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1. Introduction

Many real-world networks show the presence of communities, i.e., the phenomena where certain network features
tend to cluster into local compact groups. Identification of network communities has a broad range of applications, from
customer segmentation to discovering micro ecosystems in food webs to detecting gang formation and terrorist activity
in crime networks. The problem of identifying communities has been extensively studied in the literature and nowadays
still remains one of the most active research areas in network analysis (for overview of algorithms see, e.g., Fortunato,
2010; Goldenberg et al., 2010; Scott and Carrington, 2011; Plantié and Crampes, 2013; Li and Zhang, 2013; Harenberg
et al., 2014; Wilson et al., 2014; Li et al., 2015; Estrada and Knight, 2015, and references therein).

Although a notion of network community is not defined uniquely and varies among domains of network applica-
tions (Leskovec et al., 2010; Estrada and Knight, 2015), conventionally a community is thought of as a cohesive set of
vertices that are more strongly or better connected with each other than with external vertices. That is, community
membership can be characterized in terms of how “close”, or “central” a given vertex is to other members with respect to
a particular attribute. Moreover, there exists no “gold-standard” rule that allows to reliably examine results of community
detection, and in practice detected communities are often validated using non-comprehensive anecdotal procedures (Yang
and Leskovec, 2012; Newman and Clauset, 2016). The problem is further exacerbated by presence of (usually multiple)
outliers. While outliers are long known to have a considerable impact on community detection algorithms (Aggarwal,
2013), until very recently the two naturally tightly-knit problems of network clustering and outlier detection have been
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mainly studied as independent problems (Perozzi et al., 2014; Cai and Li, 2015). This is partially due to the fact that
the underlying probabilistic geometry of the network data is usually not taken into account explicitly in the community
detection process. At the same time, many popular methods for community detection, for example, various versions of
spectral clustering based on the K-means algorithm and model-based clustering, are sensitive to outliers, especially since
a single graph can contain multiple different groups of outliers or anomalies (Gao et al., 2010).

To address the above challenges, we propose to introduce a concept of data depth into the network community
detection that allows to integrate and systematize ideas on centrality, community, and outliers; and to the best of our
knowledge, the notion of data depth is yet a new and unexplored tool for analysis of communities in complex networks.
Data depth is a nonparametric and inherently geometric method that was introduced initially in a setting of multivariate
data analysis. The idea is to assign a numeric value to each data point in respect to its centrality within a given data
cloud. Depth contours based on such natural center-outward orderings of all data points can be then used to visualize
and simultaneously evaluate clusters as well as outlyingness and anomaly structures, and thus to more efficiently recover
latent mechanisms behind data structures. Data depth is a quickly developing field that gains increasing momentum in
view of wide applicability of depth concepts to classification, data visualization, high dimensional and functional data
analysis (for overview see, e.g., Zuo and Serfling, 2000; Cuevas et al., 2007; Lépez-Pintado and Romo, 2009; Hyndman
and Shang, 2010; Nieto-Reyes and Battey, 2016, and references therein). Given the proven power of depth function
methodology with multivariate and functional data, it is highly appealing to extend these ideas to the complex setting
of network data. Indeed, one such contribution is provided by Fraiman et al. (2015), but it concerns a random sample of
graphs following a probability model on the space of all graphs of a given size, and more recently Tian and Gel (2017)
show utility of depth-based (dis)similarity measure based on L,-depth, for unsupervised network clustering. In the present
treatment as well as in many applied studies, however, we deal with a data set consisting of a single network with a small
set of vertices with known membership, and the goals of detecting the network community structure and identifying its
center, outliers, and other structural features.

Our key idea is to adapt the so-called data depth vs. depth classifier, or DD(G)-classifier, as a primary supervised
community recovery method within a spectral clustering framework. The DD(G)-classifier is a completely nonparametric
and data-driven procedure (Li et al., 2012; Cuesta-Albertos et al., 2017) which first displays the depth values of
sample objects with respect to the underlying clusters and then automatically determines the best separating curves
to classify objects by their depth representation. In addition, for a case of two clusters, the DD(G)-classifier allows a
comprehensive visualization of data structures as a two-dimensional scatterplot (Li et al., 2012). Recently, the depth
vs. depth nonparametric classification has been systematically enhanced to a general multi-class case in functional data
analysis (Mosler and Mozharovskyi, 2015). The proposed DD(G)-classifier for network community detection also relies
on estimation of the optimal separating curve and, hence, operates within a supervised learning framework. While
clearly knowledge of some prior network information might be considered as a restriction, such setting has practical
appeal, especially in social networks. However, supervised network clustering yet appears to remain an under-explored
area. Indeed, most of the current methods for network community recovery fall either into an unsupervised framework
(arguably, the dominant fraction of (at least) statistical studies on complex networks) or into a semi-supervised framework
(i.e., the research direction mainly explored in computer science community and, to a much less extent, in statistics). In
many applications, however, particularly, on analysis of various dark (i.e., criminal, terrorist and illicit) networks, there
often exists some prior knowledge, and the primary interest is to cluster the remaining network data, given this prior set
of labeled training data (Scott and Carrington, 2011; Everton, 2012; Campbell et al., 2013). Furthermore, the idea of the
DD(G)-classifier can be intrinsically integrated as a part of semi-supervised network clustering, enhancing, for instance,
choice of similarity measures and reducing the impact of anomalies. Finally, the notion of data depth which is a new
concept in network studies, can be used in a much more general context of analysis, description and visualization of
complex network structures.

The main contributions of our study are summarized as follows:

e We bring the concept of data depth into the complex network analysis, with a particular focus on a case when only
a single realization of a network is available. Although data depths are widely used in multivariate and functional
data analysis, the depth concept yet remains an unexplored tool in network sciences.

o We develop a novel nonparametric and data-driven procedure for community detection in complex networks, based
on the inherently geometric tools of data depth and depth-depth (DD(G)) classifier. To the best of our knowledge, this
is the first work that employs the data depth for analysis of communities in complex networks in a supervised
setting.

e We investigate the impact of regularization in conjunction with a data depth framework. Echoing the recent results
on regularized spectral clustering of Chaudhuri et al. (2012), Joseph and Yu (2016), we find that the best performance
of the new DD(G)-classifier in stochastically block models (SBM) is also achieved under regularization.

e We validate the effectiveness of the new data depth classification procedure on a wide range of synthetic networks
with varying degree of sparseness, number of communities and outliers. We illustrate utility of the new community
detection method for tracking terrorist groups, organization of political blogs, and the bill cosponsorship in the Italian
Parliament.
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The paper is organized as follows. In Section 2, we introduce basic notations and review a concept of data depth.
Section 3 proposes the new nonparametric community detection algorithm based on DD(G)-classifiers and provides
an insight on its theoretical properties of the new method. Simulations studies are presented in Section 4. Section 5
illustrates application of the new DD(G)-classifier to detecting communities in terrorist networks, political blogs and bill
cosponsorship in the Italian Parliament. The paper is concluded by discussion in Section 6.

2. Background on graphs and data depth

Graph preliminaries. Consider an undirected graph G = (V, £) with a vertex set V and edge set &. Let n be cardinality of
V, that is, order of G. We assume if edge e,, € &, then u # v.

