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Figure 1: We create high-dimensional samples which simultaneously stratify all bivariate projections, here shown for a set of 25 4D samples,
along with their six stratified 2D projections and expected power spectra. We can achieve 2D jittered stratifications (a), optionally with
stratified 1D (multi-jittered) projections (b). We can further improve stratification using correlated multi-jittered (c) offsets for primary
dimension pairs (xy and uv) while maintaining multi-jittered properties for cross dimension pairs (xu, xv, yu, yv). In contrast to random
padding, which degrades to white noise or Latin hypercube sampling in cross dimensional projections (cf. Fig. 2), we maintain high-quality

stratification and spectral properties in all 2D projections.

Abstract

We generalize N-rooks, jittered, and (correlated) multi-jittered sampling to higher dimensions by importing and improving
upon a class of techniques called orthogonal arrays from the statistics literature. Renderers typically combine or “pad” a
collection of lower-dimensional (e.g. 2D and 1D) stratified patterns to form higher-dimensional samples for integration. This
maintains stratification in the original dimension pairs, but looses it for all other dimension pairs. For truly multi-dimensional
integrands like those in rendering, this increases variance and deteriorates its rate of convergence to that of pure random
sampling. Care must therefore be taken to assign the primary dimension pairs to the dimensions with most integrand variation,
but this complicates implementations. We tackle this problem by developing a collection of practical, in-place multi-dimensional
sample generation routines that stratify points on all t-dimensional and 1-dimensional projections simultaneously. For instance,
when t=2, any 2D projection of our samples is a (correlated) multi-jittered point set. This property not only reduces variance,
but also simplifies implementations since sample dimensions can now be assigned to integrand dimensions arbitrarily while
maintaining the same level of stratification. Our techniques reduce variance compared to traditional 2D padding approaches like
PBRT’s (0,2) and Stratified samplers, and provide quality nearly equal to state-of-the-art QMC samplers like Sobol and Halton
while avoiding their structured artifacts as commonly seen when using a single sample set to cover an entire image. While in this
work we focus on constructing finite sampling point sets, we also discuss potential avenues for extending our work to progressive
sequences (more suitable for incremental rendering) in the future.

CCS Concepts
» Computing methodologies — Computer graphics; Ray tracing; * Theory of computation — Generating random combina-
torial structures; * Mathematics of computing — Stochastic processes; Computations in finite fields;

1. Introduction

Rendering requires determining the amount of light arriving at
each pixel in an image, which can be posed as an integration prob-
lem [CPC84]. Unfortunately, this is a particularly challenging in-
tegration problem because the integrand is very high dimensional,
and it often has complex discontinuities and singularities. Monte

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Carlo (MC) integration—which numerically approximates integrals
by evaluating and averaging the integrand at several sample point
locations—is one of the only practical numerical approaches for
such problems since its error convergence rate (using random sam-
ples) does not depend on the dimensionality of the integrand. Taking
samples often corresponds to tracing rays, which can be costly in
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(a) XORed 2D (0,2) sequence [KK02]

(b) XORed+permuted 2D (0,2) sequence

(c) Permuted 2D CM]J points [Ken13]
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Figure 2: A common way to create samples for higher-dimensional integration is to pad together high-quality 2D point sets. (a) Kollig and
Keller [KK02] proposed scrambling a (0,2) sequence by XORing each dimension with a different random bit vector. While odd-even dimension
pairings produce high-quality point sets, even-even (xu) or odd-odd (yv) dimensions have severe deficiencies. These issues can be eliminated
by randomly shuffling the points across dimension pairs (b and c), but this decorrelates all cross dimensions, providing no 2D stratification.

complicated scenes, so a common goal is to optimize speed by
rendering accurate images using as few samples as possible.

While N uncorrelated random samples result in variance pro-
portional to N7l using carefully correlated samples (with no
dense clumps or large gaps) can produce high-quality images at
a much faster rate [C0o086; DW85; Mit91; Mit96; Ozt16; PSC*15;
RAMNI12; SJ17; SK13; SMJ17; SNJ*14]. A common approach to
generate such samples is stratification (or jittering) which divides
the sampling domain into regular, even-sized strata and places one
sample in each [Coo86]. Multi-jittering [CSW94] takes this one step
further by ensuring stratification in both 2D and 1D. Rendering is,
however, an inherently high-dimensional integration problem, but
it is unclear how to extend such random sampling approaches to
simultaneously stratify in successively higher dimensions.

It is tempting to switch to deterministic (optionally randomized)
quasi-Monte Carlo (QMC) [Nie92] sampling techniques which ex-
tend to higher dimensions and are carefully crafted to provide ad-
ditional stratification guarantees. Unfortunately, common QMC se-
quences like Halton [Hal64] and Sobol [Sob67] have increasingly
poor stratification in (pairs of) higher dimensions [CFS*18; CKK18]
(even with good randomization [JK08]), resulting in erratic conver-
gence. They are also prone to structured artifacts which can be
visually more objectionable and harder to filter away [ZJL*15] than
the high-frequency noise arising from random MC integration.

To overcome these challenges, renderers in practice typically com-
bine or “pad” a collection of 2D points to form higher-dimensional
samples [CFS*18; KK02; PJH16]. In this way, each successive
pair of dimensions is well stratified, providing some variance re-
duction. Unfortunately, this does not provide stratification over the
higher-dimensional domain or in 2D projections which span dif-
ferent stratified dimension pairs, see Fig. 2. In practice, this also
means that the primary dimensions of the sampler must be carefully
assigned to the important dimensions of the integrand to best lever-
age the stratification. Even so, the lack of some stratification means
that the convergence rate is destined to degrade back to that of un-
correlated random sampling [SJ17]. In short, none of the sampling
patterns used in rendering are well-stratified simultaneously in all
higher dimensions and all lower-dimensional projections [CFS*18].

Contributions. In this paper we take a step to overcome these lim-
itations by extending jittered and multi-jittered samples so that they
are stratified across all (and not just some) lower-dimensional (e.g.
all 2D) projections, see Fig. 1. We accomplish this by building on
the concept of orthogonal arrays (OAs) [HSS99; Rao47], which, to
our knowledge, are unexplored in the rendering community. Liter-
ature on orthogonal arrays typically targets statistical experiment
design, where the computational constraints and terminology is
quite different from our application in Monte Carlo integration. One
of the goals of this paper is to introduce these ideas to graphics
and provide a sort of “Rosetta stone” (Sec. 3) into this literature for
our community. Since these techniques are often applied in fields
where construction speed is not a concern (e.g., where a single set
of samples is used for an experiment that spans days or months),
efficient implementations are often unavailable. To fill this gap, we
propose novel, in-place construction routines (Sec. 4) which make
orthogonal array sampling practical for rendering. In this paper, we
focus on constructing finite sampling point sets and leave progres-
sive sequences (more suitable for incremental rendering) as future
work—see the discussion in Sec. 6. Our collection of sampling rou-
tines results in a useful hybrid between the strengths of stochastic
approaches like (multi-) jittered sampling (but stratified in more di-
mensions) and scrambled deterministic QMC sampling (but without
the structured artifacts and poor stratification in projections). To
demonstrate the benefits and trade-offs of the proposed methods we
perform an empirical evaluation (Sec. 5) on both simple analytic in-
tegrands and rendered scenes. Finally, we discuss limitations to our
approach (Sec. 6) and identify additional promising work from this
field which could provide fruitful avenues for further investigation.

