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Abstract—Open source software (OSS) is essential for modern
society and, while substantial research has been done on indi-
vidual (typically central) projects, only a limited understanding
of the periphery of the entire OSS ecosystem exists. For ex-
ample, how are tens of millions of projects in the periphery
interconnected through technical dependencies, code sharing, or
knowledge flows? To answer such questions we a) create a very
large and frequently updated collection of version control data
for FLOSS projects named World of Code (WoC) and b) provide
basic tools for conducting research that depends on measuring
interdependencies among all FLOSS projects. Our current WoC
implementation is capable of being updated on a monthly basis
and contains over 12B git objects. To evaluate its research
potential and to create vignettes for its usage, we employ WoC in
conducting several research tasks. In particular, we find that it is
capable of supporting trend evaluation, ecosystem measurement,
and the determination of package usage. We expect WoC to
spur investigation into global properties of OSS development
leading to increased resiliency of the entire OSS ecosystem.
Our infrastructure facilitates the discovery of key technical
dependencies, code flow, and social networks that provide the
basis to determine the structure and evolution of the relationships
that drive FLOSS activities and innovation.

Index Terms—software mining, software supply chain, soft-
ware ecosystem

I. INTRODUCTION

Tens of millions of software projects hosted on GitHub

and other forges attest to the rapid growth and popularity

of Free/Libre Open Source Software (FLOSS). These online

repositories include a variety of software projects ranging

from classroom assignments to components, libraries, and

frameworks used by millions of other projects. Such large

collections of projects are currently archived in public version

control systems, and, if made available and convenient for

analysis, represent a unique opportunity to study FLOSS at

large and answer both theoretical and practical questions that

rely on the availability of the entirety of FLOSS data. In

particular, this infrastructure, referred to as World of Code

(WoC) and described below, allows researchers to conduct

a census of open source software that would provide types

and prevalence across projects, technologies, and practices and

serve as a guide to setting policies or creating innovative

services. Our infrastructure facilitates the discovery of key

technical dependencies, code flow, and social networks that

provide the basis to determine the structure and evolution of

the relationships that drive FLOSS activities and innovation.

Such a large database of software development activities can

serve as a basis for “natural experiments” that evaluate the

effectiveness of different software development approaches. If

preserved, it will also facilitate future anthropological studies

of software development [1].

Our objective in the current study is to describe a prototype

of an infrastructure that can store the huge and growing

amount of data in the entire FLOSS ecosystem and provide

basic capabilities to efficiently extract and analyze that data

at that scale. Our primary focus is on types of analyses that

require global reach across FLOSS projects. A good example

is a software supply chain where software developers corre-

spond to the nodes or producers, relationships among software

projects or packages represent the “chain”, and changes to the

source code represent products or information (that flow along

the chain) with corporate backers representing “financing.”

Several formidable obstacles obstruct progress towards this

vision. The traditional approaches for obtaining the repository

of a project or a small ecosystem does not scale well and may

require too many resources and too much effort for individual

researchers or smaller research groups. Thus, the community

needs a way to scale and share the data and analytic capabili-

ties. The underlying data are also lacking context necessary for

meaningful analysis and are often incorrect or missing critical

attributes [2]. Keeping such large datasets up-to-date poses

another formidable challenge.

In a nutshell, our approach is a software analysis pipeline

starting from discovery and retrieval of data, storage and

updates, and transformations and data augmentation necessary

for analytic tasks downstream. Our engineering principles are

focused on using the simplest possible techniques and com-

ponents for each specific task ranging from project discovery

to fitting large-scale models. The result is a conceptual imple-

mentation loosely following the microservices architecture [3]

where the design and performance of the loosely coupled

components can be independently evaluated, each service can

utilize a database that is optimal for its needs, and the most

computationally-intensive components are extremely portable

to ensure they run on any high-performance platform. More

specifically, our prototype appears to capture a large portion of

publicly available source code in version control systems and

it will update quickly enough that the latency of updates on

the existing hardware platform does not exceed one calendar

month. Finally, a number of research tasks were effectively

supported by the existing prototype.

We begin with an overview of related work in Section II,
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describe the architecture of the prototype implementation in

Section III, provide details of the components of the pipeline in

Sections III-A to III-F. We conclude with a description of the

experiences describing the attempts to enhance the prototype

and to conduct several software analytics tasks in Section IV.

II. RELATED WORK

While we are not aware of a complete census of FLOSS

with an analysis engine, several large-scale software mining

efforts exist and may be roughly subdivided into attempts at

preservation, data sharing for research purposes, and construc-

tion of decision support tools.

Software development is a novel cultural activity that war-

rants preservation as a cultural heritage. The software source

code, the only representation of software that contains human

readable knowledge, needs to be preserved to avoid permanent

loss of knowledge [1]. Software Heritage [1] is a distributed

system involved in collecting and storing large amount of open

source development data from various open source platforms

and package hosts. It currently has software from GitHub,

GitLab, Debian, PyPI, etc., and contains 88M projects, 1.2B

commits, and 5.5B source files. The main drawback of this

particular effort is the lack of focus on enabling applications to

software analytics. The API provided allows for quick query

of every historical particle in a software project and meets

the preservation need, however, it does not grant the access

to the full relationships (e.g., the set of projects containing a

given commit) among these particles across entire collection

of software. Quick access to these relationships is crucial

in conducting software analytics such as identification of

dependencies among artifacts and authors as well as code

spread in open source community.

One potential value of archiving software lies in the reuse of

software artifacts. For example, Nexus [4] repository manager,

allows developers to share software artifacts in a standard

way and provides support for building and provisioning tools

(e.g. Maven) to access necessary components such as libraries,

frameworks and containers.

