Modeling Relationship between Post-Release Faults and Usage
in Mobile Software

Tapajit Dey
University of Tennessee, Knoxville
Knoxville, Tennessee
tdey2@vols.utk.edu

ABSTRACT

Background: The way post-release usage of a software affects the
number of faults experienced by users is scarcely explored due to
the proprietary nature of such data. The commonly used quality
measure of post-release faults may, therefore, reflect usage instead
of the quality of the software development process. Aim: To deter-
mine how software faults and software use are related in a post-
deployment scenario and, based on that, derive post-deployment
quality measure that reflects developers’ performance more accu-
rately. Method: We analyze Google Analytics data counting daily
new users, visits, time-on-site, visits per user, and release start
date and duration for 169 releases of a complex communication
application for Android OS. We utilize Linear Regression, Bayesian
Network, and Random Forest models to explain the interrelation-
ships and to derive release quality measure that is relatively stable
with respect to variations in software usage. Results: We found
the number of new users and release start date to be the deter-
mining factors for the number of exceptions, and found no direct
link between the intensity and frequency of software usage and
software faults. Furthermore, the relative increase in the number
of crashes was found to be stably associated with a power of 1.3
relative increase in the number of new users. Based on the findings
we propose a release quality measure: number of crashes per user
for a release of the software, which was seen to be independent of
any other usage variables, providing us with a usage independent
measure of software quality. Conclusions: We expect our result and
our proposed quality measure will help gauge release quality of a
software more accurately and inspire further research in this area.

CCS CONCEPTS

« Software and its engineering — Maintaining software; Search-
based software engineering; « Computing methodologies — Clas-
sification and regression trees; Bayesian network models; Learning
linear models;

KEYWORDS

Software Quality, Software Usage, Software Faults, Bayesian Net-
works, Linear Regression, Random Forest

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PROMISE’18, October 10, 2018, Oulu, Finland

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6593-2/18/10...$15.00
https://doi.org/10.1145/3273934.3273941

Audris Mockus
University of Tennessee, Knoxville
Knoxville, Tennessee
audris@utk.edu

ACM Reference Format:

Tapajit Dey and Audris Mockus. 2018. Modeling Relationship between Post-
Release Faults and Usage in Mobile Software. In The 14th International
Conference on Predictive Models and Data Analytics in Software Engineering
(PROMISE’18), October 10, 2018, Oulu, Finland. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3273934.3273941

1 INTRODUCTION

Common sense dictates that a software with few defects has bet-
ter quality than a software with numerous defects. However, the
number of discovered software faults increases with the number
of users, as observed in [12, 15]. Since software faults are manifes-
tations of underlying defects!, this, in turn, dramatically affects
the interpretation of post-release defects. In the extreme, no users
implies zero reported software faults for a release, independent of
software quality. This fact is often not considered in industry or in
empirical studies (although few studies do note that [7, 9]) and may
lead to misguided quality improvement efforts and/or misguided
developer performance metrics.

A possible reason for this oversight is the difficulty of tracking
usage even though defects and crashes reported by users are often
carefully tracked in larger software projects. As a result, little is
known of how the extent of software use affects manifestation of
software defects in a post-release scenario. This is due in part to
the scarcity of rich post-deployment datasets which is likely caused
partly by the proprietary nature of such data and the difficulty
in obtaining and sharing it even for the software development
teams in these proprietary projects since the deployment is typically
managed by a different team within the organization. Without such
data, however, it becomes exceedingly difficult to interpret customer
reported defects since releases with more customers tend to have
more defects reported against them despite their higher quality [12,
28]. Moreover, some crucial metrics, for example the number of
users for a specific release, are virtually impossible to measure
without a usage monitoring system and many traditional software-
as-a-product systems do not or can not have such capability.

We conducted our study by looking into 169 releases of a pro-
prietary mobile software from the telecommunication domain for
Android OS. The data was retrieved from Google Analytics plat-
form which contained information related to software usage, some
release specific information, as well as the number of application
crashes. Our first aim in this study is to model the relationship
among post-deployment variables, specifically, finding the rela-
tionships among variables describing different aspects of software
usage and software crashes (manifestations of underlying defects).

! Although the relationship is not very well understood [9]

PROMISE’18, October 10, 2018, Oulu, Finland

Our second aim is to use that model to construct a quality mea-
sure for the software releases that is independent of software usage,
giving us the ability to compare the quality of software releases
more accurately.

We used three usage related variables: number of users, usage
intensity (average duration of software use per user), and usage
frequency (average number of sessions per user), along with two
variables describing attributes of the particular release: release date
and effective duration of the release, measured by how long the
release continued to have new users, and looked at how these
variables affect the number of exceptions i.e. application crashes.

After the usual data cleaning and variable construction stages, we
first applied a linear regression (LR) model to identify the significant
predictors for the number of exceptions. Then we used a Bayesian
Network (BN) model to discover the interrelationship between the
variables. Finally, we ran a random forest (RF) model to identify the
variable importances for predicting the number of exceptions. All
analyses in this study was done in R [39].

We found that the number of new users and the release date
(representing the evolution of software development practices and
increasing functionality) were the most significant factors needed
to explain the exceptions experienced by end users of software. Our
findings also suggest that the frequency and intensity of usage have
little impact on the number of exceptions.

Based on the result of our model, we propose that a quality
metric of average number of exceptions experienced by end users
would be most suitable in this scenario. The result of a model with
this quality variable was found to be dependent only on the release
date, and not on any usage related variables.

The novelty of our work involves the study of the relationship
between usage and exceptions and the application of BNs to ex-
plain relationships among highly correlated predictors in a mobile
development context. We also found that the number of users (rep-
resenting usage) is the most important predictor of defects, so the
software development quality measured as exceptions would be
misleading. We replicated the finding in [12, 28] that pointed out
that post-release defects are also a misleading measure of process
quality and also that the normalization of defects by the number
of users provides a more meaningful process quality measure. Fur-
thermore, we hope that our proposed approach of adjusting the
defects, exceptions, or other quality indicators for the factors that
affect them, but are not relevant to software process quality, could
be applied more widely.

In summary, we aim to increase the understanding of software
quality in post-deployment scenario in mobile software develop-
ment by finding the relationship between post-release faults and
software usage using different modeling techniques to confront
issues related to the observational nature of the data and high corre-
lations among software development and deployment measures. We
also propose a usage independent software release quality measure,
which is derived from the result of our analysis.

The rest of the paper is organized as follows: In Section 2, we
present the background information on the software and the data.
In Section 3, we describe the details of the preprocessing steps. In
Section 4, we present the different modeling approaches and the
results and a comparison of our result and already published result
is presented in Section 5. Our proposed quality measure and the

Tapajit Dey and Audris Mockus

results of the corresponding analysis is presented in Section 6 The
interpretation of the result is discussed in Section 7. In Section 8,
we talk about the possible limitations. In Section 9, we list some
related works, and finally in Section 10, we discuss the implications
of our study and conclude.

2 BACKGROUND

In this section we provide background information related to the
mobile software product and the data obtained from Google Ana-
lytics reflecting how the application was used.