Let A be the corresponding n x n symmetric adjacency matrix, i.e., A;j = 1 if there is an edge between vertices i and j,
otherwise A;j = 0. Let Q be the diagonal matrix of degrees, i.e., Q; = Zj’:l Aj. A graph Laplacian is defined as

L=Q 2AQ 12 (1)

As network density decreases, number of low-degree vertices increases, which in turn results in zero eigenvalues
of L and elevates variability of the Laplacian estimators, including but not limited to adversely impacting a community
extraction task (see Rohe et al., 2011; Chaudhuri et al., 2012; Amini et al., 2013; Joseph and Yu, 2016; Le and Vershynin,
2015, and references therein). Hence, following Amini et al. (2013) and Joseph and Yu (2016), we also consider a regularized
Laplacian in the following form:

L, =Q "?A.Q 2, (2)

where 7 is a regularizer; A, =A+1J,] = %1, 1is a n x n matrix with all elements 1, and Q;; , = Z}Ll Ajj+ 1. Joseph and
Yu (2016) suggest to select an optimal regularizer by minimizing the Davis-Kahan bound, i.e. the bound on the distance
between the sample and population Laplacians. The method of Joseph and Yu (2016) is called DKest, and throughout our
study, whenever regularization is considered, we adopt DKest to select optimal 7. (We use the Quasi-Newton method to
tackle the minimization in DKest.)

One of the most popular methods for network community detection is based on spectral clustering (SC), with an idea
of embedding a graph G into a collection of multivariate sample points. Given a number of communities K, we identify
orthogonal eigenvectors X;, j =1, ..., K of the Laplacian L (or its regularized counterpart L, ) corresponding to the largest
K eigenvalues, and construct an n x K-matrix X = [X., ..., Xx]. Each row of X, x; = x;., provides a representation in R¥ of
a vertex in V, and thus we obtain n sample points in RX. We can now cluster this multivariate dataset into K communities
using any appropriate classifier — that is, with a conventional method of K-means or we can follow an alternative route
and augment spectral clustering with a data depth methodology on RX,

WHy DaTA DEPTH? In the last two decades, a concept of data depth is shown to be an attractive nonparametric
tool to analyze, classify and visualize multivariate data without making prior assumptions about underlying probability
distributions. A new impetus has been recently given to a data depth methodology due to its multifaceted utility in high
dimensional and functional data analysis. However, a concept of data depth remains yet unexplored in analysis of complex
networks.

Given a notion of data depth, we can measure the “depth” (or “outlyingness”) of a given object or a set of objects with
respect to an observed data cloud. A higher value of a data depth implies a deeper location, or higher centrality in the
data cloud. By plotting such a natural center-outward ordering of depth values that serves as a topological map of the
data, the presence of clusters, outliers and anomalies can be evaluated simultaneously in a quick and visual manner.

Definition. A data depth is a function that measures how closely an observed point x € RY, d > 2, is located to the
“center” of a finite set X € R or relative to F, a probability distribution in RY. As outlined by Zuo and Serfling (2000),
a data depth satisfies the following desirable properties: affine invariant; upper semi-continuous in x; quasiconcave in x
(i.e., having convex upper level sets); vanishing as |x|| — oo.

Since different notions of depth functions vary in their computational complexity, robustness and sensitivity to certain
underlying distributions (Liu et al., 1999; Zuo and Serfling, 2000; Hubert et al., 2008), we consider the following four
non-negative and bounded depth functions as our main tools:

e Tukey (TD) depth
HSg(x) = infy{Pr(H)},

where H is a closed half-space in R? and x € H, measures the tailedness of the point with respect to the deepest point
of the distribution F. The sample version HS,,(x) is obtained by replacing F in HS¢(x) by the empirical distribution Fp,.
For moderate d the Tukey depth can be estimated exactly using computationally efficient algorithms of Dyckerhoff
and Mozharovskyi (2016a). For higher dimensions the classical Tukey depth can be approximated by the Random
Tukey depth (RTD) (Cuesta-Albertos and Nieto-Reyes, 2008).
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Fig. 1. Toy example: clustering with the presence of outliers (in red). Colors represent ground truth labels, green stars represent community centers
yielded by K-means (left panel) and depth-based clustering (right panel). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

e Mahalanobis (MhD) depth
MhDg = [1+4 (x — ) T '(x — pe)l ™,

where pr and Xr are the mean vector and covariance matrix of F, respectively. The sample version MhD,,(x) is
obtained by replacing wr and X with their sample estimates. The Mahalanobis depth measures the outlyingness of
the point with respect to the deepest point of the distribution, and allows to easily handle the elliptical family of
distributions, including a Gaussian case. However, the Mahalanobis depth is less robust and fails to distinguish any
two distributions with the same first two moments.

o Random Projection (RPD) depth

RPDi(x) = max |u'x — Med(F,)|/MAD(F,),
ue

where F, is the distribution of u’x, Med(F,) is the median of F,, MAD(F), is the median absolute deviation of F,.
Finally, U = {uy, uy, ..., ug}, where u; is a randomly selected projection from d-dimensional hypersphere. The sample
version RPDf,, (x) is obtained by replacing the median and MAD with their sample estimates. Random projection
depth is the stochastic approximation of projection depth which also measures the outlyingness of the point with
respect to the deepest point of the distribution. RPD is robust against possible extreme observations.

Remark. In addition, we evaluated simplicial, spatial and zonoid data depths. However, we find that their finite sample
clustering performance is less competitive, and thus we omit these depths from further analysis.

Besides their role for descriptive analysis, depth-based approaches are also being applied for classification and clustering
problems, as well as for visualization of the detected clusters, in high-dimensional and functional data studies, often
in conjunction with microarray gene expression and other biomedical applications (see Jornsten, 2004; Li et al., 2012;
Mosler and Mozharovskyi, 2015; Cuesta-Albertos et al., 2017, and references therein). Choice of the most feasible depth
function remains an open problem and largely depends on the underlying probabilistic geometry of the data. Since there
exists no universally optimal depth, selection of depth function is typically dictated by particular desired properties that
are required in a given study, such as robustness, behavior of the depth outside of the convex support, computational
speed etc. Overall, depth-based approaches provide two main advantages: they are more robust against outliers and are
intrinsically geometric.

Fig. 1 illustrates this idea. Clustering results of K-means (see the left panel) is affected by a small group of outliers,
i.e,, the estimated cloud center (denoted by a green star) is forced to pull toward outliers because of the conventional
measure of distance. In contrast, depth-based approaches to clustering and classification are based on a distance between
a point and the remaining data cloud (i.e., not just between a pair of points), thus reducing the impact of outliers and
delivering more robust results. The right panel of Fig. 1 depicts a contour plot based on depth values, and the vertex with
the highest depth value is assigned to be the center (denoted by a green star). Visually, the center found by data depth
is closer to the true center than the one found by K-means (left panel).

What additional insight does the depth-based approach to classification allow us to gain? In short, the core idea behind
the data depth is to better capture a probabilistic geometry of the underlying data, that is, the position of each observation
in respect to the whole data cloud of interest and to quantify a probability that a certain point belongs to the community,
given a geometric structure of this community. Then, how to extend the data depth idea to networks?

3. A depth vs. depth (DD(G)) classifier for network community detection

In this section, we introduce a new supervised algorithm for network community detection using the data depth
concept. In particular, we adapt the data depth vs. data depth, DD(G), classifier approach of Li et al. (2012) and Cuesta-
Albertos et al. (2017) to a case multi-class extraction in complex graph-structured data. Moreover, for a case of two
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communities, the DD(G) classifier reduces to a data depth vs. data depth (DD) plot, which allows to visualize the
evaluated clusters along with various types of anomalies and outliers (Li et al., 2012). The new depth-based method for
network community extraction inherently accounts for the underlying probabilistic geometry of the spectrally embedded
graph-structured data.

In particular, consider an undirected graph G with the Laplacian L or its regularized counterpart L., and let K be a

known number of communities. Then, spectral embedding of G yields an n x K-matrix X = [X.1, ..., X] such that each
row of X, x;,i = 1,...,n corresponds to a vertex in V. Let X, x € RK, be a sample space formed by Xy, ..., X,. Let
Fy,k=1,...,K be the underlying distributions of x;,, ..., Xip, » where vertices vj,, ..., Uiy, belong to the kth community
of cardinality ny, and let fy, k =1, ..., K be the respective density functions.

