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Fig. 1. Unbiased rendering of spectrally and spatially varying participating media could previously be accomplished using delta tracking separately for
each color component (leftmost inset), but this leads to strong color noise. Spectral tracking [Kutz et al. 2017] can reduce this noise by rendering all color
components together (middle left inset), but at the cost of sampling distances based on the densest color component of the medium. Our theoretical framework
allows us to leverage different sampling techniques across color components (middle right), or exploit next-event estimation (NEE) (far right), and combine
these into a more robust, lower-variance estimator via multiple importance sampling (MIS). See Tables 1 and 2 for descriptions of the methods and the medium.

Unbiased rendering of general, heterogeneous participating media currently
requires using null-collision approaches for estimating transmittance and
generating free-flight distances. A long-standing limitation of these ap-
proaches, however, is that the corresponding path pdfs cannot be computed
due to the black-box nature of the null-collision rejection sampling process.
These techniques therefore cannot be combined with other sampling tech-
niques via multiple importance sampling (MIS), which significantly limits
their robustness and generality. Recently, Galtier et al. [2013] showed how to
derive these algorithms directly from the radiative transfer equation (RTE).
We build off this generalized RTE to derive a path integral formulation of
null scattering, which reveals the sampling pdfs and allows us to devise new,
express existing, and combine complementary unbiased techniques via MIS.
We demonstrate the practicality of our theory by combining, for the first
time, several path sampling techniques in spatially and spectrally varying
media, generalizing and outperforming the prior state of the art.
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1 INTRODUCTION

The world around us is filled with participating media which vol-
umetrically attenuates and scatters light as it travels from light
sources to our eyes. While important in many fields, simulating this
transport efficiently and accurately is unfortunately a notoriously
difficult problem, since it requires solving not only the rendering
equation [Kajiya 1986; Immel et al. 1986], but also its volumetric gen-
eralization, the radiative transfer equation [Chandrasekhar 1960].
Monte Carlo path sampling methods such as (bidirectional) path
tracing [Kajiya 1986; Lafortune and Willems 1993; Veach and Guibas
1995] and its volumetric variants [Lafortune and Willems 1996;
Georgiev et al. 2013] have been investigated in academia for decades
due to their elegant simplicity, generality, and accuracy. Moreover,
by now most major film production renderers have adopted such
approaches as their dominant rendering algorithms [Georgiev et al.
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2018; Burley et al. 2018; Fascione et al. 2018; Christensen et al. 2018;
Christensen and Jarosz 2016; Fascione et al. 2017].

These approaches operate by stochastically constructing light
transport paths between sensors and emitters. Thanks to decades of
research [Novak et al. 2018], we now have an arsenal of strategies
for constructing such paths in participating media [Raab et al. 2008;
Kulla and Fajardo 2012; Georgiev et al. 2013; Ktivanek et al. 2014].
One core strength of such methods is the ability to leverage multiple
importance sampling (MIS) [Veach and Guibas 1995] to combine
complementary sampling techniques into a single, provably good
estimator with improved robustness. MIS operates by weighting
each technique proportionally to its path sampling pdf.

Unfortunately, combining multiple unbiased sampling techniques
in spatially and spectrally varying participating media has remained
elusive. Such media require the use of so-called null-collision ap-
proaches to estimate transmittance and generate light transport
paths. These approaches, also called “delta scattering” or “Wood-
cock tracking”, were initially developed and analyzed in the 1950s
and 1960s [Butcher and Messel 1958, 1960; Zerby et al. 1961; Bertini
1963; Woodcock et al. 1965; Miller 1967; Coleman 1968]. They were
only recently adopted [Raab et al. 2008] and extended upon in graph-
ics [Jarosz et al. 2011b; Novak et al. 2014; Kutz et al. 2017; Szirmay-
Kalos et al. 2011, 2017, 2018]. A derivation of these algorithms di-
rectly from the RTE [Galtier et al. 2013] was recently introduced
to graphics [Kutz et al. 2017; Novak et al. 2018], demonstrating not
only their correctness, but also providing a convenient framework
for postulating new variants. Unfortunately, the authors also noted
that “the most limiting drawback of these methods is their inability
to quantify the pdf of individual samples”. Since MIS requires access
to these pdfs, it has so far been limited to (piecewise) homogeneous
media [Kfivanek et al. 2014; Georgiev et al. 2013; Wilkie et al. 2014].
Heterogeneous media must either forego MIS [Kutz et al. 2017] or
forego null-collision methods in favor of regular tracking [Sutton
et al. 1999; Wilkie et al. 2014; Fascione et al. 2018] or tabulated
sampling [Szirmay-Kalos et al. 2017; Gamito 2018] to support MIS.

We solve this long-standing problem by turning the null-scattering
RTE into a generalized null-scattering path integral formulation of
volumetric light transport. Our formulation allows unbiased path
sampling and analytic pdf evaluation in spatially and spectrally vary-
ing media for the first time. This enables us to generalize, improve
the performance of, or remove bias from recent techniques like spec-
tral decomposition tracking [Kutz et al. 2017] and hero wavelength
sampling [Wilkie et al. 2014], all while enabling new techniques
and allowing their combination with complementary existing tech-
niques like equiangular sampling [Kulla and Fajardo 2012] and ratio
tracking [Novak et al. 2014] via MIS, as we demonstrate in Fig. 1.

2 RADIATIVE TRANSPORT BACKGROUND

We begin by reviewing the classic formulation of the steady-state
radiance distribution in scenes containing surfaces and participating
media. We then present the null-scattering extension [Galtier et al.
2013] of this recursive formulation, which we will convert to a path
integral in Section 3.
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2.1 Classical formulation

In scenes containing media with particles distributed statistically
independently from each other, the radiance equilibrium is described
by the radiative transfer equation (RTE) [Chandrasekhar 1960]

(w - V) L(x, 0) = —pe(x)L(%, ) + p(x)L™(x, ), (1)

losses gains

which relates the differential change in the radiance L at a point
x in direction w to losses from absorption and out-scattering and
gains from self-emission Lg* and in-scattering L™:

— [la(X) L?(X, w) + )US(X)

He(x) () J.s2
Here S? is the unit sphere, py, is the medium phase function, and
pe(x) = pa(x) + ps(x) is the medium extinction coefficient, where p,
and pg are the absorption and scattering coefficients, respectively.

Solving this ordinary linear differential equation for the radiance
L(x, w), and using the outgoing radiance L5(z, w) at the first visible
surface point z = x — zw as a boundary condition, yields the volume
rendering equation (VRE) [Arvo 1993]:

L™(x, w) pm(w, %, )L(x, o) do. (2)

L(x,w) = /0 T(x, y)pt(y)Lm(y, w)dy + T(x, 2)L%(z,0), (3)

where the medium radiance L™ is integrated at points y = x — yw
along the line, and like L™ (2), LS is a sum of self-emitted and in-
scattered radiance [Kajiya 1986; Immel et al. 1986]:

L%(z, 0) = Li(z, @) + / ps(@,z,—)L(z,)|n(z) - & | de.  (4)
SZ

Here ps is the bidirectional scattering distribution function (BSDF)
and n(z) is the surface normal at z. Finally, the medium extinction
transmittance is defined as

T(x, y) = g_T(X’Y) =e foyﬂt(xfsw) dS’ (5)

where 7(x,y) is the medium extinction optical thickness between x
and y. Note that there is one VRE (3) for each color component, i.e.
wavelength or red, green, and blue (R, G, B) channel.

