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Abstract

Modern physically based rendering techniques critically depend on approximating integrals of high dimensional functions
representing radiant light energy. Monte Carlo based integrators are the choice for complex scenes and effects. These integrators
work by sampling the integrand at sample point locations. The distribution of these sample points determines convergence rates
and noise in the final renderings. The characteristics of such distributions can be uniquely represented in terms of correlations of
sampling point locations. Hence, it is essential to study these correlations to understand and adapt sample distributions for low
error in integral approximation. In this work, we aim at providing a comprehensive and accessible overview of the techniques
developed over the last decades to analyze such correlations, relate them to error in integrators, and understand when and how
to use existing sampling algorithms for effective rendering workflows.

CCS Concepts
o Mathematics of computing — Computation of transforms; Stochastic processes, Number-theoretic computations;, e Com-
puting methodologies — Ray tracing;

1. Introduction

Over the past decade, Monte Carlo (MC) integration has revolution-
ized the rendering pipeline within the film and animation industries.
This has led to stunningly realistic visual effects by simulating the
physics of light. MC-based numerical integration offers an elegant
approximation of high-dimensional integrals that are encountered
during simulation of the physics of radiant light energy propagating
within virtual environments. Many production renderers such as
Arnold [GIF* 18] or Renderman [CFS™ 18] generate estimates of the
integrals by evaluating integrands at a number of sample locations.
When N independent random samples are used, the error converges
at the rate of O(N %), and this error manifests itself as an unde-
sirable grainy appearance (noise) in the rendered images. Since the
integration technique is inherently parallelizable, a common strategy
to mitigate approximation error is to invest in large computational
resources (CPUs/GPUs). For realistically modeled virtual environ-
ments, random sampling is still typically considered prohibitively
expensive. This motivates the need for effective sampling strategies
that lead to a reduction of approximation error. As a result, traditionally, practitioners of computer graphics uti-
lize a different set of statistical measures for qualitative and quan-
titative analysis of error in rendering, such as spectral diagrams
or spatial statistics. As observed in the literature, such measures
can be interpreted as analyzing stochastic structures represented by
point samples. This observation naturally leads to utilizing ideas and
techniques from the field of stochastic point processes [MWO04].

Figure 1: Each stochastic point set exhibits different correlation
structure despite having derived from a constant probability density
function.

probability density are not very useful in capturing these correlations:
all strategies shown in Figure 1 represent samples drawn from the
same (constant) distribution. i.e. the expected number of samples
within any fixed subdomain will be the same for each strategy.

A popular approach to mitigate error operates by incorporating
dependencies, or correlations, between the sampled locations. Such
correlations often lead to observable patterns, when visualized, as
shown in Figure 1. Two key hurdles in designing such strategies are:
understanding and identifying correlations that result in a reduction
of error; and designing efficient algorithms to generate samples
with the required correlations. Classical statistical measures such as Our focus is to review proposed point pattern quality measures
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in the framework of point processes to understand how complex
correlations affect error in integral estimation for rendering. The
reader is going to gain an understanding of:

e existing statistical measures for point patterns with correlations,
how they relate to each other, and when and how to use a particular
measure for quantitative or qualitative analysis.

e how error in rendering is affected by point patterns in relation to
these measures, with exact expressions for bias and variance of
the integral estimators.

e what practical sampling algorithms exist, what the trade-offs are,
and how to choose a sampling technique in light of the theory.

2. Preliminaries

We start with a brief overview of the setting considered, and the the-
ory of stochastic point processes from a rendering perspective. We
cover the theoretical underpinnings on an accessible level, without
going into extensive technicalities'. This will form the basis of the
analysis techniques in the next sections. All the notations used in
the following sections can be found in Table 1.

2.1. Estimating Integrals in Rendering

For a real function f : RY - R representing a certain part of
light transport in d dimensions, rendering requires us to estimate its
integral to compute the color of each pixel. We hence would like to
study the error in estimating the integral I := |71| Jy f(X)dx, where
V is the domain of the function f where VX € V, f(X) =0, and |V|
is its volume. The estimator for this integral can be written as

=Y w@E)f(E)), (1)
j=1

for some positive weights w(¥;) and sample points ¥;. For a fixed
sample count N, w(X;) = 1/(Np(X;)), where p(¥;) is the probability
density function (PDF) used to distribute the samples. The goal is
to study the error in this estimator in relation to the distribution of
the sample points ¥;. In order to quantify the error, we can utilize
the theory of point processes. Note that, since we are interested in
analyzing the impact of correlated samples on integral estimation,
we refer to such estimators as sampling-based estimators. We reserve
the term “MC estimator” for pseudo-random MC samples (with no
correlations).

2.2. Stochastic Point Processes

A point process is a generating process, e.g. an algorithm or a natural
process, for a set of point distributions with common characteristics.
Each distribution generated by a point process can be regarded as a
realization or instance of that point process. In order to characterize a
point process, we need to compute statistics that capture correlations
of sample points in all realizations. To quantify such correlations, the
study of point processes starts by assigning a random variable X (B)

T For a complete theoretical exposition on point processes, we refer the
reader to excellent books on point processes [MW04, IPSS08].

Table 1: Here we summarize all the notations used in the paper.

Symbol  Description
P a point process
P() joint probability of P
A(x) first order product density or intensity of PP
p(x1,x3) second order product density of P
E[] expectation operator
var[]  variance operator
1) light transport function
s(+) sampling function
w(-) weighting function
Vv sampling domain
1 integral of a function
I Monte Carlo estimator of /
g(") pair correlation function
g Monte Carlo estimator of g
B Borel set
B a set of high-dimensional rectangles
card(-) cardinality of a set
Dy star discrepancy of P
V()  total variation of a function
F(v)  Fourier transform coefficient at real frequency v
Em Fourier series coefficient of g at m-th integer frequency
fin Fourier series coefficient of f at m-th integer frequency
Sm Fourier series coefficient of s at m-th integer frequency

to each Borel set B € V for a given domain V. This implies that
we actually need infinitely many random variables to characterize a
given point process. Each of these random variables is assigned to
one of the infinitely many sets in the given domain.

In order to make this analysis more tractable, we can first assume
that we select a number of sets /3 to By. For these random variables,
there exist the joint probability P(X(B;) < by, -+ ,X(Bn) < by)
over b; sub-regions. A point process can be formally described by
characterizing this joint probability for all different N and group of
sets BB;. The most commonly used and familiar random variable is
the number of points N (1) that fall into the set B (see Figure 2). This
is indeed a random variable: for each realization of the point process,
i.e. a point distribution, this number changes for a fixed set 3. Hence,
by generating different distributions from the same point process,
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Figure 2: For a given set B, N(B) gives the number of points
that fall into B for different point distributions generated by an
underlying point process. By generating more distributions from the
same point process, we can estimate the PDF of N(B).
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we can compute the PDF of N(B). Similarly, we can consider the
joint probability and corresponding PDF of N(B;),--- ,N(By).

2.3. Point Process Statistics
2.3.1. Product Densities

Instead of considering finite sets and the associated probabilities,
we can define infinitesimal sets and hence work with probability
densities. Let X; denote an arbitrary point in R?, and B ; denotes an
infinitesimal sphere centered at this point with volume dx; = | B;|.
We can then define P(X},- -+ ,Xy) as the joint probability of having
a point of a point process P in each of the infinitesimal spheres ;.
This probability is typically expressed in terms of the k' " order prod-
uct density p(k) with P(fl,~ . ,fN) = p(k) ()?1./ s ,fN)dfl -ediy.
The product densities are thus simply the PDF functions for joint
probabilities of these random variables, which can be shown to
uniquely define the point process P.

We will see in the next sections that for our purpose of us-
ing point processes for analyzing error in integral estimation, it
is sufficient to consider product densities of first and second or-
der p(l), p<2). The first order product density is simply given by
p( (¥)dx = P(X). The expected number of points in a set 3 is given
by Ep [N(B)] = [ pl) (¥)dx: with the expectation computed over
different realizations (distributions) of a point process P. Hence,
p<1> (%) measures the local expected density of points generated by
this point process. It is thus usually called the intensity of P, and
denoted by the symbol A(%) := pV(%).

We can then similarly define the second order product density
p? (%,¥)dxdy = P(%,¥). As we do not need higher order product
densities, we denote this product density simply with p(¥,y). The
second order product density gives us the joint probability of finding
a pair of points at certain locations in space. It can be estimated by
generating infinitely many distributions from the point process, and
counting the number of point pairs with each of the two points in
the pair falling into one of the volumes around X or y.