Let D be a selected data depth function and Df(X), X € X, be a data depth value of X in respect to an ith cluster,
i=1,...,K. Now we consider a map x — d = (D,(X), ..., Dr (X)) and assign a vertex v to the ith community if its
corresponding representation X in RX satisfies

D (x) > r(Dg(x)), j=1,....K, i #], (3)

where r is a separating function for the DD(G)-classifier. In the case of two clusters, Li et al. (2012) consider a separating
function from the polynomial family. In a general multi-class case of K > 2, Cuesta-Albertos et al. (2017) propose to
employ methods such as Generalized Additive Models (GAM), logistic regression, classification trees, k-nearest neighbor
(kNN) etc. Clearly, choice of the optimal separating function ry requires existence of a (small) training set with known
membership labels, and hence, the suggested classification approach belongs to a class of supervised methods. The
proposed DD(G) method for community detection is outlined in Algorithm 1.

Algorithm 1: Spectral Clustering-DD(G)-Classifier Algorithm

Input : network G; order of G, n; number of communities K; training data set Sy, ny; is cardinality of Sy; sample
version of a depth function D; family of separating functions I", binary choice of regularization (TRUE or
FALSE).

Output: separating function r; a partition of G into K communities.

1 if no regularization then

2 | matrix W =Lin (1)

3 else

4 find a regularization parameter t with the DKest procedure (Joseph and Yu, 2016);

5 W =1L;in (2);

6 end

7 construct X by combining the leading K eigenvectors of W;

8 define x; = x;. as the i-th row of X;

9 fori=1,...,ny; do // In a training dataset
10 \ construct a map x; — d = (D1(X;), ..., Dx(x;));

11 end

12 find optimal separating curve r € I" to minimize a misclassification rate;

1forj=1,...,n—ng do // In the remaining dataset
14 \ assign X; to a cluster with the highest posterior probability given X;

15 end

Theoretical properties of the DD-classifiers for multivariate data have been studied by Li et al. (2012), who show
that the DD-classifiers converge to the optimal separating function point-wisely. Moreover, in a case of two clusters, Li
et al. (2012) show that the DD-classifier can achieve the Bayes error for a family of elliptical distributions, and showed
empirically that the DD-classifier can achieve the Bayes error for more general families.

Below we state an analogous proposition for the DD(G)-classifier in conjunction with a stochastic block model
(SBM) (Holland et al., 1983), that is a conventional model framework for analysis of community detection algorithms.
The key feature of SBM is that the probability of an edge between vertices i and j is determined solely by their group

memberships. That is, let ® be a n x K-membership matrix, where ®;y = Ijy—g), i=1,...,n, k=1,...,K, and g; is
the block membership for vertex i. Let B = {Blm}{fm=1 be a symmetric K x K-block probability matrix, where By, € [0, 1].
Then, the probability of an edge between vertices i and j is Pj = Bgg fori,j = 1,...,n, and a n x n-matrix P is the

population counterpart of an adjacency matrix A. Community memberships are fixed beforehand and do not overlap.
In the SBM setting, the population Laplacian £ is then defined as

£=9 '?pg712, (4)
where Q is the diagonal matrix of expected degrees. Similarly to (2), regularization of Q@ and P, i.e.,, 9, = Q + I and

P, =P + tJ, leads to a regularized counterpart of £, = Q,_I/ZPQI_]/Z. (Here I denotes an identity matrix.)

Proposition 1 (Bayes Optimality). Let A be an adjacency matrix from a stochastic block model (®, B) and K = 2. If the following
conditions are satisfied: (A1) a set of separating functions I" satisfies the continuity assumption (see Li et al.,, 2012), (A2) the
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DD(G)-classifier is based on simplicial, half-space, Mahalanobis or projection depths; (A3) as the number of nodes n goes to
00, /1( Ek §,) converges to N(0, X, ), X¢, > 0, where §, and ’;‘k, k = 1, 2 are orthogonal eigenvectors of £ and L (or their
respective regularized versions) associated with the two leading eigenvalues. Then,

Anlf) = Alrs) and E(Ay(fa)) — Alrg), s min e — oo, (5)

where An(ﬁ,) is the empirical error from Algorithm 1, E(An(?n)) is the expected empirical error, A(rg) is the Bayes error, and
ny and ny are cardinality of the first and second communities, respectively.

Proof. Let X € R™2 be the matrix containing the orthogonal vectors 81 and éz as columns, ie. X = [E], éz]. For
i =1,...,n let zz € R? be the vector corresponding to the ith row of X. By construction each vertex i in G is now
represented by z;. Let Z; = (z;, 1 <i<n:©®;;=1)and Z, = (z,1 <i<n: 0, = 1), thatis, Z; and Z, are induced by
vertices in G from the 1st and 2nd communities, respectively. Hence, assumption (A3) and Proposition 1 and Theorem 5
of Li et al. (2012) imply that (5) holds asymptotically, that is, as min(n, n;) — oo

An(FalZy, 22)) 23 Alrg) and E(A(7a(Z1, Z2))) — Alr).

Remark. Note that according to Li et al. (2012), multivariate normality is not a necessary but sufficient condition, to
achieve the Bayes error.

Remark. The key challenge in Proposition 1, however, is the assumption A3 or more generally properties of the
distribution of eigenvectors of L. There yet exists no formal result on asymptotic distribution of eigenvectors of L, even
under the simplified conditions of the Erdés-Rényi model, and derivation of such a result remains an open fundamental
problem. Assumption A3 seems to be closely linked to analogous results on asymptotic distribution of eigenvectors of
covariance and, more generally, symmetric random matrices (for recent results see Bai and Silverstein, 2010; Ledoit and
Péché, 2011; Fan and Wang, 2015, and references therein). Recent advances on analysis of eigen-structure of random
graphs are mainly based either in a Random Dot Product Graph (RDPG) parametrization (Athreya et al., 2016; Tang and
Priebe, 2016) or stochastic Kronecker graph parametrization (Radcliffe and Young, 2014). In addition, under the SBM
setting, Kadavankandy et al. (2015) discuss asymptotic distribution of eigenvectors of A corresponding to its continuous
spectra. Finally, Avrachenkov et al. (2015) study the limiting empirical distribution of the Laplacian eigenvalues of SBM,
and these results pave some way for analysis of the asymptotic properties of eigenvectors of L.

Remark. Interestingly, while there exists no theoretical result on distribution of eigenvectors of L, it appears that the
Assumption of normality is still plausible. In particular, consider a joint frequency plot of the two leading eigenvectors of
L under SBM with two clusters (see Fig. 2), which suggests some approximately bell-shaped distribution. In turn, Fig. 3
shows x2-Quantile-Quantile (QQ) plots of the two leading eigenvectors of Laplacian, with and without regularization,
left and right panels, respectively. Remarkably, as the left panel of Fig. 3 indicates, eigenvectors of regularized L, are
substantially closer to a bivariate normal distribution (i.e., the depicted squared Mahalanobis distances more tightly
cluster along the solid Quantile-Quantile (QQ) line) than their unregularized counterparts (see the right panel of Fig. 3).
Although Fig. 3 shows empirical distribution of the Laplacian eigenvectors for a single realization of SBM, we find similar
patterns for other realizations. These empirical findings not only support the claim of Joseph and Yu (2016) on utility of
regularization in terms of improving clustering performance but also imply a potential alternative method for selecting an
optimal regularizer t or dimension d for a low-dimensional Euclidean representation of RDPG, that is, by transformations
to multivariate normality (Ruppert, 2014).

