20 is (7/,1h), i.e., 7 cheap sim-
ulations and then one expensive physical prototype. For the
treatments with budget B = 40, all strategies are equally dis-
tributed. Additionally however, for B = 60, the relatively sharper
jump at n =10 and a plateau thereafter suggest that strategy
(101,5h) may be prominent. In the Save-remaining Budget treat-
ments, likely strategies are a) budget 20: (6/,14), b) budget 40:
(91,1h),(91,2h),(101,1h),(111,1h),(121,1k) and (131, 1h).

The group of subjects who said that they used this model
in the survey use this model more closely. At initial samples, the
estimations of py for this group is smaller than that of all subjects
combined together. Also, their probabilities suggest sharper rise
at some fixed sample numbers.

5.2.2 Fixed Maxima-Region Entropy Model To
quantify whether the region of function maximum has been iden-
tified, we use the entropy of distribution over x; = argmax f,,(x)

X

as the statistic M. Here, f,(x) is a sample function from the
predictive distribution (Eq. 3). To find the entropy of distri-
bution over x;, denoted by H(x};), we sample 500 functions,
identify x; where a sampled function is maximum for all sam-
pled functions, and estimate the entropy of the distribution
of identified x;s. Therefore, M(x) = H(x)), where H(X) =
- ¥ q(xi)logg(x;) represents the entropy of distribution g(X)
over X = {x1,x2,...xn}.

As observed from Figure 7, subjects use physical prototypes
even when the entropy of the region of maxima is reduced, es-
pecially at high budgets. The values of py are greater than 0.25
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FIGURE 7. Estimations of probability of choosing expensive proto-
type py for Fixed Maxima-Region Entropy Model in different intervals
of entropy.

for all intervals of the entropy. The fixed budget affects decisions
in this model. In the Use-or-lose Budget treatments, the value of
pu at any interval of entropy increases as fixed budget increases
from 20 to 40, while it remains the same going from budget 40 to
60. The similar trend is observed for the Save-remaining Budgets
treatments.

5.2.3 Fixed Expected Improvement Model For
this model, M = maxEl,(x). Here, EI,(x) is the expected im-
X

provement in the maximum of predictive mean function. Be-
cause the samples from simulations are noisy, the current max-
imum is defined as the maximum of predictive mean, i.e., 4, =

max (L (x;). Let A,(x) be the positive difference between pre-
<i<n

dictive mean at x and the best estimate so far. That is, A,(x) =
max{u,(x) - 1,;,0}. Then, the expected improvement in (; by
doing an additional evaluation at x € X is calculated as [25],

o, (x) o, (x)

El,(x)=A, (x>d>(A"(x) ) R on<x>¢(A"(x) ) ©)

where ®(x) and ¢ (x), respectively, are the cumulative distribu-
tion function and the probability density function of standard nor-
mal distribution.

The results from Figure 8 suggest that subjects evaluate us-
ing expensive prototypes even at higher values of the highest ex-
pected improvement (EI) max EI,(x). The probability of picking
expensive prototype is high (pg > 0.2) for all intervals of max El,
in all treatments. The change from using cheap simulations to ex-
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pensive prototypes is only significant at very small values of EI
when no additional evaluation is preferred. The estimations of
py for the group of subjects who indicated that they used this
strategy have high variance. Therefore, the observations of their
strategies do not offer more insights.

5.3 Decision to Stop

5.3.1 Dominant Prototype Model : For this model,
we define M = [max yfl') —max U, (x). Ineffect, when M increases
<i<ny, X

to a certain value, search is stopped.

We observe that pg increases as subjects’ best physical ob-
servation is closer to the maximum of predictive mean function.
Also, the amount of fixed budget affects subjects’ probability of
stopping. At smaller budget, subjects stop when the difference
A, (x) is large. For example, for A,(x) € [-20,0) in Use-or-
lose Budget treatments, ps(=0.4) at budget 20 is smaller than
ps(=0.1) at budget 60.

5.3.2 Constant Maxima-Region Entropy Model
In this model, the entropy is defined and calculated in the same
way as in Section 5.2.2. That is, the statistic M is equal to H (x;; ).

From Figure 9, we observe that the subjects are more likely
to stop evaluations at lower entropy of maxima region when the
budget is small. pg for entropy in [0, 1) is about 0.5 at budget 20,
and reduces to 0.25 for budget 60. However, saving budget does
not affect this behavior, since pgs for same budgets in Use-or-lose
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FIGURE 9. Estimations of probability of stopping pg for Constant
Maxima-Region Entropy Model in different intervals of entropy.

Budget and Save-remaining Budget are the same.

5.3.3 Fixed Budget Model For this model, the
statistic M is equal to b, the total cost of evaluations incurred.
b,, =njc;+npCy.

Subjects use the entire budget in all budget treatments of
Use-or-lose Budget, and the Save-remaining Budget treatment of
budget 20. In other Save-remaining Budget treatments, subjects’
probability of stopping increasing as the total budget spent or
cost increases. However, when subjects have already spent large
budget, they more likely use the entire remaining budget. For
example, in Save-remaining Budget treatment of total budget 60,
ps reduces for b; € [50,60), and spikes at b; = 60 where the search
ends.