2. Related Work

MC and QMC sampling in graphics. Pure MC integration using
uncorrelated random samples has a fixed convergence rate indepen-
dent of the (dimensionality of the) integrand. However, today we
have a large arsenal of carefully correlated sample patterns which
are stochastic, yet enforce certain spatial (stratification) or spectral
(Fourier) properties to obtain improved variance and convergence
rate. Recent surveys [0S18; SOA*19; SSJ16] provide an excel-
lent historical perspective and overview of the latest developments.
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Techniques typically target so-called “blue-noise” frequency spec-
tra [BSD09; Coo86; HSD13; LD08; RRSG16; SZG*13]/Poisson-
disk sampling [MF92; Mit91] or enforce stratification constraints
to reduce clumping using e.g., uniform [PKK00; RAMNI12] jit-
ter [Coo86], Latin hypercube [MBC79]/N-rooks [Shi91], corre-
lated [Ken13], in-place [Ken13], and progressive [CKK18] variants
of multi-jittered [CSW94] sampling, and various flavors of low-
discrepancy [Shi91] QMC sampling [Hal64; HM56; Kell3; KK02;
KPR12; LPO1; Nie92; Sob67]. Recent work has even combined both
spatial and spectral properties in the form of low-discrepancy blue-
noise [PCX*18]. We introduce a new class of multi-dimensional
stratified sampling techniques to graphics from statistics.

Higher-dimensional integration. While rendering is an inherently
high- (or infinite-) dimensional integration problem, most state-of-
the-art techniques focus entirely on the 2D problem. Independent
random sampling and most QMC approaches generalize (in theory),
but higher-dimensional variants of the aforementioned techniques
are unfortunately either unknown (multi-jitter [CKK18; CSW94;
Ken13]), are prohibitively expensive to generate (blue noise), have
poor stratification properties in higher dimensions or their projec-
tions [JKO8] (QMC sequences), produce distracting structured arti-
facts (a single QMC sequence applied to an image), or provide di-
minishing returns due to the curse of dimensionality (jitter [CPC84]).
The orthogonal array (OA) sampling techniques we introduce pro-
vide a middle ground between stratified- and QMC-sampling which
directly address each of these limitations.

In light of these high-dimensional sampling challenges, practi-
cal implementations [KKO02; PJH16] typically generate multiple
low-dimensional samples which are randomly combined to form
higher-dimensional points. For instance, a 4D sample (for e.g., pixel
anti-aliasing plus depth of field) could be created by combining
the 2D coordinates of two separate 2D stratified points (one for xy
and one for uv, see Fig. 2) while permuting (“shuffling”) the order
across pairs of dimensions. This was originally proposed in graphics
under the name “uncorrelated jitter” by Cook et al. [CPC84], but is
now more commonly referred to as “padding.” Such samples can be
combined using independent random permutations, Owen scram-
bling [Owe97], or random digit XOR scrambling [KK02]. Padding
is a generalization of Latin hypercube sampling (which pads n 1D
stratified points to form an nD sample). Unfortunately, just as with
Latin hypercube sampling, while the primary dimension pairs may
be well stratified, the resulting samples are not well stratified in
the higher-dimensional domain (xyuv) or in cross-dimension projec-
tions (xu, xv, yu, yv), see Fig. 2. Recent work has made progress on
preserving stratification for some subset of the non-primary dimen-
sion pairs via precomputed permuted tables [CFS*18] or “magic”
shuffling [KCSG18], but a general solution has remained elusive.
Unfortunately, lacking stratification in any projection or the full
high-dimensional domain will degrade convergence rate to that of
independent random sampling, O(N ') [SI17].

The OA sampling techniques we introduce stratify simultaneously
in all 1-dimensional and #-dimensional projections, for z > 2.

Orthogonal Arrays. Orthogonal arrays (OAs) [BB52; BP46;
Bus52; HSS99; Rao47] are a mathematical concept from combina-
torial design which have become essential in the statistical design
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of scientific experiments, automated software testing [Pre10], and
cryptography. Owen [Owe92] later applied them to numerical inte-
gration and provides a recent overview [Owel3] of these techniques
in relation to other stratification methods and QMC. In essence,
orthogonal arrays generalize N-rooks, jittered, and multi-jittered
sampling and can be interpreted as producing a dD point set which
together is stratified in all possible D projections, for some ¢ < d
(e.g.,d =5 and t = 2). Orthogonal array-based Latin hypercube de-
signs [Tan93; Tan98] impose this stratification for some chosen ¢ but
additionally ensure that the samples form a valid Latin hypercube
where all samples project to distinct strata in each 1D projection.
Jittered samples are OAs where t = d = 2, and multi-jittered is the
corresponding “Latinized” version, but importantly OAs allow for
both 7 and d to be greater than 2. While this is an old but still active
area of research [AKL16; CQ14; DS14; HCT18; HHQ16; HQ11;
HT12; HT14; LL15; PLL09; SL06; SLL09; Wen14; YLL14], most
work in this field is difficult to adapt to rendering since it is often
concerned merely with existence proofs, or theoretical variance anal-
yses, with less emphasis on efficient construction algorithms. (A
brute-force search is acceptable when a single OA is needed before
a much more time-consuming physical experiment. Pre-tabulated
arrays are also common.)

To the best of our knowledge, OAs have not previously been
used in computer graphics, though they are mentioned in passing by
Veach (who was co-advised by Owen) in his dissertation [Vea97].
Our primary contributions are to introduce these techniques to ren-
dering, to demonstrate their benefit in rendering using novel con-
struction routines, and to provide a bridge between the OA literature
and rendering to guide future work. In the supplemental document
we additionally provide a “further reading list” with our suggested
sequence of references for graphics researchers to most quickly get
ramped up on the concepts.

