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ABSTRACT

Background: As software development becomes more interdepen-

dent, unique relationships among software packages arise and form

complex software ecosystems. Aim: We aim to understand the be-

havior of these ecosystems better through the lens of software

supply chains and model how the effects of software dependency

network affect the change in downloads of Javascript packages.

Method: We analyzed 12,999 popular packages in NPM, between

01-December-2017 and 15-March-2018, using Linear Regression

and Random Forest models and examined the effects of predictors

representing different aspects of the software dependency supply

chain on changes in numbers of downloads for a package. Result:

Preliminary results suggest that the count and downloads of up-

stream and downstream runtime dependencies have a strong effect

on the change in downloads, with packages having fewer, more

popular packages as dependencies (upstream or downstream) likely

to see an increase in downloads. This suggests that in order to

interpret the number of downloads for a package properly, it is

necessary to take into account the peculiarities of the supply chain

(both upstream and downstream) of that package. Conclusion: Fu-

ture work is needed to identify the effects of added, deleted, and

unchanged dependencies for different types of packages, e.g. build

tools, test tools.
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1 INTRODUCTION

The usefulness and success of a software, as for other products in

the market, is reflected by its usage. A true measure of popularity,

or in other words usage, of a software would be the number of

active users for it. Unless software licenses are sold and carefully

tracked, the number of active users is virtually impossible to mea-

sure directly and accurately. The number of downloads is, perhaps,

the closest approximation for the popularity of a software. NPM

(node package manager), which is package manager for JavaScript

packages, does track the number of downloads for the packages

and makes the data publicly available, unlike most other package

managers.

Like most software packages, the JavaScript packages distributed

by NPM have a dependency structure, i.e. one package may have

other packages as runtime and/or development dependencies (other

types of dependencies also exist). This dependency network influ-

ences the number of downloads of the individual packages, be-

cause when one package is installed by a user, all of its dependen-

cies are also downloaded and installed automatically (unless they

are cached). The number of JavaScript packages on NPM exceeds

600K, therefore analyzing the complete dependency network for

the whole NPM ecosystem is a challenge. The dependencies listed

for a package are direct dependencies, however, those dependencies

might have their own dependencies. This complex interconnection

forms a dependency network that can be considered a software

supply chain, with the entire set of recursive dependencies of pack-

age being upstream from it, and the packages that are recursively

dependent on it being downstream.

In a nutshell we’d like to know if the supply chain has effect on

downloads:

RQ: Do the number and downloads of upstream and down-

stream dependencies help predict the downloads for popu-

lar JavaScript packages in NPM?

We collected data from npms.io and obtained daily, weekly,

monthly, and yearly download numbers for all NPM packages.

We focus on predicting monthly downloads, because the daily

and weekly downloads for most packages exhibit large variations,

which, presumably, are random in nature, and we do not have suffi-

cient history to predict yearly downloads for most packages. We

collected snapshots of the statistics on all packages roughly every

2 weeks between 01-December-2017 and 15-March-2018, and used

the data from a snapshot to predict the number of downloads for the

packages over the next month. To ensure as little overlap as possible,

we did not use the data from a snapshot to predict the number of

downloads in the next snapshot, which is 2 weeks apart, but looked

at the one after that, which is roughly 1 month apart. Also, since the

actual number of downloads varies drastically among packages, we
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use the logarithm of the ratio of downloads in next month and the

downloads of the previous month as our response variable. To focus

on the effect of the supply chain aspects we consider only packages

with at least one upstream and one downstream dependency.

To answer the RQ we used both linear regression and random

forest models. Our preliminary findings suggest that both the num-

ber and the popularity (measured by the number of downloads) of

the dependencies are some of the most important predictors for the

change in downloads for NPM packages. These models can help in-

terpret the download counts and reasons that affect the usage of the

package. Our findings also suggest that the download number can

be affected (or manipulated) through dependencies and frequent

updates (probably leading to cache misses).

In Section 2, we present the related work in this field. In Section 3,

we describe the data. The data analysis and modeling approaches

used for the study, and the results of the analysis are described in

Section 4. In Section 5, the implications of the result are presented

and the ideas for future work are discussed.