4. Simulation study

In this section, we evaluate a finite sample performance of the new DD(G) nonparametric classifier for detecting
network communities using the synthetic data. To simulate the network data, we consider a stochastic block model (SBM)
which is a canonical model for community detection (Abbe, 2016), as well as its recent extension, namely, generalized
stochastic block model (GSBM) that allows for outliers and weak communities (Cai and Li, 2015). We evaluate various
scenarios of SBM, that is, varying number of communities and network sparseness.

For the new DD(G) community detection method, we consider three data depths: Random Tukey (RTD), Mahalanobis
(MhD) and Random Projection (RPD). Number of projections for RTD and RPD are 10 and 50, respectively; The considered
classifiers for the DD(G) method are: Logistic regression (GLM), Generalized Additive Models (GAM), Linear Discriminant
Analysis (LDA), Quadratic Discriminant Analysis (QDA), k-Nearest Neighbor (KNN), and Nonparametric Kernel (NP). As
a competing community detection algorithm, we consider a supervised method based on edgewise weighted support
vector machine (edgewise-SVM) that has been recently proposed by van Laarhoven and Marchiori (2013). The edgewise-
SVM is simple and computationally efficient procedure that assigns an edge to be “within a community” or “between
communities” based on its local features. A score (feature) is then assigned to each edge, with a lower number indicating
higher probability of being a “between communities” edge. The algorithm removes edges with lowest score iteratively,



Y. Tian and Y.R. Gel / Computational Statistics and Data Analysis 139 (2019) 99-116

0.12

0.1

o

0.

0.01

0.02
0.02

0.022

0
-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.024 eigenvector 1

eigenvector 2

0.014
0.12
0.015
0.016 0.1
0.017
F Ho.08
_ 0018
s
g 00191
g £ 10.06
[}
p=y
[}
0.02F
0.021 004
0.022
0.02
0.023
0.024 i i i i i i i 0
~0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

eigenvector 2

105

Fig. 2. Frequency plot (left panel) and contour plot (right panel) of the two leading eigenvectors of the graph Laplacian, under a single realization
of a Stochastic Block Model (6).
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which leads to a reduced subgraph containing only “within a community” edges, that is, clusters of vertices. In addition,
we consider the conventional K-means method which is although an unsupervised classifier, is the most widely used
algorithm for network community detection in a spectral setting, which is also our primary framework.

Remark. Note that our simulation studies primarily aim to highlight utility of the new supervised DD(G) algorithm in
respect to varying number of communities, network sparsity and structure as well as choice of data depth and separating
function rather than to investigate its absolute performance. This is partially due to the lack of comparable competing
methods and model frameworks in a supervised setting. Indeed, note that both the edgewise-SVM and K-means are
somewhat disadvantaged in the sense that the edgewise-SVM assumes no knowledge on the number of clusters K, while
K-means operates in an unsupervised setting. However, to our knowledge, there exists no other, besides SBM, benchmark
network model for synthetic data with a known number of communities. At the same time, a (relatively small) fraction
of network classifiers that operate in a supervised or semi-supervised settings, are mainly evaluated using real-world
case studies rather than with synthetic data (see Subbian et al. (2014) and reference therein), thus raising an issue of
“ground truth” definition and existence (Yang and Leskovec, 2012; Newman and Clauset, 2016). In turn, most currently
available network clustering algorithms with a known number of communities K belong to a family of unsupervised
classifiers (Wilson et al., 2014).

Performance Measures We evaluate goodness of clustering using standard performance metrics such as normalized
mutual information (NMI) and misclassification rate (Manning et al., 2008). Given the two sets of clusters with a total of

n vertices: R = {ry, ..., ¢} and C = {cy, ..., ¢}, the NMl is given by
I(R; C
NMI(R, C) = A.
[H(R) 4+ H(C)]/2

Here I is mutual information
P(rk m C])
I(R; C) = P(r, | ]c)log _
; ; TS Pmap(e)

-y 3 P16 og ML,
n
k j

7l

where P(ry), P(c;), and P(r () ¢j) are the probabilities of a vertex being in cluster ry, ¢; and in the intersection of r, and c;,
respectively; and H is entropy defined by

H(R) = — ;P(rk) logP(re)=— > % log "¢/

n

NMI takes values between 0 and 1, and we prefer a clustering partition with a higher NMI.
We define misclassification rate as the total percentage of mislabeled vertices, that is

1K
y=Ek=Z15i’

where Sy is the number of misclassified vertices in the kth community, i.e. Sy = >
n:g; = k} is a set of labels in a kth community of cardinality n.

iec, 18 = kigi #k)and Gy = {1 <i <

Remark. An alternative performance measure of community recovery is modularity. Modularity is based on a comparison
of a fraction of edges within the estimated communities with a random distribution of edges without any community
structure. For practical purposes, modularity is typically more preferable since this measure does not require the
knowledge of true membership. However, modularity suffers a resolution limit and is unable to capture dense structure
from small communities (Fortunato and Barthelemy, 2007; Kumpula et al., 2007). In turn, NMI and misclassification
rates assess accuracy of community recovery from a different perspective, that is, the focus is on a difference between
estimated and true memberships. Since our primary focus is on supervised learning (i.e., true membership is given) and
the considered data contain a number of small communities (see, for example, Fig. 8 Bill Co-sponsorship in the Italian
Parliament), NMI and misclassification rate are chosen as the primary evaluation metrics of accuracy.

Computational time is assessed using statistical software R on an OS X 64 bit laptop with 1.4 GHz Intel Core i5 processor
and 4 GB 1600 MHz DDR3 memory. We use R package fda.usc (Bande et al., 2016). Code for the DD(G) community
detection method is available from https://github.com/DDNetworkCommunityDetection.
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Table 1
Average NMI and standard deviation in () under SBM (6). Number of Monte Carlo simulations is 100.
T 0 DKest optimal
Depth RTD MhD RPD RTD MhD RPD
GLM 0.5037 0.6299 0.6086 0.5975 0.7396 0.6113
(0.0035) (0.0007) (0.0012) (0.0006) (0.0004) (0.0039)
GAM 0.5139 0.6423 0.6357 0.6193 0.7402 0.6970
(0.0039) (0.0006) (0.0009) (0.0006) (0.0003) (0.0047)
DD(G)- LDA 0.5058 0.6332 0.5232 0.5995 0.7316 0.5948
Classifier (0.0036) (0.0007) (0.0012) (0.0006) (0.0004) (0.0078)
QDA 0.5003 0.5888 0.5831 0.5992 0.7034 0.6968
(0.0042) (0.0011) (0.0018) (0.0008) (0.0008) (0.0043)
KNN 0.5047 0.6128 0.5962 0.6011 0.7349 0.6901
(0.0040) (0.0007) (0.0016) (0.0006) (0.0006) (0.0007)
NP 0.5186 0.6415 0.6234 0.6236 0.7389 0.7356
(0.0038) (0.0006) (0.0014) (0.0007) (0.0004) (0.0005)
Edgewise-svm 0.0072
& (0.0052)
K-means 0.0571 0.40832
(0.0863) (0.0238)

4.1. Network clustering with two groups

We start from a stochastic block model (SBM) with two communities that is currently the most frequent benchmark
case in network community detection. In particular, we consider an SBM with a block probability matrix

001  0.0025
Bz[ 0.0025 0.003 ] (6)

which is also the case studied by Joseph and Yu (2016). We assume that the connections within kth community follow
an independent Bernoulli distribution with probability By, k = 1, 2. Following the discussion by Joseph and Yu (2016),
we consider both conventional and regularized versions of spectral clustering. The optimal regularizer is obtained using a
data-driven technique DKest based on the estimated Davis-Kahan bounds (Joseph and Yu, 2016). We generate a network
of order 3000 according to (6), randomly split the data into a training set of 600 vertices (i.e., 300 vertices for each
community, or 20% of the network) and the testing set of the remaining 2400 vertices. We use the training set to learn
the optimal separating curve for the DD(G) classifier. All evaluation metrics for all considered clustering methods are
calculated based on the testing set.