3. Background
3.1. A primer on orthogonal arrays

Experiment design. An experiment typically seeks to determine
how one or more factors (or variables), the values of which range
over a finite set of levels (or symbols), influence a particular out-
come. For instance, we might want to know how well a plant grows
based on two factors: amount of sunlight and presence of fertilizer;
or whether a chemical reaction occurs based on five factors: the pres-
ence of three possible compounds, a catalyst, and the temperature.
To determine this, we need to perform a number of runs or trials of
our experiment, where each run specifies particular levels (or values)
for the combination of factors, e.g., no sun but lots of fertilizer.

If the number of factors and levels is small, then it may be fea-
sible to perform a full factorial experiment which tests all possible
combinations of levels across all factors. The total number of such
combinations for d factors with s levels each is s¢, so this is unfortu-
nately only practical for small problems. When a full exploration of
the parameter space is infeasible, an alternative is to use a fractional
factorial design that significantly reduces the sampling space by
omitting certain combinations. Orthogonal arrays are a mathematical
tool to determine a suitable subset of combinations to evaluate.
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Table 1: An orthogonal array OA(N,d,s,t) with N =9 runs, d = 4
factors (x,y,u,v), s = 3 levels (0, 1,2) and strength t = 2 expressed
(left) as a table of levels with runs as columns and factors as rows.
In each pair of factors, every possible 2-tuple occurs exactly the
same (. = N/s' = 1) number of times (\ is called the index of the
array). By interpreting each run as a sample point, and each level
as a coordinate, any choice of two distinct factors (e.g., x and y)
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Orthogonal arrays. An orthogonal array specifies the levels to
test for each factor across a series of runs. We can encode this in
2D tabular form with runs or trials of the experiment enumerated
along one axis and the factors or variables whose effects are being
analyzed along the other. The entries in the array are elements from
an alphabet of symbols (e.g., the numbers 0, 1,2) that indicate the
levels at which the factors will be applied.

Table 1 (left) shows an example orthogonal array with 4 rows
enumerating the factors and 9 columns enumerating the runs (note
that the literature sometimes swaps the mapping of rows/columns to
runs/factors, so we will typically refer to runs and factors to avoid
confusion). Each array entry in this example takes on one of 3 levels:
0,1,2, which could indicate three possible levels of sunlight for one
factor or three possible types of fertilizer for another factor. Here
we have simply labeled the four factors abstractly as x,y,u, v.

This is an orthogonal array of strength 2, which means that we
can take any two factors (say the first two),

1 1 2 2 2

X: 1
o 1 2 0 1 2°

0O 0 O
y: 0 1 2

and we see that each of the 9 possible 2-tuples from {0, 1,2}2:
{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)}, occur
as runs the same number of times t (in this case once each, so
t = 1). Basing an experiment on an orthogonal array of strength ¢
ensures that we analyze not just the effect of individual factors, but
the interaction of all possible combinations of up to ¢ factors.

Definition: An N X d array A, with entries from a set § =
{0,...,s— 1} of s > 2 symbols, is said to be an orthogonal ar-
ray of s levels, index A, size N, d factors/variables/dimensions, and
strength t (for some ¢ in the range 0 <t < d) if each 7-tuple drawn
from S occurs as a run exactly A times in every N X ¢ subarray of A.

We denote the array OA(N,d, s,t), where the integers N.d,s,t
and A are its parameters. Note that there is no need to explicitly
mention A since it is determined by the other parameters: A = N/s'.
We will mostly be interested in OAs of unit index, A = 1.

Existence and construction of orthogonal arrays. Much of the
theoretical work on orthogonal arrays is interested in proving for
which values of these parameters an orthogonal array can exist. The

more practical question, however, is: if one does exist, how can we
algorithmically construct such an array?

Every N X d array has strength 0. Unit index orthogonal arrays
of strength 1, OA(N,d,s = N, 1), also always exist regardless of
the values of the other parameters. We can trivially construct such
OAs for an arbitrary number of factors by simply assigning A;; =i
where i and j indicate a run and factor of the array A, for 0 <i <N
and 0 < j < d. We will see later that unit index OAs of strength 1
correspond to Latin hypercube stratification [MBC79; Shi91].

Several construction algorithms also exist for unit index orthogo-
nal arrays with strength r > 2, but they are more involved. In Sec. 4
we will introduce novel, and extend existing, construction algorithms
to make them practical for Monte Carlo rendering. First, however,
we need to understand how such OAs relate to MC integration.

3.2. Monte Carlo sampling using orthogonal arrays

The tabular form of OAs is quite abstract, but we can also interpret
OAs visually (Table 1, right) as a collection of N d-dimensional
points: one for each of the N runs, with each factor specifying the
coordinate along one of the d dimensions. The strength property of
OAs tells us that by plotting any choice of  distinct dimensions/fac-
tors, the N points will be arranged on a regular s" grid, with each
point repeated A times.

Orthogonal-array-based jittered sampling: In canonical form,
such points are ill-suited for Monte Carlo integration since (even
though their low-dimensional projections are evenly spaced) the
points are not evenly distributed in the high-dimensional space (see
Table 2). To enable unbiased MC integration, Owen [Owe92] pro-
posed mapping the integer lattice representation of the OA to points
uniformly distributed in the unit hypercube [0, l)d via randomized
shuffling and jittering:

X;j = M €0,1)? for0<i<Nand0<j<d, (1)
where &; i€ [0, 1) independently jitters each point’s dimensions by
a uniformly distributed random value, and 7;(A;;) simply accesses
the A?j‘ element from the j‘h independent random permutation of the
levels (a.k.a. strata) in S. We discuss ways to efficiently generate A
and X in Sec. 4. Table 2 shows an example.

Table 2: In the canonical arrangement, samples lie along a single
diagonal for Latin hypercube sampling (left) and along planes for
Orthogonal-array-based sampling (right). Random shuffling and
jitter distributes the samples uniformly over the hypercube.

Latin hypercube sampling
OA(s,3,s,1)

Orthogonal array sampling
OA(s%,3,5,2)

Canonical Shuffled Canonical Shuffled
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When A has unit strength and index, Eq. (1) produces Latin hy-
percube (LH) samples, which stratify all 1-dimensional projections.
More generally, Eq. (1) stratifies all #-dimensional projections for
an OA of strength 7. In simple terms, if A is a strength t = 2 OA,
Eq. (1) produces uniformly distributed d-dimensional points which
are simultaneously stratified in all 2D projections as if they had
been produced by jittered sampling. Fig. 1(a) shows the six different
stratified 2D projections of a 4D point set generated this way.

