A Methodology for Measuring FLOSS Ecosystems

Sadika Amreen, Dr. Bogdan Bichescu, Dr. Randy Bradley, Tapajit Dey, Yuxing Ma, Dr. Audris Mockus,
Sara Mousavi, and Dr. Russell Zaretzki

Abstract

FLOSS ecosystem as a whole, is a critical component of world’s computing infrastructure, yet not well
understood. In order to understand it well, we need to measure it first. We, therefore, aim to provide a frame-
work for measuring key aspects of the entire FLOSS ecosystem. We first consider the FLOSS ecosystem
through lens of a supply chain. The concept of supply chain is the existence of series of interconnceted par-
ties/affiliates each contributing unique elements and expertise so as to ensure a final solution is accessible to
all interested parties. This perspective has been extremely successful in helping allowing companies to cope
with multifaceted risks caused by the distributed decision making in their supply chains, especially as they
have become more global. Software ecosystems, similarly, represent distributed decisions in supply chains
of code and author contributions, suggesting that relationships among projects, developers, and source code
have to be measured. We then describe a massive measurement infrastructure involving discovery, extraction,
cleaning, correction, and augmentation of publicly available open source data from version control systems
and other sources. We then illustrate how the key relationships among the nodes representing developers,
projects, changes, and files can be accurately measured, how to handle absence of measures for user base
in version control data, and, finally, illustrate how such measurement infrastructure can be used to increase
knowledge resilience in FLOSS.

Sadika Amreen - Tapajit Dey - Yuxing Ma - Sara Mousavi
Graduate Students, Department of Electrical Engineering and Computer Science

Dr. Audris Mocus,
Ericsson-Harlan D. Mills Chair Professor, Department of Electrical Engineering and Computer Science ph: +1 865 974 2265,
fax: +1 865 974 5483, e-mail: audris @utk.edu,

Dr. Bogdan Bichescu
Associate Professor, Haslam College of Business, e-mail: bbichescu@utk.edu

Dr. Randy Bradley
Assistant Professor, Haslam College of Business, e-mail: rbradley @utk.edu

Dr. Russell Zaretzki

Heath Faculty Fellow, Joe Johnson Faculty Research Fellow, Associate Professor, Haslam College of Business, e-mail:
rzaretzk @utk.edu,

University of Tennessee, Knoxville, TN-37996, USA

2 S. Amreen B. Bichescu, R. Bradley, T. Dey, Y. Ma, A. Mockus, S. Mousavi, and R. Zaretzki

1 Introduction

Open source is, perhaps, the least understood among the revolutionary inventions of the humankind. This
is, perhaps, not very surprising because just two decades ago it was a mere curiosity, yet now, with its
exponential growth, it has reached all corners of the society. This lack of understanding however, is not
excusable, because much of the societies critical infrastructure and the ability to innovate depends on the
heath of FLOSS (Free/Libre and Open Source Software).

Here, we attempt to alleviate this gap in understanding by proposing a measurement infrastructure capable
of encompassing the entire FLOSS ecosystem in the large. To do that, we start from introducing conceptual
framework of supply chains and adapting it to the unique features of the FLOSS ecosystem. In particular, we
define software supply chain as the collection of developers and software projects producing new versions of
the source code. This supply chain analogy provides us with key concepts of the abstract network involving
nodes that represent developers, changes, projects, and files. The production process involves creating new
versions of files via atomic increments that deliver specific value (commits). We then proceed to operational-
ize these and additional concepts from bottom up, i.e., from publicly available atomic records representing
code changes.

The process of collecting and extracting this public data is involved due to lack of a single global registry
of all FLOSS projects, the need to extract data from git database, need to store a petabyte of the data, and
the need to covert it into a form so that the necessary measures could be calculated.

Before we can engage in the construction of the supply chain relationships, we need accurate identifi-
cation of developers and projects and the relationships among them. Developers’ identities are often mis-
spelled, while projects may represent temporary forks of other projects. Both issues need to be addressed.
Once the basic data has been cleaned and corrected in this way, we can engage in estimation of direct rela-
tionships that involve five basic types:

o Authorship links file(s) modified with the author and includes basic data in a commit: date, and commit
message

e Version history links changes (and, therefore, versions of a file) trough a parent child relationship with
each commit having zero or more parent commits.
Static dependence links source code files via package use or call-flow dependencies.
Project inclusion links projects (VCS repositories) with changes, and all versions of files contained
therein.

e Code copy dependencies identify instances of code between specific versions of files and, in conjunction
with version history, can be used to create Universal Version History that breaks project boundaries.

In combination, these dependencies induce additional networks, for example, the knowledge flow graph
of developers connected trough files they modify in succession or upstream/downstream collaboration graph
linking developers working on projects that have static dependencies.

Once the data for software supply chains is produced, the types of attributes that are directly available, are
limited and we, typically, need to augment basic data with quantities that may reside in other data sources,
for example, responsiveness that resides in projects’ issue trackers or Q&A websites, or may be entirely
unavailable, for example, the number of end users and, therefore, has to be obtained from models.

Finally, we illustrate how the constructed measurements can be used to increase resilience of the FLOSS
ecosystem to the knowledge loss by assigning observers or maintainers to the strategically selected projects
or source code files.

The remainder of this chapter is organized as follows: In section 2 the definition of FLOSS supply chains
and general approaches used to optimize FLOSS supply chains’ network are provided. In section 3 the

A Methodology for Measuring FLOSS Ecosystems 3

process of collecting and storing data from software projects hosted on various open source platforms is
described. Section 4 composed the data extraction process, storage and cleaning through disambiguating
author identities. Section 5 depicts operationalization of software supply chain by constructing code reuse,
knowledge flow and dependency networks. In section 6 we provide a redundancy based approach to have
more maintainers responsible for in-danger-files to reduce the the knowledge loss in the FLOSS ecosystem.

2 Supply Chains in FLOSS

The key output of software development activity is the source code. Therefore software development is
reflected in the way the source code is created and modified. Although various individual and groups of
projects have been well studied, it only gives partial results and conclusions on the propagation and reuse
of source code in the large. As in traditional supply chains, the developers in FLOSS make individual deci-
sions with some cooperative action, hence the analytical findings from traditional supply chains may help in
FLOSS. Second, we have a complicated network of technical dependencies with code and and knowledge
flows akin to traditional supply chains, making the analogies less complicated. Third, the emerging phenom-
ena, for example, the lack of transparency and visibility, appear to be as, or more, important in FLOSS as
in traditional supply chains. Fourth, unlike traditional supply chains, FLOSS has very detailed information
about the production and dependencies. We, therefore, hope that detailed data with supply chain analytical
framework may bring transformative insights not just for FLOSS supply chains, but for all supply chains
generally. We, therefore, would like to systematically analyze the entire network among all the repositories
on all source forges, revealing upstream to downstream relations, the flow of code and the flow of knowledge
within and among projects.

2.1 Defining FLOSS Supply Network

La Londe et. al. proposed a supply chain as a set of firms that pass materials forward [20], Lambert et. al.
define a supply chain as the alignment of firms that brings products or services to market [21], Christopher [8]
described supply chain as the network of organizations that are involved, through upstream and downstream
linkages, in the different processes and activities that produce value in the form of products and services
delivered to the ultimate consumer. A common comprehension is that the supply chain is a set of three or
more companies directly linked by one or more of the upstream or downstream flows of products, services,
finance, and information from a source to a customer.

As software product developers increasingly depend on external suppliers, supply chains emerge, as in
other industries. Upstream suppliers provide assets downstream to as more complex products emerge. As
open source software proliferates, developers of new software tend to build on top of mature projects or
packages with only a small amount of modifications, which leads to the emergence of software supply chain
in OSS.

A supply chain with individual developers and groups (software projects or packages) representing “com-
panies” producing new versions of the source code (e.g., files, modules, frameworks, or entire distributions).
The upstream and downstream flow from projects to end users is represented by the dependencies and shar-
ing of the source code and by the contributions via patches, issues, and exchange of information. This is our
definition of software supply chain. Supply chains lead to two important concepts.