2 RELATEDWORK
The term łsoftware supply chainž has been used in 1995 [8]. The

concept has since been used for addressing economic and manage-

ment issues in software engineering [6], for facilitating the Software

Factory development environment introduced by Microsoft [7] and

elsewhere. The primary use of software supply chain has been for

identifying and managing risks related to the software development

process [4, 9]. In this study, we are trying to use the dependency

network (the supply chain) for understanding and predicting the

change of popularity of NPM packages.

The topic of software popularity hasn’t seen much attention,

possibly due to the lack of reliable popularity measures. Stars for

GitHub projects were used to identify the factors impacting popular-

ity of GitHub projects [3]. The relationship between popularity of

mobile apps and their code repository was studied in, e.g. [5], where

the ratings of the mobile apps were used as a measure of popularity.

Studies of code repositories, e.g. [12] considers popularity of Python

projects on GitHub, [15] studies the relationship between the folder

structure of a GitHub project and its popularity, [2] analyze the

popularity, interoperability, and impact of various programming

languages.

The NPM ecosystem is one of the most active and dynamic

JavaScript ecosystems and [13] presents its dependency structure

and package popularity. [14] studies the dependency, specifically

the lag in updating dependencies in various NPMpackages while [1]

looked into the use of trivial packages as part of package depen-

dencies for different NPM packages.

We are not aware of prior work using NPM downloads as a mea-

sure of popularity and examining the effect of the popularity and

count of immediate and recursive upstream and downstream depen-

dencies for predicting the change in downloads of NPM packages.

3 DATA

The data for our studywas collected from the npms.io website, using

the API provided 1. As mentioned earlier, we are only concerned

about the packages with at least one upstream and one downstream

dependency, and we found that 72,211 packages out of over 600,000

1https://api.npms.io/v2/package/[package-name]

packages in NPMmeet our criteria across all the snapshots. We used

the API to collect data on all NPM packages twice a month roughly

2 weeks apart, once in the beginning of a month and once in the

middle, between 01-December-2017 and 15-March-2018, resulting

in 8 different snapshots. The data collection process takes around

two days, so the data on all packages are not from the same date,

however, we expect the variance to have been evened out across

all snapshots. Since we are using the data for predicting the ratio

of downloads between the current and the next month, we had 6

usable snapshots (because for the last twowe did not have download

counts in the next month).

The data collected from npms.io has information on the GitHub

repository of the project, e.g. the number of issues, number of

weekly, monthly, quarterly, half-yearly, and yearly commits, the

list of contributors and the number of commits by each contributor,

as well as the number of forks and stars. The metadata information

consists of the list of runtime and development dependencies, the

monthly, quarterly, half-yearly, yearly, and total number of releases

for the project, the name and email of the author and the pub-

lisher, the README text, the list of maintainers and contributors

(as listed in NPM), and the number of daily,weekly, monthly, quar-

terly, half-yearly, and yearly downloads. We used the number of

these quantities (except the README file) as the variables used for

our analysis. The data also has information about some evaluation

metrics calculated by the npms.io website, which we did not use for

our analysis. For the number of releases and commits, we only used

the monthly and yearly numbers, because a quick PCA (Principle

Component Analysis) suggested that most of the variance (∼80%)

in all the commit and release variables are explained by these two

components.

As mentioned earlier, the response variable for our study is the

logarithm of the ratio of downloads in next month and the down-

loads of the previous month. Therefore, to maintain consistency, we

removed all other download variables from our dataset. There is one

more caveat about the NPM download counts, as mentioned in [11].

To summarize, the download counts available in the NPM server is

the sum of downloads by automated build servers, mirror servers,

robots that download every package for analysis, and downloads by

actual human users. Moreover, if a human user had installed a par-

ticular package before, it will nearly always be installed from their

local NPM cache, so that doesn’t get counted to the download num-

bers available in NPM. Similarly for the mirrors and build servers,

the packages are installed from NPM cache unless the version of a

package changes. Therefore, the article [11] remarks łOnly if [an

NPM] package is getting > 50 downloads/day can [the publishers]

be sure [they are] seeing signal instead of noise." Keeping this rec-

ommendation in mind, we further filtered our list of packages to

only include the ones that had > 1500 (50*30) monthly downloads in

at least one snapshot. This reduced the number of packages under

consideration from 72,211 to 12,999.