To compute the radiance at a point, the VRE can be estimated
recursively via Monte Carlo integration. The traditional approach,
known as analog sampling, is to importance sample the non-recursive
terms under the integrals in Egs. (2) to (4) [Novak et al. 2018]. For
Eq. (3) this involves sampling a distance y with density T(x, y)ut(y).
This, however, is possible only when the corresponding cumulative
distribution function is invertible, e.g. in media with (piece-wise)
simple density (see Fig. 2, left). In general heterogeneous media,
where analytic transmittance sampling is unavailable, other distance
sampling techniques can be used, e.g. equiangular sampling [Kulla
and Fajardo 2012]. This, however, requires the explicit evaluation of
the transmittance T(x, y), which is also unavailable in closed form.
Numerical estimation and sampling of the optical thickness 7(x, y),
e.g. via ray marching [Perlin and Hoffert 1989], even if unbiased,
leads to a biased estimate of T(x,y) [Raab et al. 2008].

The only known class of techniques for unbiased light transport
estimation in heterogeneous media are the so-called null-scattering
methods. We will show that these operate in a higher-dimensional
sampling space and are most naturally expressed as Monte Carlo
estimators of a corresponding extension of the integral VRE (3).



2.2 Null-scattering formulation

The idea of the null-scattering formulation is to alter the medium
density in a way that preserves the radiance equilibrium while en-
abling the use of analytical sampling techniques to estimate the
equilibrium in an unbiased manner. Conceptually, this is achieved
by introducing fictitious matter with (signed) density py, that, upon
collision, scatters light forward with unchanged direction and in-
tensity; hence the term “null scattering”. Formally, we introduce the
combined extinction medium coefficient

Ay(x) = pi(x) + pn(x) (6)
to write a null-scattering extension to the RTE (1):
(0 - V) L(x, 0) = = (X)L(X, 0) + F(X)LT(x, 0). )
Here, the combined medium radiance is
L7(x, ) = ®)
I@Lén(x, W)+ l& pm(0, %, o )L(x, o) do + !in—(x)L(x, ),
,ut(x) Ay (x)Js2 Ht(x)

emission real scattering null scattering

where the individual contributions are weighted by corresponding
combined-medium albedos and now include null-scattered radiance.

Solving the null-scattering RTE (7) for L(x, ), and using the
same boundary condition as for Eq. (3), we obtain a null-scattering
extension to the VRE:

L(x,0) = /0 T PRIy, 0) dy + Tk 2z 0). ()

The null-scattering VRE (9) has the same basic structure as the
classic VRE (3) but has one major advantage—the spatially varying
free parameter py. This parameter can be used to transform the
combined transmittance

T(X, y) = e—?(x,y) —e /Oy/_lt(x—sw) ds (10)

into a form suitable for analytic sampling and evaluation, e.g. by
setting pin (x) = C—p(x), where C is a constant, effectively “homoge-
nizing” the combined extinction i;. This makes the VRE (9) suitable
for direct recursive Monte Carlo estimation. Existing null-scattering
methods, such as delta tracking, can be formulated as estimators for
that equation, performing a series of distance sampling decisions
through null collisions, followed by direction sampling at a real-
scattering collision. We refer to Novak et al. [2018] for an overview
of such methods, and illustrate delta tracking in Fig. 2, right.

2.3 Discussion

Like the classical formulation, the null-scattering VRE is restricted
to pure unidirectional estimation, e.g. via delta or spectral track-
ing [Kutz et al. 2017]. The path integral formulation of Pauly et al.
[2000] enables next-event and bidirectional estimation and, impor-
tantly, their MIS combination. However, that formulation does not
encompass null-scattering techniques as it is derived from the classi-
cal VRE. Specialized formulations exist for techniques such as ratio
tracking [Kutz et al. 2017, Appendix B], but their utility is limited
as they do not encompass other techniques either, e.g. equiangular
sampling [Kulla and Fajardo 2012]. In the following section, we
present a null-scattering path integral formulation that fills this gap.

A null-scattering path integral formulation of light transport « 44:3

o oS
§ao\ 0@ Vo\ [ [“Ol) i3 0/“ O@
t3 ! o
(o] ty

Fig. 2. Recursive estimation of the VRE can be done via a series of direction,
w, and distance, t, sampling decisions. With the classical formulation (3),
this is possible only in (piecewise) simple media, e.g. with linearly varying
density (left), where transmittance along rays can be sampled analytically.
To enable unbiased light transport estimation in general heterogeneous
media, the null-scattering formulation (9) augments the medium with fic-
titious scattering matter to obtain a combined medium where the trans-
mittance between two scattering events (real or fictitious) is analytically
sampleable (right).

3  NULL-SCATTERING PATH INTEGRAL FORMULATION

In this section we present a path integral formulation of light trans-
port in scenes containing surfaces and participating media, derived
from the null-scattering VRE (9). We will later show how existing
unbiased heterogeneous media rendering methods can be described
as direct Monte Carlo estimators for our formulation, with known
sampling pdfs, to enable their MIS combination. We lay out the full
derivation in Section 4 but summarize the final result below.

3.1 Pixel measurement

The value I of every pixel in the rendered image is given by the
measurement equation:

I= /51 /Sz We(x, 0)L(x, 0)|n(x) - | dwdx, (1)

which integrates the incident radiance L at points x from directions
o weighted by the pixel response We. The integral considers the
manifold A of all surface points in the scene and all directions on
the sphere S2, but W, takes non-zero values only for points on the
corresponding pixel sensor and directions seen by it. Again, note
that there is one such integral for each color component. For surface
light transport, Veach [1997] formulated the pixel measurement
I as a pure, non-recursive integration problem, and Pauly et al.
[2000] extended his formulation to also account for participating
media. To achieve this, Pauly et al. substitute the VRE (3) into the
measurement equation (11), switch to integration over the union of
the surface manifold A and the scene volume V, AU YV, expand
the recursion, and finally combine the sum of all resulting high-
dimensional integrals to arrive at

I= /¢> f(%) dx. (12)

This formulation expresses the pixel measurement as an integral
over the space P of all possible light transport paths X = xoX1...X of
any length k > 1 (i.e. number of edges) that connect the light sources
to the camera. Being derived from the VRE (3), it considers only real
scattering at interior path vertices x;. The measurement contribution
f(X) thus includes the extinction transmittance T (5) along the edge

ACM Trans. Graph., Vol. 38, No. 4, Article 44. Publication date: July 2019.
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Fig. 3. lllustration of a light transport path in our integral formulation,
which explicitly considers both real and null scattering at path vertices.
Prior formulations consider real scattering only, where this length-8 path
corresponds to the length-4 path x; X Xp, X3 Xy, .

connecting every two consecutive vertices, which does not permit
analytic evaluation or sampling in general heterogeneous media.

