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ABSTRACT

Background: The way post-release usage of a software affects the

number of faults experienced by users is scarcely explored due to

the proprietary nature of such data. The commonly used quality

measure of post-release faults may, therefore, reflect usage instead

of the quality of the software development process. Aim: To deter-

mine how software faults and software use are related in a post-

deployment scenario and, based on that, derive post-deployment

quality measure that reflects developers’ performance more accu-

rately. Method: We analyze Google Analytics data counting daily

new users, visits, time-on-site, visits per user, and release start

date and duration for 169 releases of a complex communication

application for Android OS. We utilize Linear Regression, Bayesian

Network, and Random Forest models to explain the interrelation-

ships and to derive release quality measure that is relatively stable

with respect to variations in software usage. Results: We found

the number of new users and release start date to be the deter-

mining factors for the number of exceptions, and found no direct

link between the intensity and frequency of software usage and

software faults. Furthermore, the relative increase in the number

of crashes was found to be stably associated with a power of 1.3

relative increase in the number of new users. Based on the findings

we propose a release quality measure: number of crashes per user

for a release of the software, which was seen to be independent of

any other usage variables, providing us with a usage independent

measure of software quality. Conclusions: We expect our result and

our proposed quality measure will help gauge release quality of a

software more accurately and inspire further research in this area.
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1 INTRODUCTION

Common sense dictates that a software with few defects has bet-

ter quality than a software with numerous defects. However, the

number of discovered software faults increases with the number

of users, as observed in [12, 15]. Since software faults are manifes-

tations of underlying defects1, this, in turn, dramatically affects

the interpretation of post-release defects. In the extreme, no users

implies zero reported software faults for a release, independent of

software quality. This fact is often not considered in industry or in

empirical studies (although few studies do note that [7, 9]) and may

lead to misguided quality improvement efforts and/or misguided

developer performance metrics.

A possible reason for this oversight is the difficulty of tracking

usage even though defects and crashes reported by users are often

carefully tracked in larger software projects. As a result, little is

known of how the extent of software use affects manifestation of

software defects in a post-release scenario. This is due in part to

the scarcity of rich post-deployment datasets which is likely caused

partly by the proprietary nature of such data and the difficulty

in obtaining and sharing it even for the software development

teams in these proprietary projects since the deployment is typically

managed by a different team within the organization. Without such

data, however, it becomes exceedingly difficult to interpret customer

reported defects since releases with more customers tend to have

more defects reported against them despite their higher quality [12,

28]. Moreover, some crucial metrics, for example the number of

users for a specific release, are virtually impossible to measure

without a usage monitoring system and many traditional software-

as-a-product systems do not or can not have such capability.

We conducted our study by looking into 169 releases of a pro-

prietary mobile software from the telecommunication domain for

Android OS. The data was retrieved from Google Analytics plat-

form which contained information related to software usage, some

release specific information, as well as the number of application

crashes. Our first aim in this study is to model the relationship

among post-deployment variables, specifically, finding the rela-

tionships among variables describing different aspects of software

usage and software crashes (manifestations of underlying defects).

1Although the relationship is not very well understood [9]
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Our second aim is to use that model to construct a quality mea-

sure for the software releases that is independent of software usage,

giving us the ability to compare the quality of software releases

more accurately.

We used three usage related variables: number of users, usage

intensity (average duration of software use per user), and usage

frequency (average number of sessions per user), along with two

variables describing attributes of the particular release: release date

and effective duration of the release, measured by how long the

release continued to have new users, and looked at how these

variables affect the number of exceptions i.e. application crashes.

After the usual data cleaning and variable construction stages, we

first applied a linear regression (LR) model to identify the significant

predictors for the number of exceptions. Then we used a Bayesian

Network (BN) model to discover the interrelationship between the

variables. Finally, we ran a random forest (RF) model to identify the

variable importances for predicting the number of exceptions. All

analyses in this study was done in R [39].

We found that the number of new users and the release date

(representing the evolution of software development practices and

increasing functionality) were the most significant factors needed

to explain the exceptions experienced by end users of software. Our

findings also suggest that the frequency and intensity of usage have

little impact on the number of exceptions.

Based on the result of our model, we propose that a quality

metric of average number of exceptions experienced by end users

would be most suitable in this scenario. The result of a model with

this quality variable was found to be dependent only on the release

date, and not on any usage related variables.

The novelty of our work involves the study of the relationship

between usage and exceptions and the application of BNs to ex-

plain relationships among highly correlated predictors in a mobile

development context. We also found that the number of users (rep-

resenting usage) is the most important predictor of defects, so the

software development quality measured as exceptions would be

misleading. We replicated the finding in [12, 28] that pointed out

that post-release defects are also a misleading measure of process

quality and also that the normalization of defects by the number

of users provides a more meaningful process quality measure. Fur-

thermore, we hope that our proposed approach of adjusting the

defects, exceptions, or other quality indicators for the factors that

affect them, but are not relevant to software process quality, could

be applied more widely.