4 S. Amreen B. Bichescu, R. Bradley, T. Dey, Y. Ma, A. Mockus, S. Mousavi, and R. Zaretzki

Visibility is information that developers have about the inputs, processes, sources and practices used to
bring the product to consumers/market. This includes complete supply chain visibility including traceability
for the entire supply chain. Visibility is, generally, inwardly/developer focused. Visibility refers to how far
you can see upward beyond direct upstream, i.e. how many layers of dependency you can see from a software
in supply chain.

Transparency is information that developers share with their consumers about the inputs, processes,
sources and practices used to bring the product to the consumer. It is more outwardly focused/from the con-
sumer perspective than visibility. How much each the developer or project is providing publicly (including
the ability to interpret that information by others) is a form of transparency.

2.2 Notation Used for FLOSS Supply Network

In traditional supply chain, producers are considered as nodes of a graph and the flow of information or
materials as links. Based on the definition of software supply chain and the ability to measure it, we use the
following notation for key concepts of software supply chain throughout the chapter:

1. ANodeisa

e Developer - an individual producer, will be denoted as d. Developer author commits ¢ with each
commit having a single author d = A(c).

e A version of a file - a component work/information inserted into a project, will be denoted as f, € p.
File versions are produced by commits with each commit producing zero or more file versions.

e Project - a group of commits (a composition of work by individual developers) in the same repository.
Will be denoted as p = {c: ¢ € p}. Since each commit produces a set of file versions, a project is also
associated with all these file versions: p = {f, : f, € ¢,c € p} and all authors of the commits.

2. There are different types of links

e A technical dependence (upstream/downstream project I;(p1, p2))

e Code flow file, i.e. file that has been copied in the past but is now being maintained in parallel I.(f, f1) :
3f1,vi,vjsuchthat f1,; = fy.

o Authorship: I,(d, f) : c suchthat d =A(c) Afy €c

3 Computing Infrastructure for Measuring FLLOSS Supply Chains

FLOSS projects are not only scattered around the world, they also tend to be scattered around the web,
hence, in order to collect data for measurement we need to discover where the relevant data sources are
located [27, 26]. Historically, a variety of version control and issue tracking tools were used, but many of the
projects can be now found on a few large platforms like GitHub, BitBucket, SourceForge, and GitLab and
most projects have converged to Git as their version control system.

A Methodology for Measuring FLOSS Ecosystems 5

3.1 Discovery

While many projects have moved to (or at least are mirrored on) the main forges such as GitHub, a sizable
number of projects are hosted on other forges. The number of such forges is not small. Some of these do not
have stable APIs, and the rest each requires an unique API to discover all public projects on that forge. This
makes the task of gathering information from these forges fairly challenging. However, although collecting
information from these sources require slightly different approaches (which makes it difficult to use one
single script for mining), the task itself isn’t complicated and the only result required is the list of git URLs
that could be used to mirror the data as described below. This makes the task an excellent candidate for
crowdsourcing [27, 24]. Table 1 (from [24]) lists the active forges and an estimate of how many projects are
hosted in each of them at the time of the study.

Table 1 Active Forges (other than GitHub and BitBucket) with Public Repositories [24]

Forge Name Forge URL API Repositories Retrieved
CloudForge cloudforge.com Private API 42
SourceForge sourceforge.net REST API 48,000 - 50,000
launchpad launchpad.net API 36,860
Assembla assembla.com/home No about 70,000
CodePlex codeplex.com REST API 100,000
Savannah savannah.gnu.org No 3613
CCPForge ccpforge.cse.rl.ac.uk/gf No 126

Jenkins ci.jenkins-ci.org REST API 106,336
Repository Hosting | Respositoryhosting.com No <88

KForge pythonhosted.org/kforge API 81,000
Phabricator phabricator.org Conduit API about 10,000
Fedorahosted fedorahosted.org/web No 914
JavaForge javaforge.com No 7672

Kiln fogcreek.com/kiln No 43
SVNRepository SVNRepository.com No 15

Pikacode pikacode.com No 2

Planio plan.io No 26

GNA! gna.org No 1326
JoomlaCode joomlacode.org/gf REST API 971
tuxfamily tuxfamily.org No 209

pastebin pastebin.com No about 1800
GitLab gitlab.com No about 57,000
Eclipse eclipse.org/home/index.php No 214

Turnkey GNU turnkeylinux.org/all No 100

JavaNet home.java.net/projects/alpha No 1583

Stash atlassian.com/software/bitbucket/server| REST API 5400
Transifex transifex.com No 5400

Tigris tigris.org No 678

Apart from discovering open source projects from forges that host VCS, software projects information
can also be found in the metadata of popular Linux distributions. In particular [27], Gentoo, Debian, Slack-
ware, OpenSuse, and RedHat distributions and package repositories such as rpmforge, provided a list of
popular packages. Moreover, there are directories of open source projects that list home page URLs and
other information about the projects. RawMeat (no longer in operation) and Free Software Foundation were

6 S. Amreen B. Bichescu, R. Bradley, T. Dey, Y. Ma, A. Mockus, S. Mousavi, and R. Zaretzki

two prominent examples of such directories. While they do not host VCSs or even provide URLs to a VCS,
they do provide pointers to source code snapshots in tarballs and project home pages.

3.2 Retrieval, Extraction, and Schema for Analytics

Source code changes in software projects are recorded in a VCS (version control system). Git is presently the
most common version control system, sometimes with historic data imported from SVN or other VCS used
in the past. Code changes are typically organized into commits that make changes to one or more source
code files. Git repositories hosted on open source platforms can be retrieved by cloning them (functionality
provided by git clone --mirror) to local servers.

The retrieved git database stores the full history of changes/commits made to a project. A Git commit
records author, commit time, a pointer to the projects’ file system, a pointer to the parent change, and the
text of the commit message. Internally, the Git database has three primary types of objects: commits, trees,
and blobs. Each object is represented by its shal value that can be used as a key to find its content. The
content of a blob object is a content of a specific version of a file. The content of a tree object is a folder
in a file system represented by the list of shals for the blobs and the trees (subfolders) contained in it. A
commit contains shal for the corresponding tree, a list of parent commit shals, an author id, a committer id,
a commit timestamp, and the commit message.

We extract git objects from each project and store them in the common database. This reduces the amount
of storage needed approximately 100 times (which is an average number of projects a git object belongs to),
and allows us to conduct analysis of the relationships. We have 2.8B blobs, 3.1B trees, and 0.8B commits
collected from 40 million projects.

Git is not a system that stores data in a way that makes analysis easy. We, therefore, re-organize and
re-structure it in an efficient way to facilitate various analytics related to the above described concepts of
software supply chain. The data must be stored in a way that allows fast and efficient data lookup for billions
of objects. An appropriate structure for that is a hashtable or a key-value database optimized to retrieve fast
by exact value of a key. For example, a developer as the key and the list of commits authored by the developer
as value. This allows a fast response when a requesting what commits one specific developer made. Another
example is the link between a commit and files modified by the commit. This is accomplished by comparing
the tree (and all subtrees) of the commit with the tree of the parent commit. The new blobs created indicate
new f,s. Since the complete tree and subtrees can be fairly large, the operation is computationally non-trivial
and, because such relationships are commonly needed, is worth precomputing.

We compared the performance of several key-value databases and found that TokyoCabinet to be the
most competitive one in terms of tradeoffs between speed and storage needs. We break the keys by part of
their shal into up to 128 different databases to facilitate parallel (hadoop-like) processing when we need to
iterate over the entire database and to reduce the size of each individual database. These key-value maps are
constructed to map developers to authored commits and files, commits to projects (and back), commits to
their children commits, blobs created (and back to commit), and other lookup tables needed to construct the
software supply chain.