Commercial efforts, such as BlackDuck or FOSSID1 have

proprietary collections they use to determine if their clients

have included open source software within their proprietary

software code. It is generally not clear how complete these

collections are nor if the companies involved might consider

opening them for research purposes.

In addition to source code and binaries, large scale collec-

tion of other software development resources could be inte-

grated with the source code data. For example, GHTorrent [5]–

[9] attempts to record every event for each repository hosted

on GitHub and provides multiple approaches (SQL request and

MongoDB data dump) for data access. The primary limitation

is that the collected metadata is specific to GitHub and it does

not include the underlying source code as well. Therefore,

obtaining dependencies encoded within the source code cannot

be accomplished. FLOSSmole [10] collects open source meta

1blackducksoftware.com,fossid.com

data from various forges as a base for academic research but

only focuses on software project metadata.

Another platform is Candoia [11]–[14] which provides

software development data collections abstraction for building

and sharing Mining Software Repository (MSR) applications.

In particular, Candoia contains many tools for artifact ex-

traction from different VCSs and bug databases and it also

support projects written in different languages. On top of

these artifacts, Candoia created its general data abstraction

for researchers to implement ideas and build tools upon. This

design increased portability and applicability for MSR tools by

enabling application on software repositories across hosting

platforms, VCSs and bug recording tools. The approach is

focused on the design and benefits of creating a specialized

software repository mining language. While it abstracts a

number of repository acquisition tasks, it also makes it more

difficult to handle operational data problems that tend to

occur at much lower levels of abstraction and tend to be too

idiosyncratic for generalized abstraction. The main drawbacks

of Candoia are that it only supports limited programming

language (JS and Java) based projects, and ecosystem-wide

research might be difficult to implement since Candoia re-

lies on users to provide software related data (e.g., targeted

software repository URL) and eco-system wide compliance is

generally low.

Other platforms are aimed at improving reproducibility by

providing a repository of datasets for researchers to share their

data. These include PROMISE Repository [15], Black Duck

OpenHub [16], and SourcererDB [17]. PROMISE Repository

is a collection of donated software engineering data. It was

created to facilitate generations of repeatable and verifiable

results as well as to provide an opportunity for researchers

to extend their ideas to a variety of software systems. Black

Duck OpenHub is a platform that discovers open source

projects, tracks the development and provides the functionality

of comparison between softwares. Currently, it is tracking

1.1M repositories, connecting 4.2M developers and indexing

0.4M projects. SourcererDB is an aggregated repository of

3K open source Java projects that are statically analyzed and

cross-linked through code sharing and dependency. On top of

providing datasets, it also provides a framework for users to

create custom datasets using their projects.

Apart from providing datasets (repository) for potential

users, platforms such as Moose [18], RepoGrams [19],

Kenyon [20], Sourcerer [21], and Alitheia Core [22] are more

focused on facilitating building and sharing MSR tools. Moose

is a platform that eases reusing and combining data mining

tools. RepoGrams is a tool for comparing and contrasting

of source code repositories over a set of software metrics

and assists researchers in filtering candidate software projects.

Kenyon is a data platform for software evolution tools. It

is restricted to supporting only software evolution analysis.

Sourcerer is an infrastructure for large scale collection of open

source code where both meta data and source code are stored

in a relational database. It provides data through SQL query

to researchers and tool builders but is only focused on Java
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projects. Alitheia Core is a platform with a highly extensible

framework and various plug-ins for analyzing software on

a large database of open source projects’ source code, bug

records, and mailing lists.

Furthermore, there were efforts to standardize software min-

ing data description for enhanced reproducibility [23]. None

of the listed platforms focus on both collection and analysis of

the dependencies of the entirety of FLOSS source code version

control data. Further, they contain either limited collections

(e.g. only GitHub, no source code, have only donated data,

or do not contain an analysis engine). For example, it is

not possible to answer simple questions such as “In which

projects has a file been used?”, “What projects/codes depend

on a specific module?”, “What changes has a specific author

made?” etc.

Some large companies have devoted substantial effort to

develop software analysis platforms for the entire enterprise,

aiming to improve the quality of software they build and to

help the enterprise achieve its business goals by providing rec-

ommendations to software development organizations/teams,

monitoring software development trends, and prioritizing re-

search areas. For example, Avaya, a telecommunications com-

pany, built a platform [24], which collects software devel-

opment related data from most of its software development

teams and third parties and enabled systematic measurements

and assessments of the state of software. CodeMine [25],

is a software platform developed by Microsoft that collects

a variety of source code related artifacts for each software

repository inside Microsoft. It is designed to support developer

decisions and provide data for empirical research. We hope

that similar benefits can be realized with the WoC platform

targeted to the entire FLOSS community.

Large scale software mining efforts also include domain

specific languages. Robert Dyer et al. developed Boa [26]–

[31], both as a domain specific language and as an infras-

tructure, to ease open source-related research over large scale

software repositories. The approach is focused on the design

and benefits of an infrastructure and language combination.

However, the lack of explicit tools to deal with operational

data problems make it of limited use to achieve our aims. Their

collection procedures -discovery, retrieval, storage, update, and

completeness issues (for example, only certain languages are

supported)- are not the primary focus of this effort. The tools

to deal with operational data problems common in version

control data are also lacking in Boa.