In summary, we aim to increase the understanding of software

quality in post-deployment scenario in mobile software develop-

ment by finding the relationship between post-release faults and

software usage using different modeling techniques to confront

issues related to the observational nature of the data and high corre-

lations among software development and deployment measures.We

also propose a usage independent software release quality measure,

which is derived from the result of our analysis.

The rest of the paper is organized as follows: In Section 2, we

present the background information on the software and the data.

In Section 3, we describe the details of the preprocessing steps. In

Section 4, we present the different modeling approaches and the

results and a comparison of our result and already published result

is presented in Section 5. Our proposed quality measure and the

results of the corresponding analysis is presented in Section 6 The

interpretation of the result is discussed in Section 7. In Section 8,

we talk about the possible limitations. In Section 9, we list some

related works, and finally in Section 10, we discuss the implications

of our study and conclude.

2 BACKGROUND

In this section we provide background information related to the

mobile software product and the data obtained from Google Ana-

lytics reflecting how the application was used.

2.1 The Software

The software chosen for this study was Avaya Communicator for

Android, currently known as Avaya Equinox®. It integrates the An-

droid device of the userswith their officeAvayaAura®communications

environment and delivers mobile voice and video VoIP calling, cellu-

lar call integration, rich conferencing, instant messaging, presence,

visual voicemail, corporate directory access and enterprise call logs.

Avaya is developing large, complex, real-time software systems

that are embedded and standalone products. Development and test-

ing are spread through 10 to 13 time zones in the North America,

USA, Europe and Asia. R&D department employed many virtual

collaboration tools such as JIRA, Git, WIKIs and Crucible. Devel-

opment teams use Scrum-like development methodologies with a

typical 4-week sprint. We consider a 15+ year old software com-

ponent, the so-called Spark engine. As a software platform, Spark

provides a consistent set of signaling platform functionalities to a

variety of Avaya telephone product applications, including those of

third parties. Spark is a client platform that provides signaling man-

ager, session manager, media manager, audio manager, and video

manager. The codebase involves more than 200K files and, over

all forks, over 4M commits. The Android software chosen for this

study is a fork of the Spark codebase. A more in-depth description

of the development process is provided in [5].

2.2 The Data

The post-deployment data for this application was obtained from

the Google Analytics platform. Google Analytics is a web analytics

service offered by Google that tracks and reports website traffic. It

is now one of the most widely used web analytics services on the

internet. In addition to traditional web applications it also allows

tracking of mobile applications. To do that, the producer of a mobile

application needs to set up an account and instrument their mobile

application to send certain events to Google Analytics. Notably, it

works for the Android mobile application investigated in this study.

We obtained usage data for Pre-GA (General Availability), Exper-

imental, Development, and GA release versions for the application

from the Google Analytics platform. However, since we are inter-

ested in modeling the post-deployment quality of the software as

experienced by real users, we focus only on the GA release data,

because for this software only the GA releases are made available

to the end users.

The original data obtained from Google Analytics had measures

for the variables listed in Table 1, aggregated at a per-day granular-

ity, meaning that each entry in the original data table contained the

measures for the numerical variables (marked with a † symbol in

the table) for each unique combination of date, application release
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Table 1: Measures available in the Original Data

Application Release Version No. of exceptions†

Operating System version in the user’s

device

Date of record entry

No. of fatal exceptions† No. of new visits†

No. of visits† Time on site†

Details on user’s mobile device: brand,

category(mobile or tablet) and model

No. of new users†

No. of total users† Sessions per user†

version, operating system version, mobile device brand, category,

and model.

It is important to note that Google Analytics releases only ag-

gregate data even to developers of the application and limits the

number of REST API calls, so one can not, for example, retrieve

usage data for every calendar second or get exact time of the events.

The daily counts split by release of the application, Android OS

version, and type of device, provided sufficiently fine granularity

for our analysis.

3 DATA PREPROCESSING

This section contains the data cleaning, transformation, and vari-

able construction steps undertaken prior to applying the different

modeling methods on the data.

Removal of variables before aggregation: Upon initial in-

vestigation into the data, we found that no. of exceptions and no. of

fatal exceptions were exactly the same, as recorded by Google Ana-

lytics, so we removed the no. of fatal exceptions from the dataset.

Only fatal exceptions were recorded for this application, i.e., crashes

that require a complete restart of the mobile application and, poten-

tially, may affect the operating system itself. This is not surprising

since the bulk of the functionality for the application was written in

C++ and called from Android Java applications via Native Interface.

We did not consider the variables related to mobile device details

and Android operating system versions because the application,

as noted above, was primarily written in C++ and the user inter-

face aspects that vary greatest among devices and versions of OS

were not likely to have influence. To validate that assumption we

investigated and found no correlation of exceptions with either

variable.