The overall diagram of the data workflow is shown in Figure 1. The calendar time goes down, while the
data layers from raw to analytics go from left to right.

A Methodology for Measuring FLOSS Ecosystems 7

Compressed Maps
content cmt 2 file

Compressed
content

Compressed
content

shal

shal

shal /
shal

l

1

Maps
auth 2 cmit]

Prehash
128 bins

shal to BER

1/

<=

shal to BER

500TB 200GB 40TB

Fig. 1 Data retrieval diagram

4 Correction and Augmentation

Operational data extracted from software repositories [30] often contain incorrect and missing values. For
example, and most importantly, primary author id, a key field for many analyses, often suffers from errors
such as multiple or erroneous spellings, identity changes that occur over time, group identities, and other
issues. These problems arise because primary author information in a Git commit (which we study here)
depends on an entry specifying user name and email in a Git configuration file for the specific computer a
developer is using at the moment. Once the Git commit is recorded, it is immutable like other Git objects,
and can not be changed. Once a developer pushes their commits from the local to remote repository, that
author information remains. A developer may have multiple laptops, workstations, and work on various
servers, and it is possible and, in fact, likely, that on at least one of these computers the Git configuration file
has a different spelling of their name and email. It is also not uncommon to see the commits done under an
organizational alias, thus obscuring the identity of the author.

Since developers serve as nodes in the supply chain network, it is of paramount importance to determine
developer identities accurately. Erroneous data in developer identifiers can result in a misrepresented network
undermining the value of constructing an OSS supply chain network. These issues have been recognized in
software engineering [12, 2] and beyond [9]. However, identity resolution to identify actual developers based
on data from software repositories is non-trivial mainly due to

1. Lack of ground truth - absence of validated maps from the recorded to actual identities. Similar disam-
biguation approaches have been applied on census data [9] or patent data [41] whereby over 150,000
samples of ground truth data was available.

2. Data Volume - millions of developer identities in hundreds of millions of code commits.

To avoid these challenges, studies in the software engineering field tend to focus on individual projects
or groups of projects where the number of IDs that need to be disambiguated is small enough for manual
validation. Most traditional record matching techniques use string similarity of identifiers (typically login
credentials) i.e. name, username and email similarity. A broad spectrum of approaches ranging from direct

8 S. Amreen B. Bichescu, R. Bradley, T. Dey, Y. Ma, A. Mockus, S. Mousavi, and R. Zaretzki

string comparisons of name and email [40, 2] to supervised learning based on string similarity [41] have
been used to solve the identity problem in the past. However, such methods do not resolve all issues that are
particular to data generated by version control systems. Therefore, in order to propose solutions or to tailor
existing identity resolution approaches, we need a better understanding of the nature of the errors associated
with the records related to developer identity.

4.1 Problems with the data

We inspected the collection of more than nine million author strings collected from over S00M Git commits
and looked at random subsets of author IDs to understand how or why these errors occur. We identified these
errors and broadly categorized them into the following three kinds - synonyms, homonyms and missing data
and determined the common reasons causing errors to be injected into the system.

1. Synonyms: These kinds of errors are introduced when a person uses different strings for names, user-
names or email addresses. For example, ‘utsav dusad <utsavdusad@gmail.com>" and ‘utsavdusad <ut-
savdusad @gmail.com>’ are identified as synonyms.

Spelling mistakes such as ‘Paul Luse <paul.e.luse@intel.com>’ and ‘paul luse <paul.e.luse @itnel.com>’
are also classified as synonyms, as ‘itnel’ is likely to be a misspelling of ‘intel’. Developers may change
their name over time, for example, after marriage, creating a synonym.

2. Homonyms: Homonym errors are introduced when multiple people use the same organizational email

address. For example, the Id ‘saper <saper@saper.info>’ may be used by multiple entities in the organi-
zation. For example "Marcin Cieslak <saper@saper.info>’ is an entity who may have committed under
the above organizational alias.
Template credentials from tools is another source that might introduce homonym errors in the data as
some users may not enter values for name and/or an email field. For example, “Your Name <vpono-
maryov @mirantis.com>" which may belong to author ‘vponomaryov <vponomaryov@mirantis.com>’.
Sometimes developers do not want their identities or their email address to be seen, resulting in intention-
ally anonymous name, such as, John Doe or email, such as devnull @localhost

3. Missing Data: Errors are also introduced when a user leaves the name or email field empty, for example,
‘chrisw <unknown>>’.

A look at the most common, names and user names shows that many of them were unlikely to be names
of individuals. For example, the most frequent names in the dataset such as 'nobody’, ‘root’, and *Adminis-
trator’ are a result of homonym errors as shown in Table 2.

4.2 Disambiguation Approach

Traditional record linkage methodology and identity linking in software [2] splits identity strings into several
parts. Our approach splits the information in the author string into several fields representing the structure of
that string and defines similarity metrics for all author pairs. We also incorporate the term frequency measure
for each of the attributes in a pair. Finally, we add similarity between behavioral fingerprints for all pairs of
authors in the dataset.

A Methodology for Measuring FLOSS Ecosystems 9

Table 2 Data Overview: The 10 most frequent names and emails

Name Count First Name Count Last Name Count Email Count User Name Count
unknown 140859 unknown 140875 unknown 140865 <blank> 16752 root 72655
root 66905 root 66995 root 67004 none@none 9576 nobody 35574
nobody 35141 David 45091 nobody 35141 devnull@localhost 8108 github 19778
Ubuntu 18431 Michael 40199 Ubuntu 18560 student@epicodus.com 5914 ubuntu 18683
(no author) 6934 nobody 35142 Lee 10826 unknown 3518 info 18634
nodemcu-custom-build 6073 Daniel 34889 Wang 10641 you@example.com 2596 <blank> 17826
Alex 5602 Chris 29167 Chen 9792 anybody @emacswiki.org 2518 me 14312
System Administrator 4216 Alex 28410 Smith 9722 = 1371 admin 12612
Administrator 4198 Andrew 26016 Administrator 8668 Unknown 1245 mail 11253
<blank> 4185 John 25882 User 8622 noreply 913 none 11004

1. Author Distances Based on String Similarity: Each author string is stored in the following format
- “name <email>", e.g. “Hong Hui Xiao <xiaohhui@cn.ibm.com>". For our analysis, we define the
following attributes for each user.

-0 0 o

Author: String as extracted from source as shown in the example above

Name: String up to the space before the first ‘<’

Email: String within the ‘<>’ brackets

First name: String up to the first space, ‘+’, -7, _’, *, *.” and camel case encountered in the name field

Last name: String after the last space, ‘+’, ‘-, *_°, *,”, *.” and camel case encountered in the name field
User name: String up to the ‘@’ character in the email field

Additionally, we introduce a field ‘inverse first name’ whereby the last name of the author is assigned to
this attribute. In the case where there is a string without any delimiting character in the name field, the first
name and last name are replicated. For example, bharaththiruveedula <bharath_ves @hotmail.com>would
have ‘bharaththiruveedula’ replicated in the first, last and the name field.

In order to measure the distance between strings, we tested two common measures of string similarity,
the Levenshtein score and the Jaro-Winkler score [43]. Our experiments indicated that the Jaro-Winkler
similarity produces scores that are more reflective of actual similarity as verified by human experts than
the Levenshtein score. Therefore, we implemented the Jaro-Winkler score as the measure of similarity
throughout the rest of this study.

The Jaro Similarity is defined as

0, ifm=0

simj=q 1 < m m m—t) ,
| —+—+— otherwise
3\ si| sz m

where s; is the length of string i, m is the number of matching characters and ¢ is half the number of
transpositions.