To address this inconvenience, we derive a path integral expres-
sion with the same form as Eq. (12) but starting from the null-
scattering VRE (9). In contrast to the formulation of Pauly et al.
[2000], our formulation considers both real and null scattering at
path vertices, and replaces the extinction transmittance T by the
analytically evaluable combined transmittance T (10).

Path space and measure. To properly handle the geometry of null
scattering, we isolate such events into a null-scattering volume Vs
which is simply a copy of V. This extends the traditional path space
and its corresponding differential measure to

I~ k dA(x;), ifx; €A,
P:U(ﬂU(VU’V(;)k“, di:ﬁdxi, dx; ={dV(x;), ifx; eV, (13)
k=1 i=0 dVs(x;), if x; € V.

Null-scattering vertices x; are measured along the line connecting
the preceding and succeeding real scattering vertices:

dVs(xi) = dyr-cyrr (i), (14)

where Sy, r+(X;) is a Dirac measure restricting the integration
along the line segment connecting the preceding and succeeding
real-scattering vertices x}~ and x}*, respectively. The path length k
is the number of segments between consecutive scattering events
of any kind. Figure 3 illustrates a path of length 8 in the space #.

Measurement contribution. For each path length k, the measurement
contribution function is defined as

r—1 k-1

HG(Xri,er)) : (1_[ T(Xi,Xi+1)) :

i=0 i=0

1 (15)
(l_[ P(wx,-x,-_l > X, Cl)x,-+1x,-)) - Le(xg, kaxk_l) s

i=1

f® = We(XO’wxlxo) '

where wxy is the (unit) direction from x to y. The r +1 real-scattering
vertices on the path are indexed by r;, with x¢ = x;, and x; = x;,
being the camera and light vertices, respectively, which we regard
as real-scattering (see Fig. 3). The combined transmittance T(x, y)
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Hs(X2) pm(x2)

T(Xz,x
o 3) G(xz, x3) ps(x3)
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£ n J
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Fig. 4. The classical path integral formulation (top) considers only real
scattering and thus has to evaluate the extinction transmittance T between
such events. Our formulation (bottom) instead evaluates the combined
transmittance T as it considers null-scattering events explicitly.

is given by Eq. (10), and
D(x, wxy)v(x’ y)D(y, (ny)

Gx.y) = 2 (16)
lIx—yll
. ) f S
D(x, ) = { "Xl ifxeA 17)
1, ifxeV
L if
Le(x,0) = (X, wxy), 1 XE€A, 8)
Ila(X)Le(X, (/ny), ifxeV

ps(w,x,—df), ifyeA,
plw,x,¢) = § ps(X)pm(w, x, o), ifxeV, (19)
n(xX)H(w - ), ifxeVs,

where V(x,y) is the binary visibility function between x and y. In
contrast to prior definitions, our generalized scattering term p ex-
plicitly considers null scattering, where H is the heaviside function
which enforces the ordering of the null vertices’

Note that the geometry term G(x, y) is evaluated only between
real-scattering events x,y € A U V. Null-scattering vertices are
constrained to lie on the polyline connecting real-scattering events
which is effectively a path-space manifold. This is similar to the
manifolds studied by Jakob and Marschner [2012] and the changes
in path density through chains of specular (i.e. delta) surface reflec-
tion and refraction between two scattering events. In our case, the
geometry term through a null-scattering chain has a simple form.

3.2 Discussion

By explicitly accounting for null scattering, the problematic extinc-
tion transmittance term T is replaced by the combined transmittance
T in our formulation. The main advantage is that T can be made
analytically evaluable by appropriately setting the null-scattering
density parameter p,. Conversely, setting p, = 0 makes T = T, re-
ducing our formulation to the classical one. This is useful for media
with analytically evaluable extinction optical thickness 7, e.g. with
homogeneous density, as it allows only real scattering to be sampled.
Figure 4 highlights the differences between the two formulations.
Lastly, note that in general there is one path integral (12) for every
color component. A different null density py can be used for each.

! Alternatively, this ordering can be encoded into the null-vertex measure by using
dVs(x;) = dOx;_;ex;,, (i) in Eq. (13), eliminating the need for the heaviside function
in Eq. (19).



4 NULL-SCATTERING PATH INTEGRAL DERIVATION

In this section we derive our path integral formulation (12) from the
null-scattering VRE (9). We first expand the recursions in the VRE,
followed by a change of variables in the resulting high-dimensional
integrals, which we ultimately merge into one path-space integral.
These are the same general steps done in derivations based on the
real-scattering VRE (3) [Pauly et al. 2000; Jakob 2013]. However,
in our case the added null-scattering recursion in Eq. (9) increases
the complexity of the expansion, and the resulting null-scattering
integrals require an appropriate change of variables. Readers not
interested in these technical details may skip over to Section 5,
where we discuss the practical applications of our formulation.
We begin by writing the null-scattering VRE in a compact form:

L(x,w) = ‘/0 T(x,y)Lo(y, ®) dy + T(X, z)Lo(z, ©) (20)
Lo(x,0) = Le(x,0) +/p(w,x,w')L(x,w')D(x,w’) do/ + pn(x)L(x,0),
SZ

where Ji; from Eqs. (8) and (9) cancels out and where we use the nota-
tion from Egs. (17) to (19) to express the contributions from medium
points y and surface points z = x — zw in L(X, @) using a common
outgoing radiance term L,. We do not consider null scattering (i.e.
transparency) at surfaces, thus pin(x) = 0 for x € A.

4.1 Operator formulation

As in prior formulations [Pauly et al. 2000; Jakob 2013], we will
express the pixel measurement I as a path integral by recursively
expanding the radiance L (20) in Eq. (11). To express this expansion
succinctly, we make use of linear operators [Veach 1997; Arvo 1995].
Substituting L into L, replaces the last two terms of L, by four new
terms, from which we extract four operators:

Rah)x,0) = [ [ o030 90D iy of by @)

(Rsh)(x, 0) = / plw,x, )T(x,2)D(x, Yz, ') de (22)
SZ

(Nuh)x,0) = ax) [ TOx )y, 0y (23)

(Nsh)(x, ) = pn(X)T(x, 2)h(z, »). (24)

We then define the real- and null-scattering operators, respectively
(RR)(x,0) = (Rm+Rs)h)(x,0), (Nh)(x,0) = (Nm+Ns)h)(x,0). (25)

Note that, like Lo, R operates on both medium and surface points x,
while N is non-zero only at medium points.

Radiance equilibrium. We can now write L, in operator form in
terms of R and N, and then expand the tail recursion:

Lo=Le+(R+N)Lo= > R+NfLe= > ' SiLe. (26)
k=0 k=0 S {R,N}¥

The result is an expression for the outgoing radiance as a sum of
emitted radiance scattered arbitrarily many times. On the right-hand
side we have expanded (R+N)¥ into a sum of 2€ composite operators
Sk, each representing one possible series of k (real or null) scattering
events. An example of such operator is S5 = RNRNN, where the first
two events (in direction of light flow) are null scattering, followed
by real scattering, and so on.