Orthogonal array-based multi-jittered sampling: The disadvan-
tage of using strengths # > 2 with such jittered offsets is that while
t-dimensional projections are stratified into s strata, the projections
for all lower dimensions r < 7 are only stratified into s” levels with
As'~" samples in each stratum, e.g., the 1-dimensional projections
are now only stratified into s! intervals, not the s' = N intervals
ensured by LH sampling. Tang [Tan93] showed how to achieve
both LH stratification and OA stratification by arranging, for each
dimension, all N/s = As'~! points that would fall into the same
stratum to instead each fall into finer, distinct, sub-strata. This is
analogous to how multi-jittered sampling [CSW94] enforces both
LH and jittered stratifications; but while multi-jittered sampling is
restricted to 2D points, OAs allow generating d-dimensional points
with #-dimensional (plus 1-dimensional) stratification. Fig. 1 shows
the multi-jittered (b) and correlated multi-jittered (c) 2D projections
of a 4D point set generated using an efficient in-place construction
algorithm we propose in Sec. 4.

4. Practical construction techniques for rendering

In this section we translate the previously introduced mathematical
definitions of orthogonal arrays into concrete construction algo-
rithms suitable for MC integration in rendering. While some papers
in the OA literature include “constructions”, this typically refers
to an existance proof by construction rather than a practical and
efficient numerical algorithm.

Since practical rendering systems typically consume sample di-
mensions one by one, we seek construction algorithms that support
such on-the-fly generation. Our goal is to efficiently construct each
sample and dimension without much precomputation or storage, ide-
ally in a way where each dimension of each sample can be generated
independently and in any order.

‘We propose two practical implementations of classical OA con-
struction approaches (Secs. 4.1 and 4.2)—which target OAs of
strength t = 2 and ¢ > 2, respectively—while enriching them with
jittered, multi-jittered and correlated multi-jittered offsets. We also
propose a (to our knowledge) novel construction algorithm (Sec. 4.3)
that generalizes Kensler’s CMJ sampling to arbitrary dimensions,
producing full-factorial OAs of strength t = d.

4.1. High-dimensional points with (C)MJ 2D projections

Bose [BN41; Bos38] proposed a construction technique for orthog-
onal arrays of type OA(sz,s + 1,5,2) where s is a prime number.
From an MC rendering point of view, this will allow us to generalize
Latin hypercube [MBC79; Shi91], padded 2D jittered [CPC84], and
padded 2D (correlated [Ken13]) multi-jittered [CSW94] sampling
to be stratified simultaneously in all 1D and 2D projections.
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Listing 1: Computing an arbitrary sample from a Bose OA pattern.

float boseOA(unsigned i, // sample index
unsigned j, // dimension (< s+1)
unsigned s, // number of levels/strata
unsigned p, // pseudo-random permutation seed
0ffsetType ot) { // J, MJ, or CMJ

unsigned Aij, Aik;

i permute(i % (s*s), s*s, p);

unsigned Ai@ =1/ s;
unsigned Ail =1 % s;
if (j = 0) {
Aij = AiO;
Aik = Ail;
} else if (j == 1) {
Aij = Ail;
Aik = Aio;
} else {
unsigned k = (j % 2) ? j-1 : j+1;
Aij = (Ai0 + (j-1) * Ail) % s;
Aik = (Ai0 + (k-1) * Ail) % s;

}

unsigned stratum = permute(Aij, s, p * (j+1) * 0x51633e2d);
unsigned subStratum = offset(Aij, Aik, s, p * (j+1) * 0x68bc2leb, ot);
float jitter = randfloat(1i, p * (j+1) * 0x02e5be93);
return (stratum + (subStratum + jitter) / s) / s;

// Compute substrata offsets
unsigned offset(unsigned sx, unsigned sy, unsigned s,
unsigned p, OffsetType ot) {
return permute(sy, s, (sy * s + sx + 1) * p);
return permute(sy, s, (sx + 1) * p);
return permute(sy, s, p); // CMJ

if (ot == J)
if (ot == MJ)

}

Bose’s construction sets the j-th dimension of the i-th sample to:

Ajp = [i/s], )
Aij:Ai0+(j_])Ail mod s 3)

The division and modulo operations for the first two dimensions (2)
cycle through the 5 possible 2-tuples by converting the value 7 into
a two-digit number in base s. This is equivalent to the standard
way of mapping a linear index i into a regular 2D s X s grid. The
remaining dimensions (3) are simply a linear combination of the
first two, modulo s. The example orthogonal array in Table 1 was
created using this construction technique.

Ajj=imods for j=0and j=1;and

for2 < j<s+1.

The orthogonal array produced by Eqgs. (2) and (3) must be prop-
erly scaled to fit into the unit hypercube for MC integration. Trivially
mapping an OA by taking X;; = A; /s creates points that lie within
just a few lines or planes (see Table 2) so it is essential to randomize
and jitter the OA beforehand to ensure the points are uniformly dis-
tributed (e.g. using Eq. (1)). In Listing 1 we provide pseudo-code for
computing an arbitrary sample i from the N = s X s set of stratified
d-dimensional Bose samples in-place (without requiring significant
precomputation or storage). We model this after Kensler’s in-place
CMIJ construction, but generalized to d dimensions, and enhanced
to allow for three different flavors of substrata offsets: jittered, multi-
jittered, and correlated multi-jittered.

Line 7 permutes the index i so that the samples are obtained in
random order. We rely on Kensler’s hashing-based permute(i,1,p)
function, which returns the element at position i in a random permu-
tation vector of length 1 where the value p is used to select one of
the /! possible permutations (we include the definition of permute()
as well as the pseudorandom randfloat () in Listing 4 for complete-
ness). Lines 8 and 9 implement Eq. (2) and Line 18 implements
Eq. (3) for the remaining dimensions of the sample. These are then
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permuted (Line 21) to assign the sample to a random one of the ma-
jor s x s strata. Lines 22-23 together implement the three different
strategies of substrata offsets. We first offset (Line 22) the sample
within the cell to the appropriate substratum, and then add a small
bit of additional random jitter (Line 23) within the substratum.

The offset() function takes on one of three forms depending on
whether jittered (J), multi-jittered (MJ), or correlated multi-jittered
(CM)J) offsets are desired. Jittered-style chooses one of the s sub-
strata offsets at random, independently for each stratum. For multi-
jittered, samples that fall within the same x stratum use a single
x-substratum permutation of their y strata coordinates, and likewise
for y. Correlated multi-jittered uses the same permutation for the x
substrata in each y stratum, and vice-versa.

The substratum offset computation for a dimension depends on
the stratum coordinate for the “other” dimension (Lines 10-20), e.g.
for the first two dimensions: the x substrata depend on the y stra-
tum (Lines 11 and 12), and the y substrata depend on the x stratum
(Lines 14 and 15). Once we move beyond two dimensions we have
many choices for how to pair up the remaining dimensions. For
jittered and multi-jittered offsets, pairing dimension j with any other
dimension will produce correct and statistically identical results.
However, this choice will influence the appearance of the point set
for correlated multi-jittered offsets. We chose to generalize the xy
case by pairing each odd dimension with the dimension immediately
preceding it, and vice-versa (Line 17). This ensures that the point
sets look like CMJ2D in each of the primary 2D projections. Pro-
jection onto non-primary pairs of dimensions produces somewhat
inferior correlations, so we instead force those projections to use
multi-jittered offsets by introducing an additional shuffle.

