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Abstract—In recent years, as online social networks continue to grow in size, estimating node features, such as sociodemographics,
preferences and health status, in a scalable and reliable way has become a primary research direction in social network mining.
Although many techniques have been developed for estimating various node features, quantifying uncertainty in such estimations has
received little attention. Furthermore, most existing methods study networks parametrically, which limits insights about necessary
quantity of queried data, reliable feature estimation, and estimator uncertainty.

Uncertainty quantification is critical for answering key questions, such as, given a limited availability of social network data, how much
data should be queried from the network?, and which node features can be learned reliably? More importantly, how can we evaluate
uncertainty of our estimators? Uncertainty quantification is not equivalent to network sampling but constitutes a key complementary

concept to sampling and the associated reliability analysis.

To our knowledge, this paper is the first work that sheds light on uncertainty quantification and uncertainty propagation in social
network feature mining. We propose a novel non-parametric bootstrap method for uncertainty analysis of node features in social
network mining, derive its asymptotic properties, and demonstrate its effectiveness with extensive experiments. Furthermore, we
develop a new metric based on dispersion of estimations, enabling analysts to assess how much more information is needed for
increasing prediction reliability based on the estimated uncertainty. We demonstrate the effectiveness of our new uncertainty
quantification methodology with extensive experiments on real life social networks, and a case study of mental health on Twitter.

Index Terms—Uncertainty quantification, social network, mental health, bootstrap, graph analytics.

1 INTRODUCTION

Although social network analysis is a vast multi-
disciplinary research area at the intersection of computer sci-
ence, statistics, and social studies (see [1], [2], [3] for recent
reviews), and despite the fact that uncertainty quantification
(UQ) is rapidly gaining attention in various facets of data
analytics, understanding of uncertainty and its dynamics in
social network analysis is very limited.

There exist multiple sources of uncertainty in analysis of
complex networks, including but not limited to uncertainty
due to node and/or edge sampling, uncertainty due to only
partially observed network information, e.g., for the cases
of hard-to-reach populations and confidentiality restrictions,
uncertainty due to estimation of node, edge, and other
network attributes, and uncertainty due to approximation
of the true underlying network data generating process by
a certain model. In this paper we primarily focus on ad-
dressing uncertainty in estimation of node features, which
includes uncertainty due to sampling and uncertainty due
to the type of the estimation method.

The majority of recent studies in graph mining focuses
on efficiency and scalability of sampling strategies in es-
timating network statistics, while uncertainty analysis of
node feature estimates remains virtually unexplored. Fur-
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thermore, while uncertainty quantification and sampling
are tightly interrelated, it is important to emphasize that
uncertainty quantification shall not be mistaken with sampling.
That is, sampling allows us to estimate network statistics
but does not provide an insight on reliability of the obtained
estimates. In turn, uncertainty quantification is the way to
systematically address credibility of the obtained estimates.

UQ becomes even more important for many applica-
tions, ranging from finding radical groups and their sup-
porters on Facebook to peer-driven drug abuse prevention
campaigns on Twitter, where we have access to limited data.
These social network applications involve first constructing
subnetworks (e.g., drug abusers) and then using the data
within the subnetwork for population estimates (e.g., aver-
age age of drug abusers), inference and feature mining (e.g.,
whether a given Twitter user is a potential drug abuser).

Such node feature estimation with subnetworks raises
a number of important questions that are tightly linked to
the reliability of any conclusions and decisions based on in-
complete or noisy data. That is, are the queried subnetwork
data representative of the target population? Do we have
to enlarge the subnetwork by collecting more data? Which
node features can be estimated confidently and which can-
not be, with the given samples? Finally, considering all these
challenges, what do we know about the uncertainty of our
estimates and how reliable are they?

The pioneering attempt for uncertainty quantification on
social networks is due to Snijders et al. [4]. However, un-
certainty quantification in conjunction with social network
mining still remains scarcely explored. In particular, to our
knowledge, only steps toward uncertainty quantification on
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Fig. 1: Ratio of mental health related Twitter accounts in
USA. Our non-parametric graph learner framework can
learn node features and quantify the uncertainty in its
results (gray implies states with inadequate data). This case
study is detailed in Sec. 5.3.

social networks have been taken by [5], [6] in a Bayesian
framework; [7], [8] study uncertainty quantification for
centrality indices in animal and physiological networks,
while [9], [10] propose bootstrap for estimators of degree
distribution. However, these algorithms are limited to only
very small networks, rely on (semi)parametric assumptions
that are hard to validate in most real life scenarios, and do
not assess uncertainty in estimation of node features on very
large networks. In this paper, we address the challenge of
uncertainty quantification in node features estimation with
GraphBoot. This new scalable bootstrap based approach
provides estimates of network features under limited data
availability and, most importantly, quantifies the estimation
uncertainty of node features. Working with a user-specified
level of confidence, our algorithm can be used to quantify
uncertainty in a wide range of applications involving node feature
learning and associated decision making. Furthermore, with
extensive experiments on real life networks, we show that
in many scenarios uncertainty in node feature learning on
networks and subnetworks can be reliably assessed by only
observing a small fraction of the network data.

The importance of the proposed research can be summa-
rized as follows:

o GraphBoot is the first scalable and computationally
efficient non-parametric method to quantify uncertainty
and its dynamics in node feature analysis of large
social networks. GraphBoot offers a speed-up of up
to two orders of magnitude compared to existing
methods.

o We derive theoretical properties of GraphBoot and il-
lustrate its utility for node feature analysis on a wide
range of synthetic and real world large networks of
up to 4 million nodes. Our results indicate that node
features can be predicted from as few as 5% of all
nodes in most of the cases.

o We report results of our bootstrap based approach
on synthetic and real world networks, and show that
the new bootstrap based approach provides the most
competitive performance in quantifying uncertainty
in node feature mining, yielding the most calibrated
and sharp confidence intervals, comparing to the
baseline approaches.

2

e We propose a new information saturation criterion
that allows quantifying how much information is
needed in social network analysis. With this new
criterion, we show that the decision to increase or
limit the queried data can be made efficiently and
objectively.

e We apply GraphBoot in mental health study on
Twitter. With very little human supervision, we were
able to discover a group of interest that is many
times bigger in size than what state of the art mental
health research works [11], [12] have been analyzing.
The case study results suggest a high utility of our
approach in assessing the uncertainty in estimates of
users’ features associated with depression.