A null-scattering path integral formulation of light transport « 44:5

Pixel measurement. Our next step is to write the pixel measure-
ment (11) in non-recursive operator form, as a sum of nested inte-
grals. To that end, including W, temporarily in the definition of the
scattering function p (19) allows us to treat the spherical integral in
Eq. (11) as a real-scattering event, such that expanding L in Eq. (11)
using Eq. (20) and then expressing L, using Eq. (26) yields

[ =i > /ﬂ (RS Le)(x, ) dx = > /ﬂ (PLe)(x, ) dx, (27)

k=0 S;e{R N} PeQp
where the operator under the integral is evaluated with a dummy
direction. The set Qp includes all path operators of the form P = RSy,
where the “camera” real-scattering event is followed (in direction
opposite of the light flow) by k scene scattering events of any type.

4.2 Scattering chain decomposition

To express the pixel measurement (27) as integration over a product
(path) space of surface area and volume, we need to perform an ap-
propriate change of variables in every path operator P = RSy € Qp.
For every k there are 2k possible operators P, each corresponding to
a different k-sequence of real- and null-scattering events. To handle
this combinatorial explosion, we make the key observation that ev-
ery such operator can be written as a sequence of scattering chains,
each starting with a real-scattering event:
n; times  n, times n, times

P=RN---NRN---N---RN---N = RN™MRN™ ...RN";, (28)

where the number of real-scattering events is r and the total number
of null-scattering events is Zgzl n; = k —r, with n; > 0. It thus
suffices to find the change of variables for a general chain RN",
which can then be applied to each chain in every path operator P.

In the absence of null scattering, i.e. when n = 0, the chain
operator RN"” simplifies to R; we will address this special case in
Section 4.3 below. When n > 0, assuming no null scattering at
surfaces, we can expand RN" using Eq. (25):

(RN"h)(x, 0) = RN h)(x, w) + (R{NR)(x, 0) (29)
= (Rm(Nm + Ng)"h)(X, ) = (Rm(Nm + N)" " (N + Ng)h)(x, @)
= (RN h)(x, 0) + RnNY INgh)(x, ). (30)

With no null scattering at surfaces, only the medium contribution
Ry N” in Eq. (29) can be non-zero. For the same reason, operator Ng
can have non-zero contribution only when it appears at the end of a
null-scattering chain. Thus, when (N, + N;)" is fully expanded into
a sum of 2" chains, only two non-zero chains remain in Eq. (30),
where h is evaluated in a medium and at a surface, respectively. (The
start of the chain can itself be in a medium or on a surface; this
is handled by R via the common notation from Egs. (17) and (19).)
Next, we write out the two chain operators in Eq. (30) and bring
them in similar forms to prepare them for a change of variables.

Operator Ry N7 . This operator evaluates h at a medium point X1
after a series of n medium null-scattering events xi, . . ., x,. We first
write out NJ! by expanding the n operators Ny, from right to left:

(NEx0) = [ (]‘[un(x,-ﬁ(m,m))h(xn+1,w> dxer - d.
X1 Xn \j=1
6

cn(X1-.-Xnt1,0)
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We then write out the full operator RyyNJ}:

(R NJL ) (%0, )
cr(x0x1, o)

= [P0 T xo D0, SN 51 el (32

:/32/./ /cr(Xoth)Cn(m Xn+1,0) dxp41---dxadryde.

c(X0.. .- Xn+1, )

Note that the nested line integration effectively runs over the sim-
plex 0 < x1 < -+ < xp41 < z. We can switch the integration order
of the simplex coordinates x; without changing the result:

Xnt1 Xn+tl  Xn+1
/SZ/‘/ / /C(XO Xpt1, ) dxp - doepdxy dxpr1ded. (33)
X,

Note that now the outermost line integral determines the location
of the real-scattering vertex x,+1, which does not any more depend
on the locations of all null-scattering vertices.

Operator Ry N~ INg. This operator evaluates h at a surface point
Xn+1 after a series of n medium null-scattering events xi, ..., Xp.
Its expansion is almost identical to that of Ry N7, in Eq. (33) above:

(RmNn_leh)(XOy )

Xn+1 fXn+1 Xn+1 (34)
/ / / / c(xq...Xp+1, &) dxp - dxadxde,
S? Xn_1

but without the line integral over the position of point xp+1, which
in this case is fixed at the distance z to the nearest surface.

4.3 Change of variables

We are finally ready to perform the change of variables. We can do
this simultaneously for Eqs. (33) and (34), thanks to their almost
identical forms. For Eq. (33) we merge the two outermost integrals
into volume integration (V), and for Eq. (34) we switch from sphere
to area integration (A). We can then merge the two resulting high-
dimensional integrals into one, with V U A as the domain of the
outermost integral:

(RN"h)(x0, @) =

Xn+1 fXn+1
// / c(X0...Xn+1, wxx,”]) G(x0, Xp+1) dxp ---dx1dxp41,
Xn-1

VUA (36)

RN h)(x, 0) + RN INgh)(%, 0) (35)

where as a result the geometry Jacobian term G(x¢, X,+1) appears.
Note that G is evaluated between the two real-scattering vertices,
bypassing the n null-scattering vertices x1, . . ., Xp.

Recall that we derived Eq. (36) for the null-scattering case of n > 0.
In the case of n = 0, we have RN” = R = Ry, + R, where the change
of variables is as simple as switching the integration in Ry, (21)
and Rg (22) to volume (V) and surface area (A), respectively, and
merging these two into one integral over the union V U A. The
result is an expression identical to Eq. (36) for n = 0, where the line
integrals vanish as in this case no null scattering occurs between
the real-scattering vertices x¢ and xp4+1 = X1.

The final change is to switch from line integration for the null-
scattering locations to integration over the null-scattering volume
V. To that end, we take advantage that our generalized scattering
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term p from Eq. (19) considers null scattering. This allows us to write
Eq. (36) as an integral over a product real-null scattering space:

(RNA)(x0.0) = / 0, Xnsh(Xns1, 05, 1x) dX0--dXns1  (37)

(VUA)XVE
r1—1

Frrgs X2,) = Gy X2,) [ | P00 X @i )T (Ki Xi41), (38)
i=rp

where we use the convenience notation wy,x_, = w. The function
fr gives the throughput between two real-scattering events. Note
that no Jacobian term appears after this change as the differential
null-scattering measure dVj is still a line measure, only that it is not
any more aligned with a cardinal axis.

4.4 Path integral formulation

Using the product-integral expression for the null-scattering chain
operator in Eq. (37), we can express the pixel measurement (27) as a
product-integral as well, by expanding RN" repeatedly from right
to left in the chain decomposition (28) of every path operator P:

/( RN"1 RN Le)(x, ) dx = / f®dx, (39)
PeQyp PeQyp
where we have used the following relation between f (15) and f;:
r—1

F®) = Lt xi) | | A0y xni0). (40)
i=0

For every P € Qp there is a corresponding path space $p that
contains all paths with certain length and sequence of scattering
types. The union P (13) of all these spaces then contains every
possible path of any length and type, and the corresponding path
integral is written in Eq. (12). This concludes our derivation.