We start from evaluating the proposed DD(G) community classifier in terms of NMIL As Table 1 indicates, the new
DD(G)-classifier consistently outperforms the edgewise-svm method, with the highest NMI of 0.7400 delivered by the
Mahalanobis-based DD(G)-classifier with GAM vs. 0.0072 yielded by the edgewise-svm. The DD(G) method also delivers
almost twice higher NMI than the regularized K-means. Most interestingly, we find two remarkable phenomena. First,
while regularization generally improves performance of the DD(G)-classifier, its impact on DD(G) is noticeably less
profound than on the K-means. Intuitively, this finding can be explained by intrinsic robustness of data depth functions.
Second, the Mahalanobis-based DD(G)-classifier outperforms all other depth-based classifiers, which suggests that despite
yet nonexistence of a formal theoretical result, we indeed might hypothesize that eigenvectors of the Laplacian follow
a normal distribution. Table 1 reports standard deviation of NMI, implying a relatively similar performance of all DD(G)
classifiers and the edgewise-svm method.

We now turn to misclassification rates (see Table 2). (We exclude the edgewise-svm method from this study since
edgewise-svm is not provided with a number of communities K.) Similarly to the case of NMI, the DD(G)-classifier
delivers consistently more accurate results, with more than three times lower misclassification rate for an optimally
regularized case (i.e., 0.04 vs. 0.17 for the Mahalanobis-based DD(G)-classifier and K-means, respectively). Furthermore,
while all considered community detection methods benefit from regularization, its impact on the DD(G)-classifier is overall
noticeably weaker. The best performance is again delivered by the Mahalanobis-based DD(G)-classifier with GAM.

Computational complexity of the DD-classifier is primarily dictated by the choice of a data depth function. For example,
a random Tukey depth is more computational efficient than a Mahalanobis depth in high dimensional settings, since a
Mahalanobis depth involves computations of the inverse of covariance matrix while a random Tukey depth requires only
a finite number of randomly selected projections (Cuesta-Albertos and Nieto-Reyes, 2008). Furthermore, variations in
complexity of a data depth also come from different approximation algorithms (Dyckerhoff and Mozharovskyi, 2016b).
For instance, complexity of computing a Tukey depth is O(n logn) using the algorithm of Rousseeuw and Ruts (1996), and
no worse than O(nd) using the method of Paindaveine and Siman (2012), where d is the dimension of vectors. For example,
for a case of SBM with 2 communities and 10,000 nodes, the estimated computational time for the DD-classifier is 0.28 s,
0.29 s, and 0.27 s for RTD, MhD and RPD, respectively, based on GLM. (The results are similar for RTD, MhD and RPD
under LDA and QDA.) In turn, the computational time for edgewise-svm and K-means is 0.26 s and 0.19 s, respectively.
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Table 2
Misclassification rates and standard deviation in () under SBM (6). Number of Monte Carlo simulations is 100.
T 0 DKest optimal
Depth RTD MhD RPD RTD MhD RPD
GLM 0.1100 0.0718 0.0783 0.0804 0.0442 0.0773
(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)
GAM 0.1070 0.0685 0.0703 0.0745 0.0442 0.0553
(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)
DD(G)- LDA 0.1097 0.0715 0.1046 0.0800 0.0464 0.0855
Classifier (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)
QDA 0.1115 0.0842 0.0866 0.0800 0.0528 0.0550
(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)
KNN 0.1088 0.0731 0.1057 0.0800 0.0502 0.0754
(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)
NP 0.1055 0.0689 0.0742 0.0734 0.0444 0.0453
(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)
K-means 0.4323 0.16343
(0.0758) (0.0124)

4.2. Network clustering with three groups

We now consider an SBM with three communities. That is, we set a 3 x 3-block probability matrix of the form

ﬂwl 1
B=p,| 1 o 1 |, (7)
1 1 ﬂa);;
where a 1 x K-vector w = (w1, w,, w3) represents inside weights, or relative degrees of vertices within communities, and
in general communities may have different inside weights w;, i = 1, ..., K. The parameter f is an out-in ratio that denotes

the ratio of the probability of connection between vertices from different communities to the probability of connection
between vertices in the same community. The scalar parameter p, is a network density and is selected in such a way that
the expected degree of the network is equal to a pre-specified A. Smaller values of expected degree A and smaller values
of p, imply sparser networks.

One of the primary goals of this section is to study the effect of network sparsity on the new DD(G)-classifier. Hence,
we consider networks of order n of 1200 under fixed parameters w and oir and varying parameter A:

e Model 1: n = 1200, K = 3, w = (1, 5,5), 8 = 0.7, » = 30;
e Model 2: n = 1200, K = 3, w = (1,5,5), 8 = 0.7, A = 20;
e Model 3: n = 1200, K = 3, w =(1,5,5), 8 =0.7, A = 10.

We randomly select 20% of our data as training set, i.e. 80 vertices for each community and the remaining vertices as
testing set. Note that among the three models, Model 3 leads to the sparsest networks, and Model 1 describes the densest
networks.

Fig. 4 shows the misclassification rates (top panel) and NMI (bottom panel) for DD(G)-classifier, K-means and
edgewise-svm under Models 1, 2 and 3. For the sake of saving space, we only show results under regularization and
include only the best candidate among all data depth and separating curve versions of the DD(G) classifier. For instance,
the best performance among all DD(G) classifiers under A = 20 (Model 2) is delivered by the Mahalanobis-based DD(G)-
classifier with a KNN separating curve. Fig. 4 indicates that the new DD(G) method is applicable even to highly sparse
networks (such as Model 3), performance of the DD(G) method improves with increasing density, and the best results
are consistently delivered by the Mahalanobis-based DD(G)-classifier with KNN or NP separators. These findings echo the
assumption on multivariate normality of the Laplacian leading eigenvectors.

Fig. 5 illustrates performance of the DD(G) method in respect to varying size of training set. We only include the
DD(G) classifier with the Random Tukey depth since other depth functions exhibit similar trends. As Fig. 5 shows,
misclassification rates almost exponentially decrease with an increase of training set. Remarkably, even for the training
set of only 10%, misclassification rate for the DD(G) method is still 100 or more times lower than for misclassification rate
for the K-means in both the regularized and unregularized cases (i.e., 0.001 vs. 0.160 delivered by the DD(G) classifier
with the Mahalanobis depth and KNN and K-means, respectively, under regularization; and 0.002 vs. 0.20 delivered by
the DD(G) classifier with the Mahalanobis depth and LDA and K-means, respectively, without regularization).

