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ABSTRACT

Code contributions in Free/Libre and Open Source Software
projects are controlled to maintain high-quality of software.
Alternatives to patch-based code contribution tools such as
mailing lists and issue trackers have been developed with
the pull request systems being the most visible and wide-
ly available on GitHub. Is the code contribution process
more effective with pull request systems? To answer that,
we quantify the effectiveness via the rates contributions are
accepted and ignored, via the time until the first response
and final resolution and via the numbers of contribution-
s. To control for the latent variables, our study includes a
project that migrated from an issue tracker to the GitHub
pull request system and a comparison between projects us-
ing mailing lists and pull request systems. Our results show
pull request systems to be associated with reduced review
times and larger numbers of contributions. However, not
all the comparisons indicate substantially better accept or
ignore rates in pull request systems. These variations may
be most simply explained by the differences in contribution
practices the projects employ and may be less affected by
the type of tool. Our results clarify the importance of un-
derstanding the role of tools in effective management of the
broad network of potential contributors and may lead to s-
trategies and practices making the code contribution more
satisfying and efficient from both contributors’ and main-
tainers’ perspectives.

CCS Concepts

•Software and its engineering → Software mainte-
nance tools; Collaboration in software development;
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1. INTRODUCTION
In Free/Libre and Open Source Software (FLOSS) projects,

non-core contributors have to go through the steps of code
contribution process [29] from code creation to review and
acceptance. These steps are essential to ensure the quali-
ty of contributions because of the diverse nature and skill-
s of FLOSS participants. Mailing lists and issue trackers,
where code contributions are submitted by patches, have
been widely employed to support code contributions. The
participation in and efficiency of the code contribution pro-
cess from the perspective of code reviews have been exten-
sively studied (see, e.g., [3, 27, 25, 5, 21]). These studies
indicate that a bulk of submissions do not receive a response
and, therefore, do not involve a code review and are not con-
sidered to be within the scope of these studies. The ignored
submissions, however, are a critical part of the contribu-
tion practice as they require participants to create, submit,
and document their code. Such “wasted” effort may detract
submitters from further contributions and deter them from
contributing altogether. The core members, at the same
time, may miss important and valuable contributions. It is,
therefore, imperative to understand the nature of code con-
tribution efficiency at every stage in order to increase the
overall effectiveness of code contribution practice.

In the past decade, the code contribution tools based on
pull requests, e.g., pull request systems provided by GitHub
and Bitbucket, have attracted wide attention [12]. In these
tools, code contributions are submitted, reviewed and in-
tegrated through pull requests. Recent studies of pull re-
quests have started to look at some aspects of the possi-
ble inefficiencies by investigating what makes it likely for a
code submission to get accepted [12], what the challenges
faced by and working practices of integrators and contrib-
utors are [14, 13]. However, the role of tools in the overall
effectiveness of code contribution practice and the relative
amount of wasted effort have not been scrutinized in the
research literature.

In this study we attempt to understand a complete picture
from the perspective of a participant submitting code con-
tribution to getting it accepted. More specifically, we aim
to answer the following research question: RQ0: what are
the differences of code contribution effectiveness be-
tween pull-request-based and patch-based tools? We
gather information from published literature and retrieve
development data for four GitHub projects to quantify the
overall effectiveness of code contribution using different tool-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...$15.00

http://dx.doi.org/10.1145/2950290.2950364

871



s. Following the literature, we measure the contribution ef-
fectiveness via the code accept and ignore rates, the times
until first response and final resolution, and the numbers
of contributions adjusted for codebase size. We start with
the Ruby on Rails (Rails), a high profile project on GitHub
which migrated from an issue tracker to the GitHub pul-
l requests. We investigate whether the migration of tools
within Rails is associated with a change of contribution effi-
ciency. We continue the study by comparing eight projects
using mailing list in the literature with four GitHub projects
using pull requests. Overall we find that the pull requests
are more efficient in terms of making submissions processed
faster, and are associated with larger numbers of contribu-
tions. However, the within- and cross-project comparison
lead to contradictory findings for accept and ignore rates. As
discussed in Section 5, the contradiction may be explained
away if we assume that the accept and ignore rates are pri-
marily determined by the project contribution practices and
may be less affected by the type of tool used.
This understanding could help improve the code contribu-

