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Abstract

FLOSS ecosystem as a whole, is a critical component of world’s computing infrastructure, yet not well

understood. In order to understand it well, we need to measure it first. We, therefore, aim to provide a frame-

work for measuring key aspects of the entire FLOSS ecosystem. We first consider the FLOSS ecosystem

through lens of a supply chain. The concept of supply chain is the existence of series of interconnceted par-

ties/affiliates each contributing unique elements and expertise so as to ensure a final solution is accessible to

all interested parties. This perspective has been extremely successful in helping allowing companies to cope

with multifaceted risks caused by the distributed decision making in their supply chains, especially as they

have become more global. Software ecosystems, similarly, represent distributed decisions in supply chains

of code and author contributions, suggesting that relationships among projects, developers, and source code

have to be measured. We then describe a massive measurement infrastructure involving discovery, extraction,

cleaning, correction, and augmentation of publicly available open source data from version control systems

and other sources. We then illustrate how the key relationships among the nodes representing developers,

projects, changes, and files can be accurately measured, how to handle absence of measures for user base

in version control data, and, finally, illustrate how such measurement infrastructure can be used to increase

knowledge resilience in FLOSS.
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1 Introduction

Open source is, perhaps, the least understood among the revolutionary inventions of the humankind. This

is, perhaps, not very surprising because just two decades ago it was a mere curiosity, yet now, with its

exponential growth, it has reached all corners of the society. This lack of understanding however, is not

excusable, because much of the societies critical infrastructure and the ability to innovate depends on the

heath of FLOSS (Free/Libre and Open Source Software).

Here, we attempt to alleviate this gap in understanding by proposing a measurement infrastructure capable

of encompassing the entire FLOSS ecosystem in the large. To do that, we start from introducing conceptual

framework of supply chains and adapting it to the unique features of the FLOSS ecosystem. In particular, we

define software supply chain as the collection of developers and software projects producing new versions of

the source code. This supply chain analogy provides us with key concepts of the abstract network involving

nodes that represent developers, changes, projects, and files. The production process involves creating new

versions of files via atomic increments that deliver specific value (commits). We then proceed to operational-

ize these and additional concepts from bottom up, i.e., from publicly available atomic records representing

code changes.

The process of collecting and extracting this public data is involved due to lack of a single global registry

of all FLOSS projects, the need to extract data from git database, need to store a petabyte of the data, and

the need to covert it into a form so that the necessary measures could be calculated.

Before we can engage in the construction of the supply chain relationships, we need accurate identifi-

cation of developers and projects and the relationships among them. Developers’ identities are often mis-

spelled, while projects may represent temporary forks of other projects. Both issues need to be addressed.

Once the basic data has been cleaned and corrected in this way, we can engage in estimation of direct rela-

tionships that involve five basic types:

• Authorship links file(s) modified with the author and includes basic data in a commit: date, and commit

message

• Version history links changes (and, therefore, versions of a file) trough a parent child relationship with

each commit having zero or more parent commits.

• Static dependence links source code files via package use or call-flow dependencies.

• Project inclusion links projects (VCS repositories) with changes, and all versions of files contained

therein.

• Code copy dependencies identify instances of code between specific versions of files and, in conjunction

with version history, can be used to create Universal Version History that breaks project boundaries.

In combination, these dependencies induce additional networks, for example, the knowledge flow graph

of developers connected trough files they modify in succession or upstream/downstream collaboration graph

linking developers working on projects that have static dependencies.

Once the data for software supply chains is produced, the types of attributes that are directly available, are

limited and we, typically, need to augment basic data with quantities that may reside in other data sources,

for example, responsiveness that resides in projects’ issue trackers or Q&A websites, or may be entirely

unavailable, for example, the number of end users and, therefore, has to be obtained from models.

Finally, we illustrate how the constructed measurements can be used to increase resilience of the FLOSS

ecosystem to the knowledge loss by assigning observers or maintainers to the strategically selected projects

or source code files.

The remainder of this chapter is organized as follows: In section 2 the definition of FLOSS supply chains

and general approaches used to optimize FLOSS supply chains’ network are provided. In section 3 the
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process of collecting and storing data from software projects hosted on various open source platforms is

described. Section 4 composed the data extraction process, storage and cleaning through disambiguating

author identities. Section 5 depicts operationalization of software supply chain by constructing code reuse,

knowledge flow and dependency networks. In section 6 we provide a redundancy based approach to have

more maintainers responsible for in-danger-files to reduce the the knowledge loss in the FLOSS ecosystem.

2 Supply Chains in FLOSS

The key output of software development activity is the source code. Therefore software development is

reflected in the way the source code is created and modified. Although various individual and groups of

projects have been well studied, it only gives partial results and conclusions on the propagation and reuse

of source code in the large. As in traditional supply chains, the developers in FLOSS make individual deci-

sions with some cooperative action, hence the analytical findings from traditional supply chains may help in

FLOSS. Second, we have a complicated network of technical dependencies with code and and knowledge

flows akin to traditional supply chains, making the analogies less complicated. Third, the emerging phenom-

ena, for example, the lack of transparency and visibility, appear to be as, or more, important in FLOSS as

in traditional supply chains. Fourth, unlike traditional supply chains, FLOSS has very detailed information

about the production and dependencies. We, therefore, hope that detailed data with supply chain analytical

framework may bring transformative insights not just for FLOSS supply chains, but for all supply chains

generally. We, therefore, would like to systematically analyze the entire network among all the repositories

on all source forges, revealing upstream to downstream relations, the flow of code and the flow of knowledge

within and among projects.

2.1 Defining FLOSS Supply Network

La Londe et. al. proposed a supply chain as a set of firms that pass materials forward [20], Lambert et. al.

define a supply chain as the alignment of firms that brings products or services to market [21], Christopher [8]

described supply chain as the network of organizations that are involved, through upstream and downstream

linkages, in the different processes and activities that produce value in the form of products and services

delivered to the ultimate consumer. A common comprehension is that the supply chain is a set of three or

more companies directly linked by one or more of the upstream or downstream flows of products, services,

finance, and information from a source to a customer.