2.3.2. Stationary and Isotropic Processes

Although the literature on point processes is very extensive, it
gracefully matured in two very important subclasses: stationary
and isotropic processes. Stationary point processes are processes
that are translation invariant, i.e. the point distributions generated
by such point processes will have the same statistics regardless of
where we look at in space. We show an example point distribution
generated by a stationary point process in Figure 3b. For stationary
point processes, the intensity becomes a constant A(X) = A, and the
second order product density is a function of the difference between
locations of points in space p(¥,¥) = p(X — ¥). This assumption is
what makes most of the statistics encountered in the rendering liter-
ature meaningful, as we will elaborate on in the next sections. The
second order product density is typically given by the normalized
pair correlation function (PCF) g where p(X —¥) = kzg()? —9).

We can further assume that a point process is translation and
rotation invariant (isotropic), meaning that the characteristics of
distributions generated by that point process do not depend on where
we look, and how we are oriented in space. In other words, you may
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Figure 3: (a) A general point process generates point distributions
with spatially varying characteristics. (b) A stationary point process
has translation invariant characteristics. (c) An isotropic point pro-
cess further generates rotation invariant point distributions so that
we may translate or rotate the distributions without affecting their
properties.

freely rotate the point distributions and will always get the same
characteristics (Figure 3c). For the isotropic case, A(X) = A, and
p(%.5) = p(|[¥— ), and thus g (¥ —) = ([|F— ). Hence, instead
of considering the high dimensional p(%,) statistic for general point
processes, we can now simply work with the 1D statistic g(||X — ¥]|)
to describe the second order correlations of such processes. This
is a significant simplification, especially when we deal with point
distributions in high dimensional domains. In later sections, we
show how state-of-the-art frameworks developed over the years in
the rendering literature leverage these two special cases to gain
theoretical and practical insights for rendering, even when more
complex distributions are needed.

2.4. Error in Integral Estimation

We utilize the theory and statistics above to study the error in
the sampling-based estimator in Eqn.(1). The error in this esti-
mator consists of a bias biasp[f] :== I — Epli], and a variance
varpl] := Ep[I?] — (Ep[f])? term, where the expectations Ep -]
are over point distributions generated by the underlying point pro-
cess P. For brevity, we drop the subscript P and represent the
expectation operator as [E[-] and the variance operator as var]-].

The goal is then to minimize both of these terms simultaneously
via point distributions generated by point processes with optimized
characteristics. This can be done both qualitatively, e.g. by looking
at the graphs of statistics, or quantitatively by steering the character-
istics so as to minimize the terms of this error. For both cases, we
first need to have meaningful and informative analysis tools, which
we review in Section 3.

2.5. Frequency Space

Analyzing random processes in the Fourier realm has a long his-
tory [CM67,Uns00]. However, only recently researchers have started
emphasizing the importance of Fourier statistics in predicting error
during estimation. There exists an intimate relation between the
spatial statistics and the frequency domain transforms. For example,
spatial statistics are best captured by first and second order correla-
tions. The second order correlations are directly computed from the
pair-wise distances (differentials) between each pair of samples. It is
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straightforward to show that the cosine transform of the differentials
gives the corresponding Fourier power spectrum. In this section, we
briefly introduce the Fourier transform and its periodic counterpart
the Fourier series. Later in Section 3.2, we use these basic entities
to represent spectral tools like the power spectrum.

2.5.1. Fourier Transform

One of the foundations of frequency analysis is the Fourier transform.
For any given function 4(X) defined over an infinite (real) domain,
the continuous Fourier transform:

Fa¥) = [ h@e e, @

decomposes that function into a continuous sum (integral) of sinu-
soids of continuous and unbounded set of frequencies V. The set of
continuous complex coefficients arising from this decomposition is
called the Fourier spectrum of the function.

2.5.2. Fourier series

In practice, however, the sampling/integration domain is always
finite. In the Fourier domain, these finite domains can be handled by
treating them as periodic over a toroidal domain. Under this assump-
tion, the integrand and sampling function may be seen as periodic
functions with periodicity given by the extent of the domain (which
is unity for a unit hypercube). This leads to a discrete spectrum with
the Fourier series coefficients:

£ = - —i2n(r71~)?)dz 3
7= [ e : @

defined over integer frequencies 7 € 74 with f,, € C? (complex
space). The corresponding d-dimensional, unit-periodic function
f(X) can be expanded in terms of its Fourier series coefficients as:

f@ = Y £ @

mez4
These Fourier series coefficients are translation invariant over the
period of the domain, which is unity [0,1]¢. Following Singh et
al. [SSC*19], we represent all upcoming frequency space formula-
tions using the Fourier series. For brevity sake, we safely omit the

—

vector notation (*), whenever possible.

3. Equidistribution Measures

In order to study error in integral estimation with respect to cor-
relations, we need to define practical measures that capture the
theoretical statistics as introduced in the last section. We expect that
the resulting measures provide valuable insights into the sampling
patterns and thus allow us to understand, and intelligently choose
and adapt sampling patterns according to the particular rendering
problem. Several measures for this purpose have been proposed in
the last decades. We group these measures into two broad categories:
spatial measures, and spectral domain measures. We explain that
these are actually fundamentally related (Section 3.2), and that one
needs to be careful about the assumptions on the point patterns
considered when choosing and interpreting these measures (Sec-
tion 3.3).
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Figure 4: Discrepancy of a shaded box (in blue) estimates the
uniformity of a sample distribution over multiple realizations (5).
Four such realizations are shown for N = 16 samples. Each sample
estimates the area to be 1/N = 0.0625. In (a), the shaded blue rect-
angle has a true area of 0.7 x 0.4 = 0.028 with one sample within
the shaded region. Its discrepancy is the difference between these
area values |0.0625 — 0.028| = 0.0345. For the star discrepancy,
each box is generated with one corner fixed to the origin.

3.1. Spatial Measures

Spatial measures refer to statistics that directly capture spatial
characteristics of point patterns such as coverage over the do-
main [KN74], or their spatial statistics (e.g. pairwise distance distri-
butions). All spatial measures considered so far in the literature can
be easily interpreted in terms of point process statistics as we will
see below, with one notable exception: discrepancy. We start with
this measure, as historically it has been an important measure in
developing sampling patterns for rendering, and provides interesting
insights.

3.1.1. Discrepancy

Discrepancy stems from number theory with an interesting statis-
tical background [KN74]. It measures how uniformly a pointset is
distributed over a region (which is usually a hypercube) and was
introduced to computer graphics by Shirley [Shi91]. Discrepancy
measures the worst error that would be made in estimating the
area of a subregion of the hypercube by simply noting the frac-
tion of the pointset contained in the subregion. We focus on star
discrepancy [Zar68] of a sample distribution, which uses only rect-
angular axis-aligned subregions, B = {[0,v] X [0,v2] x [0,v3] X
--- % [0,v4]} where 0 < v; < 1, with one of their corners fixed to
the origin (see Figure 4). Given a sequence of N sample points
S =X1, "Xk, ,XN, the discrepancy of s w.r.t. B is:

D}(B,s) ==, % ~Vol(b)|, )
where | - | is the absolute operator, card(-) represents the cardinality
of aset, Vol(b) is the volume of the d-dimensional box b € B and sup
represents supremum, the continuous analog of a max function. For a
given point set, the lower the discrepancy value the more uniformly
the samples are distributed over the domain. In terms of sampling-
based estimation, the szar discrepancy gives a worst-case integration
error bound—the Koksma-Hlawka inequality [KN74,Nie92]—when
the integrand has bounded variation.

Historically, discrepancy is used to develop low discrepancy pat-
terns, which are still used in practice today to sample high dimen-
sional domains. Although discrepancy is a simple and effective
measure for such point distributions, it cannot fully capture first
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Figure 5: An example distribution generated by different underlying point processes (top row) and its corresponding 2D PCF (second row)
are shown for distributions varying from purely random to a regular grid pattern. Third row shows the 1D PCF version where the r axis is
normalized with the maximum possible distance between pairs of points for this square domain and the number of points. The expected power
spectrum (details in Section 3.2.1) of each sampling pattern is shown in the fourth row. The corresponding radial statistics include radial
mean (fifth row) and radial anisotropy (sixth row) along the radial frequency m.

and second order correlations, which are essential to analyze and
develop point patterns for further error reduction.

3.1.2. Pair Correlation Function

Point process statistics provide provably informative measures for
point patterns, i.e. the characteristics of a point pattern are uniquely
and fully defined once these statistics are provided. As mentioned
in Section 2, for our purpose of analyzing error in integral estimation,
we only need first and second order product densities. We will see

© 2019 The Author(s)
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why this is the case in Section 4. Historically, such spatial measures
of correlations have come quite late into the rendering literature, but
have turned out to be very powerful, as they contain all information
on a point pattern via the underlying point process.