tion process from both contributors’ and maintainers’ per-
spective. First, projects that do not have good review prac-
tices like SVN or Linux kernel (both are still using mailing
lists) may consider a move to pull-request-like tools. Second,
practitioners or tool designers may consider adding features
associated with higher effectiveness to their code submission
tools. In particular, providing information on which version
a submission is based on and transferring the base to the
newest could prevent conflicts when the reviewers are exper-
imentally merging the commits to verify their correctness.
The communication mechanism similar to GitHub review
board that keeps the discussions related to a contribution
in single track, along with the additional features such as
view and notification, are likely to help participants focus
their attention on the nature of the change. It’s also worth
to note that the utilization of social features presented by
GitHub may help attract and sustain participation.
The rest of the paper is organized as following. We in-

troduce background and review related work in Section 2
and the methodology in Section 3, and Section 4 reports the
results. We discuss the limitations of this work in Section 6
and conclude in Section 7.

2. BACKGROUND AND RELATED WORK
In software development, usually a shared central version

control repository is set to manage the code and an experi-
enced group of developers control write access to this repos-
itory. To keep high quality of the codebase, the code contri-
bution practices tend to adhere to a protocol as illustrated in
Figure 1: a contributor makes and submits code; before any
changes are applied to the shared repository (i.e., commit-
ted) the code must receive positive reviews and be approved
by the project maintainers. This review-then-commit (RTC)
approach is the most common practice of code contribution
in FLOSS projects. In this study, we only consider contribu-
tions using RTC channel. We introduce the evolution of the
supporting tools in Section 2.1, and review related studies
in Section 2.2.

2.1 Evolution of Code Contribution Tools
The code contribution tools have evolved from traditional

patch-based tools, such as mailing lists (e.g., Mailman) and

Figure 1: Code contribution process.

issue trackers (e.g., Bugzilla) to modern pull-request-based
tools (e.g., GitHub pull request system). A code contribu-
tion is a patch attached to an email or an issue report or a
set of commits encapsulated in a pull request.

2.1.1 Patch-Based Tools

The mailing list and issue tracker, which were originally
designed for communication and task management respec-
tively, were the first introduced by FLOSS projects to man-
age code contributions. For example, Linux kernel uses its
mailing lists [25] and Mozilla uses its issue tracker [24]. In
mailing lists, the process begins with an author creating a
patch (a change of the codebase) broadcasting to the po-
tentially interested individuals via an email, while, in issue
trackers, the patches are published with issues. After sub-
mission, the patch may receive no response (be ignored), or
it may be reviewed with feedback sent to the contributor
through emails in mailing lists or comments in issue track-
ers. The contributor and other developers revise and discuss
the patch until it is ultimately accepted or rejected [27, 24].

2.1.2 Pull-Request-Based Tools

After 2008, the pull request mechanism for distributed
version control system (DVCS) was introduced on collab-
oration platforms, e.g., GitHub1, Bitbucket2, Gitlab3, etc.
At the time of this study, many GitHub FLOSS projects are
using pull request systems for code contribution, e.g., Rails,
jQuery, etc. In a pull request system, users fork, which is
know as clone in DVCS, the central repository of a project.
That allows users to experiment on their own copy of the
repository without affecting the original project (i.e., the
central repository). When a set of changes are ready to be
submitted to the central repository, they submit a pull re-
quest, which specifies a local branch with the changes to
be merged with a branch in the central repository. Project’s
core team members are responsible for reviewing the changes
and merging them to the project’s branches.

2.2 Related Studies
There are many studies investigating the code contribu-

tion practice from various aspects, including the participa-
tion, quality assurance, review interval and contribution ac-
ceptance.