The Jaro-Winkler Similarity modifies the Jaro similarity so that differences at the beginning of the string
have more significance than differences at the end. It is defined as

simy, = simj+1p(1 —sim;)

S. Amreen B. Bichescu, R. Bradley, T. Dey, Y. Ma, A. Mockus, S. Mousavi, and R. Zaretzki

where [is the length of a common prefix at the start of the string up to a maximum of four characters and
p (<=0.25) is a scaling factor for how much the score is adjusted upwards for having common prefixes.
. Author Distance Based on String Frequency: We count the number of occurrences of the attributes for
each author as defined in Section 1 i.e. name, first name, last name, user name and email for our dataset.
We calculate the similarity between author pairs, authors a; and a;, for each of these attributes as follows:

1
logig ———— if aj and a; are valid

Ssim = Jay X Ja,

—10 otherwise

We generate a list of 200 common strings of names, first names, last names and user names and emails
from the larger dataset of 9.4M authors (the first 10 shown in Table 2) and manually remove names that
appear to be legitimate, i.e. Lee, Chen, Chris, Daniel etc. We set string frequency similarity of a pair of
name or first name or last name or user name to -10 if at least one element of the pair belongs a string
identified as not legitimate. This was done in order to let the learning algorithm recognize the difference
between the highly frequent strings and strings that are not useful as author identifiers. We found that the
value for other highly frequent terms were significantly greater than -10.

. Author Distances Based on Fingerprints There are 4 additional distance measures we incorporate into
our study which address the behavioral attributes of authors: 1) Author similarity based on files touched,
when two authors identities have modified the same files there is a greater chance that they represent
the same entity. 2) Author similarity based on time zone, two author identities committing in the same
time zone indicate geographic proximity and, therefore, a higher similarity weight is given. 3) Author
similarity based on text, similarity in style of text between two author identities may indicate that they
are the same physical entity. 4) Gender, incorporating gender information helps us distinguish between
highly similar author identity strings. Quantitative operationalizations are given below.

a. Author similarity based on files touched: Each file is weighted using the number of authors that
have modified it. The file weight is defined as the inverse of the number of distinct authors who have
modified that file. The pairwise similarity between authors, a; and a,, is derived by summing over the
weights of the files touched by both authors. A similar metric was found to work well finding instances
of succession (when one developer takes over the work of another developer) [28]. In this metric, we
consider only the first 100 common authors for a given file.

1
file_-weight(Wy) = A—7whereA =lay,...,an|
P

Najay
adalaz = Wf,-there Ngia, = ‘fal r-]fozz|
=1

1

b. Author similarity based on time zone: We discovered 300 distinct time zones strings from the com-
mits and created a ‘author by time zone’ matrix that had the count of commits by an author in a given
time-zone. All time zones that had less than 2 entries were eliminated from further study. Each author
is therefore assigned a normalized time-zone vector (with 139 time zones) that represents the pattern
of his commits. Similar to the previous metric, we weighted each time zone by the inverse number of
authors who committed at least once in that time-zone. We multiply each author’s time zone vector by
the weight of the time zone. We define author i’s time-zone vector as:

1

a,-:Cai.—,
At

A Methodology for Measuring FLOSS Ecosystems 11

Here, C,, is the vector representing the commits of an author i in the different time zones and Ar is the
vector representing the number of authors in the different time zones. The pairwise similarity metric
between author a; and author a; is calculated as:

12dq,a, = cos_sim(ay,as)

where a; and a, are the authors’ respective vectors.

c. Text similarity: We use the Gensim’s ! implementation of the Doc2Vec [22] algorithm to generate
vectors that embed the semantics and style of the commits messages of each author. All commit mes-
sages for each individual who contributed at least once to one of the OpenStack projects were gathered
from the collection described above and a Doc2Vec model was built. We obtained a 200 dimensional
vector for each of the 16,007 authors in our dataset and calculated cosine similarity to find pairwise
similarity between authors.

d2vy,q, = cos_sim(ay,az)
d. Gender Similarity: We obtain the gender of the users as either Male, Female or Undetermined. The
similarity between author pairs are determined as follows:

0.5, if G4, or G4, = Undetermined
8Sayay; = 1, if Gal = Guz
0, if G4, # Ga,

where G;j represents the gender of author i.

1 1
e Phase 1 >l Phase2 —»l¢————————— Phase3 ——»I
1 |

Attach Output:
3 : ACTIVE « ”
fingerprint LEARNER CLASSIFIER Golden’

attributes Data
Supervised
Classifier

Define Create

predictors pairwise

for string comparison
comparison Compare.
Linkage ()

I’ \\
' :
: Confusion Get :
region €

: Mlg; M2 canonical : ‘Clean’ clusters Transitive
H label 1 by disaggregating Closure
! M2z M3 . |
: M1#=M3 manually H
i i

1
\ 1
‘\ ACTIVE LEARNER Y Extract largest

~ - - clusters

Fig. 2 Concept of the Disambiguation Process

4. Data Correction The data correction process can be divided into 3 broad phases as shown in Figure 2.

! https://radimrehurek.com/gensim/index.html

12 S. Amreen B. Bichescu, R. Bradley, T. Dey, Y. Ma, A. Mockus, S. Mousavi, and R. Zaretzki

a. Define predictors - In this phase we compute the string similarity, frequency similarity and behavioral
similarity. We use functions from the RecordLinkage library [38] to compute Jaro-Winkler similarities
of the defined attributes (name, first name, last name, email, username). We compute string similarity
between a pair of authors’ name, first name, last name, user name, email and the first author’s first
name to the 2nd author’s last name (we refer to this as the inverse first name). Based on our prelimi-
nary analysis we found many instances of developers using their names in both orders. In addition to
the string similarities based on these fields, we also include the term frequency metric, as is commonly
done in record matching literature. The high frequency values tend to carry less discriminative power
than infrequent email addresses or names. Finally, we include three fingerprint metrics - author simi-
larity based on files touched, time-zone similarity and commit log text similarity. This resulting matrix
data is used as an input to the next phase, the active learning process.

b. Active learning - This phase uses a preliminary classifier to extract a small set from large collection of
data and generate labels for further classification. Supervised classification requires ground truth data.
As noted earlier, it is extremely time consuming and error-prone to produce a large set of manually
classified data to serve as an input for a supervised classifier. Moreover, identifying a small subset of
instances so that the classifier would produce accurate results on the remainder of the data is also chal-
lenging. A concept called Active Learning [37] using a preliminary classifier helps us extract a small
set of author pairs that is viable for manual labeling, from the set of over 256M author pairs. To design
the preliminary classifier, we partition the data into ten parts and fit bootstrap aggregation (bagging)
models on three different combinations of nine parts and predict on one the ten parts. Each classifier
learns from manually classified pairs and outputs links or non-links for each author pair in the predic-
tion set. The three classifiers trained on different training subsets yield slightly different predictions
(links and no-links for each pair). The mismatch between predictions of two such classifiers indicates
instances where the classifier has large uncertainty (confusion regions). We conducted a probabilistic
manual classification on the cases in the confusion region of the classifier and extracted pairs where
links were assigned with full confidence i.e. probability = 1. Each pair was updated manually to in-
clude a canonical label chosen from among the existing author identities that had a proper name and
email address. This produces a preliminary set of training data for supervised classification.

c. Classification - In this phase we discuss supervised classification suitable for disambiguation, tran-
sitive closure applied on classifier output, extraction of clusters to correct, and dis-aggregation of
wrongly clustered individuals. Once the labeled dataset is created, we use it to train random forest
models which are commonly used in record matching literature. A 10-fold cross validation using this
method produced high precision and recall scores for the classifier. The final predictor involves a tran-
sitive closure on the pairwise links obtained from the classifier>. The result of the transitive closure is a
set of connected components with each cluster representing a single physical entity. Once the clusters
are obtained, we consider all clusters containing 10 or more elements since a significant portion of
such clusters had multiple developers grouped into a single component. The resulting 20 clusters -
44 elements in the largest and 10 elements in the smallest cluster among these, were then manually
inspected and grouped. This manual effort included the assessment of name, user name and email
similarity, projects they worked on, as well as looking up individual’s profiles online if names/emails
were not sufficient to assign them to a cluster with adequate confidence.