2.1 The Software

The software chosen for this study was Avaya Communicator for
Android, currently known as Avaya Equinox®. It integrates the An-

droid device of the users with their office Avaya Aura®communications

environment and delivers mobile voice and video VoIP calling, cellu-
lar call integration, rich conferencing, instant messaging, presence,
visual voicemail, corporate directory access and enterprise call logs.

Avaya is developing large, complex, real-time software systems
that are embedded and standalone products. Development and test-
ing are spread through 10 to 13 time zones in the North America,
USA, Europe and Asia. R&D department employed many virtual
collaboration tools such as JIRA, Git, WIKIs and Crucible. Devel-
opment teams use Scrum-like development methodologies with a
typical 4-week sprint. We consider a 15+ year old software com-
ponent, the so-called Spark engine. As a software platform, Spark
provides a consistent set of signaling platform functionalities to a
variety of Avaya telephone product applications, including those of
third parties. Spark is a client platform that provides signaling man-
ager, session manager, media manager, audio manager, and video
manager. The codebase involves more than 200K files and, over
all forks, over 4M commits. The Android software chosen for this
study is a fork of the Spark codebase. A more in-depth description
of the development process is provided in [5].

2.2 The Data

The post-deployment data for this application was obtained from
the Google Analytics platform. Google Analytics is a web analytics
service offered by Google that tracks and reports website traffic. It
is now one of the most widely used web analytics services on the
internet. In addition to traditional web applications it also allows
tracking of mobile applications. To do that, the producer of a mobile
application needs to set up an account and instrument their mobile
application to send certain events to Google Analytics. Notably, it
works for the Android mobile application investigated in this study.

We obtained usage data for Pre-GA (General Availability), Exper-
imental, Development, and GA release versions for the application
from the Google Analytics platform. However, since we are inter-
ested in modeling the post-deployment quality of the software as
experienced by real users, we focus only on the GA release data,
because for this software only the GA releases are made available
to the end users.

The original data obtained from Google Analytics had measures
for the variables listed in Table 1, aggregated at a per-day granular-
ity, meaning that each entry in the original data table contained the
measures for the numerical variables (marked with a ¥ symbol in
the table) for each unique combination of date, application release

Mobile Software Faults and Usage: Quality

Table 1: Measures available in the Original Data

Application Release Version No. of exceptions¥

Operating System version in the user’s | Date of record entry
device

No. of fatal exceptionst No. of new visitst

No. of visitsT Time on site}

Details on user’s mobile device: brand, | No. of new users}
category(mobile or tablet) and model

No. of total users¥ Sessions per userf

version, operating system version, mobile device brand, category,
and model.

It is important to note that Google Analytics releases only ag-
gregate data even to developers of the application and limits the
number of REST API calls, so one can not, for example, retrieve
usage data for every calendar second or get exact time of the events.
The daily counts split by release of the application, Android OS
version, and type of device, provided sufficiently fine granularity
for our analysis.

3 DATA PREPROCESSING

This section contains the data cleaning, transformation, and vari-
able construction steps undertaken prior to applying the different
modeling methods on the data.

Removal of variables before aggregation: Upon initial in-
vestigation into the data, we found that no. of exceptions and no. of
fatal exceptions were exactly the same, as recorded by Google Ana-
lytics, so we removed the no. of fatal exceptions from the dataset.
Only fatal exceptions were recorded for this application, i.e., crashes
that require a complete restart of the mobile application and, poten-
tially, may affect the operating system itself. This is not surprising
since the bulk of the functionality for the application was written in
C++ and called from Android Java applications via Native Interface.
We did not consider the variables related to mobile device details
and Android operating system versions because the application,
as noted above, was primarily written in C++ and the user inter-
face aspects that vary greatest among devices and versions of OS
were not likely to have influence. To validate that assumption we
investigated and found no correlation of exceptions with either
variable.

Aggregating data to per-release granularity: Since our aim
is to model the post-deployment quality of the different releases,
we aggregated the data to a per-release granularity, from the the
original data that was recorded in per-day granularity. The raw data
contained 177 different GA releases. We dropped eight of them from
further consideration because a significant portion of observations
were missing. The result of aggregation, however, was two new
variables: start date (first day for which we have a record for that
release) of a release, and end date (last date for which we have a
record for that release) of a release, which in turn helped create
another variable: duration of a release. We did not to keep the end
date in the final table, since duration and start date can be used to
compute the end date.

Verifying the correctness of Release date: The original data
involves only the usage aspects and the version information of
the software. The project under consideration was relatively new

PROMISE’18, October 10, 2018, Oulu, Finland

and it was the first attempt for the team to deploy mobile software
on Android OS (although a different team has already produced
analogous product for iOS earlier). As such, not everything was
well documented and also was rapidly evolving over time and no
record of the exact release dates for most of the releases was avail-
able. We did manage to get release dates for some of releases from
Google Play Store, but not all the release dates were available. For
the releases with dates available on Google Play Store, the official
release dates from Avaya records, and the start dates obtained from
the data were either very close or exactly the same, so we do not
have a reason to doubt the dates obtained from the data.

Removal of variables post aggregation: The numerical vari-
ables were aggregated to give a sum for each variable. Upon further
inspection, we found the number of users, new users, visits, and new
visits to be highly correlated. In the second iteration, we removed
the variable “sessions per user”, because aggregating it directly is
meaningless, and we were not sure how it was originally calculated
by Google Analytics (was it a mean or a median? were new users
or total users counted?). We also removed the “total users” and
“total visits”, because while summing up the new users/visits for
each day gives an accurate measurement of the total number of
new users/visits for a release, it is not guaranteed that summing
up total users/visits does the same due to possible double counting
the number of users/visits.

Final modification of variables: In the final iteration for clean-
ing the data, we modified the measure for the duration of a release
slightly. We did this because although most of the usage for a re-
lease is within a certain time period, a few dates of last use were
more than a year since previous use, and we didn’t want the dura-
tion for the release to be influenced by these outliers; so instead of
the time between last and first day of usage of a release, we took
the difference between the date when 90th quantile of the total
number of new users for the release was achieved, and the first
date as the effective duration of a release. Our choice was later
validated by the first iteration of LR modeling, when we kept the
full duration (last-first date) and our chosen measure of duration.
The results showed that our chosen measure of duration was more
important compared to the full duration. Also, since we found the
total number of new users and new visits to be highly correlated
(Spearman correlation 0.75), we focus on visits per user instead of
the total number of new visits. For the same reason, we normalized
the “Time.On.Site” variable to measure time spent on site per user.