5.3.4 Constant Expected Improvement Model
For this model, the expected improvement is defined in the same
manner as in section 5.2.3. And, M = max EI,(x).
X

We observe that subjects use this strategy with higher prob-
ability at smaller budgets of Use-or-lose Budget treatments, and
in Save-remaining Budget treatments. For example, pg between
[0,2) is highest for budget 20 compared to budgets 40 and 60.
Further, in the Save-remaining Budget treatments, this probabil-
ity increases for EI between [0,2) at all budgets compared to
their budget counterparts in Use-or-lose Budget treatments. In
all treatments, the constant expected improvement value when
stopping is less than 1.
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6 CONCLUSIONS

In decision-based design, designers make decisions about
choosing design points, evaluating performance at those points
using multiple information sources, ranking them based on pay-
offs, and picking the best design point [1]. These decisions are
influenced by the constraints of fixed budget and minimizing
spending on performance evaluations. In order to study how hu-
mans make these decisions under such constraints, we conduct
a controlled experimental task for engineering design optimiza-
tion. Using a survey in the experiment, we identify that subjects
combine different criteria when making sequential decisions. We
quantify these criteria into decision models using different statis-
tics of the surrogate model, and descriptively analyze effects of
budget constraints ( 1).

The descriptive analysis of the experimental data draws sev-
eral conclusions on the effects of budget constraints on design-
ers’ strategies:

1. Subjects use explicit criteria to make various decisions.
These criteria are consistent with the decision-making lit-
erature [12,21], and are based on prior assumptions or in-
formation acquired during design evaluations. These crite-
ria are (a) fixed values of attributes (Sections 5.1.1, 5.3.3),
e.g., specific design points, or amount of budget to spend,
(b) dominance (Section 5.1.2) such as choosing highest pre-
diction, or highest prototype, (c) stability of representation
(Section 5.3.2) such as low information entropy, or uncer-
tainty, and (d) difference threshold (Section 5.3.4) such as
expected improvement.
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2. Some of the above criteria fix decisions before the search
begins, e.g., evaluating specific points defines the decision to
choose x. In other criteria, decisions are made sequentially,
e.g., additional evaluations at new points are performed if
the region of performance maxima is unclear. This behavior
correlates with the previous research on testing in product
design which suggest that evaluations are pre-planned when
they are expensive [27].

3. When subjects have a higher fixed budget allotted for de-
sign evaluations, they are less likely to evaluate points hav-
ing highest prediction of performance (Section 5.1.2), and
more likely to evaluate points having highest uncertainty in
performance (Section 5.1.3). Subjects sample more number
of expensive prototypes in general and start using expensive
prototypes even when the region of the best design is not
well identified (Section 5.2.2), and the expected improve-
ment in performance is large (Section 5.2.3). At higher fixed
budget, subjects explore more designs, and at the end of the
process, the performance of the best expensive prototype de-
sign is higher (Section 5.3.1).

4. When subjects are incentivized to save budget, their strate-
gies are affected in the same manner as when the total fixed
budget is decreased. However, the effect is only prominent
when the fixed budget is high.

5. Subjects who explicitly state strategies they used for mak-
ing decisions follow those strategies more closely than the
aggregate of all subjects.
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Our findings have implications in design research for under-
standing deviations of designers’ decisions from optimal strate-
gies. Optimally, cheap simulations should be used until the very
last evaluation when the expected improvement (EI) in func-
tion maximum is small. However, subjects in our experiment
use expensive prototypes even when EI values are large (Fig-
ure 8). Subjects use more number of expensive evaluations when
the fixed budget is higher (see Figure 10). Further, evaluations
should be stopped when the EI from an additional evaluation is
smaller than the cost of evaluation. However, subjects do not stop
evaluations at small EI values when they have a larger budget to
spend. (see Figure 11).

Additionally, our findings provide some directions for struc-
turing various designers’ decisions and defining theoretical mod-
els of these decisions. The effects of budget constraints and in-
centives observed in our study necessitate these factors to be in-
corporated in theoretical models. For example, in the decision
to choose next design point, subjects use high uncertainty points
more frequently than high mean prediction points as fixed bud-
get increases. For the decision choose an information source,
subjects decide the numbers of cheap and expensive evaluations
they want to perform a priori. For the decision to stop evalua-
tions, subjects decide the portion of budget they want to spend a
priori.

In future work, more rigorous analysis of the experimental
data will be performed at the level of an individual subject. Ev-
ery subject’s strategies will be analyzed individually to investi-
gate which decision models are more likely under different treat-
ments. It is possible that some subjects’ strategies consistently
deviate from the aggregate strategies discussed in this paper. Or,
individuals use particular models over others. Such analysis will
be performed using estimations of likelihood probabilities for
different decision models.

Further research is needed to test the generality of these re-
sults to realistic design settings where factors such as designer’s
expertise, problem domain, non-monetary incentives, and orga-
nization practice can affect subjects’ strategies. For example,
designers’ long experience of solving particular domain prob-
lems may stir them toward evaluating particular designs. Tests
of generality can either be performed using field experiments,
or observational studies on real design and systems engineering
organizations.
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