2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)

World of Code: An Infrastructure for Mining the
Universe of Open Source VCS Data

Yuxing Ma?, Chris Bogartb, Sadika Amreen®, Russell Zaretzki®, Audris Mockus?
aUniversity of Tennessee, Knoxville "Carnegie Mellon University
myxlvxm@gmail.com, cbogart@andrew.cmu.edu,
samreen @vols.utk.edu, russell.zaretzki @ gmail.com, audris@utk.edu

Abstract—OQOpen source software (OSS) is essential for modern
society and, while substantial research has been done on indi-
vidual (typically central) projects, only a limited understanding
of the periphery of the entire OSS ecosystem exists. For ex-
ample, how are tens of millions of projects in the periphery
interconnected through technical dependencies, code sharing, or
knowledge flows? To answer such questions we a) create a very
large and frequently updated collection of version control data
for FLOSS projects named World of Code (WoC) and b) provide
basic tools for conducting research that depends on measuring
interdependencies among all FLOSS projects. Our current WoC
implementation is capable of being updated on a monthly basis
and contains over 12B git objects. To evaluate its research
potential and to create vignettes for its usage, we employ WoC in
conducting several research tasks. In particular, we find that it is
capable of supporting trend evaluation, ecosystem measurement,
and the determination of package usage. We expect WoC to
spur investigation into global properties of OSS development
leading to increased resiliency of the entire OSS ecosystem.
Our infrastructure facilitates the discovery of key technical
dependencies, code flow, and social networks that provide the
basis to determine the structure and evolution of the relationships
that drive FLOSS activities and innovation.

Index Terms—software mining, software supply chain, soft-
ware ecosystem

I. INTRODUCTION

Tens of millions of software projects hosted on GitHub
and other forges attest to the rapid growth and popularity
of Free/Libre Open Source Software (FLOSS). These online
repositories include a variety of software projects ranging
from classroom assignments to components, libraries, and
frameworks used by millions of other projects. Such large
collections of projects are currently archived in public version
control systems, and, if made available and convenient for
analysis, represent a unique opportunity to study FLOSS at
large and answer both theoretical and practical questions that
rely on the availability of the entirety of FLOSS data. In
particular, this infrastructure, referred to as World of Code
(WoC) and described below, allows researchers to conduct
a census of open source software that would provide types
and prevalence across projects, technologies, and practices and
serve as a guide to setting policies or creating innovative
services. Our infrastructure facilitates the discovery of key
technical dependencies, code flow, and social networks that
provide the basis to determine the structure and evolution of
the relationships that drive FLOSS activities and innovation.
Such a large database of software development activities can
serve as a basis for “natural experiments” that evaluate the

2574-3864/19/$31.00 ©2019 IEEE
DOI 10.1109/MSR.2019.00031

effectiveness of different software development approaches. If
preserved, it will also facilitate future anthropological studies
of software development [1].

Our objective in the current study is to describe a prototype
of an infrastructure that can store the huge and growing
amount of data in the entire FLOSS ecosystem and provide
basic capabilities to efficiently extract and analyze that data
at that scale. Our primary focus is on types of analyses that
require global reach across FLOSS projects. A good example
is a software supply chain where software developers corre-
spond to the nodes or producers, relationships among software
projects or packages represent the “chain”, and changes to the
source code represent products or information (that flow along
the chain) with corporate backers representing “financing.”

Several formidable obstacles obstruct progress towards this
vision. The traditional approaches for obtaining the repository
of a project or a small ecosystem does not scale well and may
require too many resources and too much effort for individual
researchers or smaller research groups. Thus, the community
needs a way to scale and share the data and analytic capabili-
ties. The underlying data are also lacking context necessary for
meaningful analysis and are often incorrect or missing critical
attributes [2]. Keeping such large datasets up-to-date poses
another formidable challenge.

In a nutshell, our approach is a software analysis pipeline
starting from discovery and retrieval of data, storage and
updates, and transformations and data augmentation necessary
for analytic tasks downstream. Our engineering principles are
focused on using the simplest possible techniques and com-
ponents for each specific task ranging from project discovery
to fitting large-scale models. The result is a conceptual imple-
mentation loosely following the microservices architecture [3]
where the design and performance of the loosely coupled
components can be independently evaluated, each service can
utilize a database that is optimal for its needs, and the most
computationally-intensive components are extremely portable
to ensure they run on any high-performance platform. More
specifically, our prototype appears to capture a large portion of
publicly available source code in version control systems and
it will update quickly enough that the latency of updates on
the existing hardware platform does not exceed one calendar
month. Finally, a number of research tasks were effectively
supported by the existing prototype.

We begin with an overview of related work in Section II,

describe the architecture of the prototype implementation in
Section III, provide details of the components of the pipeline in
Sections III-A to III-F. We conclude with a description of the
experiences describing the attempts to enhance the prototype
and to conduct several software analytics tasks in Section IV.

II. RELATED WORK

While we are not aware of a complete census of FLOSS
with an analysis engine, several large-scale software mining
efforts exist and may be roughly subdivided into attempts at
preservation, data sharing for research purposes, and construc-
tion of decision support tools.

Software development is a novel cultural activity that war-
rants preservation as a cultural heritage. The software source
code, the only representation of software that contains human
readable knowledge, needs to be preserved to avoid permanent
loss of knowledge [1]. Software Heritage [1] is a distributed
system involved in collecting and storing large amount of open
source development data from various open source platforms
and package hosts. It currently has software from GitHub,
GitLab, Debian, PyPI, etc., and contains 88M projects, 1.2B
commits, and 5.5B source files. The main drawback of this
particular effort is the lack of focus on enabling applications to
software analytics. The API provided allows for quick query
of every historical particle in a software project and meets
the preservation need, however, it does not grant the access
to the full relationships (e.g., the set of projects containing a
given commit) among these particles across entire collection
of software. Quick access to these relationships is crucial
in conducting software analytics such as identification of
dependencies among artifacts and authors as well as code
spread in open source community.

One potential value of archiving software lies in the reuse of
software artifacts. For example, Nexus [4] repository manager,
allows developers to share software artifacts in a standard
way and provides support for building and provisioning tools
(e.g. Maven) to access necessary components such as libraries,
frameworks and containers.

Commercial efforts, such as BlackDuck or FOSSID! have
proprietary collections they use to determine if their clients
have included open source software within their proprietary
software code. It is generally not clear how complete these
collections are nor if the companies involved might consider
opening them for research purposes.

In addition to source code and binaries, large scale collec-
tion of other software development resources could be inte-
grated with the source code data. For example, GHTorrent [5]—
[9] attempts to record every event for each repository hosted
on GitHub and provides multiple approaches (SQL request and
MongoDB data dump) for data access. The primary limitation
is that the collected metadata is specific to GitHub and it does
not include the underlying source code as well. Therefore,
obtaining dependencies encoded within the source code cannot
be accomplished. FLOSSmole [10] collects open source meta

Iblackducksoftware.com,fossid.com

144

data from various forges as a base for academic research but
only focuses on software project metadata.