As software product developers increasingly depend on external suppliers, supply chains emerge, as in

other industries. Upstream suppliers provide assets downstream to as more complex products emerge. As

open source software proliferates, developers of new software tend to build on top of mature projects or

packages with only a small amount of modifications, which leads to the emergence of software supply chain

in OSS.

A supply chain with individual developers and groups (software projects or packages) representing “com-

panies” producing new versions of the source code (e.g., files, modules, frameworks, or entire distributions).

The upstream and downstream flow from projects to end users is represented by the dependencies and shar-

ing of the source code and by the contributions via patches, issues, and exchange of information. This is our

definition of software supply chain. Supply chains lead to two important concepts.
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Visibility is information that developers have about the inputs, processes, sources and practices used to

bring the product to consumers/market. This includes complete supply chain visibility including traceability

for the entire supply chain. Visibility is, generally, inwardly/developer focused. Visibility refers to how far

you can see upward beyond direct upstream, i.e. how many layers of dependency you can see from a software

in supply chain.

Transparency is information that developers share with their consumers about the inputs, processes,

sources and practices used to bring the product to the consumer. It is more outwardly focused/from the con-

sumer perspective than visibility. How much each the developer or project is providing publicly (including

the ability to interpret that information by others) is a form of transparency.

2.2 Notation Used for FLOSS Supply Network

In traditional supply chain, producers are considered as nodes of a graph and the flow of information or

materials as links. Based on the definition of software supply chain and the ability to measure it, we use the

following notation for key concepts of software supply chain throughout the chapter:

1. A Node is a

• Developer - an individual producer, will be denoted as d. Developer author commits c with each

commit having a single author d = A(c).
• A version of a file - a component work/information inserted into a project, will be denoted as fv ∈ p.

File versions are produced by commits with each commit producing zero or more file versions.

• Project - a group of commits (a composition of work by individual developers) in the same repository.

Will be denoted as p = {c : c ∈ p}. Since each commit produces a set of file versions, a project is also

associated with all these file versions: p = { fv : fv ∈ c,c ∈ p} and all authors of the commits.

2. There are different types of links

• A technical dependence (upstream/downstream project ld(p1, p2))
• Code flow file, i.e. file that has been copied in the past but is now being maintained in parallel lc( f , f 1) :

∃ f 1,vi,v j such that f 1v j
= fvi

.

• Authorship: la(d, f ) : ∃c such that d = A(c) ∧ fv ∈ c

3 Computing Infrastructure for Measuring FLOSS Supply Chains

FLOSS projects are not only scattered around the world, they also tend to be scattered around the web,

hence, in order to collect data for measurement we need to discover where the relevant data sources are

located [27, 26]. Historically, a variety of version control and issue tracking tools were used, but many of the

projects can be now found on a few large platforms like GitHub, BitBucket, SourceForge, and GitLab and

most projects have converged to Git as their version control system.



A Methodology for Measuring FLOSS Ecosystems 5

3.1 Discovery

While many projects have moved to (or at least are mirrored on) the main forges such as GitHub, a sizable

number of projects are hosted on other forges. The number of such forges is not small. Some of these do not

have stable APIs, and the rest each requires an unique API to discover all public projects on that forge. This

makes the task of gathering information from these forges fairly challenging. However, although collecting

information from these sources require slightly different approaches (which makes it difficult to use one

single script for mining), the task itself isn’t complicated and the only result required is the list of git URLs

that could be used to mirror the data as described below. This makes the task an excellent candidate for

crowdsourcing [27, 24]. Table 1 (from [24]) lists the active forges and an estimate of how many projects are

hosted in each of them at the time of the study.

Table 1 Active Forges (other than GitHub and BitBucket) with Public Repositories [24]

Forge Name Forge URL API Repositories Retrieved

CloudForge cloudforge.com Private API 42

SourceForge sourceforge.net REST API 48,000 - 50,000

launchpad launchpad.net API 36,860

Assembla assembla.com/home No about 70,000

CodePlex codeplex.com REST API 100,000

Savannah savannah.gnu.org No 3613

CCPForge ccpforge.cse.rl.ac.uk/gf No 126

Jenkins ci.jenkins-ci.org REST API 106,336

Repository Hosting Respositoryhosting.com No <88

KForge pythonhosted.org/kforge API 81,000

Phabricator phabricator.org Conduit API about 10,000

Fedorahosted fedorahosted.org/web No 914

JavaForge javaforge.com No 7672

Kiln fogcreek.com/kiln No 43

SVNRepository SVNRepository.com No 15

Pikacode pikacode.com No 2

Planio plan.io No 26

GNA! gna.org No 1326

JoomlaCode joomlacode.org/gf REST API 971

tuxfamily tuxfamily.org No 209

pastebin pastebin.com No about 1800

GitLab gitlab.com No about 57,000

Eclipse eclipse.org/home/index.php No 214

Turnkey GNU turnkeylinux.org/all No 100

JavaNet home.java.net/projects/alpha No 1583

Stash atlassian.com/software/bitbucket/server REST API 5400

Transifex transifex.com No 5400

Tigris tigris.org No 678

Apart from discovering open source projects from forges that host VCS, software projects information

can also be found in the metadata of popular Linux distributions. In particular [27], Gentoo, Debian, Slack-

ware, OpenSuse, and RedHat distributions and package repositories such as rpmforge, provided a list of

popular packages. Moreover, there are directories of open source projects that list home page URLs and

other information about the projects. RawMeat (no longer in operation) and Free Software Foundation were
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two prominent examples of such directories. While they do not host VCSs or even provide URLs to a VCS,

they do provide pointers to source code snapshots in tarballs and project home pages.

3.2 Retrieval, Extraction, and Schema for Analytics

Source code changes in software projects are recorded in a VCS (version control system). Git is presently the

most common version control system, sometimes with historic data imported from SVN or other VCS used

in the past. Code changes are typically organized into commits that make changes to one or more source

code files. Git repositories hosted on open source platforms can be retrieved by cloning them (functionality

provided by git clone --mirror) to local servers.