The paper is structured as follows. Relevant work is
discussed in Section 2. Section 3 defines the problem and
provides background on graphs and UQ validation metrics.
Section 4 states the algorithms of GraphBoot. Section 5
shows GraphBoot’s performance in synthetic and real life
networks. The paper is concluded with discussion in Sec-
tion 6.

2 RELATED WORK

We outline two primary relevant research fields, namely, i)
network analysis with Uncertainty Quantification, and ii)
mental health studies on online social networks.

Uncertainty quantification in network analysis. Network
analysis has been widely studied in statistics, machine
learning, and social sciences. The first results go back to
the 1960s in a context of social network studies (see, for
instance, [13], [14]). For recent overviews on modeling,
analysis and mining of complex networks see [1], [2], [15].

Despite these early works, almost nothing is known on
how to evaluate estimation uncertainties in network mining,
that is, how to obtain reliable estimates of the sampling
errors and confidence intervals for the parameters of in-
terest, without relying on extensive, costly and practically
infeasible simple random sampling (SRS).

Conventional statistical inference relies on learning from
node data and relies either on applying the central limit
theorem, which results in normal distribution based confi-
dence intervals, or on resampling of nodes in simple random
sampling and the associated Efron confidence intervals [16],
[17], [18]. However, randomly choosing many nodes and
learning from their data is not feasible in real life settings.
For example, locating and learning from groups of drug
addicts, HIV risk groups, or terror supporters on an online
social network such as Facebook would require knowing
who belong to these groups.

In their seminal paper, Snijders and Borgatti [4] aim
to address these challenges by quantifying uncertainty in
graph mining with a data-driven bootstrap. However, their
algorithm allows to assess uncertainty only in estimation
of densities of small networks and under the assumptions
that the whole network is available upfront and the ob-
served network data are error-free, which make the al-
gorithm prohibitive in terms of computational resources,
data storage, and data access. Recently, [9], [10] proposed
a nonparametric bootstrap method that allows to reliably
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quantify uncertainty in estimation of a network degree
distribution and its functions, while observing only a part
of the network. However, the algorithms of [9], [10] do not
scale up when the number of nodes increases beyond 10,000
nodes. In turn, a subsampling algorithm of [19] focuses on
subgraph sampling that is applicable only to exchangeable
graphs of high density. Finally, [5], [6], [7], [8] emphasized
a critical role of uncertainty quantification in analysis of
psychological and animal social networks. Among these
studies, [5], [6] employed a Bayesian inference for uncer-
tainty quantification of animal social interactions which
requires parametric assumptions on a prior distribution. In
turn, [7] and [8] utilized a randomization technique, where
certain node characteristics, e.g., node centrality measures,
are re-sampled or permuted without accounting for network
dependence structure among nodes and then are compared
against some simulated random networks. In all these cases,
the order of the considered networks is less than 1,000 nodes
and the whole network is assumed to be fully observed
upfront.

Hence, to our knowledge, there exists no algorithm to
quantify uncertainty in estimation of node features that
is computationally efficient and feasible for large social
network analytics. The proposed algorithm GraphBoot is
the first attempt in this direction.

Mental health. In our research, we use mental health
as an example of application domains. In this field,
data from dedicated subgroups of social networks, such
as r/SuicideWatch data from Reddit.com in [20], have
been mined to analyze user behavior. In addition, crowd-
sourcing [21] and manual selections [22] have been used
to locate mental health related users. In GraphBoot, we
use a combination of manual labels and machine learning
algorithms to first locate and then expand the set of mental
health related accounts. Compared to earlier works, such as
[21], that poll users to create labeled data, GraphBoot starts
with a limited number of seeds and reaches more users with
fewer labels.

On the Twitter network, studies by De Choudhury et al.
[12], [23] have identified prominent features of depressed
users” accounts. In the GraphBoot estimates in Section 5.3,
we use five of these features (e.g., usage of words related to
depression treatment). In these studies, users are primarily
identified with their mental health related word usages.
Hwang et al. [11] mine the usage of 14 stigmatizing words,
such as “crazy” and “insane”, in terms of the senses they are
used in. In a similar approach, Harman et al. [22] mine usage
of word groups (e.g., anger and swear words) in tweets, and
present box plots for frequency of these groups for a variety
of mental illnesses.

In these works, the user features that are deemed useful
are manually chosen by domain experts. This approach
cannot scale up to large networks. Instead, GraphBoot
can automatically identify which features can be mined.
Furthermore, GraphBoot can give uncertainty estimates for
each feature.

3 PROBLEM STATEMENT AND PRELIMINARIES

Assume that we discover a subnetwork of a large online
social network and aim to answer questions of social im-
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portance, such as, what types of drugs are primarily used
by users in depression? By extracting relevant node features
(e.g., age, gender, type and frequency of drugs used) from a
network, we can make an inference, and test our hypotheses
about the whole population based only on the available
subnetwork data.

Objectives. Our analytical solutions are motivated by the
following questions: How confident are we in any of our
conclusions about the population of users? How big is the
learning error and how biased is the estimate? How large
the discovered subnetwork should be to derive a reliable
conclusion?

Here we define key network concepts and validation
metrics that appear throughout the paper.
Network. We consider a network G = (N, E, F), with a
set of nodes N, a set of undirected and unweighted edges
E, and a map of feature values F = { fz}g‘1 That is,
each node n € N is assigned a feature f, € F and
f1,--., fin| are random variables that can be either discrete
(e.g., type of drugs) or continuous (e.g., frequency of drug
use). Immediate neighbors of a node n are denoted with I',,.

Let G,,, be an induced subnetwork of G that is discovered
on G, and let F};, be the associated map of feature values.

Formulae for uncertainty quantification on node features.
Let o € (0,1) be a given significance level and 6(F) be a
statistical parameter on a network (e.g., quantiles of features
F), and é(F7,,) be its empirical observed counterpart based
on F,. Then, the problem statement can be mathematically
formalized as follows: .