For general point patterns, in particular if we do not assume
stationarity, the second order correlation captured by p(¥,¥) is a high
dimensional function that is hard to visualize or analyze. Instead, the
literature on rendering focuses on stationary patterns and hence the
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pair correlation function (PCF) g(¥) with 7 = X —
intensity A.

¥, and a constant

Given K point distributions P, generated by an underlying point
process, an unbiased estimator for the PCF is given by:

Lz L
i#]
Xi X €Py

8(F — (X — X)), (6)

where § is the Dirac delta. Note that if we assume a fixed sample
count for each realization Pj, we can set A = N. In practice, this
means for each point distribution P, we compute a histogram of
difference vectors X; — X;. The outer summation is over different K
realizations of a distribution which helps smooth out the noisy his-
togram. A smoothed version of this histogram can also be computed
by using a Gaussian kernel instead of the Dirac function (), and a
single point distribution [WW11,0G12].

This estimator also reveals the fundamental intuition behind the
PCF: it is simply a normalized measure of the distribution of differ-
ence vectors between pairs of points in point distributions generated
by an underlying point process. We can work with just the difference
vectors, as we assumed stationarity and thus translation invariant
point distributions.

The original estimator in Eqn.(6) implicitly assumes an infinite
window, i.e. the whole Euclidean space in which the point process
is defined. For a practical estimator, we get points in a finite domain,
typically a square. One way to avoid inaccuracies due to this finite
observation window is using a toroidal domain with periodic bound-
ary conditions. If this cannot be assumed, we may miss difference
vectors that have length larger than half of the length of the edges of
this window. These missing difference vectors can be compensated
for by carefully normalizing the estimated g(7) for each difference
vector 7 with the autocorrelation ar, (7) of the indicator function Iy
of the domain V [O16]. The autocorrelation of the indicator function
for a square domain in RY is given by ay, (7) := 1, (|v] l/d _ [7])
when \V|1/ ¢ > |#| for all I, and 0 otherwise, where 7 is the I-th
component of the vector 7. In general, this autocorrelation can be
computed numerically for a given domain.

For isotropic point processes, a similar PCF estimator can be de-
rived using a one-dimensional kernel K such as the Gaussian [OG12],
and distances between points in a point distribution:

8(r) = )bzrd71|$|d ZK — 1% —%jl1) @)

Hence, for the isotropic case where the generated point distributions
are translation and rotation invariant, the distribution of distances
is sufficient to describe a point pattern. This is a vast simplification
of statistics, as it reduces the PCF to be a one-dimensional function
regardless of the original dimensionality of the point pattern.

We plot example PCFs for several point processes in Figure 5,
along with one example point distribution generated by the corre-
sponding point process. We can clearly see how differences/dis-
tances can be read from the PCF graphs, e.g. as points become
further apart, PCFs get lower for low r. Note that the right-most
point process that generates regular point distributions is actually
not a stationary or isotropic point process, and hence the PCF in this

case does not uniquely describe the point pattern, i.e. there are other
point patterns that share the same PCF.

3.2. Spectral Measures

The Fourier domain provides another set of tools to analyze and
understand the sample distributions. We start with the definition of
the power spectrum of a point process, and move on to describe
these relations.

3.2.1. Power Spectrum

The power spectrum of a function describes the distribution of power
into frequency components composing that signal.

In order to define the power spectrum, we first represent a point
set with a so-called sampling function s(x), which is a sum of
Dirac impulses at the sampling points. Since the sampling-based
estimators (1) are weighted by w(x;), we can also explicitly write
these weights as a part of the sampling function:

N N
s®@) = Y w(®)S(E ;). with s, = Y w(E))e ) (8)
Jj=1 Jj=
representing the Fourier series coefficients of the sampling function
s(%). The power spectrum, Sy, gives the squared amplitude values
of the Fourier series coefficients s;; at a given frequency 77 and is
therefore, a real entity.

Sampling analysis using the power spectrum is usually performed
for equally weighted uniform samples, and for multiple sampling
functions s(X) from multiple point distributions. Hence, similar to
PCF and other point process statistics, we are interested in the
expected power spectrum of a point pattern. This expected power
spectrum (E [s,";,sm]) is fundamentally related to the Fourier transform
of the PCF (g;,) which is given by the relation [HSD13]:

E[symsm] = Agm + 1, )

at a given frequency m. Note again that, this is true for uniform
samples where the sampling function s(X) : Z,,l d(¥—X;) is de-
fined as simply a sum of Dirac delta positions (with unit weights
w(x;) = 1, see [OS18] Section 3.2.1 for the derivation). In the
language of point processes, such distributions are generated by
stationary point processes. This explains that both the expected
power spectrum and PCF are translation invariant, as the former
lacks the phase in the Fourier domain, and the latter depends only
on difference vectors.

The expected power spectrum and PCF thus carry exactly the
same information, and the choice of using one or the other depends
on what is desired to be qualitatively analyzed, and the familiarity of
the user with the charts. For analytical analysis of error in rendering,
both have been considered in the literature as we elaborate in Sec-
tion 4. We plot power spectra for different samplers in Figure 5. As
compared to PCF graphs, they reveal interesting spectral properties
of the sampling function, which is useful in understanding how the
frequencies of the sampled integrand will be affected.

3.2.2. Radial Mean

We have already seen that for isotropic point processes, the PCF is a
one-dimensional function representing the distribution of distances
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between pairs of points. Similarly, the expected power spectrum
can also be summarized with a 1-dimensional radial average for
isotropic point processes. This radially averaged Fourier power spec-
trum [Uli87] has been perhaps the most widely used tool to analyze
point samples, characterizing various stochastic sampling patterns
ranging from white noise to blue noise, and more recently being
used to derive variance convergence rates of various stochastic sam-
plers [PSC*15]. See Figure 5 for examples of radial mean graphs.

3.2.3. Radial Anisotropy

While radial averaging is appropriate for analyzing isotropic power
spectra, many of the stochastic point sampling strategies used in
rendering—such as N-rooks [Shi91]—are in fact anisotropic. To
capture such anisotropy, the idea is to compute the radial vari-
ance [Uli87,LDO08], which is the squared deviation of the expected
power spectrum from its radial average at each radius. This is then
used to define the radial anisotropy, capturing how radially symmet-
ric the expected power spectrum is. We plot radial anisotropy graphs
in Figure 5 for the shown power spectra. Oztireli and Gross [OG12]
presented a similar anisotropy measure for PCFs. Such anisotropy
measures are useful in spotting radii where anisotropy happens, but
fall short of explaining which directions are more stretched than
others, i.e. the magnitude of anisotropy in different directions.

3.3. Discussion

For qualitative analysis, the d-dimensional PCF and expected power
spectrum, and their radially averaged versions are typically utilized.
Of course, d-dimensional diagrams become a non-viable option
for higher dimensional domains, and hence we are typically left
with radial averages and anisotropies. The d-dimensional PCF and
expected power spectrum are, however, essential to analytically
study error in integral estimation.

A fundamental limitation of these measures is that they are de-
fined for uniform point patterns, where the density of points is
constant throughout the space. This is certainly not the case for
the commonly used importance sampling in rendering. Fortunately,
importance sampling is often implemented as a warping function
(details in Section 5.4), where the generated samples in a unit hy-
percube are warped to match a certain density. Hence, the discussed
tools apply to such cases if we want to study second order correla-
tions, i.e. how points are distributed, with clustering due to density
changes factored out. For quantitative analysis, the integrand can be
warped back and analyzed with the measures, as we will explain in
the next section.

4. Theoretical Error Analysis of Monte Carlo Integration

In this section, we relate the equidistribution measures presented
in Section 3 to error in sampling-based integral estimation (1), and
show that for cases commonly encountered in rendering, the er-
ror formulation simplifies dramatically allowing a tractable error
analysis of different sampling patterns with complex correlations.

Error in the integral estimator [ is the deviation from the true
integral value:

A:=T-1I (10)
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We would like to analyze this error over multiple (theoretically
infinitely many) realizations, i.e., point distributions generated by
the point process. We separate it into bias and variance terms, where
the expectations are computed over different point distributions
generated by the same point process, as in previous sections:

biasll] .= E[A| = E[f] I, var[[] :=E[*] —E[f]>. (1)

The total squared error is then given by E[A%] = bias[f]? + var|f].
We start with a deterministic bound for A arising from discrepancy
theory, and move on to exact expressions for bias and variance,
derived utilizing the point processes theory.