Participation. Asundi et al. [1] conducted a case study
on five FLOSS projects that either use mailing lists or is-
sue trackers for code contribution. The study compared the
extent of code inspection participation of core developers
among the projects and found it varying among projects.
Nurolahzade et al. [24] studied patch review on Bugzilla of
Mozilla Firefox and highlighted that peer developers play

1https://github.com/
2https://bitbucket.org/
3https://about.gitlab.com/
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Figure 2: Study design.

supporting role by offering insights and ideas that help cre-
ate more quality patches. Rigby et al. [27] investigated the
mechanisms and behaviours that developers use to find code
changes they are competent to review and explored how s-
takeholders interact with one another during the review pro-
cess.
Quality assurance. Mockus et al. [23] investigated the

number of defects found in formal code inspection, and found
that the inspection team size, the number of sessions, and
the sequence of the inspection steps do not affect defects de-
tection. Rigby et al. [25] also found the number of reviewers
increase the number of defects found in mailing-list-based re-
view. McIntosh et al. [21] studied the impact of code review
coverage and code review participation on software quali-
ty with three Gerrit-based projects and found that both of
them share a significant link with software quality, in terms
of number of post-release defects.
Review interval. Rigby et al. [25] studied the code in-

spections on mailing list of six FLOSS projects exploring
how participation of code inspection, experience and exper-
tise of the authors and reviewers, churn and change com-
plexity of the patches impact the review interval.
Contribution acceptance. Weißgerber et al. [35] found

that small patch has a higher chance to be accepted in a s-
tudy on two FLOSS projects. Jiang et al. [15] inspected the
patch acceptance of Linux kernel project, and found that ex-
perience of developers, number of affected subsystems and
number of requested reviewers relevant. Bosu et al. [5] inves-
tigated the impact of developer reputation on code review
acceptance in eight FLOSS Projects which use Gerrit and
observed that the core developers receive quicker first feed-
back on their review request, complete the review process in
shorter time, and are more likely to have their code changes
accepted into the project codebase. Recently Gousios et
al. [12] conducted a study of the GitHub pull requests usage
within 291 GitHub projects and inspected effects of a num-
ber of features on the acceptance of a pull request, including
characteristics of the pull request, project and developer.
Evolution of tools from mailing lists to pull request sys-

tems suggests that modern tools may improve the code con-
tribution practice. For example, projects migrate to GitHub
for team collaboration in commercial context [18]. However,
in FLOSS, the question of whether or not the changes of
tools brought the changes in code contribution effectiveness
remains open. In this study we aim to evaluate the differ-
ence in effectiveness of patch-based and pull-request-based
tools, and to shed more light on the potential ways to make
the contribution process efficient.

3. METHODOLOGY
We describe how the study is designed in Section 3.1. We

introduce the studied projects in Section 3.2 and the used
metrics in Section 3.3. We present the research questions in
Section 3.4.

3.1 Study Design
We synthesize the results of published papers and a new

investigation of four GitHub projects to understand the d-
ifferences of code contribution practice for different tools.
Figure 2 shows the design framework of this study.

First, we borrow metrics for analyzing contribution prac-
tice from literature as detailed in Section 3.3. The value of
replicating software engineering experiments has been high-
lighted by many researchers [17, 6, 8]. By reusing the pub-
lished metrics (and the results on patch-based tools) in the
literature, we are able to efficiently and effectively study the
differences between code contribution practices using patch-
based and pull-request-based tools.

Second, based on available resources, we conduct two sub-
studies to address the internal and external validity concerns
of empirical studies [30]: 1) within-project study where
we investigate the Rails project which migrated from an is-
sue tracker to the GitHub pull request system. Software de-
velopment is complicated and associated with many factors.
The within-project study ensures that the project context
is approximately constant during the studied time period-
s, such as the project domain, culture, leaders, project size
and review policy. We choose to study Rails for reasons ex-
plained in Section 3.2.1. 2) cross-project study, where we
compare a number of classic projects that use patch-based
tools and pull-request-based tools respectively. In partic-
ular, we gather results of eight mailing-list-based projects
from the published studies, and retrieve the contribution his-
tory of four GitHub projects that use pull request systems
and measure their effectiveness using published metrics.

3.2 Projects
Table 1 presents an overview of the projects used in this

study. In the following two sections, we elaborate on the
nature of projects and data extraction for within- and cross-
project studies respectively.