Bose’s construction shares many similarities to multi-jittered
sampling. In fact, the first two dimensions are identical. Bose’s
construction, however, extends this to higher dimensions. On the
other hand, the Bose construction also places more restrictions
on the stratification grid and number of allowed samples. Multi-
jittered sampling can produce an n X m stratification of points for
arbitrary positive integers n and m, while Bose is restricted to an
s X s stratification where s must be prime. Bose’s full construction
is in fact more general, and can allow s to be a prime raised to an
arbitrary positive power [Bos38], but this requires arithmetic in a
finite (Galois) field, instead of modular arithmetic.

4.2. High-dimensional points with (M)J tD projections

The Bose construction stratifies all 1D and 2D projections, but 3D
and higher projections of the points are randomly distributed. If
significant integrand variation exists in such projections, the conver-
gence rate of MC integration will deteriorate.

Bush [Bus52] generalized Bose’s construction to arbitrary
strength ¢, producing arrays of type OA(s', s, s,t) for prime s (using
modular arithmetic), or primes powers (using finite field arithmetic).

Bush’s construction sets the j-th dimension of the i-th sample to:

t—1

Ajj = 0;(j)mod s, with ¢;(x)= Z e, 4
=0

where the ¢;s are polynomials with distinct coefficient vectors (one

Listing 2: Computing an arbitrary sample from a Bush OA pattern.

float bushOA(unsigned i, // sample index
unsigned j, // dimension (< s)
unsigned s, // number of levels/strata
unsigned t, // strength of OA (0 < t <= d)
unsigned p, // pseudo-random permutation seed
0ffsetType ot) { // J or MJ
unsigned N pow(s, t);

i
auto iDigits

permute(i, N, p);
toBaseS(i, s, t);

unsigned stm =N/ s; // pow(s, t-1)

unsigned k =(j%2)?23-1:3+1;

unsigned phi = evalPoly(iDigits, j);

unsigned stratum = permute(phi % s, s, p * (j+1) * 0x51633e2d);
unsigned subStratum = offset(i, s, stm, p * (j+1) * 0x68bc2leb, ot);
float jitter = randfloat(i, p * (j+1) * 0x02e5be93);

return (stratum + (subStratum + jitter) / stm) / s;

}

// Compute the digits of decimal value ‘i’ expressed in base ‘b’
vector<unsigned> toBaseS(unsigned i, unsigned b, unsigned t) {
vector<unsigned> digits(t);
for (unsigned ii = 0; ii < t; 1 /= b, ++ii)
digits[ii] = i % b;
return digits;

}

// Evaluate polynomial with coefficients a at location arg
unsigned evalPoly(const vector<unsigned> & a, unsigned arg) {
unsigned ans = 0;
for (unsigned 1 = a.size(); 1--; )
ans = (ans * arg) + a[l];
return ans;

// Horner'’s rule

}

// Compute substrata offsets
unsigned offset(unsigned i, unsigned s, unsigned numSS,
unsigned p, OffsetType ot) {
if (ot == J) return permute((i / s) % numSS, numSS, (i + 1) * p);
return permute((i / s) % numSS, numSS, p); // MJ

for each of the i = 0,...,s" — 1 sample points) with elements drawn
from S. A simple approach is to convert the sample index i to base-s,
and set ¢; to the [-th digit. Evaluating the polynomial ¢;(j) then
amounts to reinterpreting those digits as a base- j number.

Listing 2 implements Eq. (4) and maps A;; to the unit hypercube
for MC integration. We do this while enabling jitter- and multi-
jittered-style substrata offsets (we were not able to attain correlated
multi-jittered-style offset for Bush OAs) using an efficient in-place
approach that does not require significant precomputation or storage.

As before, for jittered offsets, each of the i points chooses a
random substratum independently. Multi-jittered offsets seek to
assign each of the s’ -1 samples that fall into the same stratum into
different substrata. We achieve this by assigning a unique index (e.g.
i/s mod s'~1) to each of these samples, and setting the substratum
offsets as a random permutation of these indices.

4.3. High-dimensional CM]J

While both Bose and Bush can be generalized to support non-prime
bases using Galois field arithmetic, this significantly complicates
their implementation, and still only allows s to be a power of a prime.
We propose a novel OA construction algorithm inspired by both
Kensler’s 2D CMJ algorithm and Bush’s construction technique. The
new construction makes a design trade-off: requiring that the pattern
be a full factorial design (¢t = d), which relaxes the prime power
requirement, allowing any positive value for s. Our algorithm results
in orthogonal arrays of type OA(s?,d,s,t) simultaneously for all
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Listing 3: CMJ sampling generalized to arbitrary dimensions d.

float cmjdD(unsigned // sample index

i

unsigned j // dimension (<= s+1)

unsigned s, // number of levels/strata

unsigned t, // strength of 0A (t=d)

unsigned p { // pseudo-random permutation seed
unsigned N pow(s, t);

i permute(i, N, p);

auto iDigits toBaseS(i, s, t);

unsigned stml
unsigned stratum

N/ s; // pow(s, t-1)
permute(iDigits[j], s, p * (j+1) * 0x51633e2d);

auto pDigits allButJ(iDigits, j);
unsigned sStratum = evalPoly(pDigits, s);

sStratum permute(sStratum, stml, p * (j+1) * 0x68bc2leb)
float jitter = randfloat(i, p * (j+1) * 0x02e5be93);

return (stratum + (sStratum + jitter) / stml) / s;

// Copy all but the j-th element of vector in
vector<unsigned> allButJ(const vector<unsigned> & in, unsigned omit) {
vector<unsigned> out(in.size()-1);
copy(in.begin(), in.begin() + omit, out.begin());
copy(in.begin() + omit + 1, in.end(), out.begin() + omit);
return out;

}

1 <t <d, but we enrich them with denser 1D LH stratification, also
satisfying OA(sd, l,sd, d). For d = 4, for instance, this construction
provides (s x s X s X s) 4D jittered stratification with A = 1 sample
in each 4D stratum, (s X s X 5) 3D jittered stratification with A = s
in each 3D stratum, (s x s) 2D stratification with A = s samples in
each 2D stratum, and finally proper LH stratification into s* intervals
with A = 1 sample in each 1D stratum.