Another platform is Candoia [11]-[14] which provides
software development data collections abstraction for building
and sharing Mining Software Repository (MSR) applications.
In particular, Candoia contains many tools for artifact ex-
traction from different VCSs and bug databases and it also
support projects written in different languages. On top of
these artifacts, Candoia created its general data abstraction
for researchers to implement ideas and build tools upon. This
design increased portability and applicability for MSR tools by
enabling application on software repositories across hosting
platforms, VCSs and bug recording tools. The approach is
focused on the design and benefits of creating a specialized
software repository mining language. While it abstracts a
number of repository acquisition tasks, it also makes it more
difficult to handle operational data problems that tend to
occur at much lower levels of abstraction and tend to be too
idiosyncratic for generalized abstraction. The main drawbacks
of Candoia are that it only supports limited programming
language (JS and Java) based projects, and ecosystem-wide
research might be difficult to implement since Candoia re-
lies on users to provide software related data (e.g., targeted
software repository URL) and eco-system wide compliance is
generally low.

Other platforms are aimed at improving reproducibility by
providing a repository of datasets for researchers to share their
data. These include PROMISE Repository [15], Black Duck
OpenHub [16], and SourcererDB [17]. PROMISE Repository
is a collection of donated software engineering data. It was
created to facilitate generations of repeatable and verifiable
results as well as to provide an opportunity for researchers
to extend their ideas to a variety of software systems. Black
Duck OpenHub is a platform that discovers open source
projects, tracks the development and provides the functionality
of comparison between softwares. Currently, it is tracking
1.1M repositories, connecting 4.2M developers and indexing
0.4M projects. SourcererDB is an aggregated repository of
3K open source Java projects that are statically analyzed and
cross-linked through code sharing and dependency. On top of
providing datasets, it also provides a framework for users to
create custom datasets using their projects.

Apart from providing datasets (repository) for potential
users, platforms such as Moose [18], RepoGrams [19],
Kenyon [20], Sourcerer [21], and Alitheia Core [22] are more
focused on facilitating building and sharing MSR tools. Moose
is a platform that eases reusing and combining data mining
tools. RepoGrams is a tool for comparing and contrasting
of source code repositories over a set of software metrics
and assists researchers in filtering candidate software projects.
Kenyon is a data platform for software evolution tools. It
is restricted to supporting only software evolution analysis.
Sourcerer is an infrastructure for large scale collection of open
source code where both meta data and source code are stored
in a relational database. It provides data through SQL query
to researchers and tool builders but is only focused on Java

projects. Alitheia Core is a platform with a highly extensible
framework and various plug-ins for analyzing software on
a large database of open source projects’ source code, bug
records, and mailing lists.

Furthermore, there were efforts to standardize software min-
ing data description for enhanced reproducibility [23]. None
of the listed platforms focus on both collection and analysis of
the dependencies of the entirety of FLOSS source code version
control data. Further, they contain either limited collections
(e.g. only GitHub, no source code, have only donated data,
or do not contain an analysis engine). For example, it is
not possible to answer simple questions such as “In which
projects has a file been used?”, “What projects/codes depend
on a specific module?”, “What changes has a specific author
made?” etc.

Some large companies have devoted substantial effort to
develop software analysis platforms for the entire enterprise,
aiming to improve the quality of software they build and to
help the enterprise achieve its business goals by providing rec-
ommendations to software development organizations/teams,
monitoring software development trends, and prioritizing re-
search areas. For example, Avaya, a telecommunications com-
pany, built a platform [24], which collects software devel-
opment related data from most of its software development
teams and third parties and enabled systematic measurements
and assessments of the state of software. CodeMine [25],
is a software platform developed by Microsoft that collects
a variety of source code related artifacts for each software
repository inside Microsoft. It is designed to support developer
decisions and provide data for empirical research. We hope
that similar benefits can be realized with the WoC platform
targeted to the entire FLOSS community.

Large scale software mining efforts also include domain
specific languages. Robert Dyer et al. developed Boa [26]-
[31], both as a domain specific language and as an infras-
tructure, to ease open source-related research over large scale
software repositories. The approach is focused on the design
and benefits of an infrastructure and language combination.
However, the lack of explicit tools to deal with operational
data problems make it of limited use to achieve our aims. Their
collection procedures -discovery, retrieval, storage, update, and
completeness issues (for example, only certain languages are
supported)- are not the primary focus of this effort. The tools
to deal with operational data problems common in version
control data are also lacking in Boa.

The system described in this paper is loosely modeled after
a system described a decade ago [32], [33]. In comparison, at
that time, git was just beginning to emerge as a popular version
control system, but now it dominates the FLOSS project
landscape. The number of software forges and individually
hosted projects was much larger then in contrast to the
consolidation of forges and the overwhelming dominance of
GitHub. Furthermore, the scale of the FLOSS ecosystem is
more than an order of magnitude larger now and it continues
to experience very rapid growth. WoC could not, therefore,
reproduce that design closely and, instead, is focused on

145

preserving the original git objects and on creating a design
that enables both efficient updating of this huge database and
ways to cross-reference it so that the complete network of
relationships among code and people is readily available.

III. ARCHITECTURAL CONSIDERATIONS

The process of mining individual git repositories is com-
plex to begin with [34], but becomes even more difficult
on a large scale [35]. More specifically, using operational
data from software repositories requires resolution to three
major problems [2]: the lack of context, missing attributes or
observations, and incorrect data. This makes critical tasks such
as debugging and testing complex and time consuming. To
cope with these big data challenges we employed both vertical
and horizontal prototyping [36]-[39]. Most big data systems
use the layered data approach where initial layers approximate
raw data and later layers include cleaned/augmented data.

In this section we present a prototype WoC implementation.
It has four stages: project discovery, data retrieval, correction,
and reorganization as shown in Figure 1.

A. Project Discovery

Millions of projects are developed publicly on popular
collaborative platforms/forges such as GitHub, Bitbucket, Git-
Lab, and SourceForge. Some of the FLOSS projects can be
identified from the registries maintained by various pack-
age managers (e.g., CRAN, NPM) and Linux distributions
(e.g., Debian, Fedora). Other project repositories, however,
are hosted in personal or project-specific sites. A complete
list of FLOSS repositories is, therefore, difficult to compile
and maintain since new projects and forges are created and
older forges disappear. There is a tendency for the FLOSS
repositories to migrate to (or be mirrored on) several very
large forges [40]. A number of older forges provide convenient
approaches to migrate repositories to other viable forges before
being shut down. This consolidation has alleviated some of
the challenge of discovering all FLOSS projects [32], though
the task remains nontrivial. We discuss several approaches to
project discovery below. To package our project discovery
procedure we have created a docker container? that has the
necessary scripts.

Using Search API: Some APIs may also be used to discover
the complete collection of public code repositories within a
forge. The APIs are specific to each forge and come with
different caveats. Most APIs tend to be rate limited (for user
or IP address) and the retrieval can be sped up by pooling the
IDs of multiple users.

Using Search Engine: Search engines (e.g., Google or Bing)
can supplement the discovery of FLOSS project repositories
on collaborative forges when the forge does not provide an
API, or when the API is broken. The primary drawback is the
incompleteness of the repositories discovered.