The retrieved git database stores the full history of changes/commits made to a project. A Git commit

records author, commit time, a pointer to the projects’ file system, a pointer to the parent change, and the

text of the commit message. Internally, the Git database has three primary types of objects: commits, trees,

and blobs. Each object is represented by its sha1 value that can be used as a key to find its content. The

content of a blob object is a content of a specific version of a file. The content of a tree object is a folder

in a file system represented by the list of sha1s for the blobs and the trees (subfolders) contained in it. A

commit contains sha1 for the corresponding tree, a list of parent commit sha1s, an author id, a committer id,

a commit timestamp, and the commit message.

We extract git objects from each project and store them in the common database. This reduces the amount

of storage needed approximately 100 times (which is an average number of projects a git object belongs to),

and allows us to conduct analysis of the relationships. We have 2.8B blobs, 3.1B trees, and 0.8B commits

collected from 40 million projects.

Git is not a system that stores data in a way that makes analysis easy. We, therefore, re-organize and

re-structure it in an efficient way to facilitate various analytics related to the above described concepts of

software supply chain. The data must be stored in a way that allows fast and efficient data lookup for billions

of objects. An appropriate structure for that is a hashtable or a key-value database optimized to retrieve fast

by exact value of a key. For example, a developer as the key and the list of commits authored by the developer

as value. This allows a fast response when a requesting what commits one specific developer made. Another

example is the link between a commit and files modified by the commit. This is accomplished by comparing

the tree (and all subtrees) of the commit with the tree of the parent commit. The new blobs created indicate

new fvs. Since the complete tree and subtrees can be fairly large, the operation is computationally non-trivial

and, because such relationships are commonly needed, is worth precomputing.

We compared the performance of several key-value databases and found that TokyoCabinet to be the

most competitive one in terms of tradeoffs between speed and storage needs. We break the keys by part of

their sha1 into up to 128 different databases to facilitate parallel (hadoop-like) processing when we need to

iterate over the entire database and to reduce the size of each individual database. These key-value maps are

constructed to map developers to authored commits and files, commits to projects (and back), commits to

their children commits, blobs created (and back to commit), and other lookup tables needed to construct the

software supply chain.

The overall diagram of the data workflow is shown in Figure 1. The calendar time goes down, while the

data layers from raw to analytics go from left to right.
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Fig. 1 Data retrieval diagram

4 Correction and Augmentation

Operational data extracted from software repositories [30] often contain incorrect and missing values. For

example, and most importantly, primary author id, a key field for many analyses, often suffers from errors

such as multiple or erroneous spellings, identity changes that occur over time, group identities, and other

issues. These problems arise because primary author information in a Git commit (which we study here)

depends on an entry specifying user name and email in a Git configuration file for the specific computer a

developer is using at the moment. Once the Git commit is recorded, it is immutable like other Git objects,

and can not be changed. Once a developer pushes their commits from the local to remote repository, that

author information remains. A developer may have multiple laptops, workstations, and work on various

servers, and it is possible and, in fact, likely, that on at least one of these computers the Git configuration file

has a different spelling of their name and email. It is also not uncommon to see the commits done under an

organizational alias, thus obscuring the identity of the author.

Since developers serve as nodes in the supply chain network, it is of paramount importance to determine

developer identities accurately. Erroneous data in developer identifiers can result in a misrepresented network

undermining the value of constructing an OSS supply chain network. These issues have been recognized in

software engineering [12, 2] and beyond [9]. However, identity resolution to identify actual developers based

on data from software repositories is non-trivial mainly due to

1. Lack of ground truth - absence of validated maps from the recorded to actual identities. Similar disam-

biguation approaches have been applied on census data [9] or patent data [41] whereby over 150,000

samples of ground truth data was available.

2. Data Volume - millions of developer identities in hundreds of millions of code commits.

To avoid these challenges, studies in the software engineering field tend to focus on individual projects

or groups of projects where the number of IDs that need to be disambiguated is small enough for manual

validation. Most traditional record matching techniques use string similarity of identifiers (typically login

credentials) i.e. name, username and email similarity. A broad spectrum of approaches ranging from direct
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string comparisons of name and email [40, 2] to supervised learning based on string similarity [41] have

been used to solve the identity problem in the past. However, such methods do not resolve all issues that are

particular to data generated by version control systems. Therefore, in order to propose solutions or to tailor

existing identity resolution approaches, we need a better understanding of the nature of the errors associated

with the records related to developer identity.

4.1 Problems with the data

We inspected the collection of more than nine million author strings collected from over 500M Git commits

and looked at random subsets of author IDs to understand how or why these errors occur. We identified these

errors and broadly categorized them into the following three kinds - synonyms, homonyms and missing data

and determined the common reasons causing errors to be injected into the system.

1. Synonyms: These kinds of errors are introduced when a person uses different strings for names, user-

names or email addresses. For example, ‘utsav dusad <utsavdusad@gmail.com>’ and ‘utsavdusad <ut-

savdusad@gmail.com>’ are identified as synonyms.

Spelling mistakes such as ‘Paul Luse <paul.e.luse@intel.com>’ and ‘paul luse <paul.e.luse@itnel.com>’

are also classified as synonyms, as ‘itnel’ is likely to be a misspelling of ‘intel’. Developers may change

their name over time, for example, after marriage, creating a synonym.

2. Homonyms: Homonym errors are introduced when multiple people use the same organizational email

address. For example, the Id ‘saper <saper@saper.info>’ may be used by multiple entities in the organi-

zation. For example ’Marcin Cieslak <saper@saper.info>’ is an entity who may have committed under

the above organizational alias.

Template credentials from tools is another source that might introduce homonym errors in the data as

some users may not enter values for name and/or an email field. For example, ‘Your Name <vpono-

maryov@mirantis.com>’ which may belong to author ‘vponomaryov <vponomaryov@mirantis.com>’.

Sometimes developers do not want their identities or their email address to be seen, resulting in intention-

ally anonymous name, such as, John Doe or email, such as devnull@localhost

3. Missing Data: Errors are also introduced when a user leaves the name or email field empty, for example,

‘chrisw <unknown>’.