The system described in this paper is loosely modeled after

a system described a decade ago [32], [33]. In comparison, at

that time, git was just beginning to emerge as a popular version

control system, but now it dominates the FLOSS project

landscape. The number of software forges and individually

hosted projects was much larger then in contrast to the

consolidation of forges and the overwhelming dominance of

GitHub. Furthermore, the scale of the FLOSS ecosystem is

more than an order of magnitude larger now and it continues

to experience very rapid growth. WoC could not, therefore,

reproduce that design closely and, instead, is focused on

preserving the original git objects and on creating a design

that enables both efficient updating of this huge database and

ways to cross-reference it so that the complete network of

relationships among code and people is readily available.

III. ARCHITECTURAL CONSIDERATIONS

The process of mining individual git repositories is com-

plex to begin with [34], but becomes even more difficult

on a large scale [35]. More specifically, using operational

data from software repositories requires resolution to three

major problems [2]: the lack of context, missing attributes or

observations, and incorrect data. This makes critical tasks such

as debugging and testing complex and time consuming. To

cope with these big data challenges we employed both vertical

and horizontal prototyping [36]–[39]. Most big data systems

use the layered data approach where initial layers approximate

raw data and later layers include cleaned/augmented data.

In this section we present a prototype WoC implementation.

It has four stages: project discovery, data retrieval, correction,

and reorganization as shown in Figure 1.

A. Project Discovery

Millions of projects are developed publicly on popular

collaborative platforms/forges such as GitHub, Bitbucket, Git-

Lab, and SourceForge. Some of the FLOSS projects can be

identified from the registries maintained by various pack-

age managers (e.g., CRAN, NPM) and Linux distributions

(e.g., Debian, Fedora). Other project repositories, however,

are hosted in personal or project-specific sites. A complete

list of FLOSS repositories is, therefore, difficult to compile

and maintain since new projects and forges are created and

older forges disappear. There is a tendency for the FLOSS

repositories to migrate to (or be mirrored on) several very

large forges [40]. A number of older forges provide convenient

approaches to migrate repositories to other viable forges before

being shut down. This consolidation has alleviated some of

the challenge of discovering all FLOSS projects [32], though

the task remains nontrivial. We discuss several approaches to

project discovery below. To package our project discovery

procedure we have created a docker container2 that has the

necessary scripts.

Using Search API: Some APIs may also be used to discover

the complete collection of public code repositories within a

forge. The APIs are specific to each forge and come with

different caveats. Most APIs tend to be rate limited (for user

or IP address) and the retrieval can be sped up by pooling the

IDs of multiple users.

Using Search Engine: Search engines (e.g., Google or Bing)

can supplement the discovery of FLOSS project repositories

on collaborative forges when the forge does not provide an

API, or when the API is broken. The primary drawback is the

incompleteness of the repositories discovered.

Keyword Search: Some forges provide keyword based

search of public repositories, which is a complementary ap-

proach when a forge does not provide APIs for the enu-

2https://github.com/ssc-oscar/gather
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Fig. 1. Overarching data flow

meration of repositories and the results returned from search

engines are lacking.

Using these and other opportunistic approaches helps ensure

that they complement each other in approximating the publicly

available set of repositories though it does not guarantee the

completeness. We expected that various ways of crowdsourc-

ing the discovery (with incentives to share a project’s git URL)

would help increase the coverage in the future.

B. Project Retrieval

This data retrieval task can be done in parallel on a very

large number of servers but requires a substantial amount

of network bandwidth and storage. The simplest approach

is to create a local copy of the remote repositories via git

clone command. As of December 2018, we estimate over 62M

unique repositories (excluding GitHub repositories marked as

forks, repositories with no content and private repositories).

A single thread shell process on a typical server CPU (we

used Intel E5-2670) with no limitations on network bandwidth

clones randomly selected 20K to 50K repositories (the time

varies dramatically with the size of a repository and the forge)

in 24 hours. To clone 60M repositories in one week would,

therefore, require from two to four hundred servers. We do

not possess dedicated resources of such size and, therefore,

optimize the retrieval by running multiple threads per server

and retrieving a small subset of the repositories that have

changed since the last retrieval. Specifically, we use five Data

Transfer Nodes of a cluster computing platform3.

C. Data Extraction

Code changes are organized into commits that typically

change one or more source code files within the project. Once

the repository is cloned as described above, we extract Git

objects4 from each repository and store these git objects in a

single database.
1) Data Model: Git [41] is a content-addressable filesystem

containing four types of objects. The reference to these objects

is a SHA15 [42] calculated based on the content of that object.

commit is a string including the SHA1’s of commit parent(s)

(if any), the folder (tree object), author ID and timestamp,

committer ID and timestamp, and the commit message. tree:

A tree object is a list that contains SHA1’s of files (blobs)

and subfolders (other trees) contained in that folder with

their associated mode, type, and name. blob: A blob is the

compressed version of the file content (the source code) of a

3No. node: 300, Bandwidth up to 56 Gb/s
4https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
5https://en.wikipedia.org/wiki/SHA-1

file. tag: A tag is the string (tag) used to associate readable

names with specific versions of the repository.

Fig. 2 illustrates relationships among objects described

above. The snapshot at any entry point (commit) is constructed

by following the arrows from left side to right side.

Fig. 2. Git objects

2) Object Extraction: While a standard Git client allows

extraction of raw git objects, it displays them for manual

inspection. For the bulk extraction need, first we list all objects

within the git database, categorize them, and create bulk ex-

tractor based on a portable pure C implementation of libgit26.

We run listing and extraction using 16 threads on each of the

16-CPU node on a cluster7. The process takes approximately

two hours for a single node to process 50K repositories. The

extraction procedure represents a microservice.