Final list of variables: Keeping the goal of our study in mind,
the variables we have after the initial cleaning steps give us neces-
sary information for a model of post-release defects and software
usage. In our list of variables, we have the total number of excep-
tions i.e. post-release defects. As for measures related to software
usage, we have the total number of new users, the “Time.On.Site”
variable provides a measure for the temporal intensity of usage
per user, and the number of visits per user is a measure for the
frequency of usage. We also have two variables related to each indi-
vidual release: the start date i.e. the release date gives a measure for
the calender time of each release, and is useful in gaining insight
about if the number of post-release defects and software usage
vary with time, and the duration of a release, which could have an
effect on the number of exceptions and the number of new users,
since these variables were not normalized with duration. Since we

PROMISE’18, October 10, 2018, Oulu, Finland

Table 2: Measures in the Aggregated Data Table

Release variable - Start Date for

the release (Release.Date) of the release (Release.Duration)

Release variable - Effective Duration

Post-Release defects - Total No.

of exceptions (Exceptions) site per user (Usage.Intensity)

Usage variable - Average time on

Usage variable -Total number of
new users (New.Users)

user (Usage.Frequency)

Usage variable - No. of visits per

only have a limited amount of data, we restricted ourselves to use
only these six variables. Our final aggregated data table had the
measures listed in Table 2, with the corresponding variable names
we used in the model enclosed in brackets.

Log-transformation of variables: The release date was con-
verted from the Date format to numeric format, which resulted in
the values for the release date variable being represented by the
difference in days from Unix time (counted from 1970-01-01). We
found that all of the variables under consideration had a long-tailed
distribution, so we took logarithm of them. Final distribution of the
variables in available in our GitHub repository:
https://github.com/tapjdey/release_qual_model.

4 ANALYSIS: EXPLAINING EXCEPTIONS

As mentioned earlier, we conducted our analysis in three stages:
first, we used linear regression (LR) on the data with the number
of exceptions as the response variable; then, we used Bayesian
Network (BN) modeling approach to identify the interrelationship
between the variables; and finally, we used a random forest (RF)
model to verify the results.

We chose LR for the simplicity, robustness and ease of interpreta-
tion. To better understand interrelationships among variable (since
LR is not applicable for sets of highly correlated predictors) we used
BN models. Finally, to establish the predictive capabilities of our
models we used RF, which is known as one of the best Machine
Learning classifiers. That way we could both obtain the most in-
sight and also to validate our findings through the use of radically
different approaches.

4.1 Linear Regression Model

We first used a linear regression model to discover the significant
variables affecting the number of exceptions. The output of the
fitted model is shown in Table 3.The model resulted in a decent
fit, given the sample size of 169, with adjusted R? 0f 0.435, and the
variables “New.Users” and “Release.Date” were the only significant
variables, with both coefficients related to the variables being posi-
tive, indicating more users result in more exceptions and, for this
software, later releases had more exceptions. It can also be seen
that the variables representing usage intensity and duration came
out to be not significant, indicating absence of a strong relationship

between the variables.
Table 3: Summary Result of LR model for “Exceptions”

Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -230.5082 71.2493 -3.24 0.0015
Release.Date 23.6401 7.3496 3.22 0.0016
New.Users 0.6556 0.1628 4.03 0.0001
Usage.Intensity -0.0093 0.0530 -0.17 0.8615
Release.Duration 0.1327 0.1484 0.89 0.3725
Usage Frequency 0.0903 0.2287 0.39 0.6935

However, due to the presence of medium-high correlation be-
tween the variables, the variance inflation factor (VIF) associated

Tapajit Dey and Audris Mockus

with “New.Users” was 5.57 , which, according to [23], is a “cause
for concern” due to the “tolerance” (inverse of VIF) being less than
0.2. To address this issue, we decided to use a Bayesian Network
model, which is unaffected by the multicollinearity problem.

4.2 Bayesian Network Model

Bayesian Network [21, 44] is a type of Probabilistic Graphical
Model (PGM), which explicitly represents the conditional depen-
dency/independence as a directed acyclic graph where variables
represent nodes and dependencies represent links, and thus this
representation can be used as a generative model?. Bayesian Net-
works models can be useful in the context of Software Engineering
research [9] due to having several advantages over regression mod-
els. To be precise, regression analysis is a very simple BN where
there is one directed link from each independent variable to de-
pendent variable. BNs, therefore, can help with multicollinearity,
a common problem with software engineering data [2, 24, 48, 49],
that is present in our data as well, by linking independent variables.

Another variety of PGM that we did not use in this paper (details
in Section 8) is the Markov random fields that represent the inter-
relationships between variables as undirected graphs. They differ
in the set of independencies they can encode and the factorization
of the distribution that they induce [21].

4.2.1 Bayesian Network Model construction: Despite the promises
of BN, they tend to be quite sensitive to data, and operational
data, is often problematic [26, 51]. Careful preprocessing, there-
fore, is needed to ensure a reliable and reproducible result. Two
primary ways to use BNs exist. With the first approach the graph
represents dependencies obtained from domain experts. The graph
may include prior distributions about the parameters of the overall
model. The data is then used to calculate the posterior distribution
and to make inference. The second approach puts minimal a-priori
assumptions about the model and focuses on the search for the best
graphical representation for a given dataset (structure learning).
This is an NP-hard problem [3], but a number of different heuristic
structure learning algorithms are available. Due to the lack of any
strong theory connecting the variables we are considering, we de-
cided to use the structure search method for BN model construction.
Since our goal is to find a Bayesian network model for the data, we
didn’t examine the methods that do not result in a Directed Acyclic
Graph (DAG). We found that the bnlearn package in R implements
a wide range of BN searching methods for continuous, discrete, or
a mixed set of variables and the corresponding families of scoring
functions and also has a good number of examples. These methods
were also shown to be able to recover the underlying network for a
protein-signaling-chain (in Biology) in [43]. We, therefore, use this
package for our analysis. In addition to the methods implemented
in bnlearn package, we investigated some methods from a few other
packages which can be interfaced with the bnlearn package.

2 A generative model specifies a joint probability distribution over all observed variables,
whereas a discriminative model (like the ones obtained from regression or decision
trees) provides a model only for the target variable(s) conditional on the predictor
variables. Thus, while a discriminative model allows only sampling of the target
variables conditional on the predictors, a generative model can be used, for example,
to simulate (i.e. generate) values of any variable in the model, and consequently, to
gain an understanding of the underlying mechanics of a system, generative models
are essential.

Mobile Software Faults and Usage: Quality

Release.Duration

sage.Frequency sage.Intensity

Figure 1: Custom model used for Simulation Study

Due to the potential inconsistencies of the BN models, we per-
formed our modeling in two stages. First, we considered all available
BN structure methods in the bnlearn package and ran a simulation
based study to find the methods that are most accurate and then
we used those methods on our data to create the final model.

Methods considered:

The different BN structure search methods we considered are listed
below:

o Greedy search algorithms [33, 43]

Hybrid algorithms [33, 43]

Posterior maximization using deal package in R [43].
Simulated Annealing using catnet package in R [43] .

PC Algorithm using pcalg package in R [43] .

MAP (maximum a posteriori estimation) Bayesian Model Av-
eraging [33, 43]

All structure search algorithms try to maximize some form of a
network score. Among the various scores available, BIC score is the
suitable one when the goal is to create an explanatory model [45, 46].
BIC score is used for discrete data while the Gaussian equivalent of
BIC (bic-g) score is used for continuous data.