3.2.1 Within-Project Study

The Rails project is a web application framework based
on Ruby. It was migrated from an issue tracker (Light-
house4) to the GitHub pull request system in September
2010. We choose Rails for two reasons. First, Rails is a
popular project on GitHub with its code contribution prac-
tices that may be typical for the GitHub projects. Second,
none of the mailing-list-based projects studied in literature,
such as [25, 3, 15] have migrated to pull-request-based tool-
s. The retrieval of Rails’ pull request data is detailed in
Section 3.2.2. For the issue tracker data of Rails (before
September 2010), we download the HTML pages and at-
tachments of the issues from the Lighthouse archive. For
each patch, we extract the submitter and submission time,
the operator who changes the status of the issue and oper-
ation time, and the commenter and comment time. Rails
had been using Lighthouse since May 2008 (until September
2010). Considering the instability in the transition period,

4https://rails.lighthouseapp.com
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Table 1: Studied Projects
Project Domain SLOC Period Tool Ref

Apache web sever
402972

1996-
2005

mailing
list

[25]

- - [3]

SVN
version
control

300527
2003-
2008

[25]Linux
OS

9950703
2005-
2008

FreeBSD 4746027
1995-
2006

KDE
OS GUI

6494034
2002-
2008

Gnome 4076395
2002-
2007

Python
program
language

- -
[3]

Postgres database - -

Rails
web app

framework

172305
2011.4-
2014.6

pull
request
system

-
142108

2008.6-
2010.6

issue
tracker

161100
2011.6-
2013.6

pull
request
system

jQuery
javascript
library

64692
2011.4-
2014.6 pull

request
systemPPSSPP

PSP
emulator

201785
2012.12-
2014.6

Rust
programming

language
216041

2011.4-
2014.6

* mean SLOC in the studied period.

we skip three months before September 2010 and include the
patches published within two years, i.e., between June 2008
and June 2010. Similarly, we include pull requests submit-
ted within another two years, starting from one year after
the end of using the issue tracker, i.e., between June 2011
to June 2013.

3.2.2 Cross-Project Study

As shown in Table 1, the eight projects using mailing lists
are retrieved from previous two papers [25, 3]. One [3] cov-
ers three and the other[25] covers six, the Apache project
was studied in both papers. We select four projects using
pull request systems from GitHub. They are Rails, jQuery,
PPSSPP and Rust, representing different application do-
mains, scale, and popularity. jQuery is a small JavaScript
library mainly used for building dynamic web pages, PPSSP-
P is a virtual emulator of Sony Play Station Portable, and
Rust is a programming language which targets at running
fast, preventing crashes, and eliminating data races. Among
the four projects, Rust is the biggest with ∼210K SLOC, fol-
lowed by PPSSPP and Rails with ∼200K and ∼170K SLOC
respectively, and jQuery with ∼64K SLOC is the smallest.
Rails and jQuery are popular on GitHub ranking among the
top 20 of all the GitHub repositories in terms of number of
forks and stars (20K+ stars, 9K+ forks) when this study is
conducted, while Rust has 10K stars, 2K forks, and PPSSP
is somewhat less popular with 1.6K stars and 700 forks.
We locate the primary repositories of the four GitHub

projects: rails/rails5 for Rails, jquery/jquery6 for jQuery,
hrydgard/ ppsspp7 for PPSSPP, and rust-lang/rust8 for Rust,
and retrieve their code contribution data through GitHub

5https://github.com/rails/rails
6https://github.com/jquery/jquery
7https://github.com/hrydgard/ppsspp
8https://github.com/rust-lang/rust

API9. For each repository we obtain issues (pull request-
s are combined with issues in the API), issue comments
(pull request comments), review comments (these comments
are directly attached to diff snippets, which are separated
from the pull request comments in GitHub API), comments
(these comments are attached in the commit view outside
pull request view, which are also separated from the previ-
ous two types of comments in the API), issue events (pull
request events), which include open, subscribe, merge, close,
etc., pull request commits and all the commits on master
branch of the central repository. For each pull request, we
extract the submitter and submission time, the operator who
merged or closed the pull request and operation time, and
the commenter and comment time, as what we do for the
patches on the Rails’ issue tracker. Before the version 2.0
of GitHub pull request system was released, it did not sup-
port discussions10. Therefore, for Rails, jQuery and Rust,
we set a study period from April 2011, about half a year
after the version 2.0 was released, to June 2014, half a year
prior to when the data were retrieved for our study. Be-
cause PPSSPP started in November 2012, we retrieve its
data from December 2012 to June 2014. The youth of pul-
l request systems restrains us from using the same studied
periods as the prior studies.