Keyword Search: Some forges provide keyword based
search of public repositories, which is a complementary ap-
proach when a forge does not provide APIs for the enu-

Zhttps://github.com/ssc-oscar/gather

\

- 7 e
\
authorzfile

GitHub

[Bitbucket Hmca\ repository

Other forges

Discover & Retrieve Extract

e TR
Commit2project
—
— wonm]

=

Reorganize

Fig. 1. Overarching data flow

meration of repositories and the results returned from search
engines are lacking.

Using these and other opportunistic approaches helps ensure
that they complement each other in approximating the publicly
available set of repositories though it does not guarantee the
completeness. We expected that various ways of crowdsourc-
ing the discovery (with incentives to share a project’s git URL)
would help increase the coverage in the future.

B. Project Retrieval

This data retrieval task can be done in parallel on a very
large number of servers but requires a substantial amount
of network bandwidth and storage. The simplest approach
is to create a local copy of the remote repositories via git
clone command. As of December 2018, we estimate over 62M
unique repositories (excluding GitHub repositories marked as
forks, repositories with no content and private repositories).
A single thread shell process on a typical server CPU (we
used Intel E5-2670) with no limitations on network bandwidth
clones randomly selected 20K to 50K repositories (the time
varies dramatically with the size of a repository and the forge)
in 24 hours. To clone 60M repositories in one week would,
therefore, require from two to four hundred servers. We do
not possess dedicated resources of such size and, therefore,
optimize the retrieval by running multiple threads per server
and retrieving a small subset of the repositories that have
changed since the last retrieval. Specifically, we use five Data
Transfer Nodes of a cluster computing platform?.

C. Data Extraction

Code changes are organized into commits that typically
change one or more source code files within the project. Once
the repository is cloned as described above, we extract Git
objects* from each repository and store these git objects in a
single database.

1) Data Model: Git [41] is a content-addressable filesystem
containing four types of objects. The reference to these objects
is a SHA1° [42] calculated based on the content of that object.
commit is a string including the SHA1’s of commit parent(s)
(if any), the folder (tree object), author ID and timestamp,
committer ID and timestamp, and the commit message. tree:
A tree object is a list that contains SHA1’s of files (blobs)
and subfolders (other trees) contained in that folder with
their associated mode, type, and name. blob: A blob is the
compressed version of the file content (the source code) of a

3No. node: 300, Bandwidth up to 56 Gb/s
“https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
Shttps:/en.wikipedia.org/wiki/SHA-1

146

file. tag: A tag is the string (tag) used to associate readable
names with specific versions of the repository.

Fig. 2 illustrates relationships among objects described
above. The snapshot at any entry point (commit) is constructed
by following the arrows from left side to right side.

source file

blob 2
\ subfolder

folder (root)

second
commit

first
commit

parent commit
Fig. 2. Git objects

2) Object Extraction: While a standard Git client allows
extraction of raw git objects, it displays them for manual
inspection. For the bulk extraction need, first we list all objects
within the git database, categorize them, and create bulk ex-
tractor based on a portable pure C implementation of libgit2°.
We run listing and extraction using 16 threads on each of the
16-CPU node on a cluster’. The process takes approximately
two hours for a single node to process 50K repositories. The
extraction procedure represents a microservice.

D. Data Storage

The collection of public Git repositories as a whole replicate
the same git object hundreds of times [32]. Without removing
this redundancy, the required storage for the entire collection
exceeds 1.5PB, and it also makes analytics tasks virtually im-
possible without extremely powerful hardware. Many reasons
for this redundancy exist, such as pull-based development,
usage of identical tools or libraries, and copying of code.

To avoid redundancy of git object among repositories, we
store all git objects into a single database. The database
is organized into four parts corresponding to each type of
git object. Each part is further separated into a cache and
content. The cache is used to rapidly determine if the specific
object is already stored in our database and is necessary for
data extraction described above. Furthermore, the cache helps
determine if a specific repository needs to be cloned. If the
heads (the latest commits in each branch in .git/refs/heads) of
a repository are already in our database, there is no need to
clone the repository altogether.

Cache database is a key-valued database, with the twenty
byte Git object SHA1 being the key and the packed integer
(indexing the location of the object in the corresponding value

Shttps:/libgit2.org/
7CPU: E5-2670, No. node: 36, No. core: 16, Mem size: 256 GB

database) being the value. The value database consists of an
offset lookup table that provides the offset and the size of the
compressed git object in a binary file (containing concatenated
compressed git objects). While this storage allows for a fast
sweep over the entire database, it is not optimal for random
lookups needed, for example, when calculating diffs associated
with each commit. For commits and trees, therefore, we also
create a key value database where key is SHA1 of the git
object and value is the compressed content of the said object.
Cache performance is relatively fast: a single thread on Intel
E5-2623 is capable of querying of 1M git objects in under 6
seconds, or over 170K git objects per second per thread. This
can be multi-threaded and run on multiple hosts, thus reaching
any desired speeds with expanded hardware.

Needless to say, with 12B objects occupying over 80TB
we need to use parallel processing to do virtually anything.
Thankfully, we can use SHAI itself to split the database into
pieces of similar size. We, therefore, split each of the database
into 128 slices based on the first seven bits of Git object SHAT.
This results in 128 key-offset cache databases for all four types
of objects, 128 content databases as flat files for the four types
of objects, and 128 key value databases for commits and trees:
128%(4+4+2) databases with each capable of being placed on
a separate server to speed up parallel tasks. The individual
databases containing content range from 20MB for tags up to
over 0.5TB for blobs. The largest individual cache databases
are over 2Gb for tree object SHA1s.

Databases are fragile and may get corrupted due to hardware
malfunction, internet attack, pollution/loss by unrecoverable
operation, etc. To enhance the robustness and reliability and
to avoid permanent data loss, we maintain three copies of the
databases: two copies on two separate running servers and one
copy on a workstation that is not permanently connected to
Internet. In the future, we will consider keeping a copy using
a commercial cloud service.

Furthermore, due to the size of the data and complexity of
the pipeline, some of the objects may have been missed or have
been retrieved but are not identical to originals. Techniques to
validate the integrity of the data at every stage of the process
are necessary. We therefore, include numerous tests to ensure
that only valid data gets propagated to the next stage.

In particular, the errors when listing and extracting objects
are captured and the operation is repeated in case a problem
occurs. The extracted objects are validated to ensure that they
are not corrupt and also to ensure that they are not going
to damage the database or the analytics layer. To validate
correctness, the object is extracted per git specifications and
recreated from scratch. The SHA1 signature is compared to
ensure it matches that of the original object. A substantial
number of historic objects have issues due to a bug in git that
has since been fixed. Furthermore, a much smaller number of
objects also had issues that we assume are either caused by
problematic implementations of git or problems in operation
(zero-size objects that may be occasionally created when git
runs out of disk space during a transaction).

Despite the scrubbing and validation efforts, some of the

147

data may still be problematic or missing, therefore a continu-
ous process of checking the database for missing or incorrect
data is needed. We plan to add missing object recovery service
that identifies missing commits, blobs, and trees, and retrieves
and stores them (in case they are still available online).