What do we know on Pr{|0(F) — 0(F.,)| > €}, for a given
e > 0 and subnetwork size m? Can we construct a reliable
(1 — @)100%-confidence interval (CI) for a parameter of network
features O(F')? That is, can we find lower L,, and upper U,
bounds such that Pr{0(F) € [Ly,,Up]} =1—a?
Simple random sampling. A simple random sample is a
subset of nodes taken from a statistical population in which
each node of the subset has an equal probability of being
chosen. Each node is chosen randomly and entirely by
chance. A simple random sample is meant to be an unbiased
representation of a population [24]. If sample size is sub-
stantially lower than population size, then simple random
sampling without replacement is essentially equivalent to
simple random sampling with replacement.
Seeds and waves. Let ns be a node selected with simple
random sampling from N. This node n, is called a seed as it
acts as a starting point for discovering a subnetwork of the
network. A wave w;(s) around the seed node n; is the union
set of all nodes and edges that can be reached from n, by
a path p of length |p| < [, where [ € N°. Thus, the zeroth
wave wy(s) contains only the seed itself.
Embeddedness [25]. We use node embeddedness to quan-
tify how a node’s neighborhood overlaps with those of its
neighbors. The embeddedness of a node n is

Emb(n) = (1/|Tn]) x Y |Tn NTy|/|Ty UTY,
ler,
where I';, are the neighbors of the node n, and I'; is the
neighbors of its neighbor [. If all neighbors of node n are
neighbors with each other, Emb(n) = 1.
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Confidence intervals and their validation metrics. Let
A = [LA,UA] and B = [LB,UB] be two competing
(1 — «)100%-confidence intervals for the network feature
parameter §(F'). Suppose that over a set of Monte Carlo ex-
periments, Pr{0(F) € [L2,UA]} =1 — a4 and Pr{f(F) ¢
[LB UB]} =1~ ap. Then 1 — a4 and 1 — ap are called
empirical coverages, and we prefer the calibrated confidence
interval i.e., with the coverage closest to the nominal level
of 1 — «a. From two alternative intervals, where the first
confidence interval under-covers 6(F) (e, 1 —as < 1—a),
and the second confidence interval over-covers 8(F) (ie.,
1—ap > 1—a), we prefer the conservative, or over-covering,
confidence interval B. Furthermore, between A and B with
similar coverages, we prefer a confidence interval with a
shorter length. Such a preferred confidence interval is called
sharp. Hence, to compare A and B, we introduce the relative
sharpness (RS) criterion

RS =0(F)""({U# — La}y —{UF — LEV)100%, (1)

which represents a relative gain or loss of using confidence
interval B over A. Positive relative sharpness implies that
B is sharper (shorter), whereas negative relative sharpness
means the opposite.

4 NODE FEATURE BOOTSTRAP ALGORITHMS

Our approach is based on two selection-re-selection algo-
rithms. In the selection stage (Algorithm 1), we randomly
sample seeds and then select neighbors around those seeds —
that is, we use the idea of snowball sampling but in contrast
to snowball design, we remove all edges that have been
already used to locate a node and we allow for multiple
inclusions of the same node. As a result, the new sampling
design approach allows us to reduce the estimation bias.
In the re-selection stage (Algorithm 2), we now deal with
the already sampled nodes and apply resampling with
replacement, or bootstrap to these nodes.

Selection-re-selection. In the sampling design, we employ
snowball-like discovery of the network in parallel around
multiple seeds simultaneously. We select nodes around
seeds by Algorithm 1, which we call the SFINKS algorithm.
The distinguishing characteristic of SFINKS compared with
the Labeled Snowball with Multiple Inclusions (LSMI, [9],
[10]) is that SFINKS collects feature information from the
nodes. Similar to LSMI, one of the key characteristics of
SFINKS is that SFINKS does not reuse edges: each edge can
be used in the sampling process only once (used edges are
removed), and that SFINKS accounts for node multiplicity:
nodes with higher degrees can be accounted multiple times.

Algorithmic complexity. In the network G = (N, E,F),
SFINKS chooses m seeds, and for each seed moves on the
network in a breadth first fashion, while deleting already
used edges, until it reaches all nodes within d waves. Hence,
SFINKS compensates for discovering the same nodes mul-
tiple times, and as a result SFINKS both minimizes sample
bias and speeds up the discovery process. For example, with
2 waves and 10-100 seeds, SFINKS has a speedup of 13-175
times over [9], [10] and standard snowball designs. Indeed,
for k = |E|/|N| average neighbors for each seed, SFINKS
is O(m x k*) = O(k¥) = O(|N|"), when m < |N| and

input : Network G = (N, E, F'); number of seeds m,
m < |N|; number of waves d.
output: Approximation of selection probabilities for
bootstrap, 7(SD:* and two feature lists: of
seeds, L, and waves, L.
S : Set < Select m seeds randomly without
replacement from N;
L, : List < feature values of S;
Lg: List < {};
a(Sd)* {},
So : Set + S;
w4+ 1;
while w < d do
N': Set +{};
E': Set + {};
foreach node n € S,,_1 do
foreach edge e € Ele = (n,n*) do
Ed <~ ﬁd U fn*;
N’ « N'Un*;
E' « E'Ueg;
E«+ E\F;
Sw < N’;
n(Sdx o (KD | L4]/IN;
w=w+1;
return 7(SD* £ and Ly;
Algorithm 1: SFINKS: Sampling Features In NetworKS.
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Fig. 2: Fraction of nodes visited for wave 2.

kmaz = (JN] — 1)/2. Fig. 2 shows that number of seeds
must be kept low, otherwise a big fraction of the network
is visited in the learning process. As we show in Section 5,
in the real world graphs, & < |N| and w values as low as
2 suffice. Hence the complexity of SFINKS is reduced to a
very scalable subquadratic form of o(|N|°).