5 APPLICATIONS

Our light transport formulation from Section 3 provides a frame-
work for devising new and expressing existing unbiased volumetric
rendering methods as direct Monte Carlo estimators of a path in-
tegral. In our framework the pdfs of the corresponding sampling
techniques are known, which enables the application of multiple
importance sampling (MIS) [Veach and Guibas 1995] in a straightfor-
ward manner, something that was previously considered difficult.
To showcase the capabilities of our framework, we describe a
practical path tracing algorithm that combines unidirectional and
next-event sampling techniques. We also incorporate hero wave-
length MIS to handle spectrally varying media [Wilkie et al. 2014].

5.1 Monte Carlo estimators for the path integral

A direct Monte Carlo estimator for our path integral (12) has the
same well-known general form introduced by Veach [1997]:

oo LO__S®
p(X) p(xo,xl,...,xk)
Here, X is a randomly sampled path of length k, where its pdf p(X), i.e.
the joint density of its vertices, is expressed w.r.t. the path measure
dx from Eq. (13).

With an appropriately chosen null density up, the path contribu-
tion £(X) (and specifically the combined transmittance term T) is

(41)



analytically evaluable and sampleable for any path in both homoge-
neous and heterogeneous media. This allows combining different
path sampling techniques via MIS into one low-variance estimator:

(Das = Z Z i) L) 2)

pi%i )
where n is the number of techniques and X; ; are n; independently
sampled paths from distribution p;. The power heuristic wi(x) =
[nipi(x)]ﬁ/zzzl[nkpk(x)]ﬁ is a provably good way to combine
techniques in terms of minimizing the variance of the estimator
(I)mis- We use the balance heuristic, which corresponds to f = 1.

5.2 Path sampling techniques

When expressed in a path integral framework, differences between
unbiased pixel estimators (41) can only be due to differences in
their respective path sampling pdfs. These correspond to different
factorizations of the joint distribution into a series of conditional
vertex pdfs [Georgiev et al. 2013], e.g. unidirectional or bidirectional,
as well as different choices for these vertex pdfs.

Due to their forward-scattering nature, null vertices must be sam-
pled along segments connecting real-scattering vertices. This is typ-
ically done either along a ray sampled at one real-scattering vertex,
or along a line segment resulting from a bidirectional (e.g. next-
event) connection between two real-scattering vertices. The former
is the continuous, volumetric analog of tracing through a specular
scattering chain along a given direction in surface rendering. The
latter is a rough continuous analog to connecting real-scattering
vertices through a refractive boundary [Walter et al. 2009; Hanika
et al. 2015]. Next, we discuss several existing sampling techniques,
illustrated in Fig. 5, and express their path pdfs in our framework.

Delta tracking. This method is a direct (unidirectional) estimator
for the null-scattering VRE (9) [Novak et al. 2018]. It samples the
distance to the next event along the path with pdf proportional to
the combined transmittance T. It then selects the type of event—
absorption, real or null scattering—with respective probabilities
equal to the fractional albedos in Eq. (8). It samples the phase func-
tion pp, in the case of real scattering, or continues forward in the
case of null scattering, and terminates upon an absorption event or
when a light source is hit. In our framework, the path pdf of this
technique, illustrated in Fig. 5, left, reads

k
Pdt(X) =P(Xo)np(wi |xi-1,0i-1)p(xi|xi-1,0i)P(ex;)

i=1

i=0
where ex € {a,s,n} denotes the event type at vertex x and where

Hey (x)
t(x) .

Note the occurrence of the geometry terms between every two con-
secutive real-scattering vertices when the path pdf is expressed w.r.t.
the measure dxX (13). All terms in the corresponding path contri-
bution thus cancel out in the pixel estimator (41), except for the
emitted radiance Le(Xg, @x;x;_;)-

P |x, 0) <p(w,x, ), plylx,0)=T(x,y)E(y), Plex)=

’
HG(Xri ,Xr”l)} s
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O along connection @ @ @
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Vol o’ Vol o 4
X0=Xr, X1 X2=Xp X0 X1 X2 X0 X1 X2

Unidirectional sampling  Next-event estimation ~ Equiangular sampling

Fig. 5. Mapping of existing unidirectional, next-event, and joint path sam-
pling methods to techniques in our integral formulation. Delta tracking (left)
starts from the camera and samples the path vertices in order until termi-
nation, choosing the scattering type—absorption, real, or null scattering—
at every vertex. Given a light vertex (xs), ratio tracking (middle) samples
null-scattering vertices (x3 and x4) along the connection segment with a
real-scattering vertex (x2) on the camera subpath. Given a light vertex (xs)
and a camera ray (Xo, @), equiangular sampling (right) determines the lo-
cation of a real-scattering vertex (xz); the null-scattering vertices along the
two resulting connection segments can be sampled via ratio tracking.

Ratio tracking. With existing path integral formulations that con-
sider only real scattering, this technique is used as an unbiased
estimator for the extinction transmittance T between two path ver-
tices [Novak et al. 2014]. It performs a random walk along the con-
nection segment, using the same distance sampling as delta tracking
but deterministically selecting null scattering at every vertex. In
our framework, this estimator can be interpreted as sampling a
null-scattering subpath between two given real-scattering vertices
x; and x;. The joint pdf of these j — i — 1 null vertices is

j-1
Pre(xi,xj) = n T, xR (xp) | T(xj-1.%j),  (43)

l=i+1 P(xl | xl—lswxix]-)

where the last transmittance term is the random walk termination
probability—the distance pdf integrated from ||x; — x;—1]| to infinity.
Note that the pdf is invariant to the direction in which the random
walk is performed: from x; toward x; or from x; toward x;.

Ratio tracking is typically used to connect the real-scattering
end vertices of delta-tracking sampled light and camera subpaths.
Denoting the number of vertices on these subpaths respectively as
s and t, the path pdf of this (real) vertex connection technique is

Ps, t(i) = Pdt(xrn . 'Xrtfl )prt(xrtfl ) er—s+1 )pdt(xrr "'er—s+1 )' (44)

The special case of s = 1 is known as next-event estimation; we
illustrate this technique in Fig. 5, middle.

Equiangular sampling. In the next-event estimator, the geometry
term along the connection segment does not cancel out as it does
not appear in the path pdf (44). This can cause high variance when
the light vertex is inside the medium. To remedy this, the equiangu-
lar sampling technique generates the position of the penultimate
real-scattering vertex x,,_, along the ray (xy,_,, wr,_,) with pdf pro-
portional to that geometry term [Kulla and Fajardo 2012]:

(45)

Pea(Xr,_; [Xr,_y» @1, X)) o G(Xy,_, X)) = m
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This results in two connection segments between the real-scattering
vertices Xy, _,, Xr,_,, and X; = r,. With prior path integral formula-
tions, ratio tracking can be used to estimate the extinction trans-
mittance T along these segments. In our formulation this translates
to sampling null-scattering subpaths between those vertices. Com-
bined with a delta-tracking sampled prefix subpath from the camera,
the full path pdf of this technique, illustrated in Fig. 5, right, reads

P(i) = Pdt(XO o Xr,, )P(wrr,l |er,2 »Wr, )P(Xk )Pea (er |er,2 5> Wr, s Xk) :

Prt(xrr,z > X1, )Prt(xrr,l » Xk )G(Xer > X,y ). (46)

5.3 Handling chromatic media

In media with spectrally varying coefficients p, a different path
integral (12) has to be estimated for every color component c:

fe(®)
Pe(®)’
where the path pdf pz(X) now depends on the chosen sampling
component ¢ which drives the distance and event type sampling in
the path construction via the corresponding coefficients yg , ;135 1S

One approach is to compute a separate estimator for every com-
ponent c, setting ¢ = c in each estimator. Unfortunately, estimating
every component separately can be costly and also leads to color
noise. To remedy this issue, Wilkie et al. [2014] proposed to com-
bine all these estimators via MIS. This requires evaluating the pdf
pe for every component ¢, which, as the authors point out, has
been unavailable for unbiased path sampling techniques in hetero-
geneous media. By providing analytic pdfs for such techniques, our
formulation makes this MIS combination straightforward.