Keeping in mind the goal of our study, we designed 12 other

variables to examine the influence of upstream and downstream

dependencies on our response variable. We constructed the list of

one-level (immediate) upstream and downstream dependencies as
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well as the recursive (all, as mentioned earlier) upstream and down-

stream dependencies for a package. For each of these four, we calcu-

lated the total number of dependencies, the total number of down-

loads for those dependencies (for the current month), and the aver-

age (we used median instead of mean because having a highly popu-

lar package in the list would skew themean substantially) number of

downloads for the dependencies. These variables were named using

the convention: ł(one/recursive).(up/down)stream.(dl.avg/dl/count)",

where łdl" indicates the total number of downloads, łdl.avg" indi-

cates the average number of downloads, and łcount" indicates the

number of dependencies.

Due to the skewed nature of all the predictor variables, we took

logs of all the variables for our analysis.

4 ANALYSIS AND RESULTS
We performed the analysis of the data in two steps: First, we ran

Linear Regression (LR) individually on each of the 6 snapshots, with

and without the 12 dependency related variables, and compared

the results. In this step we only performed model fitting, and no

prediction. In the second step, we combined data from all the 6

snapshots, added a łDatež variable to account for the seasonality

component, and fitted a Random Forest (RF) model and performed

prediction (70% of the data was used for training and 30% was

used for testing). We performed a 10-fold cross-validation using

Random Forest by recursively reducing the number of predictors

(less important predictors removed first) in each step to obtain the

optimal number of predictors by trading model complexity and

cross-validation error. Then we verified how many and which of

the 12 variables we introduced are in the optimal set of predictors

so obtained, and the model performance with these predictors. We

used the adjusted R
2 value as our performance metric, since we

are trying to predict the ratio of downloads, which is a continuous

variable. As a side analysis, we also fitted the Random Forest model

on the combined data with a binary response variable that indicates

whether the number of downloads will go up in the next month, i.e.

if the ratio will be more than 1 or not. For this step, we calculated the

AUC under the ROC curve as well as the sensitivity and specificity

reported by the model, with the same 70-30 ratio for training and

testing sets. The analysis was performed in R.

The linear regression models had adjusted R
2 values ranging

between 0.02331 and 0.17300 (median: 0.05301, standard deviation:

0.05373) for the models with the 12 variables we introduced, and

between 0.00957 and 0.15640 (median: 0.02008, standard deviation:

0.05646) without those variables. Moreover, the adjusted R2 value

with our extra variables was seen to be better for every snapshot.

The Variance Inflation Factor(VIF) for the predictors never exceeded

5, so we do not have a serious multicollinearity problem in this

analysis. This leads us to believe the variables we added increase

the explanatory power of the model. The set of significant variables

were seen to be different between different snapshots. The variables

representing the counts, downloads, and average downloads of

the recursive downstream dependencies of a package were seen

to be significant in five out of the six snapshots, and number of

releases and commits in last one year were significant in four. The

coefficients for total recursive downstream downloads and number

of commits were positive; for number of releases it was positive in

two, negative in two, and for the rest the coefficients were always

negative. Since we used logs of all the variables, the signs of the

Figure 1: Variable Importance plot
coefficients indicate the signs of the powers of the variables in

direct relationship with the response variable.

The analysis performed in this step also revealed that the to-

tal number of downloads of all NPM packages was very different

across the snapshots, indicating the presence of a strong seasonality

component, therefore, we added the date of data collection as a

seasonality variable when we aggregated the data from different

snapshots for further analysis.

We ran a cross-validation exercise using Random Forest by re-

cursively reducing the number of predictors. The exercise indicates

the optimal number of predictors to be 19, from our original set

of 27 predictors. The variable importance plot, ordered by percent

increase in mean-squared error, of all variables is shown in Figure 1,

the variables listed above the straight line are the top 19 predictors.

It can be seen that 6 of the 12 variables we introduced are in the

list of top 19 predictors. The top predictors include the date of data

collection, as a seasonality component, which is the most important

predictor by far, along with the number of releases and commits in

a year and a month, number of issues (total and open), number of

forks, stars, contributors, and subscribers to the GitHub repository

of the package, number of development dependencies, with the

number of immediate upstream and downstream dependencies,

the average popularity (average downloads) of all upstream and

downstream dependencies, overall popularity (total downloads) of

upstream packages, and average popularity of immediate upstream

dependencies.