A look at the most common, names and user names shows that many of them were unlikely to be names

of individuals. For example, the most frequent names in the dataset such as ’nobody’, ‘root’, and ’Adminis-

trator’ are a result of homonym errors as shown in Table 2.

4.2 Disambiguation Approach

Traditional record linkage methodology and identity linking in software [2] splits identity strings into several

parts. Our approach splits the information in the author string into several fields representing the structure of

that string and defines similarity metrics for all author pairs. We also incorporate the term frequency measure

for each of the attributes in a pair. Finally, we add similarity between behavioral fingerprints for all pairs of

authors in the dataset.
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Table 2 Data Overview: The 10 most frequent names and emails

Name Count First Name Count Last Name Count Email Count User Name Count

unknown 140859 unknown 140875 unknown 140865 <blank> 16752 root 72655

root 66905 root 66995 root 67004 none@none 9576 nobody 35574

nobody 35141 David 45091 nobody 35141 devnull@localhost 8108 github 19778

Ubuntu 18431 Michael 40199 Ubuntu 18560 student@epicodus.com 5914 ubuntu 18683

(no author) 6934 nobody 35142 Lee 10826 unknown 3518 info 18634

nodemcu-custom-build 6073 Daniel 34889 Wang 10641 you@example.com 2596 <blank> 17826

Alex 5602 Chris 29167 Chen 9792 anybody@emacswiki.org 2518 me 14312

System Administrator 4216 Alex 28410 Smith 9722 = 1371 admin 12612

Administrator 4198 Andrew 26016 Administrator 8668 Unknown 1245 mail 11253

<blank> 4185 John 25882 User 8622 noreply 913 none 11004

1. Author Distances Based on String Similarity: Each author string is stored in the following format

- “name <email>”, e.g. “Hong Hui Xiao <xiaohhui@cn.ibm.com>”. For our analysis, we define the

following attributes for each user.

a. Author: String as extracted from source as shown in the example above

b. Name: String up to the space before the first ‘<’

c. Email: String within the ‘<>’ brackets

d. First name: String up to the first space, ‘+’, ‘-’, ‘ ’, ‘,’, ‘.’ and camel case encountered in the name field

e. Last name: String after the last space, ‘+’, ‘-’, ‘ ’, ‘,’, ‘.’ and camel case encountered in the name field

f. User name: String up to the ‘@’ character in the email field

Additionally, we introduce a field ‘inverse first name’ whereby the last name of the author is assigned to

this attribute. In the case where there is a string without any delimiting character in the name field, the first

name and last name are replicated. For example, bharaththiruveedula <bharath ves@hotmail.com>would

have ‘bharaththiruveedula’ replicated in the first, last and the name field.

In order to measure the distance between strings, we tested two common measures of string similarity,

the Levenshtein score and the Jaro-Winkler score [43]. Our experiments indicated that the Jaro-Winkler

similarity produces scores that are more reflective of actual similarity as verified by human experts than

the Levenshtein score. Therefore, we implemented the Jaro-Winkler score as the measure of similarity

throughout the rest of this study.

The Jaro Similarity is defined as

sim j =







0, if m = 0

1

3

(

m

|s1|
+

m

|s2|
+

m− t

m

)

otherwise

where si is the length of string i, m is the number of matching characters and t is half the number of

transpositions.

The Jaro-Winkler Similarity modifies the Jaro similarity so that differences at the beginning of the string

have more significance than differences at the end. It is defined as

simw = sim j + l p(1− sim j)
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where l is the length of a common prefix at the start of the string up to a maximum of four characters and

p (<= 0.25) is a scaling factor for how much the score is adjusted upwards for having common prefixes.

2. Author Distance Based on String Frequency: We count the number of occurrences of the attributes for

each author as defined in Section 1 i.e. name, first name, last name, user name and email for our dataset.

We calculate the similarity between author pairs, authors a1 and a2, for each of these attributes as follows:

fsim =







log10

1

fa1
× fa2

if a1 and a2 are valid

−10 otherwise

We generate a list of 200 common strings of names, first names, last names and user names and emails

from the larger dataset of 9.4M authors (the first 10 shown in Table 2) and manually remove names that

appear to be legitimate, i.e. Lee, Chen, Chris, Daniel etc. We set string frequency similarity of a pair of

name or first name or last name or user name to -10 if at least one element of the pair belongs a string

identified as not legitimate. This was done in order to let the learning algorithm recognize the difference

between the highly frequent strings and strings that are not useful as author identifiers. We found that the

value for other highly frequent terms were significantly greater than -10.

3. Author Distances Based on Fingerprints There are 4 additional distance measures we incorporate into

our study which address the behavioral attributes of authors: 1) Author similarity based on files touched,

when two authors identities have modified the same files there is a greater chance that they represent

the same entity. 2) Author similarity based on time zone, two author identities committing in the same

time zone indicate geographic proximity and, therefore, a higher similarity weight is given. 3) Author

similarity based on text, similarity in style of text between two author identities may indicate that they

are the same physical entity. 4) Gender, incorporating gender information helps us distinguish between

highly similar author identity strings. Quantitative operationalizations are given below.

a. Author similarity based on files touched: Each file is weighted using the number of authors that

have modified it. The file weight is defined as the inverse of the number of distinct authors who have

modified that file. The pairwise similarity between authors, a1 and a2, is derived by summing over the

weights of the files touched by both authors. A similar metric was found to work well finding instances

of succession (when one developer takes over the work of another developer) [28]. In this metric, we

consider only the first 100 common authors for a given file.

f ile weight(Wf ) =
1

A f

,where A = |a1, ...,an|

ada1a2
=

na1a2

∑
i=1

Wfi ,where na1a2
= | fa1

∩ fa2
|

b. Author similarity based on time zone: We discovered 300 distinct time zones strings from the com-

mits and created a ‘author by time zone’ matrix that had the count of commits by an author in a given

time-zone. All time zones that had less than 2 entries were eliminated from further study. Each author

is therefore assigned a normalized time-zone vector (with 139 time zones) that represents the pattern

of his commits. Similar to the previous metric, we weighted each time zone by the inverse number of

authors who committed at least once in that time-zone. We multiply each author’s time zone vector by

the weight of the time zone. We define author i’s time-zone vector as:

ai =Cai
.