D. Data Storage

The collection of public Git repositories as a whole replicate

the same git object hundreds of times [32]. Without removing

this redundancy, the required storage for the entire collection

exceeds 1.5PB, and it also makes analytics tasks virtually im-

possible without extremely powerful hardware. Many reasons

for this redundancy exist, such as pull-based development,

usage of identical tools or libraries, and copying of code.

To avoid redundancy of git object among repositories, we

store all git objects into a single database. The database

is organized into four parts corresponding to each type of

git object. Each part is further separated into a cache and

content. The cache is used to rapidly determine if the specific

object is already stored in our database and is necessary for

data extraction described above. Furthermore, the cache helps

determine if a specific repository needs to be cloned. If the

heads (the latest commits in each branch in .git/refs/heads) of

a repository are already in our database, there is no need to

clone the repository altogether.

Cache database is a key-valued database, with the twenty

byte Git object SHA1 being the key and the packed integer

(indexing the location of the object in the corresponding value

6https://libgit2.org/
7CPU: E5-2670, No. node: 36, No. core: 16, Mem size: 256 GB
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database) being the value. The value database consists of an

offset lookup table that provides the offset and the size of the

compressed git object in a binary file (containing concatenated

compressed git objects). While this storage allows for a fast

sweep over the entire database, it is not optimal for random

lookups needed, for example, when calculating diffs associated

with each commit. For commits and trees, therefore, we also

create a key value database where key is SHA1 of the git

object and value is the compressed content of the said object.

Cache performance is relatively fast: a single thread on Intel

E5-2623 is capable of querying of 1M git objects in under 6

seconds, or over 170K git objects per second per thread. This

can be multi-threaded and run on multiple hosts, thus reaching

any desired speeds with expanded hardware.

Needless to say, with 12B objects occupying over 80TB

we need to use parallel processing to do virtually anything.

Thankfully, we can use SHA1 itself to split the database into

pieces of similar size. We, therefore, split each of the database

into 128 slices based on the first seven bits of Git object SHA1.

This results in 128 key-offset cache databases for all four types

of objects, 128 content databases as flat files for the four types

of objects, and 128 key value databases for commits and trees:

128*(4+4+2) databases with each capable of being placed on

a separate server to speed up parallel tasks. The individual

databases containing content range from 20MB for tags up to

over 0.5TB for blobs. The largest individual cache databases

are over 2Gb for tree object SHA1s.

Databases are fragile and may get corrupted due to hardware

malfunction, internet attack, pollution/loss by unrecoverable

operation, etc. To enhance the robustness and reliability and

to avoid permanent data loss, we maintain three copies of the

databases: two copies on two separate running servers and one

copy on a workstation that is not permanently connected to

Internet. In the future, we will consider keeping a copy using

a commercial cloud service.

Furthermore, due to the size of the data and complexity of

the pipeline, some of the objects may have been missed or have

been retrieved but are not identical to originals. Techniques to

validate the integrity of the data at every stage of the process

are necessary. We therefore, include numerous tests to ensure

that only valid data gets propagated to the next stage.

In particular, the errors when listing and extracting objects

are captured and the operation is repeated in case a problem

occurs. The extracted objects are validated to ensure that they

are not corrupt and also to ensure that they are not going

to damage the database or the analytics layer. To validate

correctness, the object is extracted per git specifications and

recreated from scratch. The SHA1 signature is compared to

ensure it matches that of the original object. A substantial

number of historic objects have issues due to a bug in git that

has since been fixed. Furthermore, a much smaller number of

objects also had issues that we assume are either caused by

problematic implementations of git or problems in operation

(zero-size objects that may be occasionally created when git

runs out of disk space during a transaction).

Despite the scrubbing and validation efforts, some of the

data may still be problematic or missing, therefore a continu-

ous process of checking the database for missing or incorrect

data is needed. We plan to add missing object recovery service

that identifies missing commits, blobs, and trees, and retrieves

and stores them (in case they are still available online).

E. Update

The process of cloning all GitHub repositories takes an

increasing amount of time with the growth in size of existing

repositories and the emergence of new ones, given fixed

hardware. Currently, to clone all git repositories (over 90M

including forks), we estimate the total time to require six

hundred single-thread servers running for a week and the

result would occupy over 1.5PB of disk space. Fortunately,

git objects are immutable and we can leverage that to simplify

and speed up the updates. More generally, to get acceptable

update times, we use a combination of two approaches:

• Identify new repositories, clone and extract Git objects

• Identify updated repository and retrieve only newly added

Git objects

The work flow is illustrated in Fig. 3.

Fig. 3. Update workflow

In fact, only approximately three million new projects were

created and an additional two million updated during Dec,

2018.

1) Procedures for new repositories: Forge-specific APIs

are utilized to obtain the complete list of public repositories

as described above. A comparison with prior extract yields

new repositories. The list may include renamed repositories

and forks. We can exclude forks for GitHub, since it is an

attribute returned by GitHub API. Other forges contain fewer

repositories, so the forks are not large enough to be a concern.

2) Procedures for updated repositories: First we need

to identify updated repositories from the complete list of

repositories. Since we are not sure how GitHub determines the

latest update time for a repository, we use a forge-agnostic way

of identifying updated repositories. We modified the libgit2

library so that we can directly obtain the latest commit of

each branch in a Git repository for an arbitrary Git repository

URL, without the need to clone the repository. If any of the

heads contain a commit that is not already in our database, the

repository must have had updates and needs to be obtained.