E. Update

The process of cloning all GitHub repositories takes an
increasing amount of time with the growth in size of existing
repositories and the emergence of new ones, given fixed
hardware. Currently, to clone all git repositories (over 90M
including forks), we estimate the total time to require six
hundred single-thread servers running for a week and the
result would occupy over 1.5PB of disk space. Fortunately,
git objects are immutable and we can leverage that to simplify
and speed up the updates. More generally, to get acceptable
update times, we use a combination of two approaches:

« Identify new repositories, clone and extract Git objects

« Identify updated repository and retrieve only newly added

Git objects

The work flow is illustrated in Fig. 3.

Identify new repository

Forge API

Identify upd

Updated
repos

7

[cmne reposJ — { Extract GitJ — {

objects

Store into
database

Fig. 3. Update workflow

In fact, only approximately three million new projects were
created and an additional two million updated during Dec,
2018.

1) Procedures for new repositories: Forge-specific APIs
are utilized to obtain the complete list of public repositories
as described above. A comparison with prior extract yields
new repositories. The list may include renamed repositories
and forks. We can exclude forks for GitHub, since it is an
attribute returned by GitHub API. Other forges contain fewer
repositories, so the forks are not large enough to be a concern.

2) Procedures for updated repositories: First we need
to identify updated repositories from the complete list of
repositories. Since we are not sure how GitHub determines the
latest update time for a repository, we use a forge-agnostic way
of identifying updated repositories. We modified the libgit2
library so that we can directly obtain the latest commit of
each branch in a Git repository for an arbitrary Git repository
URL, without the need to clone the repository. If any of the
heads contain a commit that is not already in our database, the
repository must have had updates and needs to be obtained.

We are working on a strategy to reduce the amount of

heads

Local commit A H commit B }

Remote { commit A J—{ commit B J'—{ commit G J—{ commit D

heads

Incremental commits

Fig. 4. Incremental commits

bandwidth needed to do the updates. Instead of cloning an
updated repository, we’d like to retrieve only incremental Git
objects (see Fig. 4) that are generated during the time gap
between two consecutive updates. This can be easily done via
git fetch for a git repository, but since we do not keep the
original git repository and it is time consuming to prepopulate
it with git objects, we plan to customize git fetch protocol by
inserting additional logic in order to use our database backend
that comprises git objects from all repositories. The procedure
consists of two steps:

1) Customize git fetch protocol® to work without git’s
native database.

2) Keep track of the heads for each project that we have
in our database so that we can identify latest commits
to the modified git fetch.

For the second step, the database backend will use the
project name as input and provide the list of heads for the
project. These heads are then sent to the remote so that the
set of latest commits (and related trees/blobs) will be calcu-
lated out and transferred back as illustrated in Figure 5. By
following this strategy, we could drastically speed-up mining
incremental Git objects from repositories in each update.

F. Data Reorganization for Analytics

Objects in Git are organized in a way for fast reconstruction
of a repository at each commit/revision. In fact even the
seemingly simple operation of identifying what files changed
in a commit is computationally intensive. Furthermore, there
is no consideration for the projects, files, or authors as first-
class objects. This limits the usability of the git object store
for research and suggests the need for an alternative data
design. Since our objective is to obtain relationships among
projects, developers, and files, we have created an alternative
database that allows both a rapid lookup of these associations
and sweeps through the entire database that make calculations
based on such relationships.

1) Analytic Database: The scale of the desired database
limits our choices. For example, a graph database ° like
neod4j would be extremely useful for storing and querying
relationships, including transitive relationships. However, it is
not capable (at least on the hardware that we have access to)
of handling hundred’s of billions of relationships that exist
within the entire FLOSS. In addition to neo4;j, we have exper-
imented with more traditional database choices. We evaluated
common relational databases MySQL and PostgreSQL and key

8git fetch downloads only new objects from the remote repository
9a database that uses graph structures for semantic queries with nodes,
edges and properties to represent and store data

148

value databases or NoSQL [43] databases MongoDB, Redis,
and Cassandra. SQL like all centralized databases [44] has
limitations handling petabyte datasets [45], [46]. We, threfore,
focus on NoSQL databases [47] that are designed for large
scale data storage and for massively parallel data processing
across a large number of commodity servers [47].

For the specific needs of the cache database and for key
value stores for the analytics maps we use a C database
library called TokyoCabinet (similar to berkeley_db) using a
hash-indexed as described above, to provide approximately ten
times faster read query performance than a variety of common
key value databases such as MongoDB or Cassandra. Much
faster speed and extreme portability lead us to use it instead
of more full-featured NoSQL databases.

2) Maps: Apart for the general requirement to be able
to represent global relationships among code, people, and
projects, we also consider the basic patterns of data access for
several specific research tasks as use cases in order to design
a database suitable for accomplishing research tasks within a
reasonable time frame. The specific use cases are:

1) Software ecosystem research would need the entire set
of repositories belonging to a specific FLOSS sub-
ecosystem, e.g., the set of all repositories that use Python
language.

Developer behavior research would need to identify all
projects that a specific developer worked on, the files
they authored, and software technologies they used.
Code reuse research would need to identify all projects
where a specific piece of code occurs and determine how
it got there.

2)

3)

To support the first task, a mapping from file names to
project names would be necessary. The second task would
require author to project, file, and to content of the versions
of the file authored by that developer (in order to access the
source code and identify what components or libraries were
employed). The last task would require a map between blobs
(that contain snippets of code) and projects. It would also
require a map between blobs and commits in order to identify
the time when the specific piece of code was introduced.

We have identified a number of objects and attributes of
interest here: projects, commits, blobs, authors, files, and time.
The complete set of possible direct maps for an arbitrary pair
is 30. Since author and time are properties of the commit and
are not properties of projects, blobs, or files, it makes sense
to place commit at the center of this network database. The
author-to-file map can then be constructed as a composition
of author-to-commit and commit-to-file maps; and author-
to-project map can be constructed via author-to-commit and
commit-to-project maps. We also need to associate file names
with the corresponding blobs since a single commit may
create multiple files. Out of the 12 maps'?, only 10 need to
be instantiated because commit-to-author and commit-to-time
maps are embedded as the properties of the commit object.

10pjidirectional maps between the commit and five objects/attributes and
between file and blob

m$ Commit ::>@:C>
"

Sent to Remote | ——— |“<g;g;r:al) =

Fig. 5. Future workflow

In addition to having the commit at the center, for certain
tasks we also needed to have a blob-to-file map as well. For
example, we want to identify module use in Python language
files. First, we need to identify relevant files via suitable
extension (e.g., .py), then we can determine all the associated
commits via file to commit map. These commits, however,
may involve other files and if we use commit to blob map
to identify associated blobs, we would get blobs not just for
python, but also for all files that were modified in commits that
touched at least one python file. The file-to-blob map allows
us to reduce the number of blobs that need to be analyzed
dramatically.