4.1. Spatial Domain
4.1.1. Error with Discrepancy

For a given point set or a sequence (stochastic or deterministic), the
error of a sampling-based estimation is directly related to the dis-
crepancy of the point set following the Koksma-Hlawka inequality:

|Al < Dy(B,s)V(f). (12)

See Niederreiter [Nie92, Section 2.2] for a 1D proof and Kuipers
and Neiderreiter [KN74, Theorem 5.5] for a detailed d-dimensional
proof. In this inequality Dy (B,s) is the star discrepancy of the
points 0 < x; < 1, as defined in Section 3.1.1, and V(f) is the total
variation of the function f:

V(f) = 0mrgememmt 1 1F () = Fxj—1)], (13)
=1

which depends on the differentiability of the function. As this bound
applies to all point distributions generated from a point process, the
expected value of the error is the same as itself. Note that unlike
the rest of the analysis tools we describe below, we cannot differ-
entiate between bias and variance in this case, and this inequality
provides a bound, as opposed to an exact error expression. Finally, it
only applies to error for uniform (non-adaptive) point distributions.
However, if we have minimal information about the behavior of an
integrand f, this expression provides a guideline that to reduce error
we need a point sampling pattern with low discrepancy.

4.1.2. Error with Stochastic Point Processes

Exact expressions for bias and variance can be derived starting from
the theory of point processes [016].

Bias. By computing E[f] for the estimator in Eqn.(1) using first
principles, we can simply write the bias in this form:

bias[l] = /V w(X) f(F)MF)dX — 1 (14)

Clearly, when w(X) := 1/A(X), bias is zero and we get an unbiased
estimator.
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f(@) a(7) ay(r)g(F)

Figure 6: An integrand f, its autocorrelation ay, PCF g of a station-
ary jittering pattern [RAMN12,016] that is a sum of Dirac impulses,
and the corresponding variance term ay(-)g(-) are illustrated. The
integral of this multiplication, which in this particular case is a sum
due to Dirac impulses, increases the variance for a stationary point
process. Figure reproduced from [O16].

Variance. The expression for variance can be derived in the form:

var{l] = /V W (3) A RME)
+

VXV
- /V RS OMHMDE,  (15)

where A(X) and p(X,¥) capture first and second order correlations,
respectively, see Section 2.3. The full derivation can be found in
Oztireli [O16] (Section 4.1). This expression makes it clear that
error only depends on first and second order correlations, and thus
higher order correlations are not needed for the analysis. It is also
interesting that the expression decomposes the influence of first
and second order correlations on the variance into separate terms,
and hence they can be studied separately. However, one practical
challenge here is that density of points (e.g. in importance sampling)
not only affects A(X), but also p(X,¥). This problem can be solved
by considering that importance sampling is obtained via warping
from a primal domain, where the point process is stationary.

Stationary Processes. Oztireli [O16] further derived simplified
expressions for the stationary case. As before, bias vanishes with
uniform weights w = 1/A, but variance simplifies to

var{f] = %/V'fz(z)dﬂ/w ap(7)g(F)dr — (/Vf(z)dJe)z, (16)

where ay(7) denotes the autocorrelation of the integrand f(¥), and
g(7) is the PCF. A closer look at Eqn.(16) reveals that the third sum-
mand simply represents the square of the true integral and, therefore,
does not affect the variance of the estimator. Since the first and the
second summands are positive, the only way to reduce variance is
by reducing each summand. The first summand only considers first-
order statistics (A) and therefore, cannot be reduced by introducing
pairwise correlations. The second summand, however, suggests that
given minimal information about the integrand f, we can reduce
variance by reducing the PCF g, especially when the autocorrelation
of the integrand is high.

An interesting case where we can show using Eqn.(16) that vari-
ance can increase due to the directional nature of an integrand and
sampling pattern is shown in Figure 6. For this integral estimator, we

used a jittering pattern generated by randomly perturbing a regular
grid [RAMNI12,016], which is stationary and has the PCF g(7) as
an impulse train except at ¥ = 0 [O16]. For this case, the second term
in Eqn.(16) turns into a sum of the values of ay(7) at a set of 7 that
are the locations of the Dirac impulses in g(7). The impulses along
the central vertical line capture high values of the autocorrelation as
shown in the figure, leading to a larger second term in Eqn.(16) and
hence larger variance.

Importance Sampling. The above expression for variance can be
extended to importance sampling by assuming that an invertible
warping function #(X) is applied to the original domain to induce
adaptive density. In this setting, a uniform point distribution by a
stationary point process is first generated and warped for adaptivity.
The bias can always be canceled out by seting w(X) := 1/A(X) as
above. For computing the variance, we can warp back the integrand
to the primal domain where the stationary point process is defined by
f (t_l (¥)). Using this into the above expression for variance of sta-
tionary point processes in Eqn.(16) with the second term expanded,
and with a change of integration variables, we get:

varll) = 5 [ @& [ 560 A0 1)y

- (/sz(f)df)z-, (17)

where we defined f; (X) := f(X)J; (¥) with J; denoting the determi-
nant of the Jacobian of the warp 7, and assumed that 7 ~' (V) is a
subset of V.

4.2. Fourier Domain

To perform error analysis in the Fourier domain, Durand [Durl1]
proposed to rewrite the Monte Carlo estimator in Eqn.(1) in the
continuous integral form as a product of the sampling function and
the integrand f(x):

R 1
- /0 F(0)s(x)dx. (18)

Estimator in Fourier Domain. Following the convolution theo-
rem [Bra00], MC estimation can be seen as a convolution at the DC
(m = 0) in the Fourier domain:

N o0
=Y fosm. (19)

m=—00

Error in Fourier Domain. In the Fourier domain, error
from Eqn.(10) can be rewritten in the form:
oo
A=Y fusm—f, (20)

m=—0o0

using Eqn.(19) and the fact that the true integral (/ = f) represents
the DC (m = 0) component in the Fourier domain. This implies that
error is introduced when the DC component (fp) gets polluted by the
spectral replicas (aliases). This observation led Durand to derive a re-
vised sampling theorem which states that a function can be perfectly
integrated if it is sampled at at least its maximum frequency. This is
a factor of two compared to Nyquist and Shannon [Sha49, Uns00].

(© 2019 The Author(s)
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E[s;iSm)
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Figure 7: For a given integrand f(x) that is sampled with randomly
Jittered samples generated by a stationary point process (e.g. homog-
enization), the corresponding variance varm in Eqn.(23) involves
only the product of the integrand’s power spectrum (£5,£,) and the
samples’expected power spectrum (E[s;,sp]). Figure reproduced
from [ST17].
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Figure 8: To emphasize the role of phase in variance reduction,
we visualize the third term from Eqn.(22) for a 1D step function (a)
and 1D jittered samples (for N = 16 in b,c,d) when all the strata
are shifted as indicated above each column. Green, black, and red
indicate positive, zero, and negative values, respectively. Figure
reproduced from [SSC* 19].

This was later employed to estimate 5D integrals for rendering
distribution effects [BSS™13].

Bias. Since over multiple realizations, error consists of a bias and a
variance term, we rewrite bias in the form :
o0
bias[[| =E[A]= Y fyE[sn] —15. 1)
m=—0o0

Following this formulation, Subr and Kautz [SK13] observed that
an unbiased estimator can be obtained if either both the summands
in Eqn.(21) are equal or E[s;;] = 8(m). The latter implies the ex-
pected Fourier spectrum to be non-zero and unity only at the DC
frequency (m = 0) which can be obtained when w(x) = 1/A(x), sim-
ilar to Eqn.(14) in the spatial domain. For fixed N, the weights are
w(x) = 1/(Np(x)) for a given density p(x), which we commonly
use to weight the samples in rendering. Consequently, sampling-
based estimation with properly weighted stochastic samples is un-
biased [SK13,016,SSC*19], which yields error only in terms of
variance.

(© 2019 The Author(s)
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Figure 9: Jittered sampling shows good convergence (dotted curve)
when the strata boundaries align with the step discontinuities intro-
duced at x =0.25 and x = 0.75 in an otherwise smooth gaussian and
an exponential function. However, homogenization (CPr) destroys
this alignment resulting in bad convergence (shown in log-log scale)
behavior overall (solid curves). Figure reproduced from [SSC* 19].

Variance. Variance in the Fourier domain has the following
form [SSC*19]:

varll] = Pvarlso] + Y. EofuElspsm] + Y Y Gu6Elsns;]. (22)

mez m=7LI=7

m#£0 I#m
This is a generalized formulation which works for both uniform and
importance sampling strategies. Here the first summand contains
the DC contribution, the second term is a product of the integrand
power spectrum (f};,f,) and the samples’ expected power spectrum
(El[sy,sm]), visualized in Figure 7. The third summand is crucial as it
quantifies both the variance reduction due to importance sampling
and the alignment of the samples with the integrand, which accounts
for the phase information (see Figure 8). Eqn.(22) can be seen as
a covariance matrix where the first and the second terms are along
the diagonal whereas the third term represents the non-diagonal
elements of the matrix.