Aggregating data to per-release granularity: Since our aim

is to model the post-deployment quality of the different releases,

we aggregated the data to a per-release granularity, from the the

original data that was recorded in per-day granularity. The raw data

contained 177 different GA releases. We dropped eight of them from

further consideration because a significant portion of observations

were missing. The result of aggregation, however, was two new

variables: start date (first day for which we have a record for that

release) of a release, and end date (last date for which we have a

record for that release) of a release, which in turn helped create

another variable: duration of a release. We did not to keep the end

date in the final table, since duration and start date can be used to

compute the end date.

Verifying the correctness of Release date: The original data

involves only the usage aspects and the version information of

the software. The project under consideration was relatively new

and it was the first attempt for the team to deploy mobile software

on Android OS (although a different team has already produced

analogous product for iOS earlier). As such, not everything was

well documented and also was rapidly evolving over time and no

record of the exact release dates for most of the releases was avail-

able. We did manage to get release dates for some of releases from

Google Play Store, but not all the release dates were available. For

the releases with dates available on Google Play Store, the official

release dates from Avaya records, and the start dates obtained from

the data were either very close or exactly the same, so we do not

have a reason to doubt the dates obtained from the data.

Removal of variables post aggregation: The numerical vari-

ables were aggregated to give a sum for each variable. Upon further

inspection, we found the number of users, new users, visits, and new

visits to be highly correlated. In the second iteration, we removed

the variable łsessions per userž, because aggregating it directly is

meaningless, and we were not sure how it was originally calculated

by Google Analytics (was it a mean or a median? were new users

or total users counted?). We also removed the łtotal usersž and

łtotal visitsž, because while summing up the new users/visits for

each day gives an accurate measurement of the total number of

new users/visits for a release, it is not guaranteed that summing

up total users/visits does the same due to possible double counting

the number of users/visits.

Finalmodification of variables: In the final iteration for clean-

ing the data, we modified the measure for the duration of a release

slightly. We did this because although most of the usage for a re-

lease is within a certain time period, a few dates of last use were

more than a year since previous use, and we didn’t want the dura-

tion for the release to be influenced by these outliers; so instead of

the time between last and first day of usage of a release, we took

the difference between the date when 90th quantile of the total

number of new users for the release was achieved, and the first

date as the effective duration of a release. Our choice was later

validated by the first iteration of LR modeling, when we kept the

full duration (last-first date) and our chosen measure of duration.

The results showed that our chosen measure of duration was more

important compared to the full duration. Also, since we found the

total number of new users and new visits to be highly correlated

(Spearman correlation 0.75), we focus on visits per user instead of

the total number of new visits. For the same reason, we normalized

the łTime.On.Sitež variable to measure time spent on site per user.

Final list of variables: Keeping the goal of our study in mind,

the variables we have after the initial cleaning steps give us neces-

sary information for a model of post-release defects and software

usage. In our list of variables, we have the total number of excep-

tions i.e. post-release defects. As for measures related to software

usage, we have the total number of new users, the łTime.On.Sitež

variable provides a measure for the temporal intensity of usage

per user, and the number of visits per user is a measure for the

frequency of usage. We also have two variables related to each indi-

vidual release: the start date i.e. the release date gives a measure for

the calender time of each release, and is useful in gaining insight

about if the number of post-release defects and software usage

vary with time, and the duration of a release, which could have an

effect on the number of exceptions and the number of new users,

since these variables were not normalized with duration. Since we
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Table 2: Measures in the Aggregated Data Table

Release variable - Start Date for

the release (Release.Date)

Release variable - Effective Duration

of the release (Release.Duration)

Post-Release defects - Total No.

of exceptions (Exceptions)

Usage variable - Average time on

site per user (Usage.Intensity)

Usage variable -Total number of

new users (New.Users)

Usage variable - No. of visits per

user (Usage.Frequency)

only have a limited amount of data, we restricted ourselves to use

only these six variables. Our final aggregated data table had the

measures listed in Table 2, with the corresponding variable names

we used in the model enclosed in brackets.

Log-transformation of variables: The release date was con-

verted from the Date format to numeric format, which resulted in

the values for the release date variable being represented by the

difference in days from Unix time (counted from 1970-01-01). We

found that all of the variables under consideration had a long-tailed

distribution, so we took logarithm of them. Final distribution of the

variables in available in our GitHub repository:

https://github.com/tapjdey/release_qual_model.

4 ANALYSIS: EXPLAINING EXCEPTIONS
As mentioned earlier, we conducted our analysis in three stages:

first, we used linear regression (LR) on the data with the number

of exceptions as the response variable; then, we used Bayesian

Network (BN) modeling approach to identify the interrelationship

between the variables; and finally, we used a random forest (RF)

model to verify the results.

We chose LR for the simplicity, robustness and ease of interpreta-

tion. To better understand interrelationships among variable (since

LR is not applicable for sets of highly correlated predictors) we used

BN models. Finally, to establish the predictive capabilities of our

models we used RF, which is known as one of the best Machine

Learning classifiers. That way we could both obtain the most in-

sight and also to validate our findings through the use of radically

different approaches.