Listing 3 shows our complete algorithm, which mirrors the struc-
ture of Listing 2: We first map the linear sample index i to # numbers
indexing the coordinates of the regular s* grid by using the digits of
the base-s representation of i (Line 8). We then randomly permute
the order of the strata in each dimension (Line 10). Initially, all
N = s' points project to just s locations along any dimension j. Our
goal is to offset these samples in each dimension j so that they each
project to a distinct substratum. To ensure this 1D LH stratification
for dimension j, we consider the s’ ~! strata in all dimensions ex-
cluding j. We can uniquely index into this set by using all but the
j‘h base-s digit of i (Line 11). Finally, we push the samples in each
stratum together by one of s ~! distinct offsets (Line 12) so that
they each fall into a different substratum.

In addition to the stratification properties mentioned above, this
construction also has a nesting property related to nested/sliced
orthogonal arrays [HHQ16; HQ11; YLL14]. Specifically, for 3D,
the points falling into the s equal sized slices along any of the three
dimensions (3 X s slices total) are themselves a proper 2D s x s CMJ
pattern. Any 2D projection in this case is the superposition of s
separate 2D CMJ patterns which together form a Latin hypercube
design. Fig. 3 illustrates this property for a 3D pattern with 27
points. We show the xy projection of all 27 points as well as the 2D
projections of each of the 3 z-slices, each of which are CMJ2D sets.
Together the points satisfy both strength 3 and strength 1 with index
unity. For general d, taking any of the s-slices along any dimension
will give an OA(s?~!,d — 1,5,) with A = s points in each stratum.

5. Variance Analysis and Results
Prior work on orthogonal arrays has examined their variance prop-

erties extensively. We briefly summarize the most relevant results
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All 27 points 0<z<% s <z< % »n<z<l1

X X X X

Figure 3: For a CMJ3D pattern with 33 =27 points, the nesting
property ensures that all 3 z-slices produce CMJ2D points when
projected onto xy. The same nesting property simultaneously holds
for the x and y slices when projected onto yz and xz.

here and aggregate them in Table 3. We will also quantitatively
evaluate the error of OA-based sampling to existing methods both
on synthetic integrands and in real renderings.

5.1. Theoretical variance convergence rates

Variance for purely random sampling is O(N ™~ 1) regardless of the di-
mensionality of the integrand. Full grid-based stratification improves
this to O(N —1-2/ d) for d-dimensional integrands with continuous
first derivatives and O(N —1=1/ d) for discontinuous ones [Owel3;
PSC#*15]. For low-dimensional integrands this is a sizable improve-
ment (e.g., going from O(N~1) to O(N~?) or even O(N~?) for
1D), but the benefits diminish at higher dimensions.

Intuitively we would expect strength- OA sampling (and Latin
hypercube sampling where ¢ = 1) to perform well whenever strat-
ification on some ¢ of the d dimensions would be effective. One
benefit of OA sampling over padding 7-dimensional stratified sam-
ples (when z > 1) is that we do not need to know in advance which of
the (‘f) subsets of the dimensions are the important ones to stratify,
since in fact all such projections are well stratified!

Asymptotically, orthogonal array sampling will perform no better
than pure random sampling for general d-dimensional integrands
if + < d. This is because while all 7-dimensional projections are
stratified, the points are not stratified at the full dimensionality
unless t = d. Stein [Ste87] showed, however, that Latin hypercube
sampling performs much better if the d-dimensional integrand is

Table 3: The convergence rate improvement (b in O(N~'7?))
as a function of the dimensionality and smoothness of the inte-
grand for various samplers. The 1- and t-additive integrands are
d-dimensional, where t < d. Best case for each integrand is bold.

Sampler Convergence rate improvement b
Integrand: d-dim. t-dim. t-additive  1-additive
Discontinuity: C Lo N oL oL B LI o LN oL o
Random 0 0 0 0 0 0 0 0
d-stratified  2/d  1a 2fa  1Ja 2a Va 2a 1a
Padded r-stratified 0 0 2/ 1/t 0 0 0 0
Padded r-stratified+LH 0 0 2/ 1t O 0 2 1
OAstrength-t 0 0 2%t 1t 2t V¢ 2/t 1/
OAstrength-++LH 0 0 2/ 1t 2/t 1 2 1
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nearly an additive function of the d components of X, e.g., ford = 3,

Foon2) = fo(0) + /() + f2(2)- )

When the integrand is exactly additive, the asymptotic convergence
improves to that of stratified sampling in 1D: O(N _3) for smooth
or O(N 72) for discontinuous integrands. Similar results were later
derived from a Fourier perspective [SJ17]. Orthogonal array sam-
pling generalizes this so that integrands that are additive functions
of t-tuples of the d components of X, e.g., fort =2,d =3

f(xv}%Z) :.fxy’(x7Y)+fxz(x71)+fyz(y72)7 (6)

obtain convergence rates of f-dimensional stratification [Owe92]:
O(N~1=2/") for smooth and O(N~'~!/") for discontinuous ones.
Orthogonal array-based Latin hypercubes further ensure that if
the integrand happens to be additive in just the individual di-
mensions, this improves to 1D stratified convergence: O(N -3 ) or
O(N _2) [Tan93]. Table 3 summarizes all these cases.

5.2. Empirical variance analysis on analytic integrands

We carried out a quantitative variance analysis to evaluate how these
theoretical results translate into practice. Critically, we are interested
in analyzing multi-dimensional integration, and how this differs
from prior analyses that have focused primarily on 2D [CKK18;
PSC*15; SSJ16]. To this end, we designed a few simple analytic
functions which we can combine to form integrands of arbitrarily
high dimensions d, while controlling their level of continuity and
whether they are fully d-dimensional or z-additive for some ¢ < d.

Full d-dimensional integrand. We define our full d-dimensional
integrand as a radial function using some 1D kernel function g(r):

F2P1se--spa) = &2(1BI), for B=(p1,...,pa) € [0, 1), (D)

where || - || denotes vector norm.