We are working on a strategy to reduce the amount of
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Fig. 4. Incremental commits

bandwidth needed to do the updates. Instead of cloning an

updated repository, we’d like to retrieve only incremental Git

objects (see Fig. 4) that are generated during the time gap

between two consecutive updates. This can be easily done via

git fetch for a git repository, but since we do not keep the

original git repository and it is time consuming to prepopulate

it with git objects, we plan to customize git fetch protocol by

inserting additional logic in order to use our database backend

that comprises git objects from all repositories. The procedure

consists of two steps:

1) Customize git fetch protocol8 to work without git’s

native database.

2) Keep track of the heads for each project that we have

in our database so that we can identify latest commits

to the modified git fetch.

For the second step, the database backend will use the

project name as input and provide the list of heads for the

project. These heads are then sent to the remote so that the

set of latest commits (and related trees/blobs) will be calcu-

lated out and transferred back as illustrated in Figure 5. By

following this strategy, we could drastically speed-up mining

incremental Git objects from repositories in each update.

F. Data Reorganization for Analytics

Objects in Git are organized in a way for fast reconstruction

of a repository at each commit/revision. In fact even the

seemingly simple operation of identifying what files changed

in a commit is computationally intensive. Furthermore, there

is no consideration for the projects, files, or authors as first-

class objects. This limits the usability of the git object store

for research and suggests the need for an alternative data

design. Since our objective is to obtain relationships among

projects, developers, and files, we have created an alternative

database that allows both a rapid lookup of these associations

and sweeps through the entire database that make calculations

based on such relationships.

1) Analytic Database: The scale of the desired database

limits our choices. For example, a graph database 9 like

neo4j would be extremely useful for storing and querying

relationships, including transitive relationships. However, it is

not capable (at least on the hardware that we have access to)

of handling hundred’s of billions of relationships that exist

within the entire FLOSS. In addition to neo4j, we have exper-

imented with more traditional database choices. We evaluated

common relational databases MySQL and PostgreSQL and key

8git fetch downloads only new objects from the remote repository
9a database that uses graph structures for semantic queries with nodes,

edges and properties to represent and store data

value databases or NoSQL [43] databases MongoDB, Redis,

and Cassandra. SQL like all centralized databases [44] has

limitations handling petabyte datasets [45], [46]. We, threfore,

focus on NoSQL databases [47] that are designed for large

scale data storage and for massively parallel data processing

across a large number of commodity servers [47].

For the specific needs of the cache database and for key

value stores for the analytics maps we use a C database

library called TokyoCabinet (similar to berkeley db) using a

hash-indexed as described above, to provide approximately ten

times faster read query performance than a variety of common

key value databases such as MongoDB or Cassandra. Much

faster speed and extreme portability lead us to use it instead

of more full-featured NoSQL databases.

2) Maps: Apart for the general requirement to be able

to represent global relationships among code, people, and

projects, we also consider the basic patterns of data access for

several specific research tasks as use cases in order to design

a database suitable for accomplishing research tasks within a

reasonable time frame. The specific use cases are:

1) Software ecosystem research would need the entire set

of repositories belonging to a specific FLOSS sub-

ecosystem, e.g., the set of all repositories that use Python

language.

2) Developer behavior research would need to identify all

projects that a specific developer worked on, the files

they authored, and software technologies they used.

3) Code reuse research would need to identify all projects

where a specific piece of code occurs and determine how

it got there.

To support the first task, a mapping from file names to

project names would be necessary. The second task would

require author to project, file, and to content of the versions

of the file authored by that developer (in order to access the

source code and identify what components or libraries were

employed). The last task would require a map between blobs

(that contain snippets of code) and projects. It would also

require a map between blobs and commits in order to identify

the time when the specific piece of code was introduced.

We have identified a number of objects and attributes of

interest here: projects, commits, blobs, authors, files, and time.

The complete set of possible direct maps for an arbitrary pair

is 30. Since author and time are properties of the commit and

are not properties of projects, blobs, or files, it makes sense

to place commit at the center of this network database. The

author-to-file map can then be constructed as a composition

of author-to-commit and commit-to-file maps; and author-

to-project map can be constructed via author-to-commit and

commit-to-project maps. We also need to associate file names

with the corresponding blobs since a single commit may

create multiple files. Out of the 12 maps10, only 10 need to

be instantiated because commit-to-author and commit-to-time

maps are embedded as the properties of the commit object.

10bidirectional maps between the commit and five objects/attributes and
between file and blob
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Fig. 5. Future workflow

In addition to having the commit at the center, for certain

tasks we also needed to have a blob-to-file map as well. For

example, we want to identify module use in Python language

files. First, we need to identify relevant files via suitable

extension (e.g., .py), then we can determine all the associated

commits via file to commit map. These commits, however,

may involve other files and if we use commit to blob map

to identify associated blobs, we would get blobs not just for

python, but also for all files that were modified in commits that

touched at least one python file. The file-to-blob map allows

us to reduce the number of blobs that need to be analyzed

dramatically.

In addition to these basic maps we create additional maps,

such as the author ID to author ID map for IDs that have been

established to belong to the same person (see Section IV-B),

and project to project maps to adjust for the influence of

forking. Project-to-project maps are based on the transitive

closure of the links induced between two projects by a shared

commit. Explicit forks that can be obtained as a GitHub project

property do not generalize to other forges and, even on GitHub,

represent only a fraction of all repositories that have been

cloned from each other and then developed independently.

Project-to-project map also handles instances where reposi-

tories exist on multiple forges or when they are renamed.