Stationary Processes. For stationary point processes, the first and
third summand in Eqn.(22) goes to zero. This simplifies the variance
formulation to the form:

Varm = Z £ 6nlE S Sm]. (23)
mez
m#£0
This result was first derived by Durand [Durl1] and later by Subr
and Kautz [SK13], but it was only valid for MC random samples as
they are stationary by construction. Pilleboue et al. [PSC*15] gen-
eralized this result to all samplers by homogenizing each sampling
pattern. The idea behind homogenization (Cranley-Patterson rota-
tion [CP76]) is to randomly and uniformly translate each realization
of a point set before computing the expectation operator in Eqn.(23).
Consequently, the underlying point set becomes stationary (shift-
invariant).
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Figure 10: Different stratification techniques are summarized in 2D with their 1D projection along the vertical y-axis, where applicable. (a)
Placing samples at the center of a grid gives visual banding artifacts during rendering. (b) By offsetting all samples within a pixel (uniform
Jjittering) by the same random amount, these artifacts can be avoided. (c) Random translation followed by a random rotation further helps to
reduce variance. (d) Another variant involves perturbing each sample within a stratum by a random offset from a radially symmetric Normal
distribution. (e) Random (and Gaussian) jittering does not have dense 1D stratification (1D projection contains more than one sample per
stratum). (f) LH (or N-rooks) sampling does not preserve 2D stratification (empty strata in the top row and leftmost column). (g) Multi-jittered
(MJ) sampling preserves both 1D and 2D stratifications, thereby combining LH and random jittering properties. (h) Correlated multi-jittered
sampling further enforces points to be far apart from each other while preserving multi-jittered behavior. Bottom row shows their expected
power spectra (exposure adjusted to highlight the spikes) with a peak at the center representing the DC frequency (m =0).

4.3. Discussion

The variance expressions derived in the spectral domain can be
obtained by applying a Fourier transform to the spatial counterpart
in Eqn.(16), as the PCF is fundamentally related to the expected
power spectrum of a point pattern by Eqn.(9), and the Fourier trans-
form of the autocorrelation ay of the integrand f is its power spec-
trum. Eqn.(16) suggests that variance can be reduced if the PCF g
is low where ay is high. This intuition carries over to the spectral
domain: the spectral variance expressions suggest samplers with low
energy in the spectrum where the integrand spectrum has high en-
ergy. Deriving similar connections to the Koksma-Hlawka inequality
in Eqn.(12) requires further investigation.

To simplify variance expressions in Eqn.(15) and (22) to their
stationary counterpart (Eqn.(16) and (23)), one can perform homog-
enization or Cranley-Patterson rotation (CPr). It involves adding
a random global offset to all sampling point locations for each re-
alization. However, such operations on the point pattern can also
destroy important correlations between point samples and the in-
tegrand [SSC*19]. A simple example is when step discontinuities
align with the strata boundaries during jittered sampling. Homoge-
nization would destroy this alignment, resulting in bad convergence
behavior as shown in Figure 9 (solid curves).

If we assume a stationary point process to start with, and an
invertible warp on the primal domain for importance sampling, the
integrand can be warped back to the primal domain to utilize the
standard spatial expression for variance of stationary point processes
in Eqn.(16) or its slightly modified version with a change of variables
in Eqn.(17). For other sampling techniques for adaptive density, even
more simplified expressions can be derived [016]. However, for a
general algorithm that introduces adaptive density and correlations,

we have to fall back to the more complex expressions for general
point processes in Eqn.(15) or (22).

Although utilized in recent works [PSC*15,016,SSC*19], these
exact bias and variance expressions have so far not been extensively
studied for sampling patterns and integrands encountered in ren-
dering. They, nonetheless, already provide valuable insights and
guidance when choosing sampling patterns, which we elaborate on
in the next section.

5. Error Analysis for Common Sampling Techniques

The closed-form error formulations summarized in Section 4 provide
several insights on what kind of correlations help in error reduction
and convergence improvements. In this section, we investigate prop-
erties of commonly used sampling strategies in the light of these
expressions.

We first look into several stratification techniques that are quite
commonly used in rendering due to their simple constructions (see
Figure 10 and appendix A for code snippets). We go over recent
developments that analyze their impact on the rendering quality
under simplified light transport scenarios, which are empirically
shown to work in complex cases. In Section 5.2, we briefly review
quasi-random samplers that overcome limitations of grid-based
stratification techniques. We then dive into sophisticated blue noise
algorithms and the improvements they brought in terms of both
variance reduction and convergence in Section 5.3. This is followed
by recent ideas on combining stratification with blue noise algo-
rithms to obtain the so called low discrepancy blue noise samples.
In the last Section 5.4, we review how the error or variance behaves
when these correlated sampling strategies are combined with im-
portance sampling. Throughout this section, we assume a canonical
d-dimensional unit cube [0, l)d space as the sampling domain.

© 2019 The Author(s)
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(a) Regular grid (b) Random jitter (c) Uniform jitter

Figure 11: Regular grid sampling clearly reveals aliasing artifacts
in (a) which are no longer visible in the randomized versions (b and
¢) of the ray marching algorithm [AWS7, PH89]. Figure reproduced
from [PKKOO].

Disk light Disk light Square light Square light

(a) Uniform jitter (b) Random jitter (c) Uniform jitter (d) Random jitter
(RMS 6.59%) (RMS 8.32%) (RMS 13.4%) (RMS 10.4%)

Figure 12: For (circular) disk lights, uniform jittering (single offset
per pixel applied to each stratum) has less noise than random jitter-
ing (each stratum is independently perturbed). For square lights, the
converse is true, with random jittering per stratum the performance
is better. Figure reproduced from [RAMNI2].

5.1. Stratification based sampling

Random sampling is usually suboptimal for Monte Carlo rendering.
Mitchell [Mit87,Mit91] conducted some notable work on optimal
sampling patterns and argued that better results can be obtained
with stratified sampling [Mit96]. Stratification is a simple approach
to introduce correlations within samples. The idea is to subdivide
the sampling domain into a Cartesian product of intervals [Ney34]
and placing one samplfﬁt within each stratum either randomly or
deterministically. In numerical integration, stratification has prov-
ably shown to reduce error/variance and improve convergence rates
during sampling-based estimation [Vea97].

Error due to stratification varies depending on where a sample is
placed within a stratum [RAMNI12]. Regular grid sampling places
samples at the center of each stratum. The underlying point process
is non-stationary, and thus a significant bias may result, which may
manifest itself as visual banding artifacts during rendering (Fig-
ure 11a). By simply offsetting each sample by the same random
offset (called uniform jitter), these artifacts can be avoided [PKKO00],
as this makes the underlying point process stationary and hence
cancels the bias. It is also possible to independently offset each
sample within a stratum to obtain random jitter (Figure 10e) which
is quite commonly used in estimating low-dimensional light trans-
port integrals with difficult visibility functions (multiple disconti-
nuities) [Mit96]. Although random jitter sampling does not result
from a stationary process, it is still unbiased as long as the random
offsets cover each stratum.

' More samples can be placed within each stratum but that can hinder the
quality and deteriorate convergence during integral estimation.

(© 2019 The Author(s)
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Figure 13: Canonical visibility configuration for uniform jitter
(top row) and random jitter (bottom row) samples is shown for
square and disk lights. In (a), the correlation among different “light
scanlines” for uniform jitter can lead to poor results with square
lights, since each “light scanline” obtains the same result (unlike
in d), without further decreasing variance. However, after polar
mapping (c), samples from each column in (a, color-coded) are
pushed all over the circle at fixed radius from center, resulting
in less variance. (b) Concentric mapping can also achieve some
perturbation across the discontinuity but the samples stay in almost
the same vicinity. After mapping to disk, the perceived occluded
boundary might also transform (shown as wiggled edge). Figure
inspired from [RAMNI12].

Ramamoorthi et al. [RAMNI12] made an interesting observation
that in some cases uniform jitter can perform better than random
jitter despite the regular structure present in the uniformly jittered
samples. By performing a 1D visibility analysis with different jit-
tering techniques, they found that the improvements due to uniform
jitter depends on the geometry of the discontinuity. For example,
when a scene is illuminated with a circular area light source, uniform
jitter light sampling shows significant improvement over randomly
jittered samples (Figure 12). However, for square area light sources,
random jittering is more effective compared to uniform jittering.
The latter can be explained by the positive correlations which uni-
formly jittered samples impose w.r.t. discontinuities observed by
the square area light source (Figure 13a), whereas, random jittering
decorrelates the samples w.r.t. any discontinuity (Figure 13d).