Example 1. Fig. 3 shows a toy network (|N| = 23) with a
structured network sample called patch (shaded area) of m = 2
seeds and d = 3 waves. Initial seeds S = {1, 2} are selected with
simple random sampling from nodes N. Node features in this case
are defined as the number of drugs used. Seed node 1 uses Pain re-
lievers and node 2 uses Pain relievers and Marijuana. Considering
the number of drugs used, for these seed nodes Ls = {1,2}. By
following edges emanating from S, neighborhoods of higher orders
are located and information on the nodes’ features is recorded. The
nodes discovered at each step of growing the patch in Fig. 3 are as
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Fig. 3: A patch (shaded area) around persons 1 and 2 in
a network of |[N| = 23 people. Starting from the seeds 1
and 2 simultaneously, nodes 3, 4, 5, and 6 are discovered in
the first wave. Node 12 could have only been discovered at
wave 4.

follows: S1 ={3,4,5,6},S2={7,7,8,9,10},and S3={7,8, 9,
10, 11}. The resulting L3 = {2,1,0,3,1,1,1,1,1,1,1,1,1,0}.
Note that the nine values in Lz come from the nine nodes
discovered in three waves, i.e., S; U So U S3. The two zero values
come from nodes 5 and 11.

Once the discovery process is concluded, the GraphBoot
algorithm (given in Algorithm 2) creates point estimates and
bootstrap confidence intervals of the feature values mined
from the discovered nodes. Since probabilities of a node to
be included into a patch are different for £, and L4, we
employ separate bootstrapping schemes to reduce bias:

e Inclusion probabilities of elements in L, are all
|S|/|N|; we use re-selection with replacement.

o Inclusion probabilities of elements in £, are propor-
tional to their node degrees; we account for this by
using the inverse of the degrees in re-selection with
replacement.

After all b bootstrapped values are obtained, we calculate
empirical quantiles from the bootstrap distribution stored in
the vector I. For example, by bootstrapping the number of
drugs used by a selected person in Fig. 3 b = 1000 times, we
obtain a 95% BCI of (0.8, 1.4) for the average value of this
feature.

Algorithmic complexity. Alg. 2 is linear in the size of seed
list £, and wave list £,, for b bootstraps from each list,
where |L4| + |L4], hence O(b(|Ls] + |Ly])). In practice, we
use b < |Ls| +|Ly], hence the complexity of the GraphBoot
becomes O(|Ls| + |Lw])-

Consistency of the estimator. In this section, we prove
the consistency of Alg. 2 in quantifying the estimation
uncertainties.

Let S be the set of seeds, S| be the set of immediate
neighbors of S (i.e., the first wave), and S; be the set of
immediate neighbors of S;_; (i.e., the i-th wave), where i €
NT. Let (&%) = §;US,U...US,. Let Q(N) be a sampling
design on N such that () = Pr{n € S} > 0,Vn € N,
& = Pr{n € S% n ¢ S}.

Given a set of selected nodes and their features, we
propose a modified Hajek estimator for functions of F'. For

input : SFINKS objects: estimated sampling
probabilities 7(Sd)* feature values L, and
L 4; number of bootstrap replications b,
confidence level 1 — a.

output: Bootstrap confidence interval BCT for the

feature.
I: List+ ];
for1tobdo

initialize M : Map to 0 for feature values from L;

for 1to |Ls| do

Choose one f;; from £, randomly with
replacement;

Mz = My + 1;

initialize A : Map to 0 for feature values from Ly;

or 1to|Ly| do

Choose f;; from Lg with replacement, with
weight proportional to 7(S%*)*, where
w € {1,...,d} or approximations thereof by
reciprocal degree;

Nig =Npz +1;

_ Spem Fa/m 4 Sppew fa/ms

2 frem 1m0 + 2ifreN 1/mis0
I« TUtg;

I + sort(I);

BCI = (Ipa/2 Lipi-a/2));

return BC1I;
Algorithm 2: GraphBoot: Bootstrap for graph features

g}

tr

instance, to estimate the mean level I of features on N, we
propose

Y ones fn/Wr(zO) + 2 st<a) fn/[ﬂﬁfd)ﬂgl]
Y nes 1/7T7(10) + 2 si<a) 1/[771(1@)/151]

where fig = >, cgkn/|S|, ie, an unbiased mean value
estimator based on S, and k,, is a degree of a node n. The
key intuitive idea behind (2) is to combine estimators based
on seeds and neighbors into a plausible joint estimator. That
is, the numerator of (2) estimates the feature total, where the
first and second terms in the numerator of (2) correspond
to estimators based on seeds and neighbors, respectively.
Since during the sampling stage, probability of sampling
a neighbor depends on the node degree of the associated
seed, we rescale estimators based on neighbours with the
unbiased mean degree estimator based on seeds S, fis.
Similarly, the denominator in (2) estimates the unknown
|N|, and the first and second terms of the denominator
in (2) correspond to estimators of |N| based on seeds and
neighbors, respectively.

Following the bootstrap algorithm (Alg. 2), we now
construct a bootstrap estimator of a mean feature level on
N that could be used to quantify selection uncertainties in a
model-free manner:

_ Sues i/ o+ Sgen fi/m T
dones /1 + 3 geew 1w

Theorem 1 (Consistency of node feature bootstrap). Let

S U SSD be a set of nodes selected from N, 1 be the cardinality

of SU SED and fi,..., f; be node features observed on a set

SuUSED,

@

tp =

t*

)
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Then, the limiting distributions of tf and {7, are identical.
That is, as |[N| — oo, | — coand [/|N| — 0

SI;p’\/INI (tp — F) —\/IN| (ty — E*t})

in probability.

—0 (@

Proof. Let R(N) be a rejective (also called maximum en-
tropy or Poisson) selection design on N. Simple random
selection without replacement is a particular case of rejective
selection with equal drawing probabilities [26]. The Héjek
and Horvitz-Thompson estimators obtained by rejective
selection designs are known to be asymptotically normally
distributed (see [27], [28]).

Now let us first consider a distribution of tz. Note
that seed nodes in S are obtained with simple random
selection without replacement, that is, via a rejective or
maximum entropy selection. Hence, the first terms in nu-
merator and denominator of (2), namely, 3~ ¢ fn/ 71'7(10) and
Y neso 1/ ) are both asymptotically normally distributed.