The results, structure and parameters resulting from a structure
search algorithm are often noisy, meaning that different settings in-
duce slightly different networks. To mitigate this effect we use non-
parametric bootstrap model averaging method described in [10],
which provides confidence level for both the existence of edge and
its direction. This enables us to select a model based a confidence
threshold. Authors of [10] argue that threshold is domain specific
and needs to be determined for each domain. For instance, a thresh-
old of 0.95 indicates that only the edges that appeared in more than
95% of the bootstrap optimized models were selected.

Simulation Study:

We performed the simulation study by first creating a random
BN (see Figure 1) with six nodes, since we also have six variables
in our final list (Table 2). For demonstration purposes we use the
same variable names. We fitted this graph with our data to generate
values for the coefficients for each edge. This model was used in our
simulation study going forward. We created 1000 different datasets
(it is possible to generate both continuous and discrete data) from
the BN structure in Figure 1, and applied the different structure
search algorithms (both continuous and discrete versions, where
available) listed above. Our performance metric is finding how
many times can the different algorithms recover the underlying
structure from the simulated data.

The result of the simulation study had the following findings:

PROMISE’18, October 10, 2018, Oulu, Finland

Release Duration

Figure 2: Final BN Model (with c: coefficients after fitting the
transformed, but unscaled data, p: p-value for the link)

o Log-transformed and scaled continuous data resulted in
much more frequent recovery of the original BN structure
compared to discretized data.

e Bootstrapping improves the stability of the results consider-
ably.

e The bootstrapped Hill-Climbing search algorithm outper-
formed all others both in terms of accuracy and runtime,
being able to recover the underlying structure 76% of the
times and making no more than one error 88% of times.

Final BN model:

One key assumption for applying the continuous BN structure
search algorithms is that the variables have a distribution close to
a Gaussian distribution. To satisfy this modeling assumption, we
scaled all the variables to unit scale. The variable “Exceptions” still
had a long tailed distribution, but the distributions of the other
variables were much closer to normal distribution.

To obtain the final BN model we ran the Bootstrapped Hill-
Climbing search 10 times using distinct random seeds on the con-
tinuous version of the data, based on the result of our simulation
study, and we choose the structure that appeared most frequently.
The resultant BN model is shown in Figure 2. It resulted from the
bootstrapped greedy hill-climbing search in 9 out of 10 runs. Every
bootstrap run was performed over 500 bootstrap samples, and a
hill-climbing search with 100 random restarts was applied on each
sample to find the best fitting network, so in essence, each resultant
network was obtained by averaging 50,000 candidate networks. We
used the threshold values found to be optimal for each method from
the bootstrap runs (that can be obtained by attr(boot.object,
"threshold") command).

The result form a bootstrap run shows the relative strength of
the link and the relative confidence for the direction of the link. In
Table 4 we have shown the result from one bootstrap run of the
HC method for all the edges we have in our final model. If an edge
has < 50% confidence in its direction, then the edge appears in the
opposite direction in our model.

Although Bayesian Networks are sometimes interpreted as causal
relationships [37], there are disagreements on how that should be
done. We, therefore, are not interpreting these relationships as
causal here. All observed links, therefore, indicate the presence of
observed correlation (and are empirical in nature) and the direction

PROMISE’18, October 10, 2018, Oulu, Finland

Table 4: Example bootstrap result

from to strength direction
New.Users Exceptions 1.00 0.94
Release.Date Exceptions 1.00 0.83
New.Users Release.Duration 1.00 0.71
Release.Duration New.Users 1.00 0.29
Exceptions Release.Date 1.00 0.17
Exceptions New.Users 1.00 0.06
Usage.Intensity Usage Frequency 1.00 0.69
Usage.Frequency Usage.Intensity 1.00 0.31
New.Users Usage. Frequency 1.00 0.74
Usage.Frequency New.Users 1.00 0.26
Release.Date Release.Duration 0.96 0.70
Release.Duration Release.Date 0.96 0.30
Release.Date Usage.Frequency 0.88 0.77
Usage.Frequency Release.Date 0.88 0.22
New.Users Usage.Intensity 0.85 0.62
Usage.Intensity New.Users 0.85 0.38
Usage.Frequency Release.Duration 0.84 0.53
Release.Duration Usage.Frequency 0.84 0.47

is a property of the topological ordering of nodes in a DAG, and
affects the total probability distribution of the variables.

Based on the results from bootstrap, we chose the model shown
in Figure 2 as our final BN model. This model was fitted to the
unscaled data, and the resulting coefficient of each link is also
shown in the figure. The p-value for each link was calculated from a
linear model with the source nodes as predictors and the destination
node as the response variable, e.g. the p-value for the link from
“New.Users" to “Exceptions” was calculated by looking at the result
of: 1m(Exceptions ~ New.Users + Release.Date).

We fitted the model to the transformed, but unscaled data (for
easier interpretation of results). Note that, as mentioned before,
the Release.Date variable, which is represented by the difference in
days between the start date of a release and the Unix epoch time

(1970-01-01), was not log-transformed, but the other variables were.

By looking at the p-values for the links, we can say that except
the link from “Release.Date" to “Release.Duration", all others are
statistically significant. Links having a negative coefficient indicate

a negative relationship between the parent and the child node.

We also verified that for all the runs that resulted in the model in
Figure 2, up to a threshold of 0.35, the model remains the same, and
the variables affecting the “Exceptions" variable remain the same
for a threshold as low as 0.2.

The performance of explanatory models is evaluated by the
fraction of deviance explained by the model. Our model explains
449% of variation in “Exceptions” (adjusted R? value of the model).

4.3 Random Forest Model

As a verification step to identify the important variables affecting
the number of exceptions, we used a Random Forest model to fit
the data, with “Exceptions” as the response variable. The variable
importance plot, as shown in Figure 3, indicates that “Release.Date”
and “New.Users” are the two most important variables. We ran a
10-fold cross-validation exercise with “Exceptions” as the response
variable, the resultant R? varied between 0.09 and 0.75 (mean: 0.47,
standard deviation: 0.2). The high standard deviation is likely caused

Tapajit Dey and Audris Mockus

Release.Date a

New. Users o

Release.Duration o

Usage.Frequency o

o

Usage.Intensity

T T T T T
10 12 14 16 18
%IncMSE

Figure 3: Variable Importance Plot of RF model for “Excep-
tions"

by our relatively small sample size of 169. This result reinforces the
result we got from earlier analyses.

5 COMPARISON WITH PUBLISHED RESULTS

Since our study was based on only one system, we decided to
compare our findings with already reported results. The number
of users for most of the releases we studied are very small, with a
median of 7 users per release, although a few releases have more
than 16,000 users. On slide 22 of of his presentation [15], Caper
Jones reported that the number of defects increase 2 to 3 times
for a 10 fold increase in the number of users (from 1 to 10 and 10
to 100) for a software of similar complexity (between 10,000 and
100,000 function points). However, they were looking at the number
of defects, and typically the number of exceptions is larger than
the number of defects, because one defect could cause crashes for
multiple users (or multiple crashes for a single user). The study
published in [28] was done for a system with many more users
(around 4,000 to 16,000),however, they reported that for a two-
fold increase in the number of users the number of Modification
Requests (MR tickets) increase around 1.25 times, which is less than
what would have been predicted by our model (1.78). Although we
were unable to do a direct comparison to another mobile application,
these findings add more context to our result, and indicates the
necessity of further studies that publish their datasets to understand
the usage-fault relationship in a wider range of applications.