Now we investigate the performance of DD(G)-classifier as a function of sample size, number of communities and
percentage of training set, under SBMs (6) and (7) (see Table 3). First, let us start from assessing the impact of sample
size and percentage of training set. We find that with an increase of training set from 5% to 10%, the improvement in
misclassification error is from 5 to 15 times, and the accuracy gain due to the increase of a training set is higher for
larger samples (5.11 vs. 15 for the Cases 1 and 2 with 2 communities, respectively, and 6.65 vs. 12 for the Cases 3 and 4
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Fig. 4. Performance of DD(G)-classifier, K-means and edgewise-svm as a function of network sparsity. Smaller value of A implies sparse networks.
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Fig. 5. Performance of DD(G)-classifier as a function of percentage of training set for Random Tukey Depth.

with 3 communities, respectively). The improvement due to an increase of training set from 10% to 20% is slightly less
drastic (i.e., from 2.5 to 11 times), and again the gain in accuracy due to a higher proportion of training data is more
profound for larger data set. Second, for a fixed proportion of training set, the increase in sample sizes from 100 to 200
vertices per community leads to an accuracy gain from 6 times (i.e. Cases 1 and 2 for 5% of training data) to 77 times
(i.e., Cases 1 and 2 for 20% of training data). The trajectory of gain due to the available sample size for 3 communities
(i.e., Cases 3 and 4) is similar but tends to be less steep. Third, as can be expected, networks with a higher number of
communities consistently exhibit higher misclassification rates. However, the difference due to a number of communities
for any given proportion of training data or sample size (i.e., Cases 1 and 3, and Cases 2 and 4) is substantially less than
the differences for a network with a fixed number of communities but varying sample size or percentage of a training set.
That is, misclassification rates for networks with 2 communities are only from 1.25 to 4.11 times lower than the respective
rates for networks with 3 communities. The highest difference of 4.11 times is observed between the Cases 1 and 3 for
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Table 3

Performance of DD(G)-classifier as a function of sample size, number of communities and percentage of training
set for Random Tukey Depth. Case 1 is 2 communities, with 100 vertices in each community and SBM (6); Case 2
is 2 communities, with 200 vertices in each community and SBM (6); Case 3 is 3 communities, with 100 vertices
in each community and SBM (7) with A = 20; Case 4 is 3 communities, with 200 vertices in each community
and SBM (7) with A = 20. Number of Monte Carlo simulations is 100.

Misclassification error NMI

Percentage of training set

5% 10% 20% 5% 10% 20%
Case 1 0.0981 0.0192 0.0077 0.6865 0.9181 0.9588
Case 2 0.0165 0.0011 0.0001 0.9326 0.9916 0.9989
Case 3 0.4030 0.0606 0.0096 0.4171 0.8524 0.9590
Case 4 0.0444 0.0037 0.0004 0.8969 0.9852 0.9978

100 vertices per each community and 5% training data, but overall the ratio of misclassification rates for networks with
2 and 3 communities tends to be around to 3. Similar dynamics is observed in for NMI, although the differences in NMI
rates are substantially more minor than the respective differences for misclassification rates. Hence, we can conclude that
the most dominant factors in the DD(G)-classifier performance are sample size and proportion of training set, and to a
substantially less extent, a number of communities.

In terms of the computational complexity, the CPU running time for the RTD, MhD and RPD-based DD(G) classifiers is
0.98 s, 0.87 s and 0.89 s, respectively. In contrast, finding an optimal regularization using the DKest requires 180 s (with
additional 0.003 s for the K-means algorithm itself). The CPU running time for edgewise-svm is 0.16 s.

Overall, we can conclude that the new DD(G) method has a high potential for supervised cluster discovery for sparse
and multi-community networks, even under a relatively small size of training set. We find that the DD(G) method is
generally more robust to outlying vertices with low degrees, and the Mahalanobis-based DD(G) with KNN separating
curve is uniformly the preferred choice across all considered network scenarios.

4.3. Network clustering with outliers

Now we evaluate performance of the DD(G) method in respect to a network with outliers. In particular, we consider
a so-called Generalized Stochastic Block Model (GSBM) that has been recently proposed by Cai and Li (2015). GSBM is
based on incorporating small and weak communities (outliers) into a conventional SBM structure. That is, we consider an
undirected and loopless graph G with n = n; + n, vertices, where ny is the number of “inliers” which follow the standard
SBM framework and n, is the number of “outliers” which connect with other vertices in random. Each inlier vertex is
assigned to one of the two communities, while all outliers are placed into the third community.

We consider the same GSBM as the one studied by Cai and Li (2015), that is, we add 30 outliers (i.e., one small and weak
community) into a standard 2-block SBM (6). We set a probability of an edge between outliers to be of 0.01. Connection
between inliers and outliers is given by an arbitrary (0, 1)-matrix Z, Z € R"*"? such that EZ = 817 = [B, ..., ] and the
component of § is 3000 i.i.d. copies of U2, where U is a uniform random variable on [0, 0.0025]. We randomly choose 600
vertices from inliers and 6 vertices from outliers as a training set and then assess the misclassification rates for different
DD(G)-classifiers.

Following Cai and Li (2015), we define a misclassification rate based only on inliers in the dominant 1st and 2nd
communities, i.e.

1 2
Yy = E;Ska

where S| is @ number of misclassified vertices in the kth community and k = 1, 2. Similarly, NMI is defined from
calculation only on inliers and a number of clusters K is set to 3 for both K-means and DD(G) algorithms.

Table 4 and Table 5 summarize the delivered clustering performance in respect to misclassification rates and NMI,
respectively. While as expected, the DD(G) method outperforms both the K-means and edgewise-svm, remarkably we
find that the impact of regularization on the DD(G) method varies for different depth functions. For example, upon
regularization the misclassification rate of the DD(G)-method with projection depth (RPD) and GAM decreases changes
from 21.42% to 4.57%. However, performance of the Mahalanobis-based DD(G) method with GAM deteriorates upon
regularization, while the Mahalanobis-based DD(G) method with KNN and NP does not exhibit any change. We also
observe a similar phenomenon in terms of NMI. Hence, given that the Mahalanobis-based DD(G) method consistently
shows the best performance across all other DD(G) versions and taking into account high computational costs of optimal
regularizer selection, we recommend to omit regularization in the presence of weak communities.

5. Applications to real data

We now illustrate the new DD(G)-classifier algorithm for community detection in political blogs, terrorism organiza-
tions, and bill cosponsorship in the Italian Parliament.
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Table 4
Misclassification rates and standard deviation (in ()) under GSBM. Number of Monte Carlo simulations is 100.
T 0 DKest optimal
Depth RTD MhD RPD RTD MhD RPD
GLM 0.0906 0.0626 0.1114 0.0778 0.0484 0.0718
(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0002)
GAM 0.0774 0.0427 0.2142 0.0752 0.0601 0.0457
(0.0001) (<0.0001) (<0.0001) (0.0001) (0.0034) (0.0427)
DD(G)- LDA 0.0947 0.0826 0.1054 0.0803 0.0546 0.1193
Classifier (0.0001) (<0.0001) (0.0001) (<0.0001) (<0.0001) (0.0004)
QDA 0.1020 0.1083 0.2249 0.0940 0.1424 0.1045
(0.0010) (0.0009) (0.0007) (0.0001) (0.0073) (0.0170)
KNN 0.0808 0.0459 0.1088 0.0789 0.0448 0.0481
(0.0001) (<0.0001) (<0.0001) (0.0001) (<0.0001) (0.0001)
NP 0.0781 0.0463 0.0942 0.0759 0.0437 0.0470
(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0003)
K-means 0.2819 0.2248
(0.1254) (0.0886)
Table 5
NMI and standard deviation (value in ()) under GSBM. Number of Monte Carlo simulations is 100.
T 0 DKest optimal
Depth RTD MhD RPD RTD MhD RPD
GLM 0.5616 0.6692 0.4940 0.6019 0.7187 0.6310
(0.0003) (0.0004) (0.0002) (0.0004) (0.0005) (0.0024)
GAM 0.6055 0.7442 0.3550 0.6111 0.7212 0.7308
(0.0011) (0.0001) (0.0001) (0.0007) (0.0006 ) (0.0926)
DD(G)- LDA 0.5581 0.6201 0.5213 0.5933 0.7002 0.5341
Classifier (0.0005) (0.0004) (0.0004) (0.0005) (0.0005) (0.0034)
QDA 0.4823 0.5601 0.3135 0.5464 0.4966 0.5546
(0.0020) (0.0037) (0.0028) (0.0007) (0.0195) (0.0237)
KNN 0.5932 0.7300 0.5049 0.6026 0.7353 0.7202
(0.0010) (0.0002) (0.0003) (0.0007) (0.0006) (0.0007)
NP 0.6032 0.7288 0.5508 0.6120 0.7399 0.7254
(0.0012) (0.0002) (0.0002) (0.0005) (0.0006) (0.0033)
Edgewise-svm 0.0074
8 (0.0049)
K-means 0.2690 0.3623
(0.0847) (0.0206)

5.1. Political blogs

We start from the benchmark data on interactions between liberal and conservative blogs over a period prior to the
2004 U.S. Presidential Election (Adamic and Glance, 2005). The dataset consists of 1490 vertices with an average degree
22.436, and undirected edges represent hyperlinks between blog sites. Fig. 6 depicts the political blogs network, where
red vertices represent conservative blogs and blue vertices correspond to liberal blogs. In contrast to Joseph and Yu (2016),
we keep all the isolated vertices (vertices with no connection to others). Note that such isolated vertices may be viewed
as potential “outliers” or “anomalies”.