Now let us turn to the second terms in numerator and
denominator of (2), which involves selection probabilities
7(S9) on waves Si,...,Sy. In general, probabilities (<%
for d > 1 are unknown, unless G is a tree [29]. However,
following [30], if we assume that all neighbors of a node n
are included in the sample up to wave d — 1, then selection
probability 7(S%) (n) for anode n € N can be approximated
by a function of its degree k,,. That is,

S K
(<) A <<d>(k):1_(1_| )
T ~T ”
IN|
S(<d)
<t ©

where the last term is due to the Taylor approximation of
a convergent power series within an open unit circle. Note
that even when the assumption that all neighbors of a node
n are already included into previous waves does not hold,
the bias due to this simplification in the numerator of (2) is
corrected by the respective bias in the denominator of (2)
(see Section 4.2 of [30] for the detailed discussion).

Given (5), if k,, is concentrated around mean degree of G,
drawing probabilities (<% ﬂgol of neighbors in the design
Q(N) satisfies an approximation (knfig, |S<?|)/(IN|) ~
|S(=D|/|N|. Hence, the divergence of a design Q(N) from
a rejective design R(N) (see [27]) D(Q(N)||R(N)) =
>, Q(n)log[Q(n)/R(n)] — 0. That is, the design Q(N)
can be approximated by a high entropy design. As a re-
sult, Theorem 4.2 of [28] implies that > g<a) fn/ [Tr(gd)ﬂgl]
and Y g<a) 1/[7(SDfig!] are asymptotically normally dis-
tributed. Hence, limiting distributions of all four summands
in (2) are normal, and invoking a delta-method implies that
t 7 is asymptotically normally distributed [17].

Now let us turn to a limiting conditional bootstrap dis-
tribution of ¢7. Derivations of limiting conditional bootstrap
distributions of the first terms in the numerator and denom-
inator of (3) mirrors the case of (2). In turn, neighbors in
the bootstrap Algorithm 2 are re-selected with probabilities
proportional to their reciprocal degree 1/k,,. Hence, (5) im-
plies that 7(S9* ~ |S(S9| /| N|. The remaining derivations
for (3) mirrors the case of (2).
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Hence, both limiting distribution ¢z and limiting con-
ditional distribution of t}, given G, coincides, which con-
cludes the proof of (4).00

Gini elbow criterion: Can bootstrap help to decide how
much network data to query objectively? A set of bootstrap
confidence intervals (BCI) in Alg. 2 for different numbers
of seeds and waves contains a wealth of information on
structural properties of G, and can be used to assess a
level of discovery uncertainty on G. Intuitively, if the node
features are estimated sufficiently well, then the bootstrap
distributions for similar numbers of seeds and waves shall
not be too different from each other, that is, a certain level of
information saturation is reached when increasing a number
of seeds and waves yields incremental or no improvement.
Hence, we can study distributional properties of BCls, and
we start from homogeneity analysis of BCI lengths with the
Gini index.

The Gini index g is a measure of statistical hetero-
geneity [31]. Formally, let z1,...,x, be features associ-
ated with n units. Then the Gini index (GI) is defined as
g = 21 2o |z — x5l /(2n 300 @), Gl is widely used
in economics to measure income inequality. In particular, g
ranges from 0, when all individuals have equal income, to 1,
when entire income is assigned to a single person. Gl is also
used in network studies to evaluate sparsity and centrality
(for a review see [32]).

In a bootstrap context, we expect that the GI for BCI
lengths will decrease as selection variability decreases.
Hence, the optimal number of seeds and waves in the graph
discovery framework can be determined by the minimum
of GIs for BCI lengths, e.g., via the elbow plot (see Fig. 6).
At the same time, if GI does not decrease, it suggests that
selection variability is high, and the information extraction
for this node feature is limited or even impossible. Note
that with this measure we do not account for estimation
bias but rather focus on intrinsic variability of selection that
necessarily needs to be low for reliable estimates of node
features.

5 EXPERIMENTS

We use GraphBoot to quantify uncertainty of node feature
learning in simulated and real life networks where the
ground truth is known (Sections 5.1 and 5.2) and unknown
(Section 5.3). We then show the efficiency of our methods for
varying sizes of the discovered subgraphs in Section 5.4.!

5.1 Simulated Networks

We use 10* simulated networks of order |[N| = 10* which
follow a power-law GutenbergRichter degree distribution
with parameters 0.01 and 2 [33]. We simulate features using
linear and non-linear functions of the node degrees with
added noise. To obtain ClIs for the mean feature value,
we apply SFINKS and GraphBoot, with reciprocal degree
weights, based on 20 seeds, 2 waves, and b = 500. As
competing baseline approaches, we use simple random
selection of 50 seeds to construct normal and nonpara-
metric bootstrap confidence intervals [16], [24]. Our choice

1. The Scala/Spark implementation of the algorithms is available on
https:/ /github.com/cakcora/GraphBoot.
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TABLE 1: Observed coverage (%) of 95% confidence inter-
vals (width is in parentheses) on simulated data. GraphBoot
is based on a sample of 20 seeds with 2 waves; 90, 200
and 350 nodes are minimum, average and maximum num-
bers of total nodes (i.e., unique seeds+neighbors) used by
GraphBoot across considered synthetic networks.

Features f; (i =1,...,|N|)

Interval n k2 + Pois(1) k? + Pois(4) k; + N(0,1)
GraphBoot —  98.7(4.88)  98.7(4.90) 94.4 (0.58)
SRSnormal 20 81.2(13.63) 81.6(13.74) 92.2 (1.81)
50 87.4(9.26) 87.6(9.32) 93.7 (1.17)

90  89.9(7.17)  90.2(7.21)  94.0 (0.87)

200 922(4.89) 924 (4.91) 94.4(0.59)

350 934 (3.71)  93.4(3.72) 94.6 (0.44)

SRS bootstrap 20  81.7 (12.77)  82.1(12.89)  91.2 (1.75)
50 88.0(8.97)  88.1(9.03) 93.4(1.15)

90 902 (7.03) 904 (7.07) 93.8 (0.86)

200 924 (4.86) 927 (4.88) 94.2(0.58)

350 937 (3.72)  93.7 (3.74)  94.6 (0.44)

in selecting the competing alternatives is dictated by the
following rationale:

o First, to the best of our knowledge, there exist no
other techniques for Uncertainty Quantification in
network node feature mining (again here we would
like to underline that Uncertainty Quantification is
not to be confused with network sampling).

e Second, to illustrate the utility of the proposed net-
work bootstrap, we allow the competing baseline
methods to use up to 350 seeds vs. 20 seeds used
by bootstrap. Note that in many real life scenarios,
e.g., analysis of terrorist activity and HIV risk prop-
agation, it is substantially more challenging to get
information from new seeds than from the neighbors
of the already identified seeds.