2 We found that more accurate predictors can be obtained by training the learner only on the matched pairs, since the transitive
closure typically results in some pairs that are extremely dissimilar, leading the learner to learn from them and predict many
more false positives

A Methodology for Measuring FLOSS Ecosystems 13

4.3 Handling Missing Data

In addition to the bad and/or incorrect data, the observational data collected for the different software ecosys-
tems often do not have observations for all the relevant variables [30, 44]. Generally, the missing data prob-
lem focuses on cases where a few observation values are missing for an otherwise observed variable [23],
however, when talking about missing data in this context, we have to take into consideration cases where a
number of variables might be completely unobserved as well. For example, if we are trying to measure the
popularity of a particular project in an ecosystem, the best possible measure would be the number of active
users. However, the number of active users is a quantity very hard to measure in practice, and the second
best measure, the number of downloads, is typically not tracked very accurately for most FLOSS software.
At this point, our choices are to either find a proxy measure for the popularity of a project or find a way to
estimate the unobserved variables.

As for the proxy measures, there a few options, e.g. the number of stars/watchers/forks for a GitHub
project [34, 16, 42], however, although these measures should closely correlate with the actual popularity
of the product, sometimes analyses done using these measures could end up finding some relationship that
is an artifact related to that particular measure, and is not reflective of the actual popularity. Because these
metrics are easily manipulated, they may also be deliberately biased and not representative.

A more appealing option, therefore, is to estimate the missing observations. In the more common case of
missing data estimation, only a few observations are missing for a variable, and the estimation can be done
by means of partial/full imputation and/or interpolation or extrapolation [23]. However, when a variable is
completely unobserved for a dataset, such techniques can not be used. In such a scenario, a set of alternative
methods are useful, as listed below:

e Factor analysis [11, 13, 25]: If we have measures for a set of variables that are likely to be affected by

a common set of unobserved variables, we can perform a method called factor analysis on the observed
variables to extract an estimate for the missing unobserved “factors”. This method, however, depends
on both a parametric probability model and assumes a particular relationship between the unobserved
variables and the multivariate observation.
With regard to the example of measuring the popularity (i.e. number of users) of a project, if we have
measurements for a set of variables (hypothetically) directly affected by the number of users (e.g. number
of crashes, downloads, or even forks or stars for a GitHub project), we can extract the maximum likelihood
factors from those variables (e.g. by using the factanal function in R3), which, under the assumption
that each observation is the sum of a linear combination of the underlying missing factors and a gaussian
noise component, should give an accurate estimate of the number of users.

e Prediction: If the scenario is such that the values of a variable are available only in certain situations, a
predictive model can be used for estimating the unobserved variable. For example, the number of users
for a particular software might be available only for a specific subset of releases. In this case, we may use
the complete observations for releases where the data is observed to train a model (e.g. linear regression
model or Random Forest) that can be used to predict the number users in cases where this quantity is not
observed.

o Hidden node detection using graphical models: If a graphical model is used for modeling the interrela-
tionship among the variables, an unobserved variable might be represented by a hidden node in the graph
and can be estimated using data from the variables that have connections to the hidden node [15, 17, 33].
Factor analysis may be viewed as a special case of this type of analysis.

3 https://www.statmethods.net/advstats/factor.html

14 S. Amreen B. Bichescu, R. Bradley, T. Dey, Y. Ma, A. Mockus, S. Mousavi, and R. Zaretzki

In order to measure the number of users for a software in this method, we first need to construct a
graphical model of dependence among all of the observed variables. Two strategies are usually used to
define the structure: 1) the graph represents dependencies obtained from domain experts, or 2) the graph
may initially be based on prior distributions about the parameters of the overall model. The data is then
used to calculate the posterior distribution and to make inference. The second approach makes minimal
a-priori assumptions about the model and focuses on the search for the best graphical representation for
a given dataset (structure learning). This is an NP-hard problem [7], but a number of different heuristic
structure learning algorithms are available [39].

After the model is constructed, one or more hidden nodes can be added to it. The standard approach is
adding one node at a time and optimizing its placement by optimizing the network score (generally BIC
score in such situations) at each step [4, 14].

Graphical models models have several advantages over regression models. To be precise, regression anal-
ysis is a very simple graphical model allowing one directed link from each independent variable to depen-
dent variable. Therefore, the more general approach of graphical models can help with multicollinearity
(which is a common problem in the software due to many of of the observed variables being highly
correlated) by linking independent variables.

5 Code and Knowledge Flow and Technical Dependencies

The most fundamental part of software supply chain or ecosystem is the networks of dependencies and
code or knowledge flows. The dependency network is based on technical dependencies. These can be
subdivided into several types. For example, a run-time dependency requires a library from another package to
be available when the program is run. Package dependencies in Debian are an example of such relationship.
A different type of dependency is build dependency, where a set of tools and include files may be needed in
order to compile and build a package. Optional dependencies usually denote the potential extension in the
functionality of a program if that dependency is satisfied. The code flow network represents the source code
copying. The knowledge flow network represents implicit exchange of information as developers modify
source code in sequence. A senior developer d; creates (or modifies) a set of source code files. Another
developer d; modifies a subset of these files, thus having to understand design decisions made by ds. This
mentor-follower knowledge flow can be quantified [28].

5.1 Constructing technical dependencies

As discussed above, different types of technical dependencies exist. Major types are dependencies required
to run software and dependencies required to build software. Each dependency may need to be obtained
differently for projects that are inside package managers such as deb or npm (and, thus, have metadata in the
package manager that explicitly specifies the dependencies) and projects outside package managers, where
dependencies can only be extracted based on the actual content of the code, configuration, and build scripts.

Dependencies within a specific package manager are recorded when a new package is added into package
manager or its dependencies change. For example, the dependency information for packages hosted on NPM
can be extracted from PACKGE . json file and is also stored in the NPM registry.

A Methodology for Measuring FLOSS Ecosystems

Different package managers may have different standards of

ally applicable to all package managers may not be possible.

We illustrate the proce-
dures of constructing the de-
pendency network by ex-
ploring R CRAN ecosystem.
R package can be scraped

E
nighsiEFEEREe

gt

defining dependencies, e.g. NPM has five
types of dependencies: dependencies, devDependencies, peerDependencies, bundledDependencies, and op-
tionalDependencies; while packages in R CRAN also have five (but not equivalent) types: depends, imports,
suggests, linkingto, and enhances. Defining standards for the categorization of dependencies that are gener-

]

ack gowd
["

jinrgentisfitont

3 eafier "=y i e TG Bemon
from R CRAN official web- i e, T
1 3 : b ;;”"%;‘ gt 10 S0 B reshaﬁpeznc
site which contains approx- € e ot i
i i tidyr stringg, .
imately 11K packages. We it o - T e,
nagfd 7 A brergm iterdtaistats splancs - 9Widgepemdsx BidBatEscale
used data from METACRAN* i e T e Mg
. . [/ dlase * s e Sl
which provides the latest R e i e Sinfics i, S
.. i Minpacklm ¢ rovnorms CoRPIUS! S WM
CRAN metadata containing it - : S
ht \;'T‘ . ol L ¥ Spdep i z.p- el
i i TR latticaE vtra LR e B et A inzhip 0P alldl
the dependency information. W e e ey
As we have mentioned in sec- fip/ i g ot e T vee SO
. qamisad e revmdmgmalresuma‘ e i i '”““"“'mm:’;msmm st
tion 4.2.1, there are five types ¢ il s 3 A
. TS g ik e atkkeachngapps tidywerse
of dependency keywords in e Skl S TR i
R CRAN and we consid- i e S e O e g »: = =
ered ‘imports’ and ‘depends’ ‘mmy Lt R e U
p P A v e Lo
as dependency, because pack- A i T gl i g
P Yy p Wi Blsgrammen o e
A . . mowgVis Polymom 21071 ved U
ages listed in ‘imports’ must TR e o o &
. . larkdomuraireg s plamt P
be installed in advance and o Lt T o r s T S e
. BHICE grable AL il run .
‘depends’5 is the old name for P ot enn s Viisiogeds Vo2
(34 b ggraptR utils
1mports’. S ongois & vagee
By creating a link from T o _ T P
By e s i e ggplgn e
individual package to each IO it A ot Ty e oy
g gt e e e

dependency in its ‘imports’
and ‘depends’, we construct
a dependency network for R
CRAN in Figure 3. Packages
with degree less than 20 are
removed which ends up with

Fig. 3 R CRAN dependency network.