As with the original data we utilize multiple databases and

use compressed files for sweep operations and TokyoCabinet

for random lookup. We separate maps into 32 instead of 128

databases we use for the raw objects since maps tend to be

much smaller in size than, for example, blobs. For commits

and blobs we use the first character of SHA1 for database

identification. For authors, files, and projects, we use the first

byte of FNV-1a Hash 11. Both approaches yield quite uniform

distribution over bins.

As noted above, the maps from commit to meta data are not

difficult to achieve because meta data are part of the content of

a commit object. However, git blobs introduced or removed by

a commit are not directly related to the commit and need to be

calculated by recursively traversing trees of the commit and its

parent(s). A Git commit represents the repository at the-state-

of-world and contains all the trees (folders) and blobs (files).

To calculate the difference between a commit and its parent

commit, i.e., the new blobs, we start individually from the root

tree that is in the commit object, traverse over each subtree

and extract each blob. By comparing two sets of blobs of each

commit, we obtain the new blobs for the child commit. This

step requires substantial computational resources, but the map

from the commit to the blobs authored in a commit is used in

numerous research scenarios and, therefore, is necessary. On

average, it takes approximately one minute to obtain changed

11http://www.isthe.com/chongo/tech/comp/fnv/index.html#FNV-1a

files and blobs for 10K commits in a single thread. With 1.5B

commits, the overall time for a single thread would take 104

days, but it needs to be done only on approximately 20-40M

new commits generated each month.

IV. APPLICATIONS

To evaluate if the experimental platform is capable of sup-

porting research tasks conducted as a part of actual investiga-

tions and to provide a set of vignettes for other researchers, we

conducted two types of studies. First, we implemented several

basic and involved research tasks that require the entirety of

FLOSS data as a part of the investigation. Furthermore, we

also recruited three researchers external to our group to either

conduct investigations of their own utilizing WoC or to provide

us with their research problems that can only be solved by

using WoC. Below we report both the experiences and results

from these experiments.

A. Use of programming languages

Language popularity may influence developers decisions as

it may affect the market for their software as well as their job

prospects. For example: What language-specific API should

developer provide for their component? What language should

the developer use to implement their product?

To plot, for example, Java language use trend we use WoC

to identify all files with .java extension. Then, via file-to-

commit map, obtain the complete set of commits authoring

these files. Commit dates are used to plot the time trends of

language-specific commits, authors (property of a commit),

projects (via commit to project map) and, if desired, lines

of code changed. The entire process is highly parallelisable

since each map is separated into 32 instances and can be

processed independently. The entire calculation, while not

interactive on our hardware, can be performed in tens of

minutes. For illustration, we show the ratio of the number

of commits over the number of developers (a measure of

productivity) each month in Fig. 6. The ratio decreases for

most languages, perhaps because as a language becomes more

popular, the less experienced contributors join and lower the

average productivity.

Fig. 6. Productivity by Language

149



B. Correcting Developer Identity Errors

One of the particularly troubling data quality issues with

version control systems is developer name disambiguation. Of-

ten, names and emails of developers are missing, incomplete,

misspelled or duplicate [48], [49]. Performance of any disam-

biguation algorithm depends on the distribution of the actual

misspellings in the underlying data. In order to design and

evaluate corrective algorithms, it is important to study a large

collection of actual data and unearth patterns of irregularities

that compromise data quality. WoC contains a nearly complete

collection of git author ids (name and email combinations) and

is, thus, more representative of such irregularities than any

specific project.

To obtain author IDs we use author-to-commit map con-

taining roughly 30 million distinct author IDs. Common error

patterns include organizational ids and emails (Mozilla, Linux,

Google etc), names of tools and projects (OpenStack, Jenkins,

Travis CI), roles such as (admin, guest, root etc.) and words

that preserve anonymity (student, nobody, anonymous etc) as

a part of their credentials. We also found a large number

developer IDs to be misspelled.

Traditional identity correction approaches rely on the mis-

spelling patterns of author ID (the full name and email) [49]–

[51]. With WoC data, we can enhance the traditional string

matching with behavioural comparison, by creating similarity

measures between author IDs using files modified by devel-

opers, time patterns of commits, and writing styles in commit

messages. For illustration — two author IDs that modify a

similar set of files may suggest that these IDs belong to the

same developer. To implement file-based similarity, we used

author to commit and commit to file maps to obtain the set of

files modified by a single author ID. Then file-to-commit and

commit-to-author maps were used to calculate similarity using

weighted Jaccard measure. Commit message text was used to

fit a Doc2Vec [52] model to associate each author ID with their

writing style. Traditional and behavioural similarities were

used to train highly accurate machine-learning model [53].

This experiment demonstrates the utility of WoC data for

designing tools to solve common and vexing data quality

problems when constructing developer networks. It is also an

example of how WoC can be enhanced by incorporating such

techniques and providing corrected data to researchers.

C. Cross-ecosystem comparison studies

A second research group used the database to gather com-

parative statistics about different software ecosystems. The

purpose was to supplement other comparative data about those

ecosystems in support of a study of how ecosystem tools

and practices influence development behavior. The ecosystem

study involved a survey, interviews, and data mining over

18 ecosystems whose repositories listed more than 1.2M

packages. Some questions about ecosystem practices could

be mined from metadata available elsewhere; for example

detailed information about dependencies, release frequency,

and version numbering practices can be easily extracted from

libraries.io12. However deeper questions about project content

would have been out of reach without WoC; independently

building the mechanism to collect all of these projects, build-

ing a database of blobs, files, projects, and authors, and

comparing them using various metrics would have been too

much work for too little gain without the availability of this

research platform.