Table 1 shows the performance of GraphBoot in quantifying
the uncertainty in feature averages. Following the anony-
mous reviewers’ suggestion, Table 1 includes two extreme
cases (a) same number of seeds in the baseline method of
simple random sampling (SRS) as in the proposed bootstrap
approach, and (b) minimum, average and maximum num-
bers of total sampled nodes (i.e., unique seeds + neighbours)
in the baseline SRS method as engaged in the proposed
bootstrap approach. As expected, we find that under the
case (a), the baseline SRS method delivers liberal confidence
intervals (Cls) which largely undercover, i.e., empirical
coverage probability is 82-92% for the expected coverage
level of 95%. Remarkably, even for 200 seeds (i.e., the case
(b)), SRS tends to yield lower coverage than the expected
95% level, while for the same number of total nodes, the
proposed bootstrap method delivers either calibrated or
moderately conservative CIs. Only the case of SRS for 350
seeds yields relatively well calibrated CIs with coverage of
94-95%. Note that conservative Cls are preferred over liberal
Cs.

5.2 Real Life Networks - Quantifying Uncertainty with
Ground Truth

We used GraphBoot on eight datasets of varying order,
sparsity and embeddedness (Table 2) to quantify uncertainty
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TABLE 2: Summary statistics for number of nodes, edges,
mean degree, fraction of queried nodes at 20 seeds and 2
waves (Cov@20) and average node embeddedness (Emb).

Network |N| |E| n Cov@20 Emb
LiveJournal 4M  35M 1340 8e-5 0.088
Dblp 317K 1M 6.62 0.0097 0.305
Gowalla 196K 950K  9.60 0.1481 0.073
Wiki 94K 361K 7.60 0.0015 0.005

FB 63K 817K 25.64 0.2031 0.071
Kite 58K 214K  7.30 0.0795 0.049
Enron 36K 183K 10.02 0.0054 0.192
Epinions 31K 103K  6.63 0.0048  0.046

in node feature estimation. We start from average degrees as
a target statistical parameter. The LiveJournal dataset is the
biggest, with 4M nodes and 35M edges [34]. The Facebook
[35] dataset contains 817K edges among 63K New Orleans
network users. The DBLP [36] network is an undirected co-
authorship network. Gowalla [37] and BrightKite [37] are
undirected location based social networks.

In directed network, the LiveJournal edges are friend-

ships, whereas in the Wikipedia network [38], an edge is
created among nodes who have edited each other’s talk
page. In the Enron [39] network, we create an edge between
two nodes who have shared emails. The Epinions [40]
network is the only signed network in our dataset, where
an edge between two users indicates their trust for each
other. In directed networks, we created edges among two
nodes when the nodes have outgoing edges to each other,
i.e., n1,n2 € G.N and directed edges (n; — na), (n2 — n1)
exist in the dataset. In this case an edge is recorded between
ny and ny, i.e., (n1,ng) € E.
Estimation. Fig. 4 shows GraphBoot wave 2 results in de-
gree estimation on undirected and directed networks ? with
b = 1000. All results are averages of 50 runs. As networks
have different mean degrees, we present the GraphBoot
degree estimate £ in a relative form, &/, where p is the
true mean degree given in Table 2.

Fig. 4 shows that undirected networks can be efficiently
queried by GraphBoot with 2 or 3 waves for average de-
grees. The proportion of used nodes depends on the distri-
bution of degrees and embeddeddness in a network. Due to
this low proportion, directed networks in Fig. 4b have lower
estimates. Thus, sampling in these networks must start with
more seeds or continue for more waves.

As we noted in Section 4, in addition to the estimated
value, GraphBoot also reports a confidence interval BCT
for the estimated statistic. This confidence interval shows
dispersion of estimated values in 1,000 bootstraps. Fig. 4c
shows that GraphBoot confidence intervals are much shorter
for undirected networks than for the directed ones.

How would baseline UQ methods perform? Fig. 5
presents a comparison of normal-based and GraphBoot
bootstrap confidence intervals in terms of relative sharpness
(RS). Positive RS implies a gain of GraphBoot vs. normal-
based CI (in %), reverse is true for negative RS. In most of
the cases, RS is positive, i.e., GraphBoot bootstrap Cls out-
perform normal-based ClIs. The improvement of GraphBoot

2. In the rest of this paper, we will omit some datasets in figures to
have visually discernible results.
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Fig. 5: Relative Sharpness (RS) comparison of GraphBoot
bootstrap and normal-based confidence intervals. Positive
values of RS implies a gain of GraphBoot bootstrap CI vs.
normal-based CI (in %), and reverse. In all cases, except of
Enron, all Cls contain the true population parameter.

is the most overwhelming in Epinions (42.4%). The only case
where GraphBoot delivers a less sharp CI than a normal-
based approach is for Kite, however, the loss is minor (0.8%).

These results show that GraphBoot delivers more accu-
rate (sharper) confidence intervals, and hence, is a more re-
liable and preferred method for Uncertainty Quantification
in network mining. Another aspect is that a normality-based
inference would require querying the feature values of too
many nodes, whereas GraphBoot requires a very limited
number of seeds’ neighborhoods around them.

How does dispersion in estimations indicate an un-
certainty? Fig. 6 shows the GI of BCI lengths for varying
waves and seeds. As expected, increasing number of seeds
leads to lower selection variability and, as a result, to lower
Gini Index values. Fig. 6a and 6b can be used as an elbow
plot for selecting optimal number of seeds in a selection
design for a particular node feature, so that adding extra
seeds does not reduce dispersion. For instance, in Fig. 6b,
all networks reach low GI around 25 seeds, and hence we
can conclude that 25 seeds is a reasonable selection size.
Undirected networks tend to deliver low GI even with few
seeds, which can be attributed to degree assortativity or
bigger diameters.