Another approach is to estimate all integrals I simultaneously us-
ing the sampling technique p; corresponding to a chosen component
¢. Unfortunately, this can lead to extreme variance for components ¢
with medium density (locally) larger than that of ¢. Kutz et al. [2017]
proposed sampling distances according to a combined extinction
7i; that bounds the extinctions of all color components along with
carefully chosen event type probabilities to limit the variance of
the estimate (I.) of each component. This conservative technique
eliminates the color noise, but the dense sampling can significantly
increase the computational cost when one channel has medium
density significantly higher than the rest. Our framework allows us
to track all color components together using distances sampled from
extinctions that bound only an individual channel, while mitigating
the potential for higher variance using MIS.

Ie)®) =

(47)

5.4 Unidirectional path tracing

Our path integral formulation enables the application of MIS to
combine the estimators of different sampling techniques. In our
implementation, sampling a path begins with selecting a random
color component. We use this component to guide the distance and
albedo-based scattering event type sampling for the entirety of the
path. While we may employ additional strategies such as next event
estimation or equiangular sampling, the sampling color component
remains invariant. This approach gives us a spectral version of each
path sampling technique whose pdf we must track in addition to the
path contribution. Every time a full path is completed, we use these
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Algorithm 1. Our spectral MIS using the balance heuristic, combining N
sampling techniques, one for each color component ¢y, . . . ¢n. The function
SampleEvent(P;, P2, P3) chooses between three events with probabilities
Py + P, + P3 = 1, and the symbol o denotes component-wise multiplication.

: function UNIDIRECTIONALSPECTRALMIS(X, w)
f—(1,....1)N

1

2 > Initialize per-component path contributions
32 pe—(l....,1)N

4

5

> Initialize per-component path pdfs
¢ « SelectRandom(cy, . ..cnN)
while true do

> Select color component

> Begin path random walk

In(1-
6: t «— _n(__ég) > Sample medium interaction; & € [0, 1)
t
7: X«— X+ 1lw
8: e «— SampleEvent(”"‘_(cx), ‘u_(cx), En (X)) >e e {asn}
Hi Fi I

9: f—fo <T6‘1 (t),ug‘ (X) TN (t)[lgN (X)) l> Upddte contrib, pdf
10:  pepo(pTt) He (X)’ L NTON (t)ﬂe (X)>
i

_cl
t

11:  if e = athen

12: return %m > Balance heuristic — average N techniques
13:  elseif e = s then

14: W sample oc pm(w) > Sample phase function

Algorithm 2. The shadow connection routine for our Spectral+NEE MIS
method. The symbol o denotes component-wise multiplication.

: function SAMPLENEXTEVENT(X, , ¢, f, p) > See Alg.1for ¢, f, p
o, py < SampleLightDir(x)
f—f pm(wx, o)

1

2 > Sample direction toward light
3

4 Pnee < P Pu

5

6

> Update path contributions
D> Initialize next-event path pdfs
Puni <~ P ,Dm((/), X, a)’) > Initialize unidirectional path pdfs

while true do > Begin ratio tracking along shadow ray

In(1- .
7: t «— _n(__ég) > Sample medium interaction; & € [0, 1)
t
8 y « IntersectRay(x, &/, t)
. foLe(y,—«f) .. . ) .
9: if y then returnm > Surface hit,avg. 2N techniques
10 X x+td

11: f—fo <Tcl (t),urcll (x),. _CN (t),ucN (x)) > Only evaluate null

12: Pnee < Pnee © (ytlTCI(t) _CNTCN(t»

13: Puni <~ Puni © <_CITC1(t) ”n_c(IX)s ﬁCNTCN(t) T (X)>
H

t

pdfs to calculate an MIS weight. Algorithm 1 provides pseudo-code
for a unidirectional variant of this method.

In versions of our algorithm where we combine two path con-
struction techniques, such as unidirectional sampling and next-event
estimation, the number of path pdfs we need to track is doubled.
Algorithm 2 lists our next-event routine.

5.5 Bidirectional path tracing

In bidirectional path tracing (BPT) based on delta-tracked camera
and light subpaths and ratio-tracked vertex connections, the MIS
weights have previously been restricted to using either only di-
rectional real-scattering pdfs or costly ray-marched transmittance
sampling pdf estimates. By considering null scattering explicitly,
our framework provides full path pdfs that are exact and cheap



to evaluate. We can use these pdfs to improve the accuracy of the
technique weights and thus facilitate the variance reduction of MIS.

For a path of total length k in our framework, the number of pos-
sible BPT sampling techniques is determined by its real-scattering
length r, as in prior formulations. Techniques differ by the number
of real-scattering vertices on the light and camera subpaths they
connect, respectively s and ¢ (with s + ¢ — 1 = r), with pdf given by
Eq. (44). Applying our spectral MIS on top increases the number of
techniques by a factor equal to the number of color components.
Our current BPT implementation does not employ spectral MIS and
handles achromatic media only.

6 RESULTS

To demonstrate the utility of our path integral framework, we com-
pare variants of our methods to prior work on a variety of scenes
that benefit from the use of MIS. We evaluate rendering efficiency by
measuring images’ root mean square error (RMSE) and lookups to
unit variance (LTUV). The LTUV is a renderer-agnostic metric com-
puted by multiplying the mean squared error (i.e. squared RMSE) of
the image by its total number of medium lookups [Kutz et al. 2017].
Tables 1 and 2 provide descriptions of the methods and the media
used in our experiments.

Next-event estimation. Figure 6 shows two bunny-shaped clouds,
each with a highly forward scattering Henyey-Greenstein phase
function. The thin medium on the top is illuminated from behind by
alarge spherical light source, and the dense medium on the bottom is
lit from the side by a small spherical source. Unidirectional sampling
and next-event estimation (NEE) on their own each fail on one scene.
Combining them via MIS within our formulation, however, avoids
these failures and handles both scenes robustly. We also compare
to the directional MIS approach of Kutz et al. [2017]; it uses delta
tracking along shadow rays, thus the combination weights with
unidirectional sampling (also based on delta tracking) only consider
the pdf of the shadow ray direction. In the dense medium, our
method performs better as it can leverage the more efficient ratio
tracking technique in NEE. This technique is also more expensive
than delta tracking, causing a slight performance loss in our method
compared to directional MIS in the thinner medium. However, this
loss is relatively small compared to our improved efficiency in the
dense medium.