3.3 Metrics
Borrowing metrics from existing literature, we quantify

contribution effectiveness from three aspects: contribution
effort, time interval and contribution activeness.

3.3.1 Effort Accepted/Ignored

To what extent the contribution effort is not wasted repre-
sents one important aspect of the contribution effectiveness.
We borrow the metric of contribution acceptance rate from
Bird et al.’s paper [3]. To highlight the wasted effort, we
add a new metric, contribution ignore rate.

M1.1 accept rate of contributions: the ratio of accepted
contributions out of all the contributions. Many participants
in FLOSS communities are volunteers spending their limit-
ed spare time [37, 26] working for the projects. The more
contributions are accepted, the less effort of making and re-
viewing the code changes is wasted for both contributors
and reviewers.

Bird et al. [3] detected accepted patches by searching the
central repository and finding the file version that applied
the patch in the mailing lists. We identify accepted pull
requests through checking whether there is a merged even-
t or a closed event associated with commits integrated in
the central repositories. This approach was used by Gousios
et al. [12], and they also analysed the comments to detect
merged pull requests that are merged informally, which leads
to an average accept rate of 84.7%. Because we do not in-
corporate this strategy, the number of merged pull requests
detected by us should be a lower bound. The detection of
accepted patches in issue trackers is relatively simple. If the
status of the issue attaching the patch is changed to com-
mitted or resolved, we label the patch as accepted.

M1.2 ignore rate of contributions: the ratio of ignored
contributions (that don’t receive any response) out of all
the contributions. This measure may represent the atten-
tion for peripheral contributors from the community, sug-

9https://developer.github.com/v3/
10https://github.com/blog/712-pull-requests-2-0
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gesting an appreciation for contributors’ effort of making
the code changes and therefore motivating contributors to
sustain in the project [37]. The attention could help the con-
tributors find out problems with their contributions, learn
project skills, and continue getting involved in the commu-
nity and may eventually have their contributions accepted.
In Rigby et al.’s study [25], if a patch posted to the mailing

list did not receive response from other developers, it was
considered as ignored. Similarly, we consider a pull request
or a patch in issue report which neither received at least one
comment from others nor has the status changed as ignored.

3.3.2 Time Interval

Time is a common concern for contribution process be-
cause it may affect project development course and contrib-
utors’ enthusiasm. Borrowing the metrics from Rigby et al.’s
study [25], we use the time until the first response and final
resolution to demonstrate the efficiency of the community
to process the contribution.
M2.1 time until first response: the time span from the

submission of the contribution to the first response to the
contribution. Quick response may make contributors feel ap-
preciated and help motivate contributors to take more active
participation in the project [37]. Rails employed Rails-bot11

in 2015, which implies the need for rapid response in prac-
tice.
We calculate the response time from the submission of a

contribution to the first comment or first issue status oper-
ation or a pull request event (introduced in Section 3.2.2),
whichever occurred earlier.
M2.2 time until resolution: the time span from the sub-

mission of the contribution to the final comment or resolu-
tion (accepted or rejected) of the contribution (ignored con-
tributions are filtered). The resolve time determines how
fast the acceptable contributions can be merged and deliv-
ered to the users. Fast resolution may also reduce waste of
time for failed (rejected) contributions.
We calculate the resolve time as the time spent from sub-

mission to the final comment of a contribution. Because
there are spam comments on Rails’ issue tracker which false-
ly extend the lead time, in the within-project comparison,
we calculate resolve time of a contribution as the time spent
from submission to the final issue or pull request status op-
eration (stopped at committed, resolved, merged, closed) of
a contribution. It should be noted that the study of Rigby et
al. did not consider multiple versions of a single patch [16].
The resolve time for a contribution extracted from their s-
tudy [25] may be a part of the whole process time, i.e., lower
than actual value.