Fig. 6¢ shows a counterpart study of GI against varying
numbers of waves. While all GIs also tend to decrease
as the number of waves increases, the rate of decrease is
noticeably different than for a case of GI as a function
of seeds. For instance, some networks, such as DBLP and
Facebook, exhibit a rapid decrease of GI already at wave

1 — thereby, implying that already wave 1 contains a large
portion of information that can be extracted by selection. In
contrast, other undirected networks, such Kite and Gowalla,
show a noticeably slower rate of decrease in GI, suggesting
that reliable estimation requires a higher number of waves.
Generally, the Gowalla network appears to be an outlier in
both Figs. 6a and 6¢c, with a very slow decay of selection
variability.

Furthermore, Fig. 6¢ indicates a clear distinction between
directed and undirected networks, that is, the GIs of directed
networks tend to be higher especially for smaller waves.
Intuitively, this implies that neighbors of a node are not suf-
ficiently similar to the node and to achieve higher accuracy,
we need more data.

Gini Index values of GraphBoot degree estimations on
real life networks show that depending on the network
coverage and network type, GraphBoot can provide degree
estimates with as few as 25 seeds and 2 waves. Furthermore,
by observing how the inequality of estimated confidence
interval lengths change, GraphBoot can continue to query
more data until a predefined level is reached for a given GIL.

5.3 Twitter Sub-networks - Quantifying Uncertainty
without Ground Truth

In many real life scenarios, the network (e.g., Twitter) con-
sists of different types of nodes, and the estimated feature
may not exist for all the nodes. Furthermore, the estimated
feature may be relevant to a subset of nodes only. Consider
the case where we estimate the age of first time car-buyers
in the USA. We first need to classify users into nationali-
ties, and sample on the US nationals only. This approach
involves using a subset of nodes on the network rather
than the full network. In this section, we will describe how
GraphBoot can quantify the quality of a estimations in such
a scenario.

As an illustrative example, we chose to carry out a case
study of mental health research on the Twitter network,
because i) mental health is widely discussed on Twitter by
many users [20], and ii) there are well known mental health
related features [21] to query with GraphBoot.

Querying a mental health subnetwork. Our node query-
ing starts with randomly selecting 13 accounts that tweet
about mental health; 6 of these are organizational accounts
that are used to create awareness on mental health issues,
whereas the remaining 7 are users that experience mental
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health issues themselves. These initial accounts are found by
manually searching mental health related keywords, such as
depression and mental health, on Twitter. Note that for this
subnetwork querying, we can employ any community detection
method. In this experiment, the quality of the subnetwork is not
our primary concern.

Our overall goal is to locate the subnetwork with as
few manually given labels as possible. We employed a two
phased approach to classify Twitter users as mental health
related (i.e., MentalHealth+) or not mental health related
(i.e., MentalHealth-). Below, we will outline our approach.

Phase 0. We queried the Twitter API for the last 20 tweets
of the 13 seeds, and used these tweets to create seed feature
vectors. Each feature in the vector is a word, and feature
value is the number of times the word appears in the tweets
of the seed. We labeled these seed vectors as mental health
related.

To train the model also with MentalHealth- vectors, we
downloaded the Twitter data set of Cheng et al. [41] and
created feature vectors of users in a similar way. The user
profiles in the Cheng dataset were assumed to be not related
to mental health, i.e., these users’” vectors were labeled as
MentalHealth-. As 36% of Twitter users scored positive for
depression in [21], we decided to combine 13 MentalHealth+
vectors with 26 randomly selected MentalHealth- vectors.

Out of 1,895 wave 1 nodes that were found by using
the 39 user profiles as seeds, 1,784 of them had public
tweets. Remaining nodes either have not tweeted yet, or
chose to hide their tweets by making their profiles private.
MentalHealth vectors were used in a 10 tree Random Forest
Classifier to classify these 1,784 Twitter users. In total, the
phase 0 model classified 258 accounts as MentalHealth+.

Four Ph.D. students independently classified 197 Twitter
users from phase 0 into MentalHealth+, MentalHealth- and
“no decision” classes manually. Validation results show an
inter-annotator agreement (Fleiss” Kappa [42]) of 0.46, with
values: 8 false positives, 33 true positives, 22 false negatives
and 91 true negatives. Phase 0 accuracy of the random forest
model is thus found to be 80.4%.

Phase 1. In phase 1, we added the manually labeled vec-
tors to the model input, and trained a new model on the
expanded dataset. The new random forest model was then
used to classify neighbors of 258 wave 1 nodes who were
labeled as MentalHealth+ in phase 0 by the random forest
classifier. Overall, this reduced the number of wave 2 nodes
to be classified from 198K to 40K. Table 3 shows the statistics

TABLE 3: Classification numbers in phases. In phase=1, 194
out of 197 accounts have been manually assigned a label.
Three accounts were left as “no decision”.

Ph. Verified Labels Found Classi. MHealth+

0 MHealth+: 13 1.8K 1.7K 258 (14%)
MHealth-: 26

1 MHealth+: 51 40K 30K  1.1K (3.8%)
MHealth-: 143

TABLE 4: Top 7 U.S. states with the highest numbers of
classified accounts in phase 1.

State CA TX NY FL GE |IL PE

MHealth+ 72 42 47 28 11 18 20
MHealth- 13K 911 827 543 372 314 301

of our model learning. In Phases 0 and 1, 14% and 3.8% of
users were classified as mental health related, respectively.

We also used the bio location of Twitter users with
Google Location API to assign users to US states. The results
are given in Table 4. Furthermore, Fig. 1 shows density of
mental health related accounts on a map.

At the end of phase 1, we create a network from Mental-
Health+ users where edges among these nodes are learned
by querying Twitter again. Including seeds, phase 0 and
phase 1 users, our network consists of 1,466 nodes and 4,581
edges.