6 APPLICATION OF OUR MODEL: A DERIVED
MEASURE OF QUALITY

In order to arrive at the usage independent quality measure, we
follow the framework of establishing laws governing relationships
among measures of software development proposed in [25]. Law
is an equivalent of invariance, i.e. a function of measures that is
constant under certain conditions. In this case we want it to be
constant for releases that have the same quality. First, the law re-
quires a plausible mechanism and second, an empirical validation.
Each new user may have a different type of phone, operating sys-
tem, service provider, geographic region, and usage pattern. It is
reasonable to assume that some of these configurations lead to
software malfunction manifested as an exception. This provides us
with a plausible mechanism on how precisely more new users of
one release might generate more exceptions even if we have two

Mobile Software Faults and Usage: Quality

i/:: Usage Intensity i D)

IR

/1N

\

C “Release Date P

[\ / N
\:;7006\\ ©:0.32 ©:10.73 |c:-20.34 \, ©95

2e-4 \ p:<2e-16 [p:6e-4 9e-4 3e4
Lp:6e-4 \%
\ S
e . N

N
I Ry -

(:’l}sage Frequency i;

\wwRieilease Dur ali(g(l/ > (? ualit Y D

Figure 4: Bayesian Network Model for “Quality" (with c: co-
efficients after fitting the transformed, but unscaled data, p:
p-value for the link)

releases of identical quality. To obtain empirical validation of this
postulated mechanistic relationship we rely on our models, all of
which show the number of software exceptions to be dependent
on the number of users and on software release date. Therefore,
we arrive at the following software law that is applicable for the
investigated context: the average number of exceptions experienced
by each user should, therefore, be independent of usage and depend
only on the qualities of a software release.

In this section we test the above evidence-based hypothesis and
provide the result of an analysis with the number of exceptions
per user as a response variable (“Quality”) representing software
quality. This is actually a measure for faultiness, so a lower value
of “Quality" indicates the actual quality of the software perceived
by end users is better. The value of the “Quality” variable (not log
transformed) was seen to be varying between 0 and 34.5 (mean:
1.103, median: 0, standard deviation: 4.15).

Similar to the previous analysis, we applied Linear Regression,
Bayesian Network search, and Random Forest modeling approaches
on the dataset containing this quality measure and the remaining
variables, all of which were log-transformed.

The result, as expected, shows that the quality of a software,
measured by average number of faults experienced by each user,
depends on “Release.Date". The LR model (Table 5) suggest that
“Release.Duration” is also a significant predictor of the quality vari-
able. The BN model(Figure 4), obtained with a threshold of 0.85
from a bootstrapped Hill-Climbing structure search model, indi-
cates the “Quality” variable depends only on the “Release.Date”
variable. Finally, the result of 10-fold cross-validation with the RF
model (Variable Importance plot in Figure 5) indicates that the “Re-
lease.Date” variable is much more important compared to others,
and the two usage related variables are of much lower importance.
The R? value for the LR model was 0.1271 in this case, and for
the 10-fold cross-validation (RF model) it varies between 0.006 and
0.544 (mean: 0.262, standard deviation: 0.174).

Table 5: Summary Result of LR Model for “Quality”
Estimate Std. Error tvalue Pr(>|t])

(Intercept) -136.7113 29.2217 -4.68 0.0000
Release Date 14.0977 3.0144 4.68 0.0000
Usage.Intensity -0.0071 0.0205 -0.35 0.7279
Release.Duration 0.0983 0.0367 2.68 0.0080
Usage Frequency -0.0594 0.0719 -0.83 0.4102

The results from these analyses clearly indicate that the quality
measure defined by the number of exceptions per user is indepen-
dent of software usage, and, therefore, suitable for comparing the

PROMISE’18, October 10, 2018, Oulu, Finland

Release.Date o

Usage.Frequency o

Release.Duration o

Usage.Intensity o

T T
0 5 10 15
%IncMSE

Figure 5: Variable Importance plot from the Random Forest
Model for Quality Variable

quality of software development process among different releases
of a software.

7 INSIGHTS FROM THE MODEL

The graph in Figure 2 makes it evident that the number of new users
is the most important variable in explaining various post-release
variables. The p-values for the links suggest that the influence of
this variable on the number of exceptions, frequency of usage, and
duration of the release are statistically significant. The graph also
indicates that more new users for a release indicate more exceptions
being found for the software, a higher frequency of visits, more
time being spent on site per user ie. higher intensity of usage,
and also longer activity for the release (the duration of a release
measures how long a release is actively used by users, not the time
between two releases, since the releases overlap). This suggests that
users may be reluctant to upgrade (or are encouraged to stay) on
better-quality releases. Our findings are in agreement with findings
of [12, 28, 32] that consider post-release defects for a completely
different server software system. More users leading to a higher
frequency and intensity of usage might indicate higher levels of
satisfaction with the release.

The release date also affects no. of exceptions, usage frequency,
and release duration; although it has much lower influence, as can
be observed by looking at the coefficients. It provides some insight
on how this software has evolved. The durations of the releases have
become shorter, which could indicate that the users are moving
to newer releases more rapidly. Even after compensating for the
effect the number of users have on the number of exceptions, the
number of exceptions are increasing with time. This may indicate
that the software is becoming more complex with time, which is
consistent with a rapid growth of functionality and the size of
associated code base, although we have no explicit evidence to
support our speculation. We also notice that the visits per user,
which measures usage frequency, increases with time, which could
indicate the software is getting more useful.

The negative link between the average time on site (intensity)
and visits per user (frequency) can be explained by the nature of
this software. As a communicator software it may have a type of
users who remain connected for longer durations, and, therefore,
have fewer visits (new sessions); while another type of users might
just turn it on whenever required, e.g. to make a call, and turn it off

PROMISE’18, October 10, 2018, Oulu, Finland

immediately afterwards. In fact, users who on an average remain
connected for longer durations can not have too many visits since
the total possible usage time is bounded by calendar time. This may
explain this connection and also provide another insight that for
the users of this particular software, the total usage time perhaps
doesn’t vary a lot.

An interesting observation from the model is the lack of any di-
rect relationship between exceptions and the intensity or frequency
of usage. One possibility is that exceptions happen for specific An-
droid OS version/ Phone combination and the way each user is
exercising application’s functionality. Users for whom the applica-
tion crashes must wait for the next release. This would lead to the
observed phenomena where only the new users increase the num-
ber of crashes. The duration an application is used by individual
users was found to have a much smaller effect on reported defects
than the number of new users in prior work [12, 28, 31] as well.
In particular, it was observed that most of the issues happen soon
after deploying the release and the chances of reporting a defect
for a new release drops very rapidly with time after installation.