To control the level of continuity, we choose g” (r)
from one of the following three step-like functions
with different orders of discontinuity D:

fg: Binary Step

§°(r) = 1 — binaryStep(r, ena). ®)
¢ (r) = 1 — linearStep(r, rstart, Fend), (9
g™ (r) =exp(—1*/(26%)), (10)

le : Linear Step

where we set the parameters repg = 3 / T, Fstart =
Fend — 0.2, and ¢ = 1/3. Intuitively, when coupled
with Egs. (8)—(10), f2 is a d-sphere with a binary (g%)
or fuzzy (gl) boundary, or a radial Gaussian (g°°), as
visualized for d = 2 in the insets to the right.

f5°: Gaussian

Additively and multiplicatively separable integrands. To test
whether 7-additive functions really do gain improved convergence
rates with OAs, we additionally build up separable d-dimensional
integrands which are 7-additive ( f£ ;) and t-multiplicative ( f£ 1)
by summing or multiplying lower-dimensional functions f; for each

possible z-tuple of the d dimensions:

d d
fiprpa) =Y Y i), (D

=1 i=i_1+1

d d
fox(pryepa) =TT - TL £ i opi). - (12)

D=1 =iy +1

Intuitively, an e.g. 3D 2-additive or 2-multiplicative integrand would
add or multiply together one of the 2D functions above evaluated
using all choices of the two dimensions:

o (eyz) = )+ 7 (6,2 + 2 (3:2), (13)
Fax (x,0,2) = 5 (x,9) x 5 (x,2) X £ (3,2). (14)

We extended the open-source Empirical Error Analysis
(EEA) [SSJ16] framework to support multidimensional integrands.
Fig. 4 shows variance graphs for a representative set of test in-
tegrands (Figs. 3 and 4 of the supplemental include more inte-
grands and variance graphs). Each data point is the unbiased sample-
variance from 100 runs. We plot these on a log-log scale of samples
vs. variance, where the graphs’ slopes indicate the rate of conver-
gence. We compare various dimensionalities and strengths of our
OA-based samplers to several baseline methods including random
sampling, Latin hypercubes, PBRT’s padded stratified 2D sampler
using jittered samples as well as our extension using padded 2D
CMJ patterns, PBRT’s padded (0,2) QMC sequence, and truly high-
dimensional Sobol and Halton samplers.

We observe good agreement to the theoretically predicted con-
vergences rates in Table 3 for the various samplers and integrands,
confirming that strength- OA+LH-based sampling provides a siz-
able benefit compared to 2D padded samplers when the integrands
are up to 7-additive (left two columns). When the strength ¢ of the OA
is higher than the additivity of the integrand (e.g. BushMIJ(t=4) for
the 2-additive integrand) we still obtain improved convergence rates,
but the improvements are most dramatic when ¢ matches the addi-
tivity. When the integrand is 1-additive (leftmost column), all our
samplers provide dramatically improved convergence rates (down to
—3, faster even than QMC techniques which max out at —2), since
they all enforce Latin hypercube stratification on all 1D projections
regardless of strength. On the other hand, when the integrand is not
t-additive (right two columns), the asymptotic convergence rates for
all the padded and OA-based samplers degrade to that of random
sampling (unless t = d), while truly high-dimensional QMC se-
quences like Sobol or Halton are able to maintain a better asympotic
rate. Interestingly, despite all OA and padding approaches having
the same slope when ¢ < d, OAs of increasing strength seem to
provide successively stronger constant-factor variance reduction.

5.3. Evaluation on rendered images

From our analysis on simple analytic integrands, we would expect
OA-based sampling to always be at least as good as standard padding
approaches asymptotically, and also provide a noticeable constant-
factor variance reduction.

Since real rendering integrands are high-dimensional and likely
not ¢t-additive, we also compared our OA+LH-based sampling ap-
proach to a similar suite of other samplers within PBRT [PJH16] to
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Figure 4: Variance behavior of 11 samplers on 4D analytic integrands of different complexity (columns) and continuity (rows). We only show
one OA sampler for each strength since these tend to perform similarly (see supplemental for additional variants). We list the best-fit slope of
each technique, which generally matches the theoretically predicted convergences rates (Table 3). Our samplers always perform better than
traditional padding approaches, but are asymptotically inferior to high-dimensional QMC sequences for general high-dimensional integrands.
When strength t < d (right two columns), convergence degrades to O(N 71), but higher strengths attain lower constant factors.

see whether these benefits extend to more practical scenarios. Fig. 6
shows qualitative and quantitative variance comparisons among
these samplers on three scenes. BLUESPHERES features a combined
9D integrand consisting of simultaneous antialiasing, depth of field,
motion blur, and interreflections, and CORNELLBOX has antialias-
ing, shallow depth of field, and direct illumination for a combined
7D integrand. In these two scenes we compare the approaches at
112 =121 samples per pixel (spp) for the samplers that support it,
and round up to the next power-of-two at 27 =128 spp for QMC
samplers. BARCELONA is a much more complicated scene featuring
several bounces of global illumination (a 43D integrand), so we use
632 = 3969 spp for all samplers that support it, but round QMC
samplers up to 212 = 4096 spp. Our OA-based sampler is able to
consistently beat all the 2D padded approaches and provides results
close to that of multi-dimensionally stratified global samplers like
Halton and Sobol, but without the risk of structured artifacts of
Sobol (see blue inset for CORNELLB0OX). While these results con-
firm that stratification in general is important, BARCELONA shows
that the improvement diminishes as the scene/integrand complexi-
ty/dimensionality increases.

In Fig. 5 we also plot variance as a function of samples on a
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Figure 5: Variance behavior and best-fit slope of various samplers
for a pixel in the yellow inset in BLUESPHERES and the blue inset of
CORNELLBOX in Fig. 6. Our samplers always perform better than
traditional padding approaches and even outperform the global
Halton and Sobol samplers in CORNELLBOX.

log-log scale for a pixel in the yellow inset of BLUESPHERES
and the blue inset of CORNELLBOX. We see that all 2D padded
approaches perform about the same with a convergence rate of
O(N -1 ). Our strength-2 and 3 OA approaches have consistently
lower variance, and surprisingly also steeper convergence rates of
roughly O(N~"?%) (for non-2-additive integrands we should ex-
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Figure 6: The BLUESPHERES, CORNELLBOX, and BARCELONA scenes feature different combinations of pixel antialiasing, DoF, motion
blur, and several bounces of indirect illumination for combined integrands of 9D, 7D, and 43D respectively. The relative MSE numbers for the
entire image (top) and each inset (bottom) show that our OA-based sampling technique is able to out-perform 2D padded samplers (first 4
columns), and is close to the quality of multi-dimensionally stratified global samplers like Halton and Sobol.

pect an asymptotic rate of O(N _1) for strength-2 OAs). We suspect
these slopes will degrade to —1 in the limit, but at practical sample
counts our OA-based samplers are still able to benefit from a faster
rate, suggesting that the integrands may be approximately 2-additive.
In BLUESPHERES the global QMC samplers do still provide su-
perior variance and slope, though the difference to OAs is modest
for Halton. In CORNELLBOX, our samplers outperform both QMC
approaches, though this ranking depends on which image region is
used, as the two insets in Fig. 6 for CORNELLBOX show. Overall,
the multi-projection stratification of OAs substantially outperform
2D padding, while multi-dimensional QMC samplers maintain a
slight edge depending on the scene/image region.