Equiangular sampling. Our formulation provides the flexibility of
choosing not only between delta tracking and ratio tracking but
also other path sampling techniques. This flexibility, a result of
knowing how to analytically compute path densities, is one of the
key benefits of the null path formulation. Figure 7 demonstrates
this by including equiangular sampling [Kulla and Fajardo 2012].
Next-event estimation (NEE) performs well in the right side of the
cloud, illuminated by a distant light source, but exhibits extreme
noise near the small spherical lights inside the cloud, due to not
importance sampling the geometry term along the shadow ray. Our
MIS combination of NEE and equiangular sampling handles both
of these lighting configurations efficiently. Previously, equiangular
sampling could only be combined with regular tracking-based or
biased ray-marching-based transmittance sampling techniques.
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Table 1. Descriptions of the various methods used in our experiments, where
ours are marked in bold. BPT stands for bidirectional path tracing.

Method Description

Unidirectional Analog tracing: delta tracking & phase function sampling
Next-event (NEE) As above, with ratio-tracked light source connections
Directional MIS Unidirectional + delta-tracked light source connections
Unidir.+NEE MIS Unidirectional + ratio-tracked light source connections

Independent tracking Directional MIS applied separately to R,G,B components
Spectral tracking Method of Kutz et al. [2017]; uses Directional MIS
Spectral MIS MIS between per-component Directional MIS
Spectral+NEE MIS ~ MIS between per-component Unidirectional+NEE MIS
BPT: Directional MIS ~ Technique weights based on real-scattering pdfs only
BPT: Full MIS Technique weights based on our full path pdfs

Table 2. The maximum extinction (f,), scattering albedo (#s/4), and scat-
tering anisotropy (g) of the various media shown in the figures throughout
the paper. Spatially varying albedos are given as min:max ranges. The color
bars in Figs. 1,9 and 10 illustrate the maximum extinction (7, dark) and
maximum scattering (7, light) coefficients for every color component.

Medium At m g
Fig. 1 30, 100, 30 0.001:0.95, 0.001:0.95, 0.001:0.95 -0.4
Fig. 6, top 4 1 0.99
Fig. 6, bottom 16 1 0.99
Fig. 7 20 1 0
Fig. 9, left 30, 100, 30 0.001:0.95, 0.001, 0.001:0.95 -0.4
Fig. 9, right 30, 35, 30 0.001:0.95,0.001:0.95, 0.001:0.95 -0.4
Fig. 10 600, 50, 60 0.001:0.1, 0.0075:0.7, 0.001:0.35 0
Fig. 11 20 0.5 0

Spectral media. Our MIS framework also provides benefits when
rendering spectrally varying media. Figure 8 visualizes the path
throughput variation in a perfectly forward-scattering medium. The
traditional independent tracking method renders the color compo-
nents independently, choosing a random one to estimate for each
pixel sample. Our method uses the same sampling techniques but
combines them via MIS. As a result, we both reduce color noise
and avoid the increased cost of spectral tracking’s use of a global
bounding majorant [Kutz et al. 2017]. Our method is still prone to
some color noise due to under-sampling the majorant of a channel,
though this noise is bounded by the number of techniques in MIS.

Figures 1 and 9 demonstrate how our framework allows us to
overcome the limitations of both independent tracking and spectral
tracking. In the Fig. 1 plume, the green channel is significantly more
dense than the red and blue. Independent tracking shows noticeable
color noise, even though it is able to estimate the pixel luminance
better than spectral tracking whose sampling cost is increased by
the green-channel density. Our spectral MIS method has little color
noise and estimates the luminance better, which is improved further
by the use of next-event estimation (NEE).

In the left plume in Fig. 9 we reduce the albedo of the green
channel. Doing this reduces the efficiency of spectral tracking even
further as this channel determines the global bounding majorant
but its scattering contribution is negligible. Both our methods and
independent tracking avoid always using this high majorant. In the
right plume, the densities of the channels are similar in magnitude
and their albedo ranges are identical, making the cost reduction from
tight, spectrally varying majorants less significant. Our spectral MIS
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Unidirectional ~ Next-event (NEE)
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=

Directional MIS  Uni.+NEE MIS (ours)
1225 RMSE:0.015 LTUV:027M 129s RMSE:0.011 LTUV:0.16M

Fig. 6. Unidirectional sampling and next-event estimation on their own can-
not robustly handle both the back-lit thin medium (top) and side-lit dense
medium (bottom). Our MIS combination of the two techniques handles
both scenes efficiently, and its ratio-tracked shadow connections provide
improvement in the dense bunny over directional MIS which is limited to
using delta tracking along these connections.

method still performs on par with spectral tracking, and the addition
of ratio-tracked NEE brings more significant improvement.

Our approach also extends to solid media like translucent stone.
In Fig. 10 we model malachite by interpolating between two sets
of medium parameters based on a lookup into a malachite color
spline that is offset by several octaves of procedural noise [Per-
lin 1985]. Since the medium is enclosed by a dielectric boundary
which prevents shadow connections, we use pure unidirectional
path construction for all three compared methods. Thus, the differ-
ences between them are in the spectral handling only. Even though
lookups in this medium are significantly cheaper than accessing
the hierarchical density grid structure of the plumes, our method
still provides improvements when medium parameters force spec-
tral tracking to use an overly conservative majorant. Note that, in
principle, the per-channel sampling majorants in our method can
be set arbitrarily, hence spectral tracking is the special case where
all color components use the same (bounding) majorant.

Bidirectional path tracing. In the scene in Fig. 11, the medium covers
the light source, causing unidirectional path tracing to fail due to
geometric singularities near the light source that it does not impor-
tance sample [Georgiev et al. 2013]. Bidirectional path tracing (BPT)
handles these singularities effectively via MIS. We compare our
weights based on full path pdfs against a traditional implementation
restricted to using directional real-scattering pdfs only. By account-
ing for medium sampling, our weights serve as better proxies for
the efficiency of the sampling techniques, which in turn improves
the quality of their combination, as seen in the zoom-ins. To gain
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Equiangular sampling Next-event (NEE)  Equi.+NEE MIS (ours)
54s RMSE: 0.035 LTUV: 0.39M 495 RMSE:0.065 LTUV: 1.51M ~ 50s RMSE: 0.016 LTUV: 0.08M

Fig. 7. Our framework provides a principled way to combine equiangular
sampling and next-event estimation in heterogeneous media via MIS. Scene
modeled after Kulla and Fajardo [2012, Fig. 7].

more insight, we compute the contribution of each (s, t) technique
weighted by our full-path pdf weights and by directional pdf weights.
We then show the positive/negative difference between the two re-
sulting images (in blue/purple), relative to the total contribution of
the corresponding real-scattering path length r = s + t — 1. The set
of (s, t) false-color images highlights the differences between the
two weighting schemes. Being oblivious to attenuation through the
medium, directional MIS prefers techniques that perform connec-
tions along long path segments, e.g. camera connections (t = 1). In
contrast, our weights tend to prefer techniques that perform connec-
tions through the dense medium, e.g. next-event (s = 1), recognizing
that ratio tracking can be much more efficient along such segments
than a delta-tracked random walk.