Our data, scripts, and more detailed results are available in our
GitHub repository: https://github.com/tapjdey/release_qual_model.

We found that the exceptions are a result of more new users
and the extent of usage does not appear to have a direct effect
on the number of new users. We also found the incidence of
exceptions to be increasing over time.

We found that the quality metric depends on “Release. Date”
(quality seems to decrease for later releases) variable. The LR anal-
ysis suggested “Release.Duration” as another significant variable.
Indeed, the number of exceptions per new user (or the chances that
a user would experience a crash) are low for this software, as indi-
cated by the coefficient 0.77 for the link between users and excep-
tions (Figure 2). We do not observe this relationship in other models,
however. A study on more software products would be needed to
establish if the the feedback (better quality leads to longer usage)
holds. We saw that the number of exceptions increase for later
releases for this software even after accounting for the increase in
number of users, so, it appears that this product had lower quality of
the development process for later releases. It may have been caused
by the move to release more frequently or other factors, but it is
something the development team should be aware of and take the
most appropriate action. Overall, none of the three models indicate
that “Usage.Frequency” or “Usage.Intensity” have any effect on the
“Quality” variable. We, therefore, suggest that the exceptions per
new user can be used as a software development quality metric to
compare quality of different releases and to quantifying the impact
of variables representing the development process of a release.

8 LIMITATIONS
In terms of modeling aspects, there are some limitations related
to all the different approaches. The LR model results could have
been affected by multicollinearity problem, as was indicated by
the VIF value. The RF model, on the other hand, was used for 10
fold cross-validation, and exhibited a rather high value of standard
deviation in the R? value, likely due to the small sample size.
While creating the BN model we did not cover all possible ways
BNs can be applied to gain insight into the system. For example,

Tapajit Dey and Audris Mockus

we did not investigate the possible existence of any hidden node, or
make an effort to formally establish the causal relationship between
the nodes. We also did not investigate how the properties of one
release affect the subsequent releases, nor did we investigate the
presence of any feedback loops.

We also did not use Markov Random Field analysis, which is
another probabilistic graphical modeling approach. The primary
reason behind choosing the BN approach was that we found an
example where this method was used to successfully recover the
underlying network [43]. Moreover, it is possible to interpret a BN
model as a causal model, and although we did not use that inter-
pretation in this study, our goal is to eventually establish a causal
mechanism of how usage affects the number of exceptions/defects
experienced by users, so we wanted to used BN from the start.

The accuracy of our result is very much dependent on the Google
Analytics data. While we do not have reasons to doubt the accuracy
of the counts in Google Analytics data, we would have liked to
have better definitions of how it determines “New User”, “Visit”,
and, especially, nontrivial to aggregate quantities such as “Visits
per User” Also, it is not clear if Google Analytics distorts data in
any way (e.g., by applying differential privacy transformations)
for low counts in order to protect the privacy of the users. We do
not believe it does, but we have not conducted an experiment to
validate that.

Furthermore, the project under consideration was relatively new
and it was the first attempt for the team to deploy mobile software.
As such, much was not well documented and was rapidly evolving
over time. As mentioned earlier, we did not have the official release
dates for all releases, so we put the start date of the release as the
date on which the first usage was reported. However, we did verify
the official dates with this reported date for the releases for which
we found the release date, and they were very close, but not always
exactly the same. This should not affect the overall result, given
the total time scale of more than two years. The release end dates,
by their nature, have to be estimated based on user activity, since
there is no way to force end user to upgrade Android App. For
recent releases, therefore, the end date may be censored by our
data collection date, hence the duration for these releases might be
underestimated.

It may be possible to collect numerous additional variables that
may have an impact on exceptions, for example, the number of
changes to the source code made for a release as was done in [28].
Unfortunately, due to the nature of parallel development for mul-
tiple releases and products noted in subsection 2.1, it was virtu-
ally impossible to separate the changes that would only affect the
specific release on the Android platform. There might be other
unobserved variables driving some relationships, but not explored
in this study.

Our model is obtained on a single mobile application imple-
mented via a rather complex codebase and is certainly not repre-
sentative of most mobile applications that tend to be much simpler.
Furthermore, mobile applications may not represent other types
of software further limiting external validity of the results. How-
ever, some aspects that we see in the specific application, such as
increasing number of faults with the number of users, has been
observed in rather different contexts of large-scale server software.

Mobile Software Faults and Usage: Quality

This suggests that the model derived in the study may generalize
to other domains as well.

9 RELATED WORK

Although software quality has always been a common topic in
software engineering [1, 20], most of the studies have focused on
pre-release data, primarily due to the developers’ concern about
finding the appropriate balance between the amount of testing
required and the quality of software (e.g. [4, 41]). There have been a
number of works on predicting and improving the software quality
as well (e.g. [16, 27, 30, 50]). Comparatively, studies about post-
deployment quality and dynamics have been less frequent [18, 22].
However, a number of studies have looked at the aspects of software
quality metrics, especially the quality perceived by the customers,
e.g., [12, 26, 28, 32, 40]. A notable non-academic work involves a
study of mobile app monitoring company’s (Crittercism) data [11].
The author of the news article found it necessary to normalize crash
data by the number of launches. Finally, an empirical investigation
between release frequency and quality on Mozilla Firefox has been
investigated in [19].

While Bayesian Networks have been used for software defect
prediction for decades, the use of BNs for explanatory modeling
in empirical software engineering is still not common despite the
promise. A case for use of BNs was made by Fenton et.al. [6, 9],
while the earliest publications utilizing BNs we could find [14] con-
structed search of the structure based on the statistical significance
of partial correlations in the context of modeling delays in glob-
ally distributed development. [38, 47] considered the application of
Bayesian networks to prediction of effort, [8, 34, 35] used Bayesian
networks to predict defects, and [36] used BN approach for an
empirical analysis of faultiness of a software. On the other hand,
Bayesian structure learning is a big domain in itself with a wide
range of algorithms, but its use in software engineering context is
not very common.

Post-release defect density calculated as a proportion of users
who experience an issue within a certain period after installing
or upgrading to a new release has been proposed by [29, 32] as a
measure of software quality. Hackbarth et al. [13] also found the
need to adjust defect counts in their proposed measure of software
quality as perceived by customers. We propose a somewhat different
measure of quality based on the number of exceptions per user. In
general, software quality is a widely researched topic [17, 20, 42]
etc., but in our knowledge, this is the first model-based attempt to
obtain a usage independent measure of software quality and the
first attempt to model exceptions in mobile applications.

The advancements proposed in this paper over the published
work are focused on two primary areas: (1) study of the relation-
ship between software faults and usage using post-release data in
mobile application context, and (2) proposing a usage independent
exception-based software quality metric based on our models.