421 (1.9%) nodes and 3235 (6.6%) edges in Figure 3. Node size is proportional to its betweenness centrality
value, and the color is based on modularization algorithm® of gephi. In Figure 3, numerous dependency links
are revealed among popular R CRAN packages. In particular, ‘ggplot2’, ‘Hmisc’, ‘reshape2’, ‘stringr’ and

‘Repp’ are core packages based on betweenness centrality.

Unfortunately, projects that are not a part of the registries of package managers may have no metadata that
allows easy identification of dependencies. Since such projects represent a bulk of projects, the dependen-
cies need to be extracted directly from the source/configuration/build code. For example, import statements

Tant
ShingiromanaREITET 0P bl Py

tedfies

4 METACRAN is a collection of services around the CRAN repository of R packages. https://www.r-pkg.org/about

5 Prior to the rollout of namespaces in R 2.14.0, Depends was the only way to ‘depend” on another package. Now, despite the

name, you should almost always use Imports, not Depends.
6 https://github.com/gephi/gephi/wiki/Modularity

16 S. Amreen B. Bichescu, R. Bradley, T. Dey, Y. Ma, A. Mockus, S. Mousavi, and R. Zaretzki

in Java or Python, use statements in Perl, include statement in C, or, as is the case for our study, library
statements for the R language.

Below is an example workflow to determine dependencies for all R files in all projects:

1. Identify all R-language files by extension (.r or .R) in the complete list of all files in the file-to-commit
map described above.

2. For each filename use filename to blob (file versions) map to obtain the content for all versions of the
R-language files obtained in Step 1.

3. Analyze the resulting set of blobs to find a statement indicating an install or a use of a package:

e install\.packages\ (.+x"PACKAGE".x\)
e library\ (.*[\"/]+x?PACKAGE [\"']%?.%\)
o require\ (.*[\"/]*x?PACKAGE [\"/]*?2.%\)

4. Use blob to commit map to obtain all commits that produced these blobs and then use the commit to
determine the date that the blob was created.

5. Use commit to project map to gather all projects that installed the relevant set of packages.

A similar approach can be applied to other languages and technologies with suitable modification in the
dependency extraction procedures, since different package managers, different languages, or different frame-
works might require alternative approaches to identify dependencies or the instances of use. Dependencies
can typically be detected in a programming language or build system dependent manner [36]. For example,
the dependency information of a python source file is listed in import statement; dependency information
of a C project is listed in header files; package dependency in Debian can be extracted by apt-cache depends
package-name

5.2 Constructing code flow networks

In FLOSS the code sharing is possible and welcome, unlike in proprietary software and is, perhaps, one of
the key advantages that brings rapid innovation with new projects building from components or copied code
of existing projects.

Code flow has been extensively investigated, albeit at a smaller scale. To determine instances of code flow
several approaches may be taken:

e Compare the strings representing the content of a source code file in the potential source and the potential
destination [18, 19, 1]
e Compare the strings representing the file name and the path [5, 6, 46]

Here we illustrate the first approach as it is largely language independent and allows detection for code
and non-code flow. When two files have a matching content, i.e., 3vi,vy : f) = f7, and f' and f? are files
from distinct projects, it is not unreasonable to assume that fvl1 and fvz2 were not created independently but
the code was copied. This apply if the unit of code is not an entire file, but only a part of file. From the
theoretical perspective we may produce false links (links where code flow does not exist, i.e., the content of
both files was created independently of each other) and also miss links where information does flow, as in
cases where the copied code was modified substantially before being committed to the repository.

We, therefore, need to quantify and minimize both of these potential errors. Whether we look at the file
content or file pathname, the erroneous links may be introduced if the two linked strings are similar (or
the same) purely by chance and the information was never shared. If we assume the string to be a random

A Methodology for Measuring FLOSS Ecosystems 17

sequence of characters, the chance that two strings of length n would match purely by chance is m™" where
m is the size of alphabet. We can easily eliminate false matches (make the chance of such matches negligibly
small) by ensuring that the string is of nontrivial length. For example, a random string with ten characters
(from alphabet of 26 letters) would match by chance with probability lower than 104, By considering links
that are based on strings exceeding such length we can ensure a very low probability of false matches.

Unfortunately the strings representing file content and file pathnames are not random for a variety of
reasons [6, 46, 26]:

file depth in a project is not random distributed (usually file depth varies between 2 to 5)

filenames are not always related to file content, e.g. foo

some filenames are quite common among projects, e.g. main.c

the content may be generated by a tool, therefore anyone using a tool will have exactly the same content.
the template may have been used and only small parts of the template have been modified.

We, therefore, have to add additional ways of eliminating false links from the supply chain network through
other means. For example, by identifying the reasons for false positives and removing links that are similar
to the identified reasons for false positives.

Once the presence of the link is established, the next question involves the direction of the code flow.
File creation time may serve such purpose. For Case 1, if the creation time of file f; precedes that of f; the
direction of flow should, in general, go from p; to p,. For Case 2, if the matching version of file f;(v;) was
created prior to f;(v;) the direction of flow should go from p; to p,.

The rationale for such approach would be that if a file F' is first created in project A and then copied to
project B, the creation time of file F' in project A is prior than that in project B, the project B is likely to be
downstream to project A because file F' was supplied to project B from Project A. It is possible that in some
cases the primary maintenance of file 7' may be transferred to Project B and Project A gets updates of file F/
from project B, but such instances could be detected by a more in-depth analysis of version history of file F
in both projects [5].

A detailed procedure to illustrate the constructing code flow network is discussed next.

5.2.1 Code flow network for ember.js

Front side web framework ember.js has been attracting many contributors over several years, which makes
it suitable to illustrate how complicated code flow network may be.

To create the code flow network we first collect all file names f and file versions f, in the form of their
SHAI digests from emberjs/ember.js project (E). We use project-To-filename map to obtain filesA = f € E
and project-To-blob map to obtain the file versions B = f, € E. For each file in A we then use filename-
To-project map to find all other the projects that contains this file name. Similarly, for each f, € B we use
blob-To-project map to find all other projects that contains this blob. This procedure creates links from E to
all projects that share a filename or a blob.

These initial links contain numerous false positives and need be filtered. Links created by file names that
start with a period are often created by IDE tools or programming language/script, so they should be removed
as they do represent code transfer from one project to another. It represents not code flow, but dependence
on the tool.

Links that are created by forked projects of Emberjs/ember.js also need to be removed because they are a
part of Emberjs/ember.js project. GitHub forks are created primarily to be able to contribute to the the main

18 S. Amreen B. Bichescu, R. Bradley, T. Dey, Y. Ma, A. Mockus, S. Mousavi, and R. Zaretzki

project via pull requests, not to start a new project. Again, these projects represent private branches and do
represent code flow but at a finer granularity than we consider at the moment.

In addition to the traditional definition of a forked project where the development is done in parallel with
no intention to merge projects, the repository of the code for Ubuntu/Debian distribution does represent an
example of downstream development done in order to maintain compatibility among the projects collected
into a single distribution.

Once false positives are eliminated, 54 projects have code flow to pr from ember.js. To understand the
patterns of code flow we categorized these projects into different groups.

Build tools: rake — makefile for Ruby on Rails.

Testing: qunit — a testing framework.

Runtime: jQuery — a JavaScript library.