Finally, we ran a 10 fold cross-validation using the 19 predictors

deemed important from the analysis in the last step. The resultant

adjusted R2 varied between 0.380 and 0.496 (median: 0.416, standard

deviation: 0.031).

The set of variables that were shown as important from the

Random Forest analysis are different from the ones that came out

as significant from the LR analysis. One of the reasons for that is

likely due to the fact that when we fitted the LR models, we did

not perform any prediction, so the variables deemed significant

from that analysis are listed based on their explanatory power,

but the importance of the variables from the RF analysis are listed

according to their predictive power, and these two criteria are not

the same [10].

When we used the Random Forest model (with all 27 variables)

for predicting if the ratio will be more than one (i.e. if the downloads

will increase), the value of AUC under the ROC curve was 0.73, and
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Figure 2: Partial Dependence plot from Random Forest

model for “recursive.downstream.dl.avg”
values of sensitivity and specificity were 0.66 and 0.56 respectively.

When the model was fitted without the 12 variables we introduced,

the values of AUC under the ROC curve, sensitivity, and specificity

were 0.65, 0.59, and 0.53 respectively.

5 DISCUSSION
As in many time series, the current number of downloads of a

package is a very strong predictor of downloads in the next month

(the autoregressive model). We, therefore, focus on the changes in

the number of downloads to understand what drives increase (or

decrease) in the popularity of a package. Since the number of down-

loads is a very complicated (and unknown) function of actual usage

due to multi-tier caching and usage that is based on regression

tests run by automatic builds [11], it is necessary to use modeling

procedures to estimate the numbers of downloads. Despite that, it

is still possible that at least some of the observed trends are not

directly based on increases or decreases in usage but may be an

artifact of how the downloads are recorded. From our analysis it is

evident that the count and popularity of upstream and downstream

dependencies of a package are significant both in terms of explana-

tory power (as revealed by LR analysis) and predictive power (as

revealed by RF analysis). It is also evident that among the depen-

dency variables, the recursive ones are equally or more important,

highlighting the value of the supply chain perspective. The sea-

sonality component, activity of a package (number of releases and

commits), and overall engagement by users (GitHub stars, forks,

subscribers, contributors) were other important predictors of the

change in popularity.

We have not performed any causal intervention analysis in this

study, so it would be impossible to say if the factors we found to

be influencing the change in popularity are the causes behind an

increase in popularity or if it is a case of confounding. However, we

have a few speculative hypotheses from the results of the analysis

we performed.

1: The partial dependence plot of łrecursive.downstream.dl.avgž

shown in Figure 2 indicates that relationship is essentially non-

linear, which explains the low R
2 value reported by linear models.

In the plot, negative values in the y-axis mean that the increase in

downloads is less likely for that value of the independent variable

(x-axis) according to the model, and vice-versa. The flat regions

may arise due to no dependence in that range of values for the

independent variable, or because of discretization or fewer obser-

vations in that range of values for the independent variable. The

plot, therefore, likely indicates that up to a value of 8 for łrecur-

sive.downstream.dl.avgž the downloads are likely to increase, for

more than 8, they tend to decrease, and for 12 or more, a decrease

is even more likely.

2: The reason why upstream dependencies are important (RF

analysis) might represent a case of reverse causality, whereby a

popular package increases the number of downloads of its upstream

packages.

3: We found that the seasonality component is very significant

(RF analysis). To verify we plotted the total number of downloads by

all packages for the different snapshots, and found that the variation

was significant. The variation in the median number of downloads

was found to be even larger. This is likely an artifact of the NPM

ecosystem.

4: The reason why more releases and commits are significant

might be due to a combination of effects discussed in [11] and due

to how actual humans treat a more active project.

As a continuation of this work, we would like to look more

closely into the dependency networks of packages, identifying

the dependencies that are deleted, added, and remain unchanged

between releases, and identify the effect of each component. We

would also like to differentiate between different types of packages

(build tools, test tools, general components etc.) and identify the

dependency networks and effects of change in the network for

them. Overall, we hope our work can help understand the effects

of dependencies of a package on its popularity and, more generally,

be able to interpret the complicated function that downloads of

dependent packages represent.
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