1) File cloning across ecosystems: One such statistic is

rate of file cloning. It was theorized that in ecosystems with

more flexible support for dependencies and a tolerance for

the risk of breaking changes, developers would be more

likely to use dependency management tools to make use of

functionality from other projects, rather than copying those

files in directly; hence in such ecosystems we should find

relatively few commits adding a blob that already exists in any

other project available through the ecosystem’s dependency

management system.

Using WoC, this analysis was straightforwardly accom-

plished by joining blob-to-commit and commit-to-project map-

pings, filtering for blobs that appeared in multiple projects, and

identifying pairs with one commit in the time frame, and at

least one older commit. Such blobs were discarded when the

files were very small (since these often turned out to be empty

or trivial files duplicated by chance or by tools) resulting in

a set of duplicates that, on visual inspection of a sample, did

appear to represent genuine examples of reuse-by-cloning.

Contrary to our expectations, the ecosystem with the most

propensity for cloning was the one with the modern and

flexible dependency system: npm. Despite the strengths of

npm’s dependency management system, there is a strong

tradition of copying dependencies like jQuery into projects

rather than letting npm retrieve them. Figure 7 summarizes

the findings for a selection of ecosystems.

Fig. 7. Proportion of repository packages that added at least one cloned code
file over 1kb in 2016.

2) Developer migration across ecosystems: Another metric

of interest was developer overlap between ecosystems. Our

ecosystem comparison had included a survey of values and

practices in the 18 ecosystems of interest, and we hypothesized

that ecosystems might be similar if many developers were

actually working in both ecosystems, or had migrated from

one to the other.

This question was answered by joining author-to-commit

and commit-to-project data for the 1.2M projects in our study,

12https://libraries.io/
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and relying on the identity matching technique described in

Sec IV-B.

Over all pairs of ecosystems, we found a sizable correlation

between similarity of average responses on ecosystem practice

questions (things like frequency of updating, collaboration

with other projects, means of finding out about breaking

changes), and overlap in committers to those ecosystems

(Spearman ρ = 0.341, p < .00001, n = 16 ecosystems).

Interestingly, perceived values of the ecosystem (such as a

preference for stability, innovation, or replicability) do not

seem to align with developer overlap (ρ = −0.05, p = 0.44).

While more research is needed, we hypothesize that developers

may carry practices over from other languages and platforms

they have used in the past, in a sometimes cargo-cult-like

way, despite recognizing that a new ecosystem is designed

to accomplish different ends.

In our very large-scale, wide-ranging study, these questions

of developer migration and cloning were of great interest,

but would likely have been too expensive to pursue along-

side other lower-hanging fruit, absent WoC’s prepared set

of precomputed maps between files, blobs, authors, projects,

and timestamps. The dataset with its analytical maps was not

designed with these particular ecosystem comparison in mind,

but its design happens to make such ecosystem questions

relatively easy to answer.

D. Python ecosystem analysis

An external researcher wanted to use WoC to investigate

open source sustainability by identifying source code reposi-

tories for packages in PyPI ecosystem and to measure package

usage directly. While over 90% of npm packages provide

repository URLs, less than 65% of Python Package Index

(PyPI) packages do.

The researcher obtained all packages from PyPi and calcu-

lated blob SHA1s for setup.py file of the first PyPI releases

of each package. We filter out resulting 101584 blobs to

exclude empty or uninformative blobs (blobs that appear in

more than one commit using blob-to-commit map). The 54218

informative blobs are then mapped to 54062 unique commits

and commits to 51924 unique projects (adjusted for forking

as described in Section III-F). Repositories were recovered

for 96% of the 54218 original packages in approximately 20

minutes of computation. To ensure that these repositories are,

in fact, used to version control corresponding packages, they

can be matched via additional blobs for setup.py and other

files obtained from PyPi for that package.

Another problem being solved by this researcher was iden-

tifying which of the seemingly abandoned projects may be

“feature complete,” i.e. already have the intended scope and

do not require further maintenance [54]. Feature complete

projects should be widely used in contrast to abandoned

projects. Proxies of project usage, e.g., GitHub stars or forks

can be used to identify such projects [54]. WoC, however,

lets us measure the extent of use directly. As described

in Section IV-A, all commits modifying Python files are

identified (file-to-commit map) and the resulting commits are

mapped to projects (commit-to-project map). Blobs associated

with these commits (commit-to-blob map) are then used to

extract imports from these files. The entire procedure could be

completed in approximately four hours using the parallelism

of the analytic maps (32 databases) and blob content maps

(128 databases).

The reported usage was compared to project development

activity, i.e the total number of adoptions versus the total

number of commits. In some cases, usage was not accurately

reflected in the number of commits. Common examples are

packages providing console scripts and CMS-like projects. In

the former case, packages are not reused in programmatic code

and thus don’t get into statistics. In the latter case, website

builders often do not publish their code and thus such usage

remains unobserved. Therefore, while the number of public

reuses provides some extra information about package use, it

should be adjusted for package type.

E. Repository filtering tool

Millions of repositories on GitHub and other forges also

include projects that are completely unrelated to software

development. GitHub is widely used for education and other

tasks such as backing up text files, images, or other data.