In addition to these basic maps we create additional maps,
such as the author ID to author ID map for IDs that have been
established to belong to the same person (see Section IV-B),
and project to project maps to adjust for the influence of
forking. Project-to-project maps are based on the transitive
closure of the links induced between two projects by a shared
commit. Explicit forks that can be obtained as a GitHub project
property do not generalize to other forges and, even on GitHub,
represent only a fraction of all repositories that have been
cloned from each other and then developed independently.
Project-to-project map also handles instances where reposi-
tories exist on multiple forges or when they are renamed.

As with the original data we utilize multiple databases and
use compressed files for sweep operations and TokyoCabinet
for random lookup. We separate maps into 32 instead of 128
databases we use for the raw objects since maps tend to be
much smaller in size than, for example, blobs. For commits
and blobs we use the first character of SHAI1 for database
identification. For authors, files, and projects, we use the first
byte of FNV-1a Hash !!. Both approaches yield quite uniform
distribution over bins.

As noted above, the maps from commit to meta data are not
difficult to achieve because meta data are part of the content of
a commit object. However, git blobs introduced or removed by
a commit are not directly related to the commit and need to be
calculated by recursively traversing trees of the commit and its
parent(s). A Git commit represents the repository at the-state-
of-world and contains all the trees (folders) and blobs (files).
To calculate the difference between a commit and its parent
commit, i.e., the new blobs, we start individually from the root
tree that is in the commit object, traverse over each subtree
and extract each blob. By comparing two sets of blobs of each
commit, we obtain the new blobs for the child commit. This
step requires substantial computational resources, but the map
from the commit to the blobs authored in a commit is used in
numerous research scenarios and, therefore, is necessary. On
average, it takes approximately one minute to obtain changed

http://www.isthe.com/chongo/tech/comp/fnv/index.htmI#FNV-1a

149

files and blobs for 10K commits in a single thread. With 1.5B
commits, the overall time for a single thread would take 104
days, but it needs to be done only on approximately 20-40M
new commits generated each month.

IV. APPLICATIONS

To evaluate if the experimental platform is capable of sup-
porting research tasks conducted as a part of actual investiga-
tions and to provide a set of vignettes for other researchers, we
conducted two types of studies. First, we implemented several
basic and involved research tasks that require the entirety of
FLOSS data as a part of the investigation. Furthermore, we
also recruited three researchers external to our group to either
conduct investigations of their own utilizing WoC or to provide
us with their research problems that can only be solved by
using WoC. Below we report both the experiences and results
from these experiments.

A. Use of programming languages

Language popularity may influence developers decisions as
it may affect the market for their software as well as their job
prospects. For example: What language-specific API should
developer provide for their component? What language should
the developer use to implement their product?

To plot, for example, Java language use trend we use WoC
to identify all files with .java extension. Then, via file-to-
commit map, obtain the complete set of commits authoring
these files. Commit dates are used to plot the time trends of
language-specific commits, authors (property of a commit),
projects (via commit to project map) and, if desired, lines
of code changed. The entire process is highly parallelisable
since each map is separated into 32 instances and can be
processed independently. The entire calculation, while not
interactive on our hardware, can be performed in tens of
minutes. For illustration, we show the ratio of the number
of commits over the number of developers (a measure of
productivity) each month in Fig. 6. The ratio decreases for
most languages, perhaps because as a language becomes more
popular, the less experienced contributors join and lower the
average productivity.

Language
Js

500

100

Cmis/Author
50

10 20

5

T T T
2012 2014 2016

Fig. 6. Productiyjty by Language

B. Correcting Developer Identity Errors

One of the particularly troubling data quality issues with
version control systems is developer name disambiguation. Of-
ten, names and emails of developers are missing, incomplete,
misspelled or duplicate [48], [49]. Performance of any disam-
biguation algorithm depends on the distribution of the actual
misspellings in the underlying data. In order to design and
evaluate corrective algorithms, it is important to study a large
collection of actual data and unearth patterns of irregularities
that compromise data quality. WoC contains a nearly complete
collection of git author ids (name and email combinations) and
is, thus, more representative of such irregularities than any
specific project.

To obtain author IDs we use author-to-commit map con-
taining roughly 30 million distinct author IDs. Common error
patterns include organizational ids and emails (Mozilla, Linux,
Google etc), names of tools and projects (OpenStack, Jenkins,
Travis CI), roles such as (admin, guest, root etc.) and words
that preserve anonymity (student, nobody, anonymous etc) as
a part of their credentials. We also found a large number
developer IDs to be misspelled.

Traditional identity correction approaches rely on the mis-
spelling patterns of author ID (the full name and email) [49]—
[51]. With WoC data, we can enhance the traditional string
matching with behavioural comparison, by creating similarity
measures between author IDs using files modified by devel-
opers, time patterns of commits, and writing styles in commit
messages. For illustration — two author IDs that modify a
similar set of files may suggest that these IDs belong to the
same developer. To implement file-based similarity, we used
author to commit and commit to file maps to obtain the set of
files modified by a single author ID. Then file-to-commit and
commit-to-author maps were used to calculate similarity using
weighted Jaccard measure. Commit message text was used to
fit a Doc2Vec [52] model to associate each author ID with their
writing style. Traditional and behavioural similarities were
used to train highly accurate machine-learning model [53].

This experiment demonstrates the utility of WoC data for
designing tools to solve common and vexing data quality
problems when constructing developer networks. It is also an
example of how WoC can be enhanced by incorporating such
techniques and providing corrected data to researchers.

C. Cross-ecosystem comparison studies

A second research group used the database to gather com-
parative statistics about different software ecosystems. The
purpose was to supplement other comparative data about those
ecosystems in support of a study of how ecosystem tools
and practices influence development behavior. The ecosystem
study involved a survey, interviews, and data mining over
18 ecosystems whose repositories listed more than 1.2M
packages. Some questions about ecosystem practices could
be mined from metadata available elsewhere; for example
detailed information about dependencies, release frequency,
and version numbering practices can be easily extracted from

150

libraries.io'?. However deeper questions about project content
would have been out of reach without WoC; independently
building the mechanism to collect all of these projects, build-
ing a database of blobs, files, projects, and authors, and
comparing them using various metrics would have been too
much work for too little gain without the availability of this
research platform.

1) File cloning across ecosystems: One such statistic is
rate of file cloning. It was theorized that in ecosystems with
more flexible support for dependencies and a tolerance for
the risk of breaking changes, developers would be more
likely to use dependency management tools to make use of
functionality from other projects, rather than copying those
files in directly; hence in such ecosystems we should find
relatively few commits adding a blob that already exists in any
other project available through the ecosystem’s dependency
management system.

Using WoC, this analysis was straightforwardly accom-
plished by joining blob-to-commit and commit-to-project map-
pings, filtering for blobs that appeared in multiple projects, and
identifying pairs with one commit in the time frame, and at
least one older commit. Such blobs were discarded when the
files were very small (since these often turned out to be empty
or trivial files duplicated by chance or by tools) resulting in
a set of duplicates that, on visual inspection of a sample, did
appear to represent genuine examples of reuse-by-cloning.