1

AT

,
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a. Define predictors - In this phase we compute the string similarity, frequency similarity and behavioral

similarity. We use functions from the RecordLinkage library [38] to compute Jaro-Winkler similarities

of the defined attributes (name, first name, last name, email, username). We compute string similarity

between a pair of authors’ name, first name, last name, user name, email and the first author’s first

name to the 2nd author’s last name (we refer to this as the inverse first name). Based on our prelimi-

nary analysis we found many instances of developers using their names in both orders. In addition to

the string similarities based on these fields, we also include the term frequency metric, as is commonly

done in record matching literature. The high frequency values tend to carry less discriminative power

than infrequent email addresses or names. Finally, we include three fingerprint metrics - author simi-

larity based on files touched, time-zone similarity and commit log text similarity. This resulting matrix

data is used as an input to the next phase, the active learning process.

b. Active learning - This phase uses a preliminary classifier to extract a small set from large collection of

data and generate labels for further classification. Supervised classification requires ground truth data.

As noted earlier, it is extremely time consuming and error-prone to produce a large set of manually

classified data to serve as an input for a supervised classifier. Moreover, identifying a small subset of

instances so that the classifier would produce accurate results on the remainder of the data is also chal-

lenging. A concept called Active Learning [37] using a preliminary classifier helps us extract a small

set of author pairs that is viable for manual labeling, from the set of over 256M author pairs. To design

the preliminary classifier, we partition the data into ten parts and fit bootstrap aggregation (bagging)

models on three different combinations of nine parts and predict on one the ten parts. Each classifier

learns from manually classified pairs and outputs links or non-links for each author pair in the predic-

tion set. The three classifiers trained on different training subsets yield slightly different predictions

(links and no-links for each pair). The mismatch between predictions of two such classifiers indicates

instances where the classifier has large uncertainty (confusion regions). We conducted a probabilistic

manual classification on the cases in the confusion region of the classifier and extracted pairs where

links were assigned with full confidence i.e. probability = 1. Each pair was updated manually to in-

clude a canonical label chosen from among the existing author identities that had a proper name and

email address. This produces a preliminary set of training data for supervised classification.

c. Classification - In this phase we discuss supervised classification suitable for disambiguation, tran-

sitive closure applied on classifier output, extraction of clusters to correct, and dis-aggregation of

wrongly clustered individuals. Once the labeled dataset is created, we use it to train random forest

models which are commonly used in record matching literature. A 10-fold cross validation using this

method produced high precision and recall scores for the classifier. The final predictor involves a tran-

sitive closure on the pairwise links obtained from the classifier2. The result of the transitive closure is a

set of connected components with each cluster representing a single physical entity. Once the clusters

are obtained, we consider all clusters containing 10 or more elements since a significant portion of

such clusters had multiple developers grouped into a single component. The resulting 20 clusters -

44 elements in the largest and 10 elements in the smallest cluster among these, were then manually

inspected and grouped. This manual effort included the assessment of name, user name and email

similarity, projects they worked on, as well as looking up individual’s profiles online if names/emails

were not sufficient to assign them to a cluster with adequate confidence.

2 We found that more accurate predictors can be obtained by training the learner only on the matched pairs, since the transitive

closure typically results in some pairs that are extremely dissimilar, leading the learner to learn from them and predict many

more false positives
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4.3 Handling Missing Data

In addition to the bad and/or incorrect data, the observational data collected for the different software ecosys-

tems often do not have observations for all the relevant variables [30, 44]. Generally, the missing data prob-

lem focuses on cases where a few observation values are missing for an otherwise observed variable [23],

however, when talking about missing data in this context, we have to take into consideration cases where a

number of variables might be completely unobserved as well. For example, if we are trying to measure the

popularity of a particular project in an ecosystem, the best possible measure would be the number of active

users. However, the number of active users is a quantity very hard to measure in practice, and the second

best measure, the number of downloads, is typically not tracked very accurately for most FLOSS software.

At this point, our choices are to either find a proxy measure for the popularity of a project or find a way to

estimate the unobserved variables.

As for the proxy measures, there a few options, e.g. the number of stars/watchers/forks for a GitHub

project [34, 16, 42], however, although these measures should closely correlate with the actual popularity

of the product, sometimes analyses done using these measures could end up finding some relationship that

is an artifact related to that particular measure, and is not reflective of the actual popularity. Because these

metrics are easily manipulated, they may also be deliberately biased and not representative.

A more appealing option, therefore, is to estimate the missing observations. In the more common case of

missing data estimation, only a few observations are missing for a variable, and the estimation can be done

by means of partial/full imputation and/or interpolation or extrapolation [23]. However, when a variable is

completely unobserved for a dataset, such techniques can not be used. In such a scenario, a set of alternative

methods are useful, as listed below:

• Factor analysis [11, 13, 25]: If we have measures for a set of variables that are likely to be affected by

a common set of unobserved variables, we can perform a method called factor analysis on the observed

variables to extract an estimate for the missing unobserved ”factors”. This method, however, depends

on both a parametric probability model and assumes a particular relationship between the unobserved

variables and the multivariate observation.

With regard to the example of measuring the popularity (i.e. number of users) of a project, if we have

measurements for a set of variables (hypothetically) directly affected by the number of users (e.g. number

of crashes, downloads, or even forks or stars for a GitHub project), we can extract the maximum likelihood

factors from those variables (e.g. by using the factanal function in R3), which, under the assumption

that each observation is the sum of a linear combination of the underlying missing factors and a gaussian

noise component, should give an accurate estimate of the number of users.

• Prediction: If the scenario is such that the values of a variable are available only in certain situations, a

predictive model can be used for estimating the unobserved variable. For example, the number of users

for a particular software might be available only for a specific subset of releases. In this case, we may use

the complete observations for releases where the data is observed to train a model (e.g. linear regression

model or Random Forest) that can be used to predict the number users in cases where this quantity is not

observed.