4.1 Linear Regression Model

We first used a linear regression model to discover the significant

variables affecting the number of exceptions. The output of the

fitted model is shown in Table 3.The model resulted in a decent

fit, given the sample size of 169, with adjusted R2 of 0.435, and the

variables łNew.Usersž and łRelease.Datež were the only significant

variables, with both coefficients related to the variables being posi-

tive, indicating more users result in more exceptions and, for this

software, later releases had more exceptions. It can also be seen

that the variables representing usage intensity and duration came

out to be not significant, indicating absence of a strong relationship

between the variables.
Table 3: Summary Result of LR model for łExceptions"

Estimate Std. Error t value Pr(> |t|)

(Intercept) -230.5082 71.2493 -3.24 0.0015

Release.Date 23.6401 7.3496 3.22 0.0016

New.Users 0.6556 0.1628 4.03 0.0001

Usage.Intensity -0.0093 0.0530 -0.17 0.8615

Release.Duration 0.1327 0.1484 0.89 0.3725

Usage.Frequency 0.0903 0.2287 0.39 0.6935

However, due to the presence of medium-high correlation be-

tween the variables, the variance inflation factor (VIF) associated

with łNew.Usersž was 5.57 , which, according to [23], is a łcause

for concernž due to the łtolerancež (inverse of VIF) being less than

0.2. To address this issue, we decided to use a Bayesian Network

model, which is unaffected by the multicollinearity problem.

4.2 Bayesian Network Model

Bayesian Network [21, 44] is a type of Probabilistic Graphical

Model (PGM), which explicitly represents the conditional depen-

dency/independence as a directed acyclic graph where variables

represent nodes and dependencies represent links, and thus this

representation can be used as a generative model2. Bayesian Net-

works models can be useful in the context of Software Engineering

research [9] due to having several advantages over regression mod-

els. To be precise, regression analysis is a very simple BN where

there is one directed link from each independent variable to de-

pendent variable. BNs, therefore, can help with multicollinearity,

a common problem with software engineering data [2, 24, 48, 49],

that is present in our data as well, by linking independent variables.

Another variety of PGM that we did not use in this paper (details

in Section 8) is the Markov random fields that represent the inter-

relationships between variables as undirected graphs. They differ

in the set of independencies they can encode and the factorization

of the distribution that they induce [21].

4.2.1 Bayesian Network Model construction: Despite the promises

of BNs, they tend to be quite sensitive to data, and operational

data, is often problematic [26, 51]. Careful preprocessing, there-

fore, is needed to ensure a reliable and reproducible result. Two

primary ways to use BNs exist. With the first approach the graph

represents dependencies obtained from domain experts. The graph

may include prior distributions about the parameters of the overall

model. The data is then used to calculate the posterior distribution

and to make inference. The second approach puts minimal a-priori

assumptions about the model and focuses on the search for the best

graphical representation for a given dataset (structure learning).

This is an NP-hard problem [3], but a number of different heuristic

structure learning algorithms are available. Due to the lack of any

strong theory connecting the variables we are considering, we de-

cided to use the structure search method for BNmodel construction.

Since our goal is to find a Bayesian network model for the data, we

didn’t examine the methods that do not result in a Directed Acyclic

Graph (DAG). We found that the bnlearn package in R implements

a wide range of BN searching methods for continuous, discrete, or

a mixed set of variables and the corresponding families of scoring

functions and also has a good number of examples. These methods

were also shown to be able to recover the underlying network for a

protein-signaling-chain (in Biology) in [43]. We, therefore, use this

package for our analysis. In addition to the methods implemented

in bnlearn package, we investigated some methods from a few other

packages which can be interfaced with the bnlearn package.

2Agenerativemodel specifies a joint probability distribution over all observed variables,
whereas a discriminative model (like the ones obtained from regression or decision
trees) provides a model only for the target variable(s) conditional on the predictor
variables. Thus, while a discriminative model allows only sampling of the target
variables conditional on the predictors, a generative model can be used, for example,
to simulate (i.e. generate) values of any variable in the model, and consequently, to
gain an understanding of the underlying mechanics of a system, generative models
are essential.
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Figure 1: Custom model used for Simulation Study

Due to the potential inconsistencies of the BN models, we per-

formed ourmodeling in two stages. First, we considered all available

BN structure methods in the bnlearn package and ran a simulation

based study to find the methods that are most accurate and then

we used those methods on our data to create the final model.

Methods considered:

The different BN structure search methods we considered are listed

below:

• Greedy search algorithms [33, 43]

• Hybrid algorithms [33, 43]

• Posterior maximization using deal package in R [43].

• Simulated Annealing using catnet package in R [43] .

• PC Algorithm using pcalg package in R [43] .