Contrary to our expectations, the ecosystem with the most
propensity for cloning was the one with the modern and
flexible dependency system: npm. Despite the strengths of
npm’s dependency management system, there is a strong
tradition of copying dependencies like jQuery into projects
rather than letting npm retrieve them. Figure 7 summarizes
the findings for a selection of ecosystems.

10.00%

P2
X
i 7.50%
b=
ﬂJ
c
o 5.00%
o
£
£ 250%
c
S
£ 0.00%
g NN SR @
£ FFTEEF T LI
< &
Ecosystem

Fig. 7. Proportion of repository packages that added at least one cloned code
file over 1kb in 2016.

2) Developer migration across ecosystems: Another metric
of interest was developer overlap between ecosystems. Our
ecosystem comparison had included a survey of values and
practices in the 18 ecosystems of interest, and we hypothesized
that ecosystems might be similar if many developers were
actually working in both ecosystems, or had migrated from
one to the other.

This question was answered by joining author-to-commit
and commit-to-project data for the 1.2M projects in our study,

2https://libraries.io/

and relying on the identity matching technique described in
Sec IV-B.

Over all pairs of ecosystems, we found a sizable correlation
between similarity of average responses on ecosystem practice
questions (things like frequency of updating, collaboration
with other projects, means of finding out about breaking
changes), and overlap in committers to those ecosystems
(Spearman p 0.341,p < .00001,n 16 ecosystems).
Interestingly, perceived values of the ecosystem (such as a
preference for stability, innovation, or replicability) do not
seem to align with developer overlap (p = —0.05,p = 0.44).
While more research is needed, we hypothesize that developers
may carry practices over from other languages and platforms
they have used in the past, in a sometimes cargo-cult-like
way, despite recognizing that a new ecosystem is designed
to accomplish different ends.

In our very large-scale, wide-ranging study, these questions
of developer migration and cloning were of great interest,
but would likely have been too expensive to pursue along-
side other lower-hanging fruit, absent WoC’s prepared set
of precomputed maps between files, blobs, authors, projects,
and timestamps. The dataset with its analytical maps was not
designed with these particular ecosystem comparison in mind,
but its design happens to make such ecosystem questions
relatively easy to answer.

D. Python ecosystem analysis

An external researcher wanted to use WoC to investigate
open source sustainability by identifying source code reposi-
tories for packages in PyPI ecosystem and to measure package
usage directly. While over 90% of npm packages provide
repository URLs, less than 65% of Python Package Index
(PyPI) packages do.

The researcher obtained all packages from PyPi and calcu-
lated blob SHAT1s for setup.py file of the first PyPI releases
of each package. We filter out resulting 101584 blobs to
exclude empty or uninformative blobs (blobs that appear in
more than one commit using blob-to-commit map). The 54218
informative blobs are then mapped to 54062 unique commits
and commits to 51924 unique projects (adjusted for forking
as described in Section III-F). Repositories were recovered
for 96% of the 54218 original packages in approximately 20
minutes of computation. To ensure that these repositories are,
in fact, used to version control corresponding packages, they
can be matched via additional blobs for setup.py and other
files obtained from PyPi for that package.

Another problem being solved by this researcher was iden-
tifying which of the seemingly abandoned projects may be
“feature complete,” i.e. already have the intended scope and
do not require further maintenance [54]. Feature complete
projects should be widely used in contrast to abandoned
projects. Proxies of project usage, e.g., GitHub stars or forks
can be used to identify such projects [54]. WoC, however,
lets us measure the extent of use directly. As described
in Section IV-A, all commits modifying Python files are
identified (file-to-commit map) and the resulting commits are

151

mapped to projects (commit-to-project map). Blobs associated
with these commits (commit-to-blob map) are then used to
extract imports from these files. The entire procedure could be
completed in approximately four hours using the parallelism
of the analytic maps (32 databases) and blob content maps
(128 databases).

The reported usage was compared to project development
activity, i.e the total number of adoptions versus the total
number of commits. In some cases, usage was not accurately
reflected in the number of commits. Common examples are
packages providing console scripts and CMS-like projects. In
the former case, packages are not reused in programmatic code
and thus don’t get into statistics. In the latter case, website
builders often do not publish their code and thus such usage
remains unobserved. Therefore, while the number of public
reuses provides some extra information about package use, it
should be adjusted for package type.

E. Repository filtering tool

Millions of repositories on GitHub and other forges also
include projects that are completely unrelated to software
development. GitHub is widely used for education and other
tasks such as backing up text files, images, or other data.
Researchers investigating education may need to focus on
tutorials, while other researchers may need a sample of actual
software development projects. Furthermore, a way to select
specific subsets of software development projects in order to
conduct, for example, “natural experiments” would also be
highly beneficial. WoC can support such project segmentation
tasks in a variety of ways. An external education researcher
wanted to understand the impact of self-administered pro-
gramming tutorials. To do that, WoC was used to identify
developers who participated in tutorials by searching the set
of projects in WoC via keywords related to education: “assign-
ment”, “course”, “homework”, “class”, “lesson”, “tutorial”,
“syllabus”, “mooc”, “udacity”. The search yields over 1M
projects. While it is only a small fraction of all projects in
WoC but it represents a large sample in absolute terms. Further
filtering was needed to find developers who also worked
on actual software projects to measure the impact of self-
administered tutorials. The project-to-commit map identified
605K users of tutorials and, when these users were mapped
to all projects they participated in, we determine that only
half of them contribute to non-tutorial projects. These 300K
individuals are potential subjects of tutorial-impact study.
Further information (such as their commit activity and project
participation) can be obtained from WoC and combined other
data, be used in this research. WoC can be extended with other
approaches to segment projects'3. For example, identification
of projects with sound software engineering practices [55]
relies on a combination of factors easily obtainable in WoC,
such as history, license, and unit tests.

V. FUTURE WORK

To have an impact on research practice, the WoC prototype

needs to be exposed via reliable services that help with

13Section IV-B shows how WoC can also be used to improve them

research and do not overwhelm the platform. WoC should also
accommodate additional data and computational procedures
needed for discovering, correcting, cleaning, augmenting, and
modeling the underlying data. Processing hundreds of ter-
abytes of data on powerful clusters may be out of reach for
most research groups. Therefore, to accommodate massive
queries WoC would require more powerful hardware. Such
hardware can be obtained from cloud vendors, but the costs
of hosting and analyzing data on these platforms might be
high. An alternative might be a few high-throughput services
that work on the hardware we currently employ.

The differentiating features of WoC are the completeness of
the collection and access to global relationships. Specifically,
two basic services would be difficult to replicate outside WoC,
yet be capable of high throughput on the limited hardware.
First, a reporting service that considers prevalence of certain
features, such as languages, tools, and other technologies
as well as the information about contributors might provide
services akin to those provided by a population census. The
second basic service would focus on identifying all entities
linked to a specific entity, such as files modified by a devel-
oper, all repositories containing a specific code, or all files that
use a specific module or technology. These two capabilities,
in conjunction with MSR technology already in use, would
provide both, population-level data and complete links within
entire FLOSS ecosystem. It would then be up to researchers
to retrieve additional data on individual projects based on the
stratified samples from the first service or derived from the
relationships obtained from the second service.