For circular area lights, samples are usually mapped from a unit
square domain using either a polar or concentric mapping [SC97].
We visualize these mappings in Figure 13 for a 4 x 4 grid. Polar map-
ping (x,y) — (u = /x,¢ = 2my) is an area preserving map which
results in stretching each grid column to a circle of radius u. As a
result, samples sharing the same x-coordinate (e.g., Figure 13a, first
column) are placed along the same circle of radius « (e.g., Figure 13c
innermost circle, samples are color coded for better visualization).
As a consequence, for uniform jitter, the samples in Figure 13a
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Reference Random jitter Uniform jitter Isotropic jitter

(RMS 11.21%)  (RMS 10.79%)  (RMS 8.00%)

(RMS 10.92%) (RMS 11.77%)  (RMS 8.77%)

Figure 14: Isotropic jittering can result in errors lower than uni-
form and random jitter samples under certain conditions on the
scene geometry and light types. The scene is rendered with a disk
area light source and an average of 7 visibility samples per pixel.
Figure reproduced from [016].

falling along any column are now evenly spread across the domain
in a circle (in Figure 13c). Christensen [Chr18] made similar ob-
servation which could explain why uniform jitter works so well for
circular area light sources. Note that, this hypothesis does not take
into the boundary edge transformation that might happen after polar
or concentric mapping. Interestingly, random jitter goes through
a same transformation (Figure 13d—f) but performs worse than
uniform jitter. This can be explained by comparing their expected
power spectra from Figure 10 (bottom row). Since the magnitude of
variance depends on the product of the sampling and the integrand
power spectra (23), uniform jitter would show less variance due to
no energy in the low frequency region compared to random jitter
spectrum.

Oztireli [016] points out some cases where uniform jittering w.r.t.
a particular scene geometry (e.g. circular area light source) might
not always be beneficial (bottom row in Figure 14). To further har-
ness the benefits of uniform jittering, Oztireli proposes to rotate the
uniformly jittered samples w.r.t. the integrand orientation. For inte-
grands with no prior knowledge about their orientations a random
rotation can be performed on uniformly jittered samples (isotropic
uniform jitter§ in Figure 10c). He also derived closed-form vari-
ance formulations for these different variants of jittered sampling
with global inter-strata correlations as special cases of the formulas
in Section 4.1, and argued that adapting sample correlations w.r.t.
the underlying integrand can show improvements in variance. Fol-
lowing this, the rotated uniform jittering pattern with the minimum
variance is termed as r(rotated)-uniform jittering.

Some integrands can exhibit negatively correlated parts, which
can be exploited to reduce the error in integration. Antithetic sam-
pling [HM56] is a classical strategy to exploit these negative corre-
lations. The idea is to generate a pair of samples (e.g. x and 1 —x),

§ Uniform jitter (including isotropic one) is also known under the name of
systematic sampling [CO89] and has been studied by Sbert et al. [SRFN06]
for image analysis.

log RMSE

log spp

Figure 15: RMS error is plotted for a scene lit by a square area
light source. The correlations among the strata make uniform and
isotropic sampling disadvantageous. Among all the sampling strate-
gies shown (excluding R-Uniform J), mirrored jitter sampling results
in the least error. Figure reproduced from [O16].

one of which is a mirror copy of another. Oztireli [016] combined
this idea with jittered sampling to obtain mirror jitter sampling. It in-
volves one randomly jittered sample and its mirror copy within each
strartum. These negative correlations work well to reduce variance
for soft shadows with not too complex occluders (Figure 15). The
corresponding variance expressions were derived by considering
mirror jittering as superpositions of uniform jittering.

Subr and Kautz [SK13] propose another variant called Gaussian
random jittering—inline with Cook et al. [CPC84, Coo86]—that
involves perturbing a sample within each stratum by a random
variable from a Normal distribution (N (g, 62)). The resulting 2D
power spectrum looks much like randomly jittered samples but with
high energy peaks at /N distance far apart (Figure 10d). This is a
biased sampling strategy as the samples cover the whole domain
non-uniformly (without weights), as opposed to random jittering.
The bias was controlled to trade off variance.

Pilleboue et al. [PSC*15] performed a Fourier domain variance
analysis to understand which spectral characteristics of samplers
are important to improve convergence rate for integral estimation.
Based on a variant of the spectral variance expression in Eqn.(23),
they proposed a convergence analysis tool that characterizes radial
profiles of different radially averaged sampling power spectra. They
fixed the best (no Cy discontinuites) and the worst case (with Cy
discontinuites) from a given class of functions [BCT01] and propose
theoretical error bounds (lower and upper) for different samplers
based on their radial profiles (radially averaged expected power
spectra). In general, their analysis shows that functions with no Cy
discontinuity seems to always follow the proposed best case con-
vergence rate whereas functions with Cy discontinuities follow the
worst case behavior. Their analysis further reveals that the point pro-
cesses with no low frequency energy in their power spectrum (e.g.,
blue noise samples, see Section 5.3) or with spectrum having energy
going to zero at DC (e.g., random jitter) would give better variance
reduction and convergence rates. However, their convergence tools
are only valid for samplers with isotropic expected power spectra.

Some of the stratification techniques listed in Figure 10 have
anisotropic structures present in their expected power spectra (bot-
tom row). This is because the underlying point processes are neither
isotropic, nor stationary [SJ17]. It is thus not sufficient to rely on

(© 2019 The Author(s)
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Figure 16: The expected power spectrum in (a) of N-rooks (shown for N = 256) samples is highly anisotropic, with different radial behavior
along different directions (orange vs. magenta arrows). Radial averaging (radial mean) masks the good anisotropic properties of the sampler
along the canonical axes. (c) Two different integrand spectra (first column) and their product with the N-rooks expected power spectrum
(second column) are shown. The hairline anisotropy along the axes in (a) cancels out the integrand spectral energy in magenta box resulting in
much better convergence as shown in (d) with the two integrands shown in the top-right. Figure reproduced from [SJ17].
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Figure 17: Top row illustrates an integrand with spectrum energy
only along the horizontal direction. Existing anisotropic samplers
can be directly used to integrate this function. However, for an in-
tegrand with an arbitrarily oriented power spectrum (bottom row),
samples can be sheared to match the low energy region of the sam-
pling power spectrum with the high energy regions of the integrand
spectrum. Figure reproduced from [SJ17].

radially averaged power spectra to predict error or convergence rates.
An example is shown for an N-rooks sampler in Figure 16, which
has hairline anisotropic structures along the canonical axes due to
the dense 1D stratification samples along the axes.

When these anisotropic structures completely align with the inte-
grand spectrum, N-rooks shows significantly improved convergence
rates (Figure 16d, magenta). The reason for this improvement is
depicted in Figure 16c: the error, which depends on the multipli-
cation of the power spectra of the point pattern and integrand, is
significantly lower for the integrand in magenta. However, functions
encountered in practice can have arbitrary orientations and thus
anisotropies. Earlier works [Kel06, DK08] demonstrate sample trans-
formations that reduces aliasing and noise for rendering purposes
directly in the spatial domain. However, these techniques are agnos-
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tic to the underlying integrand orientation. Singh and Jarosz [SJ17]
perform an in-depth Fourier analysis and propose to shear (or rotate)
the samples (Figure 17) which dramatically improves the variance
convergence rates. They leverage the light transport frequency anal-
ysis [DHS*05] to obtain the shear parameters. However, since most
existing samplers have only hairline anisotropic structures in their
spectra, the improvements could only be shown after a very high
sample count, e.g. N > 16K or more. Correlated MJ (Figure 10h)
has wider anisotropic structures but they are polluted by high energy
streaks which delimit their ability to improve convergence when
aligned with an integrand spectrum.

In order to use stratification in higher dimensions, usually samples
are generated by padding [Coo86]: samples are jittered in lower
dimensions (in 1D or 2D for image plane XY, lens UV, time T....)
and are randomly permuted to form uncorrelated jittered samples in
higher dimensions. This strategy only preserves spatial and spectral
characteristics in the original subspaces, whereas, across subspaces
(e.g. XU, YV, ...) the good properties (e.g., spectrum with no energy
in the low frequency region) are lost resulting in an overall bad
convergence behavior [SJ17].

Discussion. Stratifying the sampling domain has many merits in
terms of convergence improvement and variance reduction. The
analysis shown so far reveals that the choice of the stratification
strategy should depend on the correlations present in the integrand,
e.g. its spectral energy distribution, or anisotropy.

The spatial domain analysis emphasizes both local and global cor-
relations. For example, if a local patch in a stratum and its mirrored
version are negatively correlated, mirrored jitter sampling would
reduce variance. Greater reductions can also be obtained when there
are global correlations. As examples, negatively correlated strata
leads to considerable reduction in variance when using uniform jitter
sampling, whereas, for functions with positively correlated strata it
is beneficial to use isotropic jitter sampling instead.