• MAP (maximum a posteriori estimation) Bayesian Model Av-

eraging [33, 43]

All structure search algorithms try to maximize some form of a

network score. Among the various scores available, BIC score is the

suitable onewhen the goal is to create an explanatorymodel [45, 46].

BIC score is used for discrete data while the Gaussian equivalent of

BIC (bic-g) score is used for continuous data.

The results, structure and parameters resulting from a structure

search algorithm are often noisy, meaning that different settings in-

duce slightly different networks. To mitigate this effect we use non-

parametric bootstrap model averaging method described in [10],

which provides confidence level for both the existence of edge and

its direction. This enables us to select a model based a confidence

threshold. Authors of [10] argue that threshold is domain specific

and needs to be determined for each domain. For instance, a thresh-

old of 0.95 indicates that only the edges that appeared in more than

95% of the bootstrap optimized models were selected.

Simulation Study:

We performed the simulation study by first creating a random

BN (see Figure 1) with six nodes, since we also have six variables

in our final list (Table 2). For demonstration purposes we use the

same variable names. We fitted this graph with our data to generate

values for the coefficients for each edge. This model was used in our

simulation study going forward. We created 1000 different datasets

(it is possible to generate both continuous and discrete data) from

the BN structure in Figure 1, and applied the different structure

search algorithms (both continuous and discrete versions, where

available) listed above. Our performance metric is finding how

many times can the different algorithms recover the underlying

structure from the simulated data.

The result of the simulation study had the following findings:

Release Date

Exceptions

 c: 1.4e-3 
 p: 0.98e-3 

Release Duration

 c: -0.5e-3 
 p: 0.02 Usage Frequency

 c: 0.7e-3 
 p: 4.7e-6 

New Users

 c: 0.77 
 p: < 1e-12 Usage Intensity

 c: 0.94 
 p: < 1e-12 

 c: 0.91 
 p: < 1e-12 

 c: 0.27 
 p: < 1e-12 

 c: -0.14 
 p: < 1e-12 

 c: -0.7 
 p: 1.2e-12 

Figure 2: Final BNModel (with c: coefficients after fitting the

transformed, but unscaled data, p: p-value for the link)

• Log-transformed and scaled continuous data resulted in

much more frequent recovery of the original BN structure

compared to discretized data.

• Bootstrapping improves the stability of the results consider-

ably.

• The bootstrapped Hill-Climbing search algorithm outper-

formed all others both in terms of accuracy and runtime,

being able to recover the underlying structure 76% of the

times and making no more than one error 88% of times.

Final BN model:

One key assumption for applying the continuous BN structure

search algorithms is that the variables have a distribution close to

a Gaussian distribution. To satisfy this modeling assumption, we

scaled all the variables to unit scale. The variable łExceptions" still

had a long tailed distribution, but the distributions of the other

variables were much closer to normal distribution.

To obtain the final BN model we ran the Bootstrapped Hill-

Climbing search 10 times using distinct random seeds on the con-

tinuous version of the data, based on the result of our simulation

study, and we choose the structure that appeared most frequently.

The resultant BN model is shown in Figure 2. It resulted from the

bootstrapped greedy hill-climbing search in 9 out of 10 runs. Every

bootstrap run was performed over 500 bootstrap samples, and a

hill-climbing search with 100 random restarts was applied on each

sample to find the best fitting network, so in essence, each resultant

network was obtained by averaging 50,000 candidate networks. We

used the threshold values found to be optimal for each method from

the bootstrap runs (that can be obtained by attr(boot.object,

"threshold") command).

The result form a bootstrap run shows the relative strength of

the link and the relative confidence for the direction of the link. In

Table 4 we have shown the result from one bootstrap run of the

HC method for all the edges we have in our final model. If an edge

has < 50% confidence in its direction, then the edge appears in the

opposite direction in our model.

Although BayesianNetworks are sometimes interpreted as causal

relationships [37], there are disagreements on how that should be

done. We, therefore, are not interpreting these relationships as

causal here. All observed links, therefore, indicate the presence of

observed correlation (and are empirical in nature) and the direction
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Table 4: Example bootstrap result

from to strength direction

New.Users Exceptions 1.00 0.94

Release.Date Exceptions 1.00 0.83

New.Users Release.Duration 1.00 0.71

Release.Duration New.Users 1.00 0.29

Exceptions Release.Date 1.00 0.17

Exceptions New.Users 1.00 0.06

Usage.Intensity Usage.Frequency 1.00 0.69

Usage.Frequency Usage.Intensity 1.00 0.31

New.Users Usage.Frequency 1.00 0.74

Usage.Frequency New.Users 1.00 0.26

Release.Date Release.Duration 0.96 0.70

Release.Duration Release.Date 0.96 0.30

Release.Date Usage.Frequency 0.88 0.77

Usage.Frequency Release.Date 0.88 0.22

New.Users Usage.Intensity 0.85 0.62

Usage.Intensity New.Users 0.85 0.38

Usage.Frequency Release.Duration 0.84 0.53

Release.Duration Usage.Frequency 0.84 0.47

is a property of the topological ordering of nodes in a DAG, and

affects the total probability distribution of the variables.