10 CONCLUSIONS

From the practical perspective we have established that the extent of
use has very strong relationship with the number of exceptions for
a large mobile application. Counting exceptions, therefore, will not
accurately measure the quality of software development process
but, instead, it would strongly depend on the extent of use. In
order to produce a measure that the development team can use

PROMISE’18, October 10, 2018, Oulu, Finland

to understand and improve quality of their software development
process, we proposed to normalize exceptions by usage based on
the Bayesian Network models. Notably, a similar normalization was
previously proposed in the context of post-release defects that also
exhibited strong positive correlation with the number of users. As
a larger proportion of applications are mobile and/or delivered as a
service, the amount of usage can be relatively easily be collected.
Consequently, not adjusting software development measures for
usage should not be considered as an excusable practice.

From the theoretical perspective we provided the explanation
of the relationships among post-deployment quantities using Lin-
ear Regression and Bayesian Networks. Linear Regression can be
thought as a special Bayesian Network with the response node
being potentially connected to each predictor node. Bayesian Net-
works allow for exploration of relationships among all variables
and empirical determination of the relationships exhibited in a
particular dataset. Both models indicate that there are only two
variables that are related to exceptions in this data: number of
users and release date which we used as a proxy for the release
quality. It would be preferable to have each release as a separate
categorical predictor, but because for simplicity we chose to use
only one observation per release, it could not be done. If, instead,
we considered exceptions during different periods of a release, that
would have allowed us to introduce such categorical variable and
interpret the estimated coefficient for each release as release quality
(higher number meaning lower quality).

We also established that it is possible to predict exceptions using
Random Forest modeling techniques and that usage plays a key role
for the accuracy of these predictions. As noted above, prediction is a
different task than explanation and, even though it often yields more
accurate results, the prediction results may be harder to explain
to developers or managers and, therefore, harder to act upon. We
believe the findings do have a message for the voluminous research
in defect prediction. While defects are not exceptions, usage was
also found to affect post-release defects in a similar manner [12,
15, 32]. It would, therefore, be advisable to incorporate forecasts of
usage into defect prediction models to increase their accuracy.

We hope that this work will spur more research on software
engineering aspects in post-deployment stage because, like mobile
applications, modern web applications are even more reliant on
usage monitoring not simply from the perspective of crash counting
but also because the usability or even revenue stream from the
software applications critically depends on how users behave.

From the practical perspective, we hope that any mobile or web
software project can easily apply and refine the presented approach
of using Google Analytics data to improve the quality of their soft-
ware. Any Android OS or Apple iOS mobile application can freely
use Google Analytics to monitor application usage and crashes, so
the approach should be widely applicable. Despite that, we are not
aware of any prior empirical study that would leverages Google
Analytics or similar data for software quality modeling.

Finally, much more work is needed to gather additional empirical
evidence of how software behaves post-deployment. It is important
to note that Google Analytics data is available only for applica-
tion developers, so while each project has the ability to see their
App’s performance, they can not see data for software created by
other organizations. This can be addressed by a) projects sharing

PROMISE’18, October 10, 2018, Oulu, Finland

theirs post-deployment data (we have not seen examples of that);
or b) publishing findings based on such data in cases such as ours,
where the data itself would be impossible to release publicly since
it involves numerous, often enterprise, customers who may not
agree.

REFERENCES

[1] Barry W Boehm, John R Brown, and Mlity Lipow. 1976. Quantitative evaluation
of software quality. In Proceedings of the 2nd international conference on Software
engineering. IEEE Computer Society Press, 592-605.

Lionel C Briand, Jurgen Wiist, John W Daly, and D Victor Porter. 2000. Explor-

ing the relationships between design measures and software quality in object-

oriented systems. Journal of systems and software 51, 3 (2000), 245-273.

[3] David Maxwell Chickering. 1996. Learning Bayesian networks is NP-complete.
Learning from data: Artificial intelligence and statistics V 112 (1996), 121-130.

[4] Siddharta R Dalal and Collin L Mallows. 1988. When should one stop testing
software? J. Amer. Statist. Assoc. 83, 403 (1988), 872-879.

[5] Anh Nguyen Duc, Audris Mockus, Randy Hackbarth, and John Palframan. 2014.
Forking and coordination in multi-platform development: a case study. In ESEM.
Torino, Italy, 59:1-59:10. http://dl.acm.org/authorize?N14215

[6] Norman Fenton, Paul Krause, and Martin Neil. 2002. Software measurement:
Uncertainty and causal modeling. IEEE software 19, 4 (2002), 116-122.

[7] N Fenton, Martin Neil, and D Marquez. 2008. Using Bayesian networks to predict
software defects and reliability. Proceedings of the Institution of Mechanical
Engineers, Part O: Journal of Risk and Reliability 222, 4 (2008), 701-712.

[8] Norman Fenton, Martin Neil, William Marsh, Peter Hearty, David Marquez,
Paul Krause, and Rajat Mishra. 2007. Predicting software defects in varying
development lifecycles using Bayesian nets. Information and Software Technology
49,1 (2007), 32-43.

[9] Norman E Fenton and Martin Neil. 1999. A critique of software defect prediction
models. IEEE Transactions on software engineering 25, 5 (1999), 675-689.

[10] Nir Friedman, Moises Goldszmidt, and Abraham Wyner. 1999. Data analysis
with Bayesian networks: A bootstrap approach. In Proceedings of the Fifteenth
conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers
Inc., 196-205.

[11] Tomio Geron. 2012. Do iOS Apps Crash More Than Android Apps? A

Data Dive. (2012). https://www.forbes.com/sites/tomiogeron/2012/02/02/

does-ios-crash-more-than-android-a-data-dive.

R. Hackbarth, A. Mockus,]J. Palframan, and R. Sethi. 2016. Customer Quality

Improvement of Software Systems. Software, IEEE 33, 4 (2016), 40-45. papers/

cqm2.pdf

Randy Hackbarth, Audris Mockus, John Palframan, and Ravi Sethi. 2016. Im-

proving software quality as customers perceive it. IEEE Software 33, 4 (2016),

40-45.

[14] J. D. Herbsleb and A. Mockus. 2003. An Empirical Study of Speed and Commu-

nication in Globally-Distributed Software Development. IEEE Transactions on

Software Engineering 29, 6 (June 2003), 481-494. papers/delay.pdf

Caper Jones. 2011. SOFTWARE QUALITY IN 2011: A SURVEY OF THE STATE

OF THE ART. http://sqgne.org/presentations/2011-12/Jones-Sep-2011.pdf.

(2011). President, Namcook Analytics LLC, www.Namcook.com Email: Ca-

pers.Jones3@GMAILcom.

Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E. Hassan, Audris Mockus,

Anand Sinha, and Naoyasu Ubayashi. 2013. A Large-Scale Empirical Study of

Just-In-Time Quality Assurance. IEEE Transactions on Software Engineering 39, 6

(2013), 757-773. http://doi.ieeecomputersociety.org/10.1109/TSE.2012.70

Stephen H Kan. 2002. Metrics and models in software quality engineering. Addison-

Wesley Longman Publishing Co., Inc.

Garrison Q Kenny. 1993. Estimating defects in commercial software during

operational use. IEEE Transactions on Reliability 42, 1 (1993), 107-115.