The Fourier domain analysis encodes these correlations in the ex-
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pected power spectrum and emphasizes that for variance reduction
it is important to have samplers with no or low energy in their spec-
trum along the frequencies where the integrand spectrum has higher
energy. This can be achieved by performing simple transformations
(like shearing or rotation) to the samples w.r.t. the underlying inte-
grand.

While several point sampling constructions and transformations
are proposed to improve stratification, MC estimation need not
always be a point sampling process. Over the past couple of
decades researchers have started employing MC-like estimators
using line (segment) samples for rendering problems ranging from
anti-aliasing [JP0O], distribution effects [GDAM10, TPD*12], hair
rendering [BGAM12] to path sampling [NNDJ12, KGH"14] or
density estimation [JNSJ11]. Billen and Dutré [BD16] demonstrated
improvements with line samples for direct illumination. Singh et
al. [SMJ17] analyzed the line and line segment based MC estimators
and derive closed-form error formulations in the spectral domain.
Their analysis reveals that with certain correlations (e.g., jittering
or blue noise [SZG*13]), line and line segment samples can show
dramatic improvements in convergence and variance reduction. This
is primarily because line (segment) samples pre-filter the underlying
function leading to smoothing out of Cy discontinuities. Further-
more, since line samples spread all across the domain, they further
reduce the dimensionality of the problem leading to faster conver-
gence and potentially denser stratification.

5.2. Quasi-Monte Carlo sampling

One common limitation to all stratification techniques presented so
far is that they cannot generate samples progressively. This is crucial
in rendering since it is impossible to know the sampling budget
beforehand to render a light transport effect. Recently, Christensen et
al. [CKK18] proposed a simple construction to generate progressive
versions of randomly jittered and multi-jittered stochastic samples
in 2D. However, due to the underlying grid-based constructions,
these stratification techniques do not scale well with dimensionality.
In contrast, quasi-Monte Carlo samplers do not have this limitation.
There are various other quasi-Monte Carlo sample constructions
available in the literature [Nie92, KPR12], which would merit its
own survey report.

The commonly used low discrepancy quasi-Monte Carlo sam-
plers such as Halton [Hal64] or Sobol [Sob67] are known to give
better convergence rates and low error when used in integral estima-
tion, as compared to random sampling. This is due to the regularity
they induce into the sampling pattern. Hence, the resulting distri-
butions exhibit similar structures to stratification. However, the 2D
projections might not have well-distributed samples and many sys-
tematic patterns, stripes of points aligned along diagonals, and pairs
and triplets of clumped points can be observed. This could give
unpleasant artifacts during rendering.

To avoid such non-uniform distributions and the related artifacts,
these quasi-random sequences are often randomized [Kell3,0we03].
One such randomization technique is called Cranley-Patterson ro-
tation [CP76], which represents random toroidal shifts. Another
common randomization is random digit scrambling [Owe97, KK02].
Hence, in the end we again get stochastic point patterns with a
well-defined underlying point process.

When evaluating and comparing these sample patterns, it is
common to use the star discrepancy (5) as a measure of qual-
ity [RWCSO05]. However, for rendering purposes, discrepancy
might not be appropriate for measuring sampling pattern quality
due to the presence of randomly oriented edges present within a
pixel [Mit92, DEM96]. Recently, Christensen et al. [CKK18] com-
pare different scrambling variants of Halton and Sobol, and show
that despite having good low discrepancy properties, some of these
variants do not always give good convergence behavior even for
simple functions like a triangle, Gaussian, or bilinear functions. We
thus believe that a thorough analysis of these sampling patterns from
the perspective of point processes would reveal interesting insights.

5.3. Blue-Noise Sampling

The frequency analysis by Durand [Durl1] and Pilleboue et al.
[PSC*15] suggest that sampling patterns with a blue-noise spec-
trum [Uli88], i.e. “no low frequency,” are advantageous for Monte
Carlo integration, especially when the integrand has less energy
in the high-frequency range. The spatial domain analysis by
Oztireli [016] also suggests that distributions that maximize the
spacing between sample points reduce the integration error, con-
firming the classic intuition of using Poisson-disk distributions for
Monte Carlo sampling in computer graphics [DW85, Coo86]. These
analyses all follow from the error expressions as detailed in Sec-
tion 4. Similarly, Mitchell [Mit91] shows that blue-noise power
spectrum on the image plane plays an important role in the overall
evaluation of the visual quality of renderings, which was recently
demonstrated by Georgiev et al. [GF16, GIF* 18] in realistic settings.

There are, however, many obstacles to the actual adoption of
such so-called blue-noise sampling patterns, where the points
are randomly distributed with a certain distance among them.
First, the underlying assumptions of “no low frequency” is diffi-
cult to obtain by many of the blue-noise generation algorithms.
For example, blue-noise samplers such as Poisson-disk sampling,
FPO [SHD11] and KDM [Fatl1] are reported to perform worse
than randomly jittered samples at high sampling rates [PSC*15] due
to the presence of low-frequency energy in their expected power
spectra. Even though there exist well performing blue-noise pat-
terns (such as CCVT [BSD09] and BNOT [dGBOD12]) and al-
gorithms [HSD13,JZW*15, KTBV16, WW17] that allows better
control to the shape of the spectrum, such high quality blue-noise
samplers are only available in low dimensions [GF16]. For high
dimensions, samples can be generated by padding: sampling each
one- or two-dimensional sub-domain (lens, lights, etc) and randomly
joining the samples. This will, however, destroy the nice statistics
of the distributions. Reinert et al. [RRSG16] proposed a purely opti-
mization based algorithm that can generate blue noise samples in
multiple projections (1D, 2D or higher) but it does not scale well to
higher dimensions or with higher sample count. Finally, all known
blue-noise sampling algorithms are too slow to cope with the high
sampling rates in rendering applications. Thus, only lookup tech-
niques for distributing pre-computed blue-noise patterns can be used
in rendering.

Among the lookup techniques, tiling methods with multiple sam-
ples per tile [CSHDO03, KCODLO06, LD06] are of inferior quality
for contemporary needs. Fixed-density approaches like AA Pat-

(© 2019 The Author(s)
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Figure 18: We illustrate the integrands (top-right in each column) for a shade point directly illuminated by an area light source for light IS
and BSDF IS. (a) Light IS has a smooth underlying integrand when the light source is fully visible, unlike BSDF sampling (b), which sees light
boundary as a CO discontinuity. Partially occluded shade points, on the other hand, always have a Cy discontinuity (c,d). Figure reproduced
from [SSC*19].
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Figure 19: The convergence rate of MC integration with correlated (jittered) samples depends on the importance function (light vs. BSDF).
We analyze two Pixels P & Q directly illuminated by a square area light source in (a). Pixel P is fully visible from the light source, which results
in a smooth integrand when performing light source surface area sampling (visualized in bottom-left b) and a convergence rate of O(N 72)
(c: dot-dashed green curve, all plots are in log-log scale). Cy discontinuities in the integrand result in O(N _1‘5) convergence, which can
happen: when using homogenization or Cranley-Patterson rotation (CPr; solid green curve, more details in [SSC* 19]); when the light source
is partially occluded (Pixel Q); or when sampling the BSDF (in magenta) since this treats the boundary of the light as a Cy discontinuity even
when the light is fully visible (visualized in the second column of b). Figure reproduced from [SSC*19].

terns [AHD15] and LDBN [APC*16] do not meet the need for or LDBN. Christensen et al. [CKK18, CFS*18] considered both

progressive sampling in some Monte Carlo integration scenarios. samplers in recent comparisons for Monte Carlo integration. They
Some adaptive sampling patterns like Penrose tiling [ODJ04], Poly- report that both techniques perform competently, with scrambled LD
ominoes [Ost07] and Polyhexes [WPC™* 14] need correction vectors sequences performing the best. In contrast, Kulla et al. [KCSG18]
that depend on the number of samples, so they are not progres- report that ART [ANHD17] gives favorable results for the Arnold
sive in the strict sense [CKK18]. However, both Polyominoes and rendering framework.

Polyhexes can be easily adapted for progressive sampling as they
rely on local subdivision rules. One could also implement the snap-
ping procedure from Ahmed et al. [ANHD17, Section 4.2] to adapt
progressivity.