Based on the results from bootstrap, we chose the model shown

in Figure 2 as our final BN model. This model was fitted to the

unscaled data, and the resulting coefficient of each link is also

shown in the figure. The p-value for each link was calculated from a

linear model with the source nodes as predictors and the destination

node as the response variable, e.g. the p-value for the link from

łNew.Users" to łExceptions" was calculated by looking at the result

of: lm(Exceptions ∼ New.Users + Release.Date).

We fitted the model to the transformed, but unscaled data (for

easier interpretation of results). Note that, as mentioned before,

the Release.Date variable, which is represented by the difference in

days between the start date of a release and the Unix epoch time

(1970-01-01), was not log-transformed, but the other variables were.

By looking at the p-values for the links, we can say that except

the link from łRelease.Date" to łRelease.Duration", all others are

statistically significant. Links having a negative coefficient indicate

a negative relationship between the parent and the child node.

We also verified that for all the runs that resulted in the model in

Figure 2, up to a threshold of 0.35, the model remains the same, and

the variables affecting the łExceptions" variable remain the same

for a threshold as low as 0.2.

The performance of explanatory models is evaluated by the

fraction of deviance explained by the model. Our model explains

44% of variation in łExceptions" (adjusted R2 value of the model).

4.3 Random Forest Model

As a verification step to identify the important variables affecting

the number of exceptions, we used a Random Forest model to fit

the data, with łExceptionsž as the response variable. The variable

importance plot, as shown in Figure 3, indicates that łRelease.Date"

and łNew.Usersž are the two most important variables. We ran a

10-fold cross-validation exercise with łExceptionsž as the response

variable, the resultant R2 varied between 0.09 and 0.75 (mean: 0.47,

standard deviation: 0.2). The high standard deviation is likely caused

Figure 3: Variable Importance Plot of RF model for łExcep-

tions"
by our relatively small sample size of 169. This result reinforces the

result we got from earlier analyses.

5 COMPARISON WITH PUBLISHED RESULTS

Since our study was based on only one system, we decided to

compare our findings with already reported results. The number

of users for most of the releases we studied are very small, with a

median of 7 users per release, although a few releases have more

than 16,000 users. On slide 22 of of his presentation [15], Caper

Jones reported that the number of defects increase 2 to 3 times

for a 10 fold increase in the number of users (from 1 to 10 and 10

to 100) for a software of similar complexity (between 10,000 and

100,000 function points). However, they were looking at the number

of defects, and typically the number of exceptions is larger than

the number of defects, because one defect could cause crashes for

multiple users (or multiple crashes for a single user). The study

published in [28] was done for a system with many more users

(around 4,000 to 16,000),however, they reported that for a two-

fold increase in the number of users the number of Modification

Requests (MR tickets) increase around 1.25 times, which is less than

what would have been predicted by our model (1.78). Although we

were unable to do a direct comparison to another mobile application,

these findings add more context to our result, and indicates the

necessity of further studies that publish their datasets to understand

the usage-fault relationship in a wider range of applications.

6 APPLICATION OF OUR MODEL: A DERIVED
MEASURE OF QUALITY

In order to arrive at the usage independent quality measure, we

follow the framework of establishing laws governing relationships

among measures of software development proposed in [25]. Law

is an equivalent of invariance, i.e. a function of measures that is

constant under certain conditions. In this case we want it to be

constant for releases that have the same quality. First, the law re-

quires a plausible mechanism and second, an empirical validation.

Each new user may have a different type of phone, operating sys-

tem, service provider, geographic region, and usage pattern. It is

reasonable to assume that some of these configurations lead to

software malfunction manifested as an exception. This provides us

with a plausible mechanism on how precisely more new users of

one release might generate more exceptions even if we have two
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immediately afterwards. In fact, users who on an average remain

connected for longer durations can not have too many visits since

the total possible usage time is bounded by calendar time. This may

explain this connection and also provide another insight that for

the users of this particular software, the total usage time perhaps

doesn’t vary a lot.

An interesting observation from the model is the lack of any di-

rect relationship between exceptions and the intensity or frequency

of usage. One possibility is that exceptions happen for specific An-

droid OS version/ Phone combination and the way each user is

exercising application’s functionality. Users for whom the applica-

tion crashes must wait for the next release. This would lead to the

observed phenomena where only the new users increase the num-

ber of crashes. The duration an application is used by individual

users was found to have a much smaller effect on reported defects

than the number of new users in prior work [12, 28, 31] as well.

In particular, it was observed that most of the issues happen soon

after deploying the release and the chances of reporting a defect

for a new release drops very rapidly with time after installation.