VI. LIMITATIONS

We tried to make the assumptions and rationale for specific
decisions clear within each section but it is important to
reiterate at least some of the limitations. Despite a large size
(the collection contains over 1.45B commits), there is no
guarantee it closely approximates the entirety of public version
control systems as the project discovery procedure is only an
approximation. Our focus on git (due to the simplified global
representation) excludes older version control systems that
have not been converted to git yet. We regularly identify issues
with data being incomplete due to collection, cleaning, or
processing and we are working on an approach to continuously
validate and correct it. The particular design decisions were
focused on the particular computing capabilities that were
available to us at the time and could/should be revisited as
the prototype evolves. The entirety of research tasks that
WoC provides is not exhausted by the few examples we have
investigated and certain tasks may require different solutions.
We do, however, think that the micro-services approach allows
for simpler addition/extension/replacement of components as
needs or opportunities arise than would be possible with a
more monolithic architecture.

How to reliably clean, correct, integrate, and augment the
collected data so that the resulting analyses accurately reflect
the modeled phenomena is a concern. To ensure the perfor-
mance of the analytics layer certain objects are filtered from

152

it. For example, some of the public repositories are created
to test the performance/capabilities of git and contain many
millions of files/blobs in a single commit. Such commits are
excluded from the analytics layer to speed-up the commit-to-
file and commit-to-blob maps. The nature of the data may also
create performance problems. For example, the most common
blob is an empty file. Mapping such blobs to all commits that
create them or to all files does not make sense, since there
are millions of commits that have created empty files. These
performance-related modifications may affect some arguably
superficial analyses, e.g., what are the commits with the largest
number of files? We explicitly highlight these modification in
the WoC code to minimize potential confusion.

Reproducibility may pose an issue in a constantly updated
database. Since git objects are added incrementally and order
in which they are stored is preserved, we can reconstruct any
past version of the object store. For the analytic layer, which
depends on the set of git objects available at the time, we
create versions, where each of the maps described above is
tagged with a version identifying the state of git object store.
Preserving these past versions ensures reproducibility of the
results obtained from them.

The research use cases presented do not constitute an
empirical evaluation of WoC usability but, instead, focus on
presenting vignettes that are effective for these scenarios.
Some of these vignettes went through several iterations until
the simplest and fastest implementations were obtained.

VII. CONCLUSIONS

We introduce WoC: a prototype of an updatable and expand-
able infrastructure to support research and tools that rely on
version control data from the entirety of open source projects
and discuss some of the research problems that require such
global reach. We discuss how we address some of the data
scale and quality challenges related to data discovery, retrieval,
and storage. Furthermore, we implement ways to make this
large dataset usable for a number of research tasks by doing
targeted data correction and augmentation and by creating data
structures derived from the raw data that permit accomplish-
ing these research tasks quickly, despite the vastness of the
underlying data. Finally, we evaluated WoC by conducting
actual research tasks and by inviting researchers to undertake
investigations of their own. In summary, WoC can provide
support for diverse research tasks that would be otherwise out
of reach for most researchers. Its focus on global properties of
all public source code will enable research that could not be
previously done and help to address highly relevant challenges
of open source ecosystem sustainability and of risks posed
by this global software supply chain. Transforming the WoC
prototype into a widely accessible platform is, therefore, our
immediate priority.

All source codes can be found in a public repository.'*

ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion NSF Award 1633437.

4https://github.com/ssc-oscar/Analytics

[1]
[2]
[3]

[4

=

[51

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

R. Di Cosmo and S. Zacchiroli, “Software heritage: Whyandhowtopre-
servesoftwaresourcecode. ipres 2017,” 2017.

A. Mockus, “Engineering big data solutions,” in ICSE’14 FOSE, 2014.
[Online]. Available: papers/BigData.pdf

S. Newman, Building microservices: designing fine-grained systems.
O’Reilly Media, Inc.”, 2015.

“Nexus repository,” https://www.sonatype.com/nexus-repository-oss, ac-
cessed: 2019-01-02.

G. Gousios and D. Spinellis, “Ghtorrent: Github’s data from a firehose,”
in Mining software repositories (msr), 2012 9th ieee working conference
on. IEEE, 2012, pp. 12-21.

G. Gousios, “The ghtorrent dataset and tool suite,” in Proceedings of
the 10th Working Conference on Mining Software Repositories, ser.
MSR ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 233-236.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2487085.2487132
G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of
the pull-based software development model,” in Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp.
345-355.

G. Gousios and A. Zaidman, “A dataset for pull-based development
research,” in Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM, 2014, pp. 368-371.

G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman, ‘“Lean
ghtorrent: Github data on demand,” in Proceedings of the 11th working
conference on mining software repositories. ACM, 2014, pp. 384-387.
J. Howison, M. Conklin, and K. Crowston, “Flossmole: A collaborative
repository for floss research data and analyses,” International Journal of
Information Technology and Web Engineering (IJITWE), vol. 1, no. 3,
pp. 17-26, 2006.

N. M. Tiwari, G. Upadhyaya, and H. Rajan, “Candoia: A platform and
ecosystem for mining software repositories tools,” in Proceedings of
the 38th International Conference on Software Engineering Companion.
ACM, 2016, pp. 759-764.

N. M. Tiwari, G. Upadhyaya, H. A. Nguyen, and H. Rajan, “Candoia:
A platform for building and sharing mining software repositories tools
as apps,” in MSR’17: 14th International Conference on Mining Software
Repositories, May 2017.

G. Upadhyaya and H. Rajan, “On accelerating ultra-large-scale mining,”
in Proceedings of the 39th International Conference on Software Engi-
neering: New Ideas and Emerging Results Track. 1EEE Press, 2017,
pp. 39-42.

, “On accelerating source code analysis at massive scale,” I[EEE
Transactions on Software Engineering, 2018.

J. Sayyad Shirabad and T. Menzies, “The PROMISE Repository of
Software Engineering Databases.” School of Information Technology
and Engineering, University of Ottawa, Canada, 2005. [Online].
Available: http://promise.site.uottawa.ca/SERepository

B. D. Software, “Black duck open hub,” https://www.openhub.net/,
accessed: 2018-12-18.

J. Ossher, S. Bajracharya, E. Linstead, P. Baldi, and C. Lopes, “Sourcer-
erdb: An aggregated repository of statically analyzed and cross-linked
open source java projects,” in Mining Software Repositories, 2009.
MSR’09. 6th IEEE International Working Conference on. 1EEE, 2009,
pp. 183-186.

S. Ducasse, T. Girba, and O. Nierstrasz, “Moose: an agile reengineering
environment,” in ACM SIGSOFT Software engineering notes, vol. 30,
no. 5. ACM, 2005, pp. 99-102.

D. Rozenberg, I. Beschastnikh, F. Kosmale, V. Poser, H. Becker,
M. Palyart, and G. C. Murphy, “Comparing repositories visually with
repograms,” in Proceedings of the 13th International Conference on
Mining Software Repositories. ACM, 2016, pp. 109-120.