• Hidden node detection using graphical models: If a graphical model is used for modeling the interrela-

tionship among the variables, an unobserved variable might be represented by a hidden node in the graph

and can be estimated using data from the variables that have connections to the hidden node [15, 17, 33].

Factor analysis may be viewed as a special case of this type of analysis.

3 https://www.statmethods.net/advstats/factor.html
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In order to measure the number of users for a software in this method, we first need to construct a

graphical model of dependence among all of the observed variables. Two strategies are usually used to

define the structure: 1) the graph represents dependencies obtained from domain experts, or 2) the graph

may initially be based on prior distributions about the parameters of the overall model. The data is then

used to calculate the posterior distribution and to make inference. The second approach makes minimal

a-priori assumptions about the model and focuses on the search for the best graphical representation for

a given dataset (structure learning). This is an NP-hard problem [7], but a number of different heuristic

structure learning algorithms are available [39].

After the model is constructed, one or more hidden nodes can be added to it. The standard approach is

adding one node at a time and optimizing its placement by optimizing the network score (generally BIC

score in such situations) at each step [4, 14].

Graphical models models have several advantages over regression models. To be precise, regression anal-

ysis is a very simple graphical model allowing one directed link from each independent variable to depen-

dent variable. Therefore, the more general approach of graphical models can help with multicollinearity

(which is a common problem in the software due to many of of the observed variables being highly

correlated) by linking independent variables.

5 Code and Knowledge Flow and Technical Dependencies

The most fundamental part of software supply chain or ecosystem is the networks of dependencies and

code or knowledge flows. The dependency network is based on technical dependencies. These can be

subdivided into several types. For example, a run-time dependency requires a library from another package to

be available when the program is run. Package dependencies in Debian are an example of such relationship.

A different type of dependency is build dependency, where a set of tools and include files may be needed in

order to compile and build a package. Optional dependencies usually denote the potential extension in the

functionality of a program if that dependency is satisfied. The code flow network represents the source code

copying. The knowledge flow network represents implicit exchange of information as developers modify

source code in sequence. A senior developer ds creates (or modifies) a set of source code files. Another

developer d j modifies a subset of these files, thus having to understand design decisions made by ds. This

mentor-follower knowledge flow can be quantified [28].

5.1 Constructing technical dependencies

As discussed above, different types of technical dependencies exist. Major types are dependencies required

to run software and dependencies required to build software. Each dependency may need to be obtained

differently for projects that are inside package managers such as deb or npm (and, thus, have metadata in the

package manager that explicitly specifies the dependencies) and projects outside package managers, where

dependencies can only be extracted based on the actual content of the code, configuration, and build scripts.

Dependencies within a specific package manager are recorded when a new package is added into package

manager or its dependencies change. For example, the dependency information for packages hosted on NPM

can be extracted from PACKGE.json file and is also stored in the NPM registry.
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Different package managers may have different standards of defining dependencies, e.g. NPM has five

types of dependencies: dependencies, devDependencies, peerDependencies, bundledDependencies, and op-

tionalDependencies; while packages in R CRAN also have five (but not equivalent) types: depends, imports,

suggests, linkingto, and enhances. Defining standards for the categorization of dependencies that are gener-

ally applicable to all package managers may not be possible.

Fig. 3 R CRAN dependency network.

We illustrate the proce-

dures of constructing the de-

pendency network by ex-

ploring R CRAN ecosystem.

R package can be scraped

from R CRAN official web-

site which contains approx-

imately 11K packages. We

used data from METACRAN4

which provides the latest R

CRAN metadata containing

the dependency information.

As we have mentioned in sec-

tion 4.2.1, there are five types

of dependency keywords in

R CRAN and we consid-

ered ‘imports’ and ‘depends’

as dependency, because pack-

ages listed in ‘imports’ must

be installed in advance and

‘depends’5 is the old name for

‘imports’.

By creating a link from

individual package to each

dependency in its ‘imports’

and ‘depends’, we construct

a dependency network for R

CRAN in Figure 3. Packages

with degree less than 20 are

removed which ends up with

421 (1.9%) nodes and 3235 (6.6%) edges in Figure 3. Node size is proportional to its betweenness centrality

value, and the color is based on modularization algorithm6 of gephi. In Figure 3, numerous dependency links

are revealed among popular R CRAN packages. In particular, ‘ggplot2’, ‘Hmisc’, ‘reshape2’, ‘stringr’ and

‘Rcpp’ are core packages based on betweenness centrality.

Unfortunately, projects that are not a part of the registries of package managers may have no metadata that

allows easy identification of dependencies. Since such projects represent a bulk of projects, the dependen-

cies need to be extracted directly from the source/configuration/build code. For example, import statements

4 METACRAN is a collection of services around the CRAN repository of R packages. https://www.r-pkg.org/about
5 Prior to the rollout of namespaces in R 2.14.0, Depends was the only way to ‘depend” on another package. Now, despite the

name, you should almost always use Imports, not Depends.
6 https://github.com/gephi/gephi/wiki/Modularity
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in Java or Python, use statements in Perl, include statement in C, or, as is the case for our study, library

statements for the R language.

Below is an example workflow to determine dependencies for all R files in all projects:

1. Identify all R-language files by extension (.r or .R) in the complete list of all files in the file-to-commit

map described above.

2. For each filename use filename to blob (file versions) map to obtain the content for all versions of the

R-language files obtained in Step 1.

3. Analyze the resulting set of blobs to find a statement indicating an install or a use of a package:

• install\.packages\(.*"PACKAGE".*\)

• library\(.*[\"’]*?PACKAGE[\"’]*?.*\)

• require\(.*[\"’]*?PACKAGE[\"’]*?.*\)

4. Use blob to commit map to obtain all commits that produced these blobs and then use the commit to

determine the date that the blob was created.