7 CONCLUSIONS, DISCUSSION & FUTURE WORK

We have presented a null-scattering extension of the standard path
integral. Critically, instead of treating null scattering as a black-box
rejection sampling process, our extension accounts for null scat-
tering directly in the path integral itself. This makes it possible,
for the first time, to compute analytic path pdfs for null-scattering
methods, enabling their combination with other complementary
techniques, and with each other using MIS. Many production ren-
derers have so far avoided null-scattering approaches, favoring
more expensive regular tracking [Fascione et al. 2018] or biased ray
marching [Georgiev et al. 2018; Fascione et al. 2018], since these
approaches can leverage the increased robustness of MIS. With our
framework, null-scattering approaches become viable in this setting.
Furthermore, our theory lays out a solid foundation for interpret-
ing current, and developing new unbiased rendering techniques of
spatially and spectrally varying participating media.



A null-scattering path integral formulation of light transport « 44:11

— red throughput — red throughput — red throughput
6 /= 4 4 4
T — green throughput — green throughput — green throughput
— blue throughput — blue throughput — blue throughput
5 10K paths 47.5K lookups 10K paths  62.5K lookups 10K paths 47.8K lookups
= 3 3
i
AP
3 2 2 2
Ht
2
1 1 1
1 \/\/M
0 02 0.4 0.6 0.8 10 0 0.2 0.4 0.6 0.8 10 0 02 0.4 0.6 038 10 0 02 0.4 0.6 0.8 10
distance distance distance distance
RGB medium Independent tracking Spectral tracking [Kutz et al. 2017] Spectral MIS (ours)

Fig. 8. We demonstrate the MIS abilities of our framework in a perfectly forward-scattering, non-absorptive 1D medium with spatially and spectrally varying
density. We plot the average path throughput of each color component at real-scattering events, along with a +1 standard deviation band. The top-left insets
are noise exemplars produced by each method. Our method uses the same sampling techniques as independent tracking, but combines them via MIS. This
results in a reduction of color noise comparable to that of spectral tracking but at a lower cost (i.e. number of medium lookups), thanks to avoiding the use of
a common conservative majorant for all color components. Experiment designed after Kutz et al. [2017, Fig.9].
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Fig. 9. Spectral tracking uses a common majorant for all color components, which leads to high per-pixel-sample cost in the left plume whose green channel
has high density but low albedo. Our MIS combination of per-channel sampling techniques outperforms spectral tracking by reducing the number of expensive
medium lookups while avoiding the color noise of independent tracking. In the right plume, whose spectral variation is small, we can still outperform spectral
tracking through the use of ratio-tracked next-event estimation (NEE). Table 1 describes the individual methods and Table 2 provides the medium parameters.
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Fig. 10. In this procedurally generated, malachite-like material, medium lookups are relatively cheap, yet by avoiding the use of a common bounding majorant
for all color components our spectral MIS method achieves noticeable variance reduction over spectral tracking. Independent tracking outperforms spectral
tracking for the same reason, albeit at the expense of more color noise. Table 1 describes the individual methods and Table 2 provides the medium parameters.

ACM Trans. Graph., Vol. 38, No. 4, Article 44. Publication date: July 2019.



44:12  « Miller, Georgiev, and Jarosz

RVISEs 0781 RIVISEs Q048 RMSE: 0049

LUV 12,78 LTUVe 44.9M LiUVs 87.2M

“Ttimmes 2308 Thimes 2788 Thimoes 2738
+2[EY +2[EY +2EY
$2EY s2EY +2EY

Uni.+NEE MIS (ours) BPT: Full MIS (ours) BPT: Directional MIS Reference

( Full MlSH
~
I
~
Dir. MIS

I
A
+

r=4

L

Path length contributions Weighted (s, t) technique contribution difference

Fig. 11. Our formulation provides full path pdfs that incorporate medium sampling, making the MIS weights in bidirectional path tracing (BPT) account better
for sampling technique efficiency compared to prior implementations restricted to using directional real-scattering pdfs only. Unidirectional path tracing
fails in this scene due to path contribution singularities it does not importance sample. On the right, we show the contributions of individual real-scattering
path lengths r, along with the difference between the full- and directional-MIS-weighted contribution images for every (s, t = r — s + 1) technique. The
camera-connection techniques (¢ = 1) are dominated by purple as they are preferred more by directional MIS which is oblivious to the presence of media. Our
full MIS scheme prioritizes vertex connections through the dense medium (e.g. s = 1). Black means the technique is weighted equally by both schemes.

Other light transport algorithms. While we have demonstrated our
theory in unidirectional and bidirectional path tracers, our frame-
work can be readily used to leverage or combine null scattering
within other path sampling approaches in density estimation [Jensen
et al. 2001; Jensen and Christensen 1998; Jarosz et al. 2008, 2011a,b;
Kiivanek et al. 2014], joint path sampling [Georgiev et al. 2013],
Metropolis light transport [Pauly et al. 2000], and gradient-domain
rendering [Kettunen et al. 2015].

Risks of MIS. As with any application of MIS, our approach can
be less efficient than one of the combined techniques alone. Since
this risk grows with the number of techniques, one needs to be
careful to not increase this number unnecessarily. Similarly, while
our framework allows more flexibility in the sampling techniques
used (e.g. using non-bounding majorants in spectrally varying me-
dia), this flexibility should be exploited judiciously as it can lead to
higher variance (e.g. increased color noise in zero-density regions).
Combining multiple techniques via MIS also comes with additional
implementation and validation burden.

Path-space manifolds. It may be interesting to extend our theory to
include null- and specular-scattering surfaces. This would provide a
unified framework that considers null volume scattering, transpar-
ent surfaces, and the specular path-space manifold [Jakob 2013]. Our
null-scattering path space in fact directly encodes a path-space man-
ifold since all null vertices are restricted to lie on the line between
real vertices. This means that in contrast to specular surfaces, which
require numerical exploration to remain on the manifold [Jakob
2013], direct Monte Carlo sampling of our path space always re-
mains on the manifold. Ratio tracking [Novak et al. 2014] in our
framework is effectively a manifold next-event estimation [Hanika
et al. 2015] technique that operates across multiple specular (null)
vertices without the need for exploration to stay on the manifold.

Extending other techniques. By providing analytic pdfs, we believe
that our framework may also ease the process of extending other
rendering techniques to account for heterogeneous media. The re-
cently developed photon planes and volumes [Bitterli and Jarosz
2017] extension to photon mapping currently works only in the
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homogeneous setting, in part due to the inability to evaluate path
pdfs for arbitrary locations on a photon plane. Path guiding tech-
niques [Vorba et al. 2014; Herholz et al. 2016; Miiller et al. 2017]
could also conceivably be extended to consider propagation dis-
tances in addition to directions, combining the resulting guiding
strategies with traditional path sampling techniques via MIS. By
explicitly treating null collisions as additional dimensions in path
space, our framework might allow for constructing better correlated
offset paths in volumetric gradient-domain rendering [Kettunen et al.
2015]. Finally, it may be possible to derive a similar null-scattering
path space extension to allow heterogeneous non-exponential or
correlated participating media [Jarabo et al. 2018; Bitterli et al. 2018].
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