Framework: epf — emberjs Persistence Foundation.

Prior incarnations: SproutCore/Amber.js — early name for the emberjs project.

Hard forks: innoarch/bricks.ui — a hard fork of emberjs that was then developed as a separate project.
Tutorials: cookbooks/nodjs — early code examples.

Package manager: package.json — a file for NPM package manager.

As we can see, these types of code flow have different causes: tools, libraries and frameworks, hard forks,
documentation templates, and distribution templates. Each type of code flow appears, therefore, to represent
a different phenomena and needs to be identified and investigated separately.

5.3 Constructing knowledge flow networks

Developer knowledge varies from developer to developer and depends on what they have worked on [31, 10].
A unit of work can be considered as experience atom [31] and approximated by developers’ modifications
to the source code. Each time a developer makes a change to a file, they have first to understand the design
decisions that went to the code they modify and, at the same time, their modification (be it a code fix or
additional functionality) implements their knowledge in the way the change is designed and implemented.
Thus, the knowledge of earlier developers, through code, flows to developers who modify the code later.
This observation can facilitate linking of developers trough the timing of the changes they make on files
modified in common. Using notation introduced above, let d,d; denote two developers. Let Fy, 4, be a set
of files modified by both developers. Let S; be the strength of expertise transferred. Let Ny, be the number
of changes developer d; made to file f (changes are made and counted through commits). Let FC(f,ds)
denote the time when developer d; made his/her first change to file f. Then the challenge of measuring the
strength of knowledge flow from senior developer to his/her subsequent developers can be approximated via
the following expression [28]:

Nta, +Nya,

Sl = L YN

f‘{ fededj

(D

The formula can be interpreted as follows: the strength of expertise flow from developer d; to developer
d; is based on the sum of their contribution ratio to files in which developer d’s first change is earlier than
developer d;’s. Files changed mostly by others where the two developers had contributed little would not

A Methodology for Measuring FLOSS Ecosystems 19

contribute much to the measure, but files where at least one developer made significant fraction of changes
would contribute a lot.

For example, knowledge
flow network in a popular
web front side framework —
emberjs is shown in Figure 4.
The node size is proportional
to its betweenness central-
ity value, and the color is
based on modularization al-
gorithm’ of gephi. Note that i
several labels have been ad- peter Wagenet|,petér.vi‘fagé‘h.et@gmail.com
justed to fit the page size. W e Y
The most productive devel-
opers are annotated via their
name and email. More infor- :
mation on ember.js can be b Rober‘tJackson|‘ro£ﬁer‘t:w.Jackson@me.com
found in 5.2.1. In Figure 4, mam;w’;;;w@gmmm /_“:,,: e
there are several big clus- ! r
ters of developers centered
around each core developer.
More specifically, ‘Peter Wa-
genet’ and ‘Robert Jackson’
are leading developers with
vast number of successors.
Clusters are linked by shared
followers although the den-
sity of such links is low, indi-
cating that majority of devel-
opers in ember.js tend to fol-
low the work of a single core
developer.

‘Yehuda Katz| wycats@gm8il. comy’ o
Erik Bryn|erik: BpyR@gmail.com

Ty

Kris Selden|kris.selden@amail com
N 14 e d

Chatles Jolley|charles@sproutcore.com
s. . "O! ; P

o
tilde.io &

Matthen Bealeimats beale@madhatted. com
o IS

Stefan Penriarstetan.penref@gmail. com

Fig. 4 Knowledge Flow Network for Emberjs

6 Example Application: Increasing Knowledge Redundancy

As developers who author source code become experts for that code, what happens if they, for some reason,
stop maintaining the project? Fixing bugs or adding functionality to such code will become harder and fault
prone [32, 3, 29, 28]. If an organization can identify the files that are likely to be left with no maintainer
in the future, it may choose to assign their employees as additional maintainers to reduce the risk. It would
seem that increasing the number (redundancy) of maintainers may reduce the risk. It may be possible to
increase this knowledge redundancy by borrowing ideas from data redundancy. Erasure codes are forward
error corrections codes used to prevent stored data from being lost work by increasing data redundancy. The

7 https://github.com/gephi/gephi/wiki/Modularity

20 S. Amreen B. Bichescu, R. Bradley, T. Dey, Y. Ma, A. Mockus, S. Mousavi, and R. Zaretzki

main idea of the erasure codes is that the data of size B is divided into k segments and then the k segments
are further converted into n segments such that n = k + m, where m is the amount of redundancy added to
the original data. As a result, up to m segment failures can be tolerated.

Adding redundancy to the existing knowledge for each file can help mitigate the risk of lost knowledge
resulting from developer turnover [35, 45]. Let’s denote files as f, assigned maintainers as m, and original
developers as d. Lets assume that we have [files, J developers, and Z backup maintainers.

We represent developer d; and file f; relationship as a developer matrix

D, . — 1 if dj maintains f;
4ifi=Y 0 otherwise

For illustration, we include an example below, where developer d is responsible for file f; but is not respon-
sible for file f>. Then M is:
o2 fz- i
d:101--1
D=|d:011:--0

d:001--0

Then, the number of developers responsible for file f; is the sum of the column corresponding to file f;,
which in the example above is:

VA LB
R‘[l 13 1]

We refer to this vector R as knowledge redundancy.

Once the risky files (with low knowledge redundancy) are identified, the next step in our risk-mitigation
approach is to assign the files at risk to backup maintainers. Let’s define a threshold ¢ that represents the
maximum number of files that each backup maintainer is capable of being responsible for. We also define
as the minimum amount of redundancy that can be tolerated. Similar to matrix M above, we construct matrix
M’ for the backup maintainers, in which each row is a vector representing the files that the corresponding
backup maintainer is responsible for.

Lz fi
S om0
M =

mz:0 1 1 -1

Files with fewer than r developers need one or more backup maintainers, but the sum of each row of M’
can not exceed the maintainer capacity threshold #. We first calculate the number of file/maintainer slots that
need to be assigned to the backup maintainers. That number is slots = rI — Y,;_; ;min(R;,r). Obviously,
we need at least max(r — min, r;, slots /t) maintainers. To minimize the number of backup maintainers, we
can always target the current maintainers to be responsible for some of the files that they are not currently in
charge of, or count on volunteers.

The problem of optimally assigning files to backup maintainers can be cast as a mathematical integer
program. Below is a possible formulation, that can be solved with readily available solvers such as CPLEX
or Gurobi.

A Methodology for Measuring FLOSS Ecosystems 21

I
maximize) R;
i=1

J z
subjectto Y M[i|[j]+ Y M'[Z][j]>r, j=1,...1
i=1 z=1

i
and
I

Y M) <t,z=1,...Z
i=1
We can refine the objective to minimize the average or maximum risk resulting from discontinued con-
tribution r developers together by adding conditions that are based on the structural properties of M. Using
this approach it is possible increase the knowledge redundancy of each file to at least r (e.g. some file might
already have more that r maintainers).

7 Conclusions

The ability to understand software ecosystems is limited by the ability to measure the relevant properties of
these ecosystems and the conceptual framework needed to do the measurement. Many of the modeling or
intervention techniques described in this book need a sound measurement framework. We have argued for
the need to look at FLOSS from a global perspective and through the supply chain conceptual framework.
We describe a concrete way to obtain highly detailed data of the entire FLOSS ecosystem, described ways to
clean, correct, and augment basic version control data with metrics needed to produce knowledge and code
flow networks and create models that, through increased visibility, can help developers and organizations
make better decisions resulting in a healthy and productive FLOSS ecosystem.

References

1. Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine Bier. Clone detection using abstract
syntax trees. In Software Maintenance, 1998. Proceedings., International Conference on, pages 368-377. IEEE, 1998.

2. Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand Swaminathan. Mining email social networks. In
Proceedings of the 2006 International Workshop on Mining Software Repositories, MSR ’06, pages 137-143, New York,
NY, USA, 2006. ACM.