[19] Foutse Khomh, Tejinder Dhaliwal, Ying Zou, and Bram Adams. 2012. Do faster
releases improve software quality?: an empirical case study of Mozilla Firefox. In
Proceedings of the 9th IEEE Working Conference on Mining Software Repositories.
IEEE Press, 179-188.

[20] Barbara Kitchenham and Shari Lawrence Pfleeger. 1996. Software quality: the

elusive target [special issues section]. IEEE software 13, 1 (1996), 12-21.

Daphne Koller and Nir Friedman. 2009. Probabilistic graphical models: principles

and techniques. MIT press.

Paul Luo Li, Ryan Kivett, Zhiyuan Zhan, Sung-eok Jeon, Nachiappan Nagappan,

Brendan Murphy, and Andrew J Ko. 2011. Characterizing the differences between

pre-and post-release versions of software. In Proceedings of the 33rd International

Conference on Software Engineering. ACM, 716-725.

Scott W Menard. 1995. Applied logistic regression analysis. Number 04; e-book.

[2

—

[12

[13

(15

[16

[17

(18

[21

[22

[23

Tapajit Dey and Audris Mockus

[24] Audris Mockus. 2007. Software Support Tools and Experimental Work. In

Empirical Software Engineering Issues: Critical Assessments and Future Directions,

V Basili and et al (Eds.). Vol. LNCS 4336. Springer, 91-99. papers/SSTaEW.pdf
Audris Mockus. 2013. Law of minor release: More bugs implies better software

quality. http://mockus.org/papers/IWPSE13.pdf. (2013). International Work-
shop on Principles of Software Evolution, St Petersburg, Russia, Aug 18-19 2013.
Keynote.

Audris Mockus. 2014. Engineering Big Data Solutions. In ICSE 14 FOSE. 85-99.
http://dl.acm.org/authorize?N14216

Audris Mockus, Randy Hackbarth, and John Palframan. 2013. Risky Files: An Ap-
proach to Focus Quality Improvement Effort. In 9th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering. 691-694. http://dl.acm.org/authorize?6845890
Audris Mockus and David Weiss. 2008. Interval Quality: Relating Customer-
Perceived Quality To Process Quality. In 2008 International Conference on Software
Engineering. ACM Press, Leipzig, Germany, 733-740. http://dl.acm.org/authorize?
063910

Audris Mockus and David Weiss. 2008. Interval quality: Relating customer-
perceived quality to process quality. In Proceedings of the 30th international
conference on Software engineering. ACM, 723-732.

Audris Mockus and David M. Weiss. 2000. Predicting Risk of Software Changes.
Bell Labs Technical Journal 5, 2 (April-June 2000), 169-180. papers/bltj13.pdf
Audris Mockus, Ping Zhang, and Paul Li. 2005. Drivers for Customer Perceived
Software Quality. In ICSE 2005. ACM Press, St Louis, Missouri, 225-233. http:
//dl.acm.org/authorize?860140

Audris Mockus, Ping Zhang, and Paul Luo Li. 2005. Predictors of customer
perceived software quality. In Software Engineering, 2005. ICSE 2005. Proceedings.
27th International Conference on. IEEE, 225-233.

Radhakrishnan Nagarajan, Marco Scutari, and Sophie Lébre. 2013. Bayesian
networks in R. Springer 122 (2013), 125-127.

Martin Neil and Norman Fenton. 1996. Predicting software quality using Bayesian
belief networks. In Proceedings of the 21st Annual Software Engineering Workshop.
NASA Goddard Space Flight Centre, 217-230.

Ahmet Okutan and Olcay Taner Yildiz. 2014. Software defect prediction using
Bayesian networks. Empirical Software Engineering 19, 1 (2014), 154-181.
Ganesh J Pai and Joanne Bechta Dugan. 2007. Empirical analysis of software
fault content and fault proneness using Bayesian methods. IEEE Transactions on
software Engineering 33, 10 (2007), 675-686.

Judea Pearl. 2011. Bayesian networks. Department of Statistics, UCLA (2011).
Parag C Pendharkar, Girish H Subramanian, and James A Rodger. 2005. A
probabilistic model for predicting software development effort. IEEE Transactions
on software engineering 31, 7 (2005), 615-624.

R Core Team. 2017. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.
org/

Pete Rotella and Sunita Chulani. 2011. Implementing quality metrics and goals
at the corporate level. In Proceedings of the 8th Working Conference on Mining
Software Repositories. ACM, 113-122.

Julia Rubin and Martin Rinard. 2016. The challenges of staying together while
moving fast: An exploratory study. In Proceedings of the 38th International Con-
ference on Software Engineering. ACM, 982-993.

Gordon Gordon Schulmeyer and James I McManus. 1992. Handbook of software
quality assurance. Van Nostrand Reinhold Co.

Marco Scutari. 2013. Learning Bayesian Networks in R, an Example in Systems
Biology. (2013). http://www.bnlearn.com/about/slides/slides-useRconf13.pdf.
Marco Scutari and Korbinian Strimmer. 2010. Introduction to graphical modelling.
arXiv preprint arXiv:1005.1036 (2010).

Galit Shmueli. 2010. To explain or to predict? Statistical science (2010), 289-310.
Elliott Sober. 2002. Instrumentalism, parsimony, and the Akaike framework.
Philosophy of Science 69, S3 (2002), S112-S123.

Toannis Stamelos, Lefteris Angelis, Panagiotis Dimou, and Evaggelos Sakellaris.
2003. On the use of Bayesian belief networks for the prediction of software
productivity. Information and Software Technology 45, 1 (2003), 51-60.
Ramanath Subramanyam and Mayuram S. Krishnan. 2003. Empirical analysis
of ck metrics for object-oriented design complexity: Implications for software
defects. IEEE Transactions on software engineering 29, 4 (2003), 297-310.

Ping Yu, Tarja Systa, and Hausi Muller. 2002. Predicting fault-proneness using
OO metrics. An industrial case study. In Software Maintenance and Reengineering,
2002. Proceedings. Sixth European Conference on. IEEE, 99-107.

Feng Zhang, Audris Mockus, Iman Keivanloo, and Ying Zou. 2015. Towards
building a universal defect prediction model with rank transformed predictors.
Empirical Software Engineering (2015), 1-39.

Qimu Zheng, Audris Mockus, and Minghui Zhou. 2015. A Method to Identify
and Correct Problematic Software Activity Data: Exploiting Capacity Constraints
and Data Redundancies. In ESEC/FSE’15. ACM, Bergamo, Italy, 637-648. http:
//dLacm.org/authorize?N14200

	Abstract
	1 Introduction
	2 Background
	2.1 The Software
	2.2 The Data

	3 Data Preprocessing
	4 Analysis: explaining exceptions
	4.1 Linear Regression Model
	4.2 Bayesian Network Model
	4.3 Random Forest Model

	5 Comparison with published results
	6 Application of our model: A derived measure of Quality
	7 Insights from the model
	8 Limitations
	9 Related Work
	10 Conclusions
	References