We randomly choose a training set of 600 vertices (300 vertices for liberal blogs and conservative blogs, respectively).
Using the DKest procedure, we select an optimal regularizer r of 1.95. Regularization tends to improve clustering
performance of the DD(G)-classifier for all considered depth functions. For instance, compared to the unregularized DD-
plot based on the Mahalanobis depth (right panel of Fig. 7), points in the corresponding regularized DD-plot (left panel of
Fig. 7) stay noticeably closer to horizontal and vertical axes, which makes clustering process more effective. Furthermore,
misclassification rate for the DD(G)-classifier with the Mahalanobis depth with regularization is four times lower than its
unregularized counterpart, that is, 0.10 vs. 0.44, respectively.

We now consider sensitivity of the DD(G)-classifier in respect to a choice of regularization. For instance, if t is set up
as a network order (i.e., T = 1490), then misclassification rate of the regularized DD(G) increases up to 3% in respect to
optimal regularization; in contrast, misclassification rate of the K-means with non-optimal regularization of t = 1490
increases up to 15%. Similar conclusions are obtained if we remove isolated vertices.

Hence, not only as expected in view of its supervised settings, clustering performance of the DD(G) classifier is higher,
but the DD(G) classifier is more resistant to misspecification of an optimal regularizer.



112 Y. Tian and Y.R. Gel / Computational Statistics and Data Analysis 139 (2019) 99-116

Fig. 6. Political Blogs prior to the 2004 U.S. Presidential Election. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 7. DD-plot on political blog data based on a Mahalanobis depth. Here "+ and solid ‘0’ represent blogs from conservative and liberal communities,
respectively. Left and right panels correspond to regularized and unregularized Laplacians, i.e. L, and L, respectively.

5.2. Discovering communities in terrorist organizations

On the morning of September, 11th, 2001, the Islamic terrorist group al-Qaeda hijacked four passenger airliners and
attacked the World Trade Center and the Pentagon, resulting in the loss of approximately 3000 lives. More recently, on
the evening of November, 13th, 2015, the Islamic State of Iraq and Syria (ISIS) carried out coordinated terrorist attacks
in Paris and its northern suburb, Saint-Denis, which was then followed by a bombing in Brussels. These terrorist attacks
presumably belong to the similar dark terrorist network. In order to protect the world from terrorism, it is necessary
to strengthen counterterrorism by studying not only successful and failed terrorist attacks (Everton, 2012; Charles and
Maras, 2015), but also the dominant ideology and philosophical foundation behind terrorist actions. Moreover, terrorist
groups which share the same philosophical foundation tend to affiliate or collaborate with each other, thus naturally,
forming a terrorism network. Such networks are unified by a common ideology and/or goal, and allow the participating
terrorist groups to share resources and information.
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Our dataset includes information of 122 terrorist and extremist organizations and their interactions within the United
States between 1970 and 2011. The data are collected by the National Consortium for the Study of Terrorism and
Responses to Terrorism (START) (START, 2016). To create the network, we view each terrorist organization as a vertex,
and an edge is added if according to START, terrorist organizations either collaborate or are affiliated with each other.
Furthermore, membership of each organization is assigned to one of four communities, according to their dominant
ideology: Extreme Left Wing, Extreme Right Wing (including all racist ideologies), Ethno-nationalist/Separatist/Religious,
and Single Issue groups that primarily rely on various narrowly-defined causes. Hence, the dataset captures a network
structure of terrorist groups based on a wide ideological spectrum. The obtained terrorist network indicates a few large
subnetworks of ideologically closer groups, and a number of smaller ones comprised of more “fringe” groups. The biggest
group in the dataset is formed by various far-right wing organizations, associated with the Ku Klux Klan (KKK). Note
that while in 1882 the U.S. Supreme Court declared the Ku Klux Act unconstitutional, the KKK is not officially designated
as a terrorist organization in the United States. Nevertheless, in this study we follow classification adopted by START.
Prior to September, 11th, 2001, the deadliest terrorist attack on the U.S. soil was the Oklahoma City bombing in 1995,
which was organized by two former KKK leaders. Most of these groups were cooperating and were especially active in the
earlier decades of the considered time period. Some more modern extreme right groups form smaller networks, likely
active in periods different from the bigger network. A number of extreme left groups were cooperating with various
“liberation armies”, unified by the goal of “liberation” of certain territories, or installing leftist governments. The other
smaller networks show linkages between religious groups — Jewish-focused groups, Pakistan-Afghanistan organizations,
etc.

We randomly choose a training set of 48 vertices, and select regularization parameter t of 2.2 according to DKest
procedure (Joseph and Yu, 2016). The resulting misclassification rates delivered by the K-means and the DD(G) classifier
with the Mahalanobis depth and GAM are 0.38 and 0.25, respectively. The resulting NMI for the K-means, edgewise-svm,
and DD(G) classifiers are 0.05, 0.20, and 0.30, respectively. Hence, the new DD(G) method provides the most accurate
classification of the dominant ideology and philosophical foundation behind terrorist groups. The DD(G) approach might
be then viewed as a preferred classification method for network community extraction in supervised settings, including
but not limited to illicit and terrorist graph-structured data, when some a-priori information is available.

5.3. Bill cosponsorship in the Italian parliament

The Italian Parliament is a particularly appropriate venue to test clustering algorithms. Italian politics are notoriously
contentious, with frequent government changes and complex coalitions forming each of the recent governments. In the
last 70 years, Italy has had 63 governments, which is an unprecedented rate. The latest, 63rd government attempted
Constitutional changes affecting the electoral law, but these measures were rejected by the voters, which led to the
resignation of Prime Minister Matteo Renzi (Povoledo, 2016). The Italian Parliament is bicameral, with 945 members in
total. The electoral law encourages the parties to run in coalitions and to pass an elaborate system of election thresholds
with regional idiosyncrasies (Povoledo, 2015). The two chambers of Parliament are governed by separate election laws,
with different election thresholds, and in the case of the Chamber of Deputies, a two-round system. The result of these
peculiarities is the already mentioned frequent changes of government. Additionally, the system leads to a very high
number of parties, around 10 major ones (at least 4% of the vote) and dozens of minor parties with lower support (leraci,
2008).

Consequently, the Italian Parliament is an example of a complex political structure that is not easy to analyze without a
set of objective statistical tools. The underlying coalitions of parties are not always clear and are not strictly defined. These
features make the institution particularly appropriate for cluster analysis. Some of the behaviors that can be analyzed
include voting, rhetoric, and bill cosponsorship. Bill cosponsorship is especially interesting because sponsorship can cross
party lines and identify networks of behavior.