Mining various features. On the created mental health
network, we used GraphBoot to estimate five node features
from mental health research. Three of these features, Symp-
tom, Treatment and Disclosure are related to the specific
groups of words used by users [21]. De Choudhury et al.
report that “these words appear with high frequency in the
posts from the depression class” of Twitter users. GraphBoot
estimates the number of appearances from these groups.
Two other statistics from [21], Day and Night, are used
to estimate daily posting habits of Twitter users (See the
code repository for this dataset). We formally define these
statistics as follows:

e Symptom: Number of times Symptom related
words, such as anxiety, appear in the tweets of user.

e Treatment: Number of times Treatment related
words, such as medication, appear in the tweets.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2925355, IEEE

Transactions on Knowledge and Data Engineering

e Disclosure: Number of times Disclosure related
words, such as fun, appear in the tweets.

o Day: From the last 20 tweets of a user, the number of
tweets posted before 6AM and after 9PM.

o Night: From the last 20 tweets of a user, the number
of tweets posted after 6Am and before 9PM.

GraphBoot wave 2 estimates for word groups are 4.45
for Disclosure, 1.71 for treatment and 2.27 for Symptom.
Change of Gini Index values for these groups are given in
Fig. 7a. Day and Night estimates of GraphBoot are 15.8 and
3.92, respectively. GI of these time related statistics are given
in Fig. 7b. Gini Index changes of both word groups and
time aspects show that GraphBoot wave 1 computations
are better than wave 0 and wave 2 estimates. Overall,
these statistics show low Gini Index values in GraphBoot
estimates, and hence can be viewed as estimable statistics
for mental health studies.

Control Experiments. As a control experiment, we devised
two statistics, username length and registration year, that
have no basis in mental health analysis. In username, we
estimate the average length of a user’s screen name on the
mental health network. E.g., www.twitter.com/POTUS has
a username of length 5. The year statistic gives the Twitter
registration year of a user, such as 2017 for the @POTUS
user.

In this experiment we sample the username and year
features from the subnetwork and hypothesize that adding
more seeds or employing bigger wave values will not
reduce the uncertainty in the estimates of these features.
This is due to our assumption that the two features do
not depend on the mental health related nature of Twitter
accounts. If our hypothesis wrong, we expect to see reduced
uncertainty when more data is sampled from the network.

GraphBoot estimates for these statistics are 2013.6 for
year and 11.9 for username. GraphBoot results in Fig. 7c
show that the Gini Index values for these statistics are high,
and even increase at waves 1 and 2.

Such not diminishing and even deteriorating Gini values
imply that the used statistics are not reliable; the sampler
can stop querying node features for these statistics.

5.4 Epinions Network - Discovery with Size Effects

So far, we have looked into the uncertainty of learning
features from the same set of nodes on a network. In this
section, we will use the Epinions Ratings dataset [34] and
show uncertainty for estimating multiple features from the
same network where node sets that have these features have
different sizes. This experimental setting allows us to see
how features of varying node sets from the same network
can be compared in terms of their estimation uncertainties.

The Epinions dataset consists of user given ratings (i.e.,
—1 or +1 for trusted and distrusted content, respectively)
to articles written by other users. Each article has a topic,
and a user might have multiple articles on the same or dif-
ferent topics. This allows us to create a network for specific
topic; we define each feature value f;, as the number of
articles with topic ¢ written by user n. Nodes are users who
have written at least one article on topic f;. The edges are
trust/distrust ratings of users; two users are connected if
any of them rate an article written by the other user.
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We chose six topics from the Epinions network; three
most popular topics (i.e.,, H1, H2 and H3, with each having
at least 3000 users) and three moderately common topics
(i.e.,, L1, L2 and L3 with each having 1000-3000 users). We
refer to these topics as H and L topics, respectively.

In Figure 8a, we show relative values of estimations for
H and L topics on the Epinions network. Both H and L top-
ics reach stable estimates with 10 seeds. However L topics
are shown to have higher Gini values in Figure 8b. Despite
this, these values are very low (i.e., 0.04) compared to Gini
values from Figure 6. Similarly, as shown in Figure 8c, the
confidence intervals are much narrower in topic networks.

This is due to shared topic interests on the network
which results in a better discovery process; Epinions users
rate each other for their content and this results in a network
where nodes that are close to each other on the network
write about and rate similar topics [43]. As a result, the
discovery process from initial seeds results in lower Gini
index because waves are more likely to discover nodes
that are similar to the initial sees. Resulting low Gini index
reflects this fact and indicates an efficient network discovery
process.

5.5 Feature estimation and Homophily

An aspect in feature estimation is that homophily may lead
to biased estimates. To diminish the estimation bias due to
homophily, we can increase the number of sampled seeds
and evaluate stability of the resulting confidence intervals
along with the sufficient number of seeds to deliver stable
performance, using, for example, an elbow plot. Further-
more, we argue that getting trapped in homophilous groups
is very difficult when we start from randomly selected
seeds and seed number is above 20. Considering high
network orders (billions of nodes on Facebook), proba-
bility of randomly picking multiple seeds from the same
homophilous community is low. In Figure 4a and 4b we
show that estimates are stable for more than 20 seeds.
Although these experiments are degree based, we believe
that similar results will hold for other features. Although we
have graph datasets from real life networks, privacy policies
of homophilous networks such as Facebook do not allow
feature mining on nodes. As such, currently, we are not able
to complete an experiment to test this hypothesis, and leave
this issue as a future work. Finally, in many cases what
we are interested in are features in homophilous groups.
For example, when monitoring mental health among HIV
patients, it is useful to follow and locate homophilous rela-
tions, so that more members of this small subnetwork can
be discovered, and subsequently their features are mined.
In our Twitter experiments, we address this aspect and our
experiments are targeted for feature mining from hard-to-
reach subnetworks.

6 CONCLUSION

In this paper, we quantify estimation uncertainties of node
features in a variety of large social networks. Our experi-
ments include a case study of learning mental health related
features on the Twitter network efficiently. We show that the
match between the estimated feature and the network type
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Fig. 8: GraphBoot performance on Epinions topic networks. H topics are the three most common topics in the dataset.

and size greatly affects the estimation quality. Undirected
networks where edges are created with mutual consent pro-
vided better feature estimates, whereas directed networks
have inequalities within samples. Topical networks, such
as Epinions, provide lower uncertainty in feature learning
because edges among nodes are a good proxy of shared
interests. In all cases, GraphBoot provides adequate quality
indications for the learning process.

We plan to expand GraphBoot to quantifying uncertainty
in motif estimation and feature-based anomaly detection.
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