Researchers investigating education may need to focus on

tutorials, while other researchers may need a sample of actual

software development projects. Furthermore, a way to select

specific subsets of software development projects in order to

conduct, for example, ”natural experiments” would also be

highly beneficial. WoC can support such project segmentation

tasks in a variety of ways. An external education researcher

wanted to understand the impact of self-administered pro-

gramming tutorials. To do that, WoC was used to identify

developers who participated in tutorials by searching the set

of projects in WoC via keywords related to education: “assign-

ment”, “course”, “homework”, “class”, “lesson”, “tutorial”,

“syllabus”, “mooc”, “udacity”. The search yields over 1M

projects. While it is only a small fraction of all projects in

WoC but it represents a large sample in absolute terms. Further

filtering was needed to find developers who also worked

on actual software projects to measure the impact of self-

administered tutorials. The project-to-commit map identified

605K users of tutorials and, when these users were mapped

to all projects they participated in, we determine that only

half of them contribute to non-tutorial projects. These 300K

individuals are potential subjects of tutorial-impact study.

Further information (such as their commit activity and project

participation) can be obtained from WoC and combined other

data, be used in this research. WoC can be extended with other

approaches to segment projects13. For example, identification

of projects with sound software engineering practices [55]

relies on a combination of factors easily obtainable in WoC,

such as history, license, and unit tests.

V. FUTURE WORK

To have an impact on research practice, the WoC prototype

needs to be exposed via reliable services that help with

13Section IV-B shows how WoC can also be used to improve them
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research and do not overwhelm the platform. WoC should also

accommodate additional data and computational procedures

needed for discovering, correcting, cleaning, augmenting, and

modeling the underlying data. Processing hundreds of ter-

abytes of data on powerful clusters may be out of reach for

most research groups. Therefore, to accommodate massive

queries WoC would require more powerful hardware. Such

hardware can be obtained from cloud vendors, but the costs

of hosting and analyzing data on these platforms might be

high. An alternative might be a few high-throughput services

that work on the hardware we currently employ.

The differentiating features of WoC are the completeness of

the collection and access to global relationships. Specifically,

two basic services would be difficult to replicate outside WoC,

yet be capable of high throughput on the limited hardware.

First, a reporting service that considers prevalence of certain

features, such as languages, tools, and other technologies

as well as the information about contributors might provide

services akin to those provided by a population census. The

second basic service would focus on identifying all entities

linked to a specific entity, such as files modified by a devel-

oper, all repositories containing a specific code, or all files that

use a specific module or technology. These two capabilities,

in conjunction with MSR technology already in use, would

provide both, population-level data and complete links within

entire FLOSS ecosystem. It would then be up to researchers

to retrieve additional data on individual projects based on the

stratified samples from the first service or derived from the

relationships obtained from the second service.

VI. LIMITATIONS

We tried to make the assumptions and rationale for specific

decisions clear within each section but it is important to

reiterate at least some of the limitations. Despite a large size

(the collection contains over 1.45B commits), there is no

guarantee it closely approximates the entirety of public version

control systems as the project discovery procedure is only an

approximation. Our focus on git (due to the simplified global

representation) excludes older version control systems that

have not been converted to git yet. We regularly identify issues

with data being incomplete due to collection, cleaning, or

processing and we are working on an approach to continuously

validate and correct it. The particular design decisions were

focused on the particular computing capabilities that were

available to us at the time and could/should be revisited as

the prototype evolves. The entirety of research tasks that

WoC provides is not exhausted by the few examples we have

investigated and certain tasks may require different solutions.

We do, however, think that the micro-services approach allows

for simpler addition/extension/replacement of components as

needs or opportunities arise than would be possible with a

more monolithic architecture.

How to reliably clean, correct, integrate, and augment the

collected data so that the resulting analyses accurately reflect

the modeled phenomena is a concern. To ensure the perfor-

mance of the analytics layer certain objects are filtered from

it. For example, some of the public repositories are created

to test the performance/capabilities of git and contain many

millions of files/blobs in a single commit. Such commits are

excluded from the analytics layer to speed-up the commit-to-

file and commit-to-blob maps. The nature of the data may also

create performance problems. For example, the most common

blob is an empty file. Mapping such blobs to all commits that

create them or to all files does not make sense, since there

are millions of commits that have created empty files. These

performance-related modifications may affect some arguably

superficial analyses, e.g., what are the commits with the largest

number of files? We explicitly highlight these modification in

the WoC code to minimize potential confusion.

Reproducibility may pose an issue in a constantly updated

database. Since git objects are added incrementally and order

in which they are stored is preserved, we can reconstruct any

past version of the object store. For the analytic layer, which

depends on the set of git objects available at the time, we

create versions, where each of the maps described above is

tagged with a version identifying the state of git object store.

Preserving these past versions ensures reproducibility of the

results obtained from them.

The research use cases presented do not constitute an

empirical evaluation of WoC usability but, instead, focus on

presenting vignettes that are effective for these scenarios.

Some of these vignettes went through several iterations until

the simplest and fastest implementations were obtained.

VII. CONCLUSIONS

We introduce WoC: a prototype of an updatable and expand-

able infrastructure to support research and tools that rely on

version control data from the entirety of open source projects

and discuss some of the research problems that require such

global reach. We discuss how we address some of the data

scale and quality challenges related to data discovery, retrieval,

and storage. Furthermore, we implement ways to make this

large dataset usable for a number of research tasks by doing

targeted data correction and augmentation and by creating data

structures derived from the raw data that permit accomplish-

ing these research tasks quickly, despite the vastness of the

underlying data. Finally, we evaluated WoC by conducting

actual research tasks and by inviting researchers to undertake

investigations of their own. In summary, WoC can provide

support for diverse research tasks that would be otherwise out

of reach for most researchers. Its focus on global properties of

all public source code will enable research that could not be

previously done and help to address highly relevant challenges

of open source ecosystem sustainability and of risks posed

by this global software supply chain. Transforming the WoC

prototype into a widely accessible platform is, therefore, our

immediate priority.

All source codes can be found in a public repository.14
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