In the Italian Parliament, a bill can be proposed by a single deputy, or cosponsored by a group of deputies. Bill
cosponsorship can be represented by an undirected and loopless network, with vertices representing parliamentarians,
and an edge between parliamentarians indicating at least one legislation cosponsored by them (Signorelli and Wit, 2016).
Each parliamentarian is a member of one group, typically a political party or a coalition of parties. As a result, the
classification/clustering of the network partitions the deputies into political groups.

We consider the bill cosponsorship network for the Italian parliament (2008-2013) collected by Briatte (2016). The
dataset consists of 339 vertices and 10151 unweighted edges. Moreover, membership of each parliamentarian is assigned
to one of seven political groups: PD (Partito Democratico), FI-PDL (Forza Italia Il Popolo della Liberta), MPA (Movimento
per le Autonomie), LN (Lega Nord), IND (mixed or minor group), IDV (Italia dei Valori), FLI-TP (Futuro e Liberta per I'ltalia,
Terzo Polo). Fig. 8 depicts the cosponsorship network, colors denote parliament groups.

We randomly choose a training set of 135 vertices, the resulting misclassification rate delivered by the K-means and
the DD(G) classifier with random projection depth and NP are 0.15 and 0.08, respectively. The resulting NMI for the
K-means, edgewise and DD(G) classifier are 0.70, 0.33 and 0.77, respectively. The DD(G) approach provides the most
accurate classification of parliament groups. Since this network is relatively dense, regularization does not help improve
the classification and is omitted.

The results depict a dense network, which denotes cooperation between the members of parliament. Most of the
interactions are within party, but there are numerous connections across parties. Legislative institutions require a
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Fig. 8. Bill Cosponsorship in the Italian Parliament.

minimum level of cooperation to provide their functions so these complex networks are expected to occur even in a highly
divided parliament. The classifier identifies cosponsorship of members of smaller groups with those in larger groups,
which is also expected — the smaller groups do not have enough power and need to work with others to remain relevant.
Our classifier performs well and identifies political networks that can be further analyzed by researchers in the political
and social sciences.

Furthermore, the depth-based approach allows us to shed light on underlying probabilistic geometry of the data and its
role behind hidden mechanisms of network community formation and structure. Let us illustrate this idea in application
to two Italian politicians: Francesco Rutelli and Claudio Gustavino. Francesco Rutelli is one of the key Italian politicians
who is labeled in the current dataset to belong to MPA (Movimento per le Autonomie). Rutelli’s random projection depth
value in respect to the MPA membership is only 0.10, and his depth value in respect to FLI-TP (Futuro e Liberta per
I'ltalia, Terzo Polo) is 0.08. That is, Ruttelli appears to be on a borderline. A deeper analysis of his career reveals that while
Rutelli is indeed an active politician, his focus is largely on the European Union (e.g., he is currently President of European
Democratic Party), and moreover, he has been a member of 7(!) different parties in the last 30-40 years. In 2009, Francesco
Rutelli founded Alleanza per I'ltalia (API), or Alliance for Italy. The movement was successful in various regional elections,
and later API merged with Futuro e Liberta per I'ltalia (FLI) to form Nuovo Polo per I'ltalia (NPI), sometimes referred to as
Terzo Polo (Third Pole). NPI was a centrist coalition of parties, including Movimento per le Autonomie (MPA) with Raffaele
Lombardo as the leader. Both MPA and API are center-right parties with a focus on Christian democratic values. Hence,
while being a prominent political leader, Ruttelli does not appear to be rooted in one party but rather to follow some
(arguably centrist) trend and switches his political affiliations. The depth-based classifier (DD(G)) that is proposed in this
paper captures this dynamics of Rutelli’s career and, while Rutelli is (correctly) classified by DD(G) to belong to MPA,
his probability to be in this party is only around 10%. In turn, closeness of Rutelli’s random projection depth in respect
to FLI reflects his leadership of forming the coalition of MPA and FLI. Now, let us consider Claudio Gustavino. Gustavino
is a medical doctor who has joined the political arena relatively recently. Gustavino’s random projection depth value
in respect to FLI is 0.50, and the DD(G) classifier indicates that the probability that he belongs to FLI is high (i.e., 90%).
That is, Gustavino appears to be deeply rooted within FLI. Indeed, Claudio Gustavino’s affiliation with FLI turns out to be
long-standing and his political views matched closely the views of his party. His ideology was stable during his time in
office and he did not switch parties. He is strongly classified as a member of FLI, which makes sense given his ideological
proximity to the core values of FLI and the stability of his political views during the period he was a member of the party.

These findings suggest that information on data depth and probabilistic geometry of a network can be used not only for
classification but also as an additional input to link imputation and link prediction, for example, forming a new coalition
or team, which constitutes another interesting future research direction.

6. Conclusions
The current project is primarily motivated by the two overarching questions. First, can we simultaneously combine

network community recovery and outlier detection? Second, can we develop a community detection algorithm that is
simultaneously more robust to network sparsity and is computationally efficient? Data depth methodology offers an
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important arsenal of tools to address these challenges, and our goal is to introduce of the notion of data depth into
the analysis of complex networks.

In this paper, we present a novel spectral clustering algorithm for supervised community detection in networks, based
on the nonparametric notion of data depth and Data Depth vs. Depth (DD) classifiers. The new DD(G)-community detection
algorithm is completely data-driven and requires no prior information on the underlying network degree distributions.
Since the DD(G) approach is inherently geometric, we can simultaneously evaluate and, in the case of two clusters, visually
assess network communities and outliers. We find that the new community detection DD(G) method is robust to network
sparsity as well as outliers in the form of weak and small communities.

While the current DD(G) approach operates within a supervised learning framework, this is just one of the first steps
toward integration of the powerful robust methodology on data depths into network sciences. Indeed, the notion of data
depth can be used in a much broader context in analysis of complex random networks. For instance, below we outline
just a number of open questions and future research directions on fusion of data depths and networks. First, we can
extend the data depth approach to an unsupervised community detection, that is, instead of the classical loss functions of
K-means/medians, we can consider loss functions based on depths. Our preliminary results (Tian and Gel, 2017; Dey et al.,
2017) show that this route may be particularly useful for sparser networks, but the choice of appropriate depth and its
optimality remains an open problem. For instance, it will be interesting to expand the depth concept to unstructured or
heterogeneous communities as well as models where probability of an edge existence depends on various multi-attributes.
Second, similarly to the approach of Cuesta-Albertos et al. (2017) for functional data analysis, we can study a combination
of depth functions, or even a meta-depth. Third, it appears intuitive that the data depth analysis of networks can be useful
for initializing cluster centers in conventional K-means. Furthermore, the two-step supervised approach adopted in the
current paper can be modified to a semi-supervised framework, for instance, if the dissimilarity measure is selected using
the depth function (Zhu et al., 2003; Dhillon et al., 2012). Fourth, data depth can be employed for identifying an optimal
number of communities and community validation, particularly in the case of a growing number of classes (Rohe et al.,
2011; Choi et al., 2012). Fifth, following (Li and Daniels, 2015; Li et al., 2016), we can extend utility of data-depth methods
for better understanding of structural nodes and significance of a detected social community. Sixth, assessment of stability
and robustness of the recovered partitions is an important and yet largely under-explored research direction in the
analysis of complex networks (Carissimo et al., 2018). We plan to explore stability of the recovered depth-based network
partitions and its comparison vs. conventional approaches. Finally, we believe that depth functions developed directly for
inference of graph-structured data and augmented by the current knowledge on network structural organization such as,
for instance, centrality, k-core, and k-shells, will likely become the next “hot” direction at the intersection of network
sciences and nonparametric statistics.

While certainly there exist more questions than answers at the current stage, it is certain that the data depth
methodology opens new horizons for more robust, data-driven and systematic analysis of complex random networks.
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