Our data, scripts, and more detailed results are available in our

GitHub repository: https://github.com/tapjdey/release_qual_model.☛

✡

✟

✠

We found that the exceptions are a result of more new users

and the extent of usage does not appear to have a direct effect

on the number of new users. We also found the incidence of

exceptions to be increasing over time.

We found that the quality metric depends on łRelease.Datež

(quality seems to decrease for later releases) variable. The LR anal-

ysis suggested łRelease.Durationž as another significant variable.

Indeed, the number of exceptions per new user (or the chances that

a user would experience a crash) are low for this software, as indi-

cated by the coefficient 0.77 for the link between users and excep-

tions (Figure 2). We do not observe this relationship in other models,

however. A study on more software products would be needed to

establish if the the feedback (better quality leads to longer usage)

holds. We saw that the number of exceptions increase for later

releases for this software even after accounting for the increase in

number of users, so, it appears that this product had lower quality of

the development process for later releases. It may have been caused

by the move to release more frequently or other factors, but it is

something the development team should be aware of and take the

most appropriate action. Overall, none of the three models indicate

that łUsage.Frequencyž or łUsage.Intensityž have any effect on the

łQualityž variable. We, therefore, suggest that the exceptions per

new user can be used as a software development quality metric to

compare quality of different releases and to quantifying the impact

of variables representing the development process of a release.

8 LIMITATIONS
In terms of modeling aspects, there are some limitations related

to all the different approaches. The LR model results could have

been affected by multicollinearity problem, as was indicated by

the VIF value. The RF model, on the other hand, was used for 10

fold cross-validation, and exhibited a rather high value of standard

deviation in the R2 value, likely due to the small sample size.

While creating the BN model we did not cover all possible ways

BNs can be applied to gain insight into the system. For example,

we did not investigate the possible existence of any hidden node, or

make an effort to formally establish the causal relationship between

the nodes. We also did not investigate how the properties of one

release affect the subsequent releases, nor did we investigate the

presence of any feedback loops.

We also did not use Markov Random Field analysis, which is

another probabilistic graphical modeling approach. The primary

reason behind choosing the BN approach was that we found an

example where this method was used to successfully recover the

underlying network [43]. Moreover, it is possible to interpret a BN

model as a causal model, and although we did not use that inter-

pretation in this study, our goal is to eventually establish a causal

mechanism of how usage affects the number of exceptions/defects

experienced by users, so we wanted to used BN from the start.

The accuracy of our result is very much dependent on the Google

Analytics data. While we do not have reasons to doubt the accuracy

of the counts in Google Analytics data, we would have liked to

have better definitions of how it determines łNew Userž, łVisitž,

and, especially, nontrivial to aggregate quantities such as łVisits

per User.ž Also, it is not clear if Google Analytics distorts data in

any way (e.g., by applying differential privacy transformations)

for low counts in order to protect the privacy of the users. We do

not believe it does, but we have not conducted an experiment to

validate that.

Furthermore, the project under consideration was relatively new

and it was the first attempt for the team to deploy mobile software.

As such, much was not well documented and was rapidly evolving

over time. As mentioned earlier, we did not have the official release

dates for all releases, so we put the start date of the release as the

date on which the first usage was reported. However, we did verify

the official dates with this reported date for the releases for which

we found the release date, and they were very close, but not always

exactly the same. This should not affect the overall result, given

the total time scale of more than two years. The release end dates,

by their nature, have to be estimated based on user activity, since

there is no way to force end user to upgrade Android App. For

recent releases, therefore, the end date may be censored by our

data collection date, hence the duration for these releases might be

underestimated.

It may be possible to collect numerous additional variables that

may have an impact on exceptions, for example, the number of

changes to the source code made for a release as was done in [28].

Unfortunately, due to the nature of parallel development for mul-

tiple releases and products noted in subsection 2.1, it was virtu-

ally impossible to separate the changes that would only affect the

specific release on the Android platform. There might be other

unobserved variables driving some relationships, but not explored

in this study.

Our model is obtained on a single mobile application imple-

mented via a rather complex codebase and is certainly not repre-

sentative of most mobile applications that tend to be much simpler.

Furthermore, mobile applications may not represent other types

of software further limiting external validity of the results. How-

ever, some aspects that we see in the specific application, such as

increasing number of faults with the number of users, has been

observed in rather different contexts of large-scale server software.
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This suggests that the model derived in the study may generalize

to other domains as well.

9 RELATEDWORK
Although software quality has always been a common topic in

software engineering [1, 20], most of the studies have focused on

pre-release data, primarily due to the developers’ concern about

finding the appropriate balance between the amount of testing

required and the quality of software (e.g. [4, 41]). There have been a

number of works on predicting and improving the software quality

as well (e.g. [16, 27, 30, 50]). Comparatively, studies about post-

deployment quality and dynamics have been less frequent [18, 22].

However, a number of studies have looked at the aspects of software

quality metrics, especially the quality perceived by the customers,

e.g., [12, 26, 28, 32, 40]. A notable non-academic work involves a

study of mobile app monitoring company’s (Crittercism) data [11].