6. Conclusions, Discussion, & Limitations

We have introduced orthogonal array-based Latin hypercube sam-
pling and proposed novel, in-place construction routines suitable
for efficient Monte Carlo rendering. While our approach already
provides a practical drop-in improvement to traditional 2D padding,
neither the theory nor our implementation are without limitations.

Sample count granularity. None of our OA implementations can
set the number of samples arbitrarily. Our full factorial (t = d)
cmjdD construction requires N = s samples. While this may
be feasible for low-dimensional integrands, the 43D integrand in
BARCELONA would require a prohibitive number of samples 2%
even with just two strata per dimension, so we excluded cmjdD from
the rendering comparisons. Partial factorial designs, in contrast, re-
quire a minimum of N = s’ samples determined by the strength ¢
and not the dimension d. The Bose and Bush constructions, however,
produce at most s+ 1 and s dimensions, respectively, so patterns
with higher strengths require finer stratifications s, and therefore

more points. Our modular arithmetic implementations of these con-
structions further require that the number of levels s be a prime.

Implementation improvements. It should be relatively straight-
forward to extend our implementations of Bose and Bush to support
positive prime powers, relaxing these restrictions at the cost of us-
ing arithmetic on a Galois Field. Even restricted to binary Galois
Fields, which are particularly efficient, this would allow creating
OAs with any power-of-two number of samples much like many
QMC patterns. It may also be useful to explore other construction
techniques, which impose different constraints on the relationship
between the OA parameters, e.g., the strength-2 construction by Ad-
delman and Kempthorne [AK61]. The OAPackage [EV19; SEN10]
also contains C++ and Python bindings for generating, manipulating
and analyzing various OAs for experimental design.

While we chose to use OAs in a pixel-based sampler, the 2D
stratification guarantees would allow us to use a single strength-
2 OA pattern across an entire image while ensuring a prescribed
number of samples per pixel. This would effectively remove the
aforementioned dimensionality limitation (d ~ s) since s will be very
large for all but the smallest rendered images. This would bring OAs
more in line with PBRT’s global Halton and Sobol samplers, while
likely avoiding the associated correlated/checkerboard artifacts since
multi-jittered points do not exhibit structured patterns.

QMC and strong orthogonal arrays. Our results show that high-
dimensional QMC samples like Halton and Sobol still provide better
convergence compared to our techniques. An exciting direction to
help narrow this gap are “strong” orthogonal arrays (SOAs), recently
introduced by He and Tang [HT12]. While OA-based Latin hyper-
cubes ensure stratification along all 1D and 7D projections, all other
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dimensional projections lack stratification. SOAs improve on this by
constructing points that are stratified not just in 1- and 7-dimensional
projections, but in all r-dimensional projections for » < ¢. Moreover,
the stratifications are more dense, e.g., both an OA and SOA of
strength 3 would achieve s X s X s (3D jittered) stratification in any
three-dimensional projection, but the SOA version would achieve
s? x s and s x s> stratifications in any two-dimensional projection,
while the OA guarantees only s X s stratification. These additional
stratification guarantees are like the elementary intervals of (¢,m, s)-
nets [Nie92; Sob67], and, in fact, SOAs are a generalization of such
nets. He et al. [HCT18] also proposed a middle-ground called OAs
of strength “2-plus” which do not extend stratification to more di-
mensions, but do impose the denser elementary interval stratification
on strength-2 OAs. He and Tang [HT12] showed that it is possi-
ble to generate an SOA from a regular OA by sacrificing some of
its factors. Current construction algorithms are unfortunately fairly
complex [HCT18; HT12; HT14; LL15; Wenl14], often involving
an intermediate conversion to a so-called generalized orthogonal
array [Law96]. Nonetheless, we believe exploring this connection
more carefully is a fruitful line of future work to extend the benefits
of OAs further, and bridging the connection to QMC more strongly.

Progressive sample sequences. Another limitation of our work is
that we currently only support finite point sets and not progressive
sample sequences [CKK18; Hal64; Sob67]. These are particularly
attractive for progressive rendering, since the total number of sam-
ples does not need to be known a priori and any prefix of the sample
sequence is well-distributed. Luckily, there is already promising
work in the OA literature on which future work could build.

“Nested” or “sliced” Latin hypercubes/orthogonal arrays [AZ16;
HHQI16; HQ10; HQ11; QA10; QAWO09; Qia09; RHVD10; WL13;
YLL14; ZWD19] create two layered point sets: a low-sample-count
sparse set, and a denser point set which is a proper superset of
the sparse one. In statistics, these are used for multi-fidelity com-
puter experiments, cross-validation, and uncertainty quantification.
In rendering these could be used to provide two-level adaptive sam-
pling control as a stepping stone to fully incremental sample se-
quences: rendering could start with a low spp stratified point set,
and adaptively increase to a higher spp stratified (superset) pattern.
While most of these techniques create two nested “layers” of points,
this has recently been generalized to more than two nested layers
by [SLQ14]. This could allow incrementally adding more stratified
points in multiple steps of an adaptive sampling routine.

Additionally, given the recently established equivalence between
SOAs and (¢,m,s)-nets [HT12], we believe that fully progressive
OAs derived from (7,s)-sequences may be within reach. In fact,
some recent work has used (7, s)-sequence construction routines to
build nested OAs [HQ10]. Ultimately, OAs and QMC sets/sequences
are tightly related, and our hope is that future work in graphics can
now leverage developments in both of these areas.
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Listing 4: Pseudorandom permutation and floating point number
generator functions (reproduced from Kensler [Kenl3]).

unsigned permute(unsigned i, unsigned 1, unsigned p) {
if (p == 0) return i; // identity permutation when p ==
unsigned w = 1 - 1;
wo|=w>>1;
W= wo>> 2;
wo=w>>4;
W |=w>> 8;
w |=w>> 16;
do {
i7~=p; i *= 0xel70893d;
i~=p >> 16;
i7= (1 &w) > 4;
i%=p >> 8; 1 *= 0x0929eb3f;
i”=p >> 23;
i7=(1&w) >1; 1i*1]p> 27;
i *= Ox6935fa69;
it= (1 &w) >> 11; i *= 0x74dch303;
i 7= (1 &w) >> 2; 1 *= 0x9e501cc3;
i7= (i &w) > 2; i *= 0xc860a3df;
i &= w;
in=i >> 5;
} while (i >=1);
return (i + p) % 1;
}
float randfloat(unsigned i, unsigned p) {

if (p == 0) return 0.5f;
i "= p;

i>> 17;

i >> 10;
i>>12;
i>> 21;
0xdf6e307f;
i>>17; i*=1 | p > 18;
return i * (1.0f / 4294967808.0f);

// always 0.5 when p == 0

i *= 0xb36534e5;

i *= 0x93fc4795;
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