J. Bevan, E. J. Whitehead Jr, S. Kim, and M. Godfrey, “Facilitating
software evolution research with kenyon,” ACM SIGSOFT software
engineering notes, vol. 30, no. 5, pp. 177-186, 2005.

S. Bajracharya, J. Ossher, and C. Lopes, “Sourcerer: An infrastructure
for large-scale collection and analysis of open-source code,” Science of
Computer Programming, vol. 79, pp. 241-259, 2014.

G. Gousios and D. Spinellis, “Alitheia core: An extensible software
quality monitoring platform,” in Software Engineering, 2009. ICSE
2009. IEEE 31st International Conference on. 1EEE, 2009, pp. 579—
582.

2

153

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[36]

[37]

[38]

[39]

[40]

[41]
[42

[43]
[44]
[45]
[46]

[47]

S. Kim, T. Zimmermann, M. Kim, A. E. Hassan, A. Mockus, T. Girba,
M. Pinzger, E. J. W. Jr,, and A. Zeller, “Ta-re: an exchange language
for mining software repositories.” in ICSE’06 Workshop on Mining
Software Repositories, Shanghai, China, May 22-23 2006, pp. 22-25.
[Online]. Available: http://dl.acm.org/authorize?804411

R. Hackbarth, A. Mockus, J. Palframan, and D. Weiss, “Assessing the
state of software in a large enterprise,” Journal of Empirical Software
Engineering, vol. 10, no. 3, pp. 219-249, 2010.

J. Czerwonka, N. Nagappan, W. Schulte, and B. Murphy, “Codemine:
Building a software development data analytics platform at microsoft,”
IEEE software, vol. 30, no. 4, pp. 64-71, 2013.

R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in Proceedings of the 35th International Conference on Software Engi-
neering, ser. ICSE’13, 2013, pp. 422-431.

R. Dyer, H. Rajan, and T. N. Nguyen, “Declarative visitors to ease fine-
grained source code mining with full history on billions of AST nodes,”
in Proceedings of the 12th International Conference on Generative
Programming: Concepts & Experiences, ser. GPCE, 2013, pp. 23-32.
R. Dyer, “Task fusion: Improving utilization of multi-user clusters,”
in Proceedings of the 2013 companion publication for conference on
Systems, programming, & applications: software for humanity, ser.
SPLASH SRC, 2013, pp. 117-118.

H. Rajan, T. N. Nguyen, R. Dyer, and H. A. Nguyen, “Boa website,”
http://boa.cs.iastate.edu/, 2015.

R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: Ultra-large-
scale software repository and source-code mining,” ACM Trans. Softw.
Eng. Methodol., vol. 25, no. 1, pp. 7:1-7:34, 2015.

, “Boa: an enabling language and infrastructure for ultra-large scale
msr studies,” The Art and Science of Analyzing Software Data, pp. 593—
621, 2015.

A. Mockus, “Amassing and indexing a large sample of version control
systems: towards the census of public source code history,” in 6th IEEE
Working Conference on Mining Software Repositories, May 16-17
2009. [Online]. Available: papers/amassing.pdf

, “Large-scale code reuse in open source software,” in ICSE’07
Intl. Workshop on Emerging Trends in FLOSS Research and
Development, Minneapolis, Minnesota, May 21 2007. [Online].
Available: papers/ossreuse.pdf

C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German,
and P. Devanbu, “The promises and perils of mining git,” in Mining
Software Repositories, 2009. MSR’09. 6th IEEE International Working
Conference on. 1EEE, 2009, pp. 1-10.

1. Gorton, A. B. Bener, and A. Mockus, “Software engineering for big
data systems,” IEEE Software, vol. 33, no. 2, pp. 32-35, 2016.

E. Rosch, “Principles of categorization,” Concepts: core readings, vol.
189, 1999.

S. Agrawal, V. Narasayya, and B. Yang, “Integrating vertical and
horizontal partitioning into automated physical database design,” in
Proceedings of the 2004 ACM SIGMOD international conference on
Management of data. ACM, 2004, pp. 359-370.

H. Lichter, M. Schneider-Hufschmidt, and H. Zullighoven, “Prototyping
in industrial software projects-bridging the gap between theory and
practice,” IEEE transactions on software engineering, vol. 20, no. 11,
pp. 825-832, 1994.

R. Budde, K. Kautz, K. Kuhlenkamp, and H. Ziillighoven, “Prototyping,”
in Prototyping. Springer, 1992, pp. 33-46.

Y. Ma, T. Dey, J. M. Smith, N. Wilder, and A. Mockus, “Crowdsourcing
the discovery of software repositories in an educational environment,”
PeerJ Preprints, vol. 4, p. e2551v1.

S. Chacon and B. Straub, Pro git. Apress, 2014.

D. Eastlake 3rd and P. Jones, “Us secure hash algorithm 1 (shal),” Tech.
Rep., 2001.

N. Leavitt, “Will nosql databases live up to their promise?” Computer,
vol. 43, no. 2, 2010.

D. J. Abadi, “Data management in the cloud: Limitations and opportu-
nities.” IEEE Data Eng. Bull., vol. 32, no. 1, pp. 3-12, 2009.

P. Russom et al., “Big data analytics,” TDWI best practices report, fourth
quarter, vol. 19, no. 4, pp. 1-34, 2011.

H. P. Luhn, “A business intelligence system,” IBM Journal of research
and development, vol. 2, no. 4, pp. 314-319, 1958.

A. Moniruzzaman and S. A. Hossain, “Nosql database: New era of
databases for big data analytics-classification, characteristics and com-
parison,” arXiv preprint arXiv:1307.0191, 2013.

[48]

[49]

[50]
[51]

[52]

D. German and A. Mockus, “Automating the measurement of open
source projects,” in Proceedings of the 3rd workshop on open source
software engineering. University College Cork Cork Ireland, 2003, pp.
63-67.

C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks,” in Proceedings of the 2006
International Workshop on Mining Software Repositories, ser. MSR
’06. New York, NY, USA: ACM, 2006, pp. 137-143. [Online].
Available: http://doi.acm.org/10.1145/1137983.1138016

W. Winkler, “String comparator metrics and enhanced decision rules in
the fellegi-sunter model of record linkage,” 01 1990.

W. E. Winkler, “Overview of record linkage and current research
directions,” BUREAU OF THE CENSUS, Tech. Rep., 2006.

Q. Le and T. Mikolov, “Distributed representation of sentences and

154

[53]

[54]

[55]

documents,” in Proceedings of the 31 st International Conference on
Machine Learning, vol. 32. Beijing,China: JMLR, 2014. [Online].
Available: https://cs.stanford.edu/~quocle/paragraph\ _vector.pdf

S. Amreen, A. Mockus, C. Bogart, Y. Zhang, and R. Zaretzki, “Alfaa:
Active learning fingerprint based anti-aliasing for correcting developer
identity errors in version control data,” arXiv preprint arXiv:1901.03363,
2019.

J. Coelho, M. T. Valente, L. L. Silva, and E. Shihab, “Identifying
unmaintained projects in github,” in Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement. ACM, 2018.

N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for
engineered software projects,” Empirical Software Engineering, vol. 22,
no. 6, pp. 3219-3253, 2017.