3. Christian Bird, Nachiappan Nagappan, Premkumar Devanbu, Harald Gall, and Brendan Murphy. Putting it all together:
Using socio-technical networks to predict failures. In /7th International Symposium on Software Reliability Engineering
(ISSRE 09), Bengaluru-Mysuru, India, 2009.

4. Wray L Buntine. Operations for learning with graphical models. Journal of artificial intelligence research, 2:159-225,
1994.

5. Hung-Fu Chang and Audris Mockus. Constructing universal version history. In ICSE’06 Workshop on Mining Software
Repositories, pages 76-79, Shanghai, China, May 22-23 2006.

6. Hung-Fu Chang and Audris Mockus. Evaluation of source code copy detection methods on FreeBSD. In 5th Working
Conference on Mining Software Repositories. ACM Press, May 10-11 2008.

7. David Maxwell Chickering. Learning bayesian networks is np-complete. Learning from data: Artificial intelligence and
statistics V, 112:121-130, 1996.

8. Martin L. Christopher. Logistics and Supply Chain Management. London: Pitman Publishing, 1992.

9. William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A comparison of string metrics for matching names and
records. In KDD WORKSHOP ON DATA CLEANING AND OBJECT CONSOLIDATION, 2003.

22

10.

11.
12.

13.

14.
15.

16.

17.
18.

19.

20.

21.

22.

23.
24.

25.
26.

217.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.
39.

S. Amreen B. Bichescu, R. Bradley, T. Dey, Y. Ma, A. Mockus, S. Mousavi, and R. Zaretzki

Thomas Fritz, Gail C Murphy, Emerson Murphy-Hill, Jingwen Ou, and Emily Hill. Degree-of-knowledge: Modeling a
developer’s knowledge of code. ACM Transactions on Software Engineering and Methodology (TOSEM), 23(2):14, 2014.
Benjamin Fruchter. Introduction to factor analysis. 1954.

Daniel German and Audris Mockus. Automating the measurement of open source projects. In Proceedings of the 3rd
workshop on open source software engineering, pages 63-67, 2003.

Richard L Gorsuch. Common factor analysis versus component analysis: Some well and little known facts. Multivariate
Behavioral Research, 25(1):33-39, 1990.

David Heckerman. A tutorial on learning with bayesian networks. microsoft research. 1995.

Kurt Hornik, Friedrich Leisch, and Achim Zeileis. Jags: A program for analysis of bayesian graphical models using gibbs
sampling. In Proceedings of DSC, volume 2, pages 1-1, 2003.

Oskar Jarczyk, Btazej Gruszka, Szymon Jaroszewicz, Leszek Bukowski, and Adam Wierzbicki. Github projects. quality
analysis of open-source software. In International Conference on Social Informatics, pages 80-94. Springer, 2014.
Michael Irwin Jordan. Learning in graphical models, volume 89. Springer Science & Business Media, 1998.

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: a multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions on Software Engineering, 28(7):654-670, 2002.

Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. An empirical study of code clone genealogies. In ACM
SIGSOFT Software Engineering Notes, volume 30, pages 187-196. ACM, 2005.

Bernard J La Londe and James M Masters. Emerging logistics strategies: blueprints for the next century. International
Journal of physical distribution & logistics management, 24(7):35-47, 1994.

Douglas M Lambert, James R Stock, and Lisa M Ellram. Fundamentals of logistics management. McGraw-Hill/Irwin,
1998.

Quoc Le and Tomas Mikolov. Distributed representation of sentences and documents. In Proceedings of the 31 st Interna-
tional Conference on Machine Learning, volume 32, Beijing,China, 2014. JMLR.

Roderick JA Little and Donald B Rubin. Statistical analysis with missing data, volume 333. John Wiley & Sons, 2014.
Yuxing Ma, Tapajit Dey, Jarred M Smith, Nathan Wilder, and Audris Mockus. Crowdsourcing the discovery of software
repositories in an educational environment. PeerJ Preprints, 4:¢2551v1.

Roderick P McDonald. Factor analysis and related methods. Psychology Press, 2014.

Audris Mockus. Large-scale code reuse in open source software. In ICSE’07 Intl. Workshop on Emerging Trends in FLOSS
Research and Development, Minneapolis, Minnesota, May 21 2007.

Audris Mockus. Amassing and indexing a large sample of version control systems: towards the census of public source
code history. In 6th IEEE Working Conference on Mining Software Repositories, May 16—17 2009.

Audris Mockus. Succession: Measuring transfer of code and developer productivity. In 2009 International Conference on
Software Engineering, Vancouver, CA, May 12-22 2009. ACM Press.

Audris Mockus. Organizational volatility and its effects on software defects. In ACM SIGSOFT / FSE, pages 117-126,
Santa Fe, New Mexico, November 7-11 2010.

Audris Mockus. Engineering big data solutions. In /ICSE’14 FOSE, pages 85-99, 2014.

Audris Mockus and James Herbsleb. Expertise browser: A quantitative approach to identifying expertise. In 2002 Inter-
national Conference on Software Engineering, pages 503-512, Orlando, Florida, May 19-25 2002. ACM Press.
Nachiappan Nagappan, Brendan Murphy, and Victor R. Basili. The influence of organizational structure on software
quality: an empirical case study. In ICSE 2008, pages 521-530, 2008.

Judea Pearl. Bayesian networks. Department of Statistics, UCLA, 2011.

Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. A large scale study of programming languages
and code quality in github. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 155-165. ACM, 2014.

Peter Rigby, Yue Cai Zhu, Samuel M. Donadelli, and Audris Mockus. Quantifying and mitigating turnover-induced knowl-
edge loss: Case studies of chrome and a project at avaya. In ICSE’16, pages 1006-1016, Austin, Texas, May 2016. ACM.
Andreas Szbjgrnsen, Jeremiah Willcock, Thomas Panas, Daniel Quinlan, and Zhendong Su. Detecting code clones in
binary executables. In Proceedings of the eighteenth international symposium on Software testing and analysis, pages
117-128. ACM, 2009.

Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication using active learning. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 02, pages 269-278, New York,
NY, USA, 2002. ACM.

Murat Sariyar and Andreas Borg. The recordlinkage package: Detecting errors in data. The R Journal, 2(1):61-67, 2010.
Marco Scutari. Learning bayesian networks in r, an example in systems biology, 2013.
http://www.bnlearn.com/about/slides/slides-useRconf13.pdf.

A Methodology for Measuring FLOSS Ecosystems 23

40.

41.

42.

43.

44,

45.

46.

Giuseppe Silvestri, Jie Yang, Alessandro Bozzon, and Andrea Tagarelli. Linking accounts across social networks: the case
of stackoverflow, github and twitter. In International Workshop on Knowledge Discovery on the WEB, pages 41-52, 2015.
Samuel L. Ventura, Rebecca Nugent, and Erica R.H. Fuchs. Seeing the non-starts: (some) sources of bias in past disam-
biguation approaches and a new public tool leveraging labeled records. Elsevier, Feb 2015.

Radu Vlas, William Robinson, and Cristina Vlas. Evolutionary software requirements factors and their effect on open
source project attractiveness. 2017.

William E Winkler. Overview of record linkage and current research directions. Technical report, BUREAU OF THE
CENSUS, 2006.

Qimu Zheng, Audris Mockus, and Minghui Zhou. A method to identify and correct problematic software activity data:
Exploiting capacity constraints and data redundancies. In ESEC/FSE’15, pages 637-648, Bergamo, Italy, 2015. ACM.
Minghui Zhou and Audris Mockus. Developer fluency: Achieving true mastery in software projects. In ACM SIGSOFT /
FSE, pages 137-146, Santa Fe, New Mexico, November 7-11 2010.

Jiaxin Zhu, Minghui Zhou, and Audris Mockus. The relationship between folder use and the number of forks: A case study
on github repositories. In ESEM, pages 30:1-30:4, Torino, Italy, September 2014.