The author of the news article found it necessary to normalize crash

data by the number of launches. Finally, an empirical investigation

between release frequency and quality on Mozilla Firefox has been

investigated in [19].

While Bayesian Networks have been used for software defect

prediction for decades, the use of BNs for explanatory modeling

in empirical software engineering is still not common despite the

promise. A case for use of BNs was made by Fenton et.al. [6, 9],

while the earliest publications utilizing BNs we could find [14] con-

structed search of the structure based on the statistical significance

of partial correlations in the context of modeling delays in glob-

ally distributed development. [38, 47] considered the application of

Bayesian networks to prediction of effort, [8, 34, 35] used Bayesian

networks to predict defects, and [36] used BN approach for an

empirical analysis of faultiness of a software. On the other hand,

Bayesian structure learning is a big domain in itself with a wide

range of algorithms, but its use in software engineering context is

not very common.

Post-release defect density calculated as a proportion of users

who experience an issue within a certain period after installing

or upgrading to a new release has been proposed by [29, 32] as a

measure of software quality. Hackbarth et al. [13] also found the

need to adjust defect counts in their proposed measure of software

quality as perceived by customers.We propose a somewhat different

measure of quality based on the number of exceptions per user. In

general, software quality is a widely researched topic [17, 20, 42]

etc., but in our knowledge, this is the first model-based attempt to

obtain a usage independent measure of software quality and the

first attempt to model exceptions in mobile applications.

The advancements proposed in this paper over the published

work are focused on two primary areas: (1) study of the relation-

ship between software faults and usage using post-release data in

mobile application context, and (2) proposing a usage independent

exception-based software quality metric based on our models.

10 CONCLUSIONS
From the practical perspective we have established that the extent of

use has very strong relationship with the number of exceptions for

a large mobile application. Counting exceptions, therefore, will not

accurately measure the quality of software development process

but, instead, it would strongly depend on the extent of use. In

order to produce a measure that the development team can use

to understand and improve quality of their software development

process, we proposed to normalize exceptions by usage based on

the Bayesian Network models. Notably, a similar normalization was

previously proposed in the context of post-release defects that also

exhibited strong positive correlation with the number of users. As

a larger proportion of applications are mobile and/or delivered as a

service, the amount of usage can be relatively easily be collected.

Consequently, not adjusting software development measures for

usage should not be considered as an excusable practice.

From the theoretical perspective we provided the explanation

of the relationships among post-deployment quantities using Lin-

ear Regression and Bayesian Networks. Linear Regression can be

thought as a special Bayesian Network with the response node

being potentially connected to each predictor node. Bayesian Net-

works allow for exploration of relationships among all variables

and empirical determination of the relationships exhibited in a

particular dataset. Both models indicate that there are only two

variables that are related to exceptions in this data: number of

users and release date which we used as a proxy for the release

quality. It would be preferable to have each release as a separate

categorical predictor, but because for simplicity we chose to use

only one observation per release, it could not be done. If, instead,

we considered exceptions during different periods of a release, that

would have allowed us to introduce such categorical variable and

interpret the estimated coefficient for each release as release quality

(higher number meaning lower quality).

We also established that it is possible to predict exceptions using

Random Forest modeling techniques and that usage plays a key role

for the accuracy of these predictions. As noted above, prediction is a

different task than explanation and, even though it often yieldsmore

accurate results, the prediction results may be harder to explain

to developers or managers and, therefore, harder to act upon. We

believe the findings do have a message for the voluminous research

in defect prediction. While defects are not exceptions, usage was

also found to affect post-release defects in a similar manner [12,

15, 32]. It would, therefore, be advisable to incorporate forecasts of

usage into defect prediction models to increase their accuracy.

We hope that this work will spur more research on software

engineering aspects in post-deployment stage because, like mobile

applications, modern web applications are even more reliant on

usage monitoring not simply from the perspective of crash counting

but also because the usability or even revenue stream from the

software applications critically depends on how users behave.

From the practical perspective, we hope that any mobile or web

software project can easily apply and refine the presented approach

of using Google Analytics data to improve the quality of their soft-

ware. Any Android OS or Apple iOS mobile application can freely

use Google Analytics to monitor application usage and crashes, so

the approach should be widely applicable. Despite that, we are not

aware of any prior empirical study that would leverages Google

Analytics or similar data for software quality modeling.

Finally, much more work is needed to gather additional empirical

evidence of how software behaves post-deployment. It is important

to note that Google Analytics data is available only for applica-

tion developers, so while each project has the ability to see their

App’s performance, they can not see data for software created by

other organizations. This can be addressed by a) projects sharing
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theirs post-deployment data (we have not seen examples of that);

or b) publishing findings based on such data in cases such as ours,

where the data itself would be impossible to release publicly since

it involves numerous, often enterprise, customers who may not

agree.
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