Overall, blue noise sampling is thus still an important alternative
to low-discrepancy sequences in rendering, especially if it can be
demonstrated to eliminate aliasing-like artifacts. We believe that
with improved performance of generating algorithms in high dimen-

Thus, among the many blue noise generation and distribution sions, blue-noise patterns can significantly improve error and visual

algorithms, only a few, such as ART [ANHD17] and the approach quality of rende‘rings, as already predicted by the point process
by Perrier et al. [PCX* 18], seem relevant for rendering. The first theory, and practice.

one provides adaptive sampling with a stratification property, while
the later uses a complex hierarchical scrambling principle to obtain

. . . . . . . 54. I t S li
a higher dimensional sequential sampling pattern with blue noise mportance Sampling

and low discrepancy properties on 2D projections. As discussed by Importance sampling (IS) [Coc63] is a widely adopted variance
Perrier et al. [PCX* 18], enforcing the sequential property in higher reduction technique in rendering. It works by placing more samples
dimensions leads to lower quality in the desired 2D projections, as where the integrand is high, and thus introduces adaptive intensity.
compared to the one obtained by 2D only samplers such as BNOT For integrands with highly varying values across parts of the domain,

(© 2019 The Author(s)
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uniform sampling might take a prohibitively long time to explore all
intricate regions (e.g. regions having nearly zero value everywhere
except a small range). IS is beneficial in making sure all important
regions are adequately sampled, given that such behavior is known
a priori.

The improvement in error via importance sampling is very com-
mon in rendering [Vea97, Owe13,SNJ*14]. A typical example in-
volves importance sampling a bidirectional scattering distribution
function (BSDF) vs. a light source. For a square area light source,
if we importance sample the light plane for pixels with no occlud-
ers in between, we get to integrate a smooth function, resulting in
lower error (see Figure 18). In contrast, importance sampling the
BSDF would lead to an integrand with a discontinuity, which might
increase variance and thus error.

However, the benefits of IS—when performed with pure MC
samples—is constant and diminishes as more samples are drawn, i.e.
IS does not affect the convergence rate. However, when performed
in conjunction with correlated samples, IS can significantly improve
the convergence behavior (see Figure 19). Singh et al. [SSC*19]
shows that importance sampling combined with such correlated
point patterns can indeed provide improved convergence behavior
for different parameterizations, i.e. change of variables. As elab-
orated on in Section 4.1, importance sampling is typically imple-
mented by warping an initial domain where a point distribution
generated by a stationary point process is defined, to a new domain.
Hence, by warping back the integrand, we can easily get exact and
tractable error expressions (17) for these cases.

6. Conclusions and Future Directions

In this work, we provide a survey of techniques developed for analy-
sis of point distributions for rendering based on correlations of point
locations. After decades of research, we are now at a stage where
error in integral estimators for rendering can be written down exactly
in useful forms, which are amenable to analysis to extract insights.
But as the recent works show, we do not have to stop there, but in-
stead work on new patterns specifically designed for the integrands
we encounter in practice, with the help of the error expressions as
summarized in the previous sections.

A very important consideration here is the efficiency of sampling
algorithms. Various toolkits (Table 2) have been developed over the
years to facilitate their comparisons. Although there exist algorithms
that match to any given statistic, e.g. the PCF or expected power
spectrum, these are typically very slow to be used in practice for
rendering, and do not scale well with the number of dimensions.
In contrast, classical algorithms such as low discrepancy sampling
work efficiently for any dimensions, but lack the flexibility we need
for adaptations based on integrands and error. We thus believe that
better understanding the nature of the integrands in the light of
the error expressions, and designing efficient sampling algorithms
that generate optimal and scalable point sequences while adapting
correlations w.r.t. the underlying integrand could be a very important
future effort for the rendering community. We hope that our work
will serve as an entry point for such efforts.
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Appendix A: Code Snippets for Stratification Strategies

In this section, we provide code snippets for some commonly used
2D stratification sampling strategies. We have borrowed the multi-
jittered and correlated MJ code snippets from Kensler [Ken13].

regularGrid2D (samples) {
for (row=0; row<yﬂv;row++)(
for (col=0;col<y/N;col++) {
p.x = (col + 0.5)/v/N
p.y = (row + 0.5)/v/N
samples[count] = p;
count++;
}
}
}

uniformJitter2D (samples) {
randomShift = drand48();
for (row=0; row< xﬂﬁ;row++)(
for (col=0;col< Vﬁv;col++){
p.x = ((col + 0.5)/+/N) + randomShift;
p.y = ((row + 0.5)/+/N) + randomShift;
samples[count] = p;
count++;
}
}
}

isotropicJitter2D (samples) {
randomShift = drand48(), randomRotate = 90xdrand48();

for (row=0; row< +/N;row++) {
for (col=0;col< v/Njcol++) {

// x and y in [0,1) range

x = ((col + 0.5)/+/N) + randomShift;
y = ((row + 0.5)/+/N) + randomShift;
//Bring x and y in [-0.5,0.5) range
Xt x - 0.5;

yt =y - 0.5;
//Rotate the samples
cosval = cos(randomRotate * 7/180.0 );
sinval = sin(randomRotate * 7/180.0 );
p.x = xt x cosval - yt * sinval;
p.y = xt % sinval + yt x cosval;
//Bring samples back in the domain
toroidalWrap (p);
samples[count] = p;
count++;

}
}
}

randomJitter2D (samples) {
for (row=0; row<y/N;row++

)
for (col=0; col<y/N;col++)
()
()

{
p.x = (col + drand48 ) /V/N;
p.y = (row + drand48())/v/N;
samples[count] = p;
count++;

}
}
}

gaussianJitter2D (samples) {
for (row=0; row<yﬁv;row++)(
for (col=0;col<y/N;col++) {
1limit=0.5, randX=drand48 (), randY=drand48();
xcenter = randX-limit;
ycenter = randY-limit;

(© 2019 The Author(s)
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BNOT [dGBOD12]

PSA [HSD13]

Polyhex [WPC*14] https://github.
STK [PSC*15] https://github.
LDBN [APC*16] https://projet.

EEA [SSJ16]
UTK [PCX*18]

https://github.
https://github.

http://www.geometry.caltech.edu/BlueNoise/
https://code.google.com/archive/p/psa/

com/polyhex-sampling/sampler
com/stk-team/stk
liris.cnrs.fr/1dbn/
com/sinbag/EmpiricalErrorAnalysis
com/utk-team/utk/

Table 2: Various implementations have been released over the past few years that provide tools to analyze different sampling patterns in the
spatial and spectral domain. We are listing a few of them that have active online footprint. This list is by no means exhaustive.

envelop = exp(-limit+limit)/(l-exp(-limitxlimit));

xgaussjitter exp (-xcenterxxcenter) - envelop;
ygaussjitter exp (-ycenterxycenter) - envelop;
p.x = (col + xgaussjitter)/+/N;

p.y = (row + ygaussjitter)/+/N;

samples[count] = p;

count++;
}
}
}

NrooksSampler2D (samples) {
//generate 1D stratified x-coordinates
for (col=1;col<=N;col++) {
p.x = (col + drand48())/N;
xarray[count] = p.x;
}
//generate 1D stratified y-coordinates
for (row=1; row<=N; row++) {

p.y = (row + drand48())/N;
yarray[count] = p.y;

}

//in-place random shuffling

random_shuffle (xarray) ;
random_shuffle (yarray); // optional

samples = (xarray,yarray);

}

multiJitter2D (samples) {

m=+N, n=+N

//Producing a canonical arrangement

for (int J = 0; J < n; ++3) |
for (int i = 0; 1 < m; ++1i) {
samples[j * m + i].x = (i + (Jj + drand48()) / n) / m;
samples[j * m + i]l.y = (j + (i + drand48()) / m) / n;
}
}
//Shuffling the canonical arrangement
for (int j = 0; J < n; ++3) |
for (int i = 0; 1 < m; ++1i) {

int k = j + drand48() * (n - 3);
std::swap (samples[j = m + i].x, samples[k « m + 1].x);
}
}

for (int i = 0; 1 < m; ++1i) {
for (int J = 0; J < n; ++3) {
int k = 1 + drand48() * (m - i);
std::swap(samples[j * m + i].y,samples([]j = m + k].y);
}
}
}

///Correlated MultiJitter is a simple variant of MJ
correlatedMJ2D (samples) {
m=+N, n=+N

//Producing a canonical arrangement

for (int j = 0; j < n; ++3) {
for (int i = 0; i < m; ++1i) |
samples[j * m + i].x = (i + (j + drand48()) / n) / m;
samples[j * m + i].y = (j + (i + drand48()) / m) / n;

//Uniform shuffling of x-coordinates
for (int j = 0; J < n; ++3) |
int k = j + drand48() * (n - J);
for (int i = 0; i <m; ++i) {

std::swap (samples[j = m + i].x, samples[k « m + 1i].x);

}

(© 2019 The Author(s)
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//Uniform shuffling of y-coordinates

for (int i = 0; i < m; ++1i) |
int k = i + drand48() x (m - i);
for (int j = 0; j < n; ++3) {

std::swap (samples[j * m + i].y,samples[j * m + k].y);

}

}

}

Listing 1: Psuedo code is provided for common stratification
strategies: regular grid, uniform jitter, random jitter, N-rooks, multi-
Jitter, correlated multi-jitter
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