5. Use commit to project map to gather all projects that installed the relevant set of packages.

A similar approach can be applied to other languages and technologies with suitable modification in the

dependency extraction procedures, since different package managers, different languages, or different frame-

works might require alternative approaches to identify dependencies or the instances of use. Dependencies

can typically be detected in a programming language or build system dependent manner [36]. For example,

the dependency information of a python source file is listed in import statement; dependency information

of a C project is listed in header files; package dependency in Debian can be extracted by apt-cache depends

package-name

5.2 Constructing code flow networks

In FLOSS the code sharing is possible and welcome, unlike in proprietary software and is, perhaps, one of

the key advantages that brings rapid innovation with new projects building from components or copied code

of existing projects.

Code flow has been extensively investigated, albeit at a smaller scale. To determine instances of code flow

several approaches may be taken:

• Compare the strings representing the content of a source code file in the potential source and the potential

destination [18, 19, 1]

• Compare the strings representing the file name and the path [5, 6, 46]

Here we illustrate the first approach as it is largely language independent and allows detection for code

and non-code flow. When two files have a matching content, i.e., ∃v1,v2 : f 1
v1
= f 2

v2
and f 1 and f 2 are files

from distinct projects, it is not unreasonable to assume that f 1
v1

and f 2
v2

were not created independently but

the code was copied. This apply if the unit of code is not an entire file, but only a part of file. From the

theoretical perspective we may produce false links (links where code flow does not exist, i.e., the content of

both files was created independently of each other) and also miss links where information does flow, as in

cases where the copied code was modified substantially before being committed to the repository.

We, therefore, need to quantify and minimize both of these potential errors. Whether we look at the file

content or file pathname, the erroneous links may be introduced if the two linked strings are similar (or

the same) purely by chance and the information was never shared. If we assume the string to be a random
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sequence of characters, the chance that two strings of length n would match purely by chance is m−n where

m is the size of alphabet. We can easily eliminate false matches (make the chance of such matches negligibly

small) by ensuring that the string is of nontrivial length. For example, a random string with ten characters

(from alphabet of 26 letters) would match by chance with probability lower than 10−14. By considering links

that are based on strings exceeding such length we can ensure a very low probability of false matches.

Unfortunately the strings representing file content and file pathnames are not random for a variety of

reasons [6, 46, 26]:

• file depth in a project is not random distributed (usually file depth varies between 2 to 5)

• filenames are not always related to file content, e.g. foo

• some filenames are quite common among projects, e.g. main.c

• the content may be generated by a tool, therefore anyone using a tool will have exactly the same content.

• the template may have been used and only small parts of the template have been modified.

We, therefore, have to add additional ways of eliminating false links from the supply chain network through

other means. For example, by identifying the reasons for false positives and removing links that are similar

to the identified reasons for false positives.

Once the presence of the link is established, the next question involves the direction of the code flow.

File creation time may serve such purpose. For Case 1, if the creation time of file fi precedes that of f j the

direction of flow should, in general, go from p1 to p2. For Case 2, if the matching version of file fi(vi) was

created prior to f j(v j) the direction of flow should go from p1 to p2.

The rationale for such approach would be that if a file F is first created in project A and then copied to

project B, the creation time of file F in project A is prior than that in project B, the project B is likely to be

downstream to project A because file F was supplied to project B from Project A. It is possible that in some

cases the primary maintenance of file F may be transferred to Project B and Project A gets updates of file F

from project B, but such instances could be detected by a more in-depth analysis of version history of file F

in both projects [5].

A detailed procedure to illustrate the constructing code flow network is discussed next.

5.2.1 Code flow network for ember.js

Front side web framework ember.js has been attracting many contributors over several years, which makes

it suitable to illustrate how complicated code flow network may be.

To create the code flow network we first collect all file names f and file versions fv in the form of their

SHA1 digests from emberjs/ember.js project (E). We use project-To-filename map to obtain files A = f ∈ E

and project-To-blob map to obtain the file versions B = fv ∈ E. For each file in A we then use filename-

To-project map to find all other the projects that contains this file name. Similarly, for each fv ∈ B we use

blob-To-project map to find all other projects that contains this blob. This procedure creates links from E to

all projects that share a filename or a blob.

These initial links contain numerous false positives and need be filtered. Links created by file names that

start with a period are often created by IDE tools or programming language/script, so they should be removed

as they do represent code transfer from one project to another. It represents not code flow, but dependence

on the tool.

Links that are created by forked projects of Emberjs/ember.js also need to be removed because they are a

part of Emberjs/ember.js project. GitHub forks are created primarily to be able to contribute to the the main
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project via pull requests, not to start a new project. Again, these projects represent private branches and do

represent code flow but at a finer granularity than we consider at the moment.

In addition to the traditional definition of a forked project where the development is done in parallel with

no intention to merge projects, the repository of the code for Ubuntu/Debian distribution does represent an

example of downstream development done in order to maintain compatibility among the projects collected

into a single distribution.

Once false positives are eliminated, 54 projects have code flow to pr from ember.js. To understand the

patterns of code flow we categorized these projects into different groups.

• Build tools: rake — makefile for Ruby on Rails.

• Testing: qunit — a testing framework.

• Runtime: jQuery — a JavaScript library.

• Framework: epf — emberjs Persistence Foundation.

• Prior incarnations: SproutCore/Amber.js — early name for the emberjs project.

• Hard forks: innoarch/bricks.ui — a hard fork of emberjs that was then developed as a separate project.

• Tutorials: cookbooks/nodjs — early code examples.

• Package manager: package.json — a file for NPM package manager.

As we can see, these types of code flow have different causes: tools, libraries and frameworks, hard forks,

documentation templates, and distribution templates. Each type of code flow appears, therefore, to represent

a different phenomena and needs to be identified and investigated separately.

5.3 Constructing knowledge flow networks

Developer knowledge varies from developer to developer and depends on what they have worked on [31, 10].

A unit of work can be considered as experience atom [31] and approximated by developers’ modifications

to the source code. Each time a developer makes a change to a file, they have first to understand the design

decisions that went to the code they modify and, at the same time, their modification (be it a code fix or

additional functionality) implements their knowledge in the way the change is designed and implemented.

Thus, the knowledge of earlier developers, through code, flows to developers who modify the code later.

This observation can facilitate linking of developers trough the timing of the changes they make on files

modified in common. Using notation introduced above, let ds,d j denote two developers. Let Fds,d j
be a set

of files modified by both developers. Let S2 be the strength of expertise transferred. Let N f ds
be the number

of changes developer ds made to file f (changes are made and counted through commits). Let FC( f ,ds)
denote the time when developer ds made his/her first change to file f . Then the challenge of measuring the

strength of knowledge flow from senior developer to his/her subsequent developers can be approximated via

the following expression [28]:

S2(ds,d j) = ∑

f :







f ∈ Fds,d j

FC( f ,d j)> FC( f ,ds)

N f ds
+N f d j

∑i N f di

(1)

The formula can be interpreted as follows: the strength of expertise flow from developer ds to developer

d j is based on the sum of their contribution ratio to files in which developer ds’s first change is earlier than

developer d j’s. Files changed mostly by others where the two developers had contributed little would not
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contribute much to the measure, but files where at least one developer made significant fraction of changes

would contribute a lot.

Fig. 4 Knowledge Flow Network for Emberjs

For example, knowledge

flow network in a popular

web front side framework –

emberjs is shown in Figure 4.

The node size is proportional

to its betweenness central-

ity value, and the color is

based on modularization al-

gorithm7 of gephi. Note that

several labels have been ad-

justed to fit the page size.

The most productive devel-

opers are annotated via their

name and email. More infor-

mation on ember.js can be

found in 5.2.1. In Figure 4,

there are several big clus-

ters of developers centered

around each core developer.

More specifically, ‘Peter Wa-

genet’ and ‘Robert Jackson’

are leading developers with

vast number of successors.

Clusters are linked by shared

followers although the den-

sity of such links is low, indi-

cating that majority of devel-

opers in ember.js tend to fol-

low the work of a single core

developer.

6 Example Application: Increasing Knowledge Redundancy

As developers who author source code become experts for that code, what happens if they, for some reason,

stop maintaining the project? Fixing bugs or adding functionality to such code will become harder and fault

prone [32, 3, 29, 28]. If an organization can identify the files that are likely to be left with no maintainer

in the future, it may choose to assign their employees as additional maintainers to reduce the risk. It would

seem that increasing the number (redundancy) of maintainers may reduce the risk. It may be possible to

increase this knowledge redundancy by borrowing ideas from data redundancy. Erasure codes are forward

error corrections codes used to prevent stored data from being lost work by increasing data redundancy. The

7 https://github.com/gephi/gephi/wiki/Modularity
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main idea of the erasure codes is that the data of size B is divided into k segments and then the k segments

are further converted into n segments such that n = k+m, where m is the amount of redundancy added to

the original data. As a result, up to m segment failures can be tolerated.

Adding redundancy to the existing knowledge for each file can help mitigate the risk of lost knowledge

resulting from developer turnover [35, 45]. Let’s denote files as f , assigned maintainers as m, and original

developers as d. Lets assume that we have I files, J developers, and Z backup maintainers.

We represent developer d j and file fi relationship as a developer matrix

Dd j fi =

{

1 i f d j maintains fi

0 otherwise

}

For illustration, we include an example below, where developer d1 is responsible for file f1 but is not respon-

sible for file f2. Then M is:

D =















f1 f2 f3 · · · fI

d1 : 1 0 1 · · · 1

d2 : 0 1 1 · · · 0
...

dJ : 0 0 1 · · · 0















Then, the number of developers responsible for file fi is the sum of the column corresponding to file fi,

which in the example above is:

R =

[

f1 f2 f3 · · · fI

1 1 3 · · · 1

]

We refer to this vector R as knowledge redundancy.

Once the risky files (with low knowledge redundancy) are identified, the next step in our risk-mitigation

approach is to assign the files at risk to backup maintainers. Let’s define a threshold t that represents the

maximum number of files that each backup maintainer is capable of being responsible for. We also define r

as the minimum amount of redundancy that can be tolerated. Similar to matrix M above, we construct matrix

M′ for the backup maintainers, in which each row is a vector representing the files that the corresponding

backup maintainer is responsible for.

M′ =











f1 f2 f3 · · · fI

m1 : 1 1 0 · · · 1
...

mZ : 0 1 1 · · · 1











Files with fewer than r developers need one or more backup maintainers, but the sum of each row of M′

can not exceed the maintainer capacity threshold t. We first calculate the number of file/maintainer slots that

need to be assigned to the backup maintainers. That number is slots = rI −∑i=1...I min(Ri,r). Obviously,

we need at least max(r−mini ri,slots/t) maintainers. To minimize the number of backup maintainers, we

can always target the current maintainers to be responsible for some of the files that they are not currently in

charge of, or count on volunteers.

The problem of optimally assigning files to backup maintainers can be cast as a mathematical integer

program. Below is a possible formulation, that can be solved with readily available solvers such as CPLEX

or Gurobi.
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maximize
I

∑
i=1

Ri

subject to
J

∑
i=1

M[i][ j]+
Z

∑
z=1

M′[z][ j]≥ r, j = 1, ..., I

and
I

∑
i=1

M′[z][i]≤ t, z = 1, ...,Z

We can refine the objective to minimize the average or maximum risk resulting from discontinued con-

tribution r developers together by adding conditions that are based on the structural properties of M. Using

this approach it is possible increase the knowledge redundancy of each file to at least r (e.g. some file might

already have more that r maintainers).

7 Conclusions

The ability to understand software ecosystems is limited by the ability to measure the relevant properties of

these ecosystems and the conceptual framework needed to do the measurement. Many of the modeling or

intervention techniques described in this book need a sound measurement framework. We have argued for

the need to look at FLOSS from a global perspective and through the supply chain conceptual framework.

We describe a concrete way to obtain highly detailed data of the entire FLOSS ecosystem, described ways to

clean, correct, and augment basic version control data with metrics needed to produce knowledge and code

flow networks and create models that, through increased visibility, can help developers and organizations

make better decisions resulting in a healthy and productive FLOSS ecosystem.
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