3.3.3 Contribution Activeness

It is important to have a wide participation in FLOSS
projects, which may be the powerful “engine” supporting the
high efficiency of code development [22, 34]. Evidences show
that effective process increases user interest in contributing
to FLOSS projects [11]. A tool that improves process may
appeal to developers and promote them to make contribu-
tions. We use the number of contributions, a metric to mea-
sure the contribution activeness, to indicate whether or not
developers prefer to use the tool to contribute.
M3.1 contribution frequency: number of contributions per

month. As found by Rigby et al. [25], project size is associ-

11https://github.com/rails/rails-bot

Table 2: Contributions Accepted in Rails

Tools
Submissions Fisher’s exact test

All Accepted Ratio P-value Odds ratio

issue
tracker

2574 1652 64.2%
0.00768 1.14

pull
request
system

6014 4040 67.2%

ated with the frequency of contributions. Therefore, in our
measurement, we adjust it with source lines of code (SLOC)
of the project. Because SLOC changes while project evolves,
we retrieve the SLOC of each project in December of each
year (it is each month for the within-project comparison of
Rails) in the studied period from the OpenHub12 and cal-
culate the mean value (because there is no SLOC data for
Rust on OpenHub, we download its repository and count
SLOC each year with the tool of cloc13).

3.4 Research Questions
Targeting the research question RQ0, we measure the ef-

fectiveness of code contribution from three aspects: effort,
time and activeness, and derive three specific research ques-
tions as follows:

• RQ 1: Is less contribution effort wasted when using
pull request systems?

• RQ 2: Are contributions processed faster using pull
request systems?

• RQ 3: Are contributions more frequent using pull re-
quest systems?

4. RESULTS
We answer the research questions through the analysis of

within- and cross-project respectively.

4.1 Within-Project Comparison
From the issue tracker to the pull request system, Rails

shows a minor variation of accept rate and ignore rate. How-
ever, both the response and resolve time are reduced over
90%, and the number of contributions are doubled.

Accept rate of contributions (M1.1). Table 2 shows
that 67.2% of the contributions were accepted when Rails
was using the pull request system, a bit higher than 64.2%
when it was using the issue tracker. We employ Fisher’s
exact test to quantify the differences14. In the test, each
observation is a contribution characterized by whether or
not it is a pull request and whether or not it is accepted.
The test produces a p-value < 0.01 with the odds ratio of
1.14. Although there is a statistically significant improve-
ment of accept rate in the pull request system, the practical
importance (odds ratio) is modest in magnitude.

Ignore rate of contributions (M1.2). The ignore rates
of the two periods within Rails presented in Table 3, 0.9%
and 0.6%, are both quite small. It appears that both the
pull request system and the issue tracker perform well on

12https://www.openhub.net/
13http://cloc.sourceforge.net/
14Fisher’s exact test is used to examine the significance of
the association between two kinds of classifications [9]. We
conduct the test using R: www.r-project.org.
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Table 3: Contributions Ignored in Rails

Tools
Submissions Fisher’s exact test

All Ignored Ratio P-value Odds ratio

issue
tracker

2574 22 0.9%
0.2598 0.74

pull
request
system

6014 38 0.6%

Table 4: First Response Time in Rails

Tools
Hours

(median)
P-value of Wilcoxon

rank-sum test
Median
decrease

issue
tracker

30.5
< 2.2 × 10−16 98.4%

pull
request
system

0.5

stimulating awareness of code contribution submissions. We
employ Fisher’s exact test to quantify the differences of the
ignore rates, and obtain a p-value higher than the signifi-
cance level of 0.05. That suggests an insignificant difference
between the chance of a contribution getting ignored in pull
request systems and the chance in issue trackers.
Time until first response (M2.1). Group FR.IT and

FR.PR in Figure 3 show the boxplotof the first response
time in the the issue tracker and the pull request system.
The decrease from the issue tracker to the pull request sys-
tem is dramatic. In Table 4, we can see that the median
value of first response time in the pull request system de-
creases 98.4% compared to that in the issue tracker. We
quantify their differences through Wilcoxon rank-sum test15

using R, where each observation is the first response time of
a contribution. The result verifies that Rails responds faster
to the contributions using the pull request system than when
it used the issue tracker.
Time until resolution (M2.2). Group RS in Figure 3

shows the boxplot of resolve time, where the median time
for the pull request system is 98.7% lower than for the is-
sue tracker. We quantify the difference through Wilcoxon
rank-sum test and find statistically significant difference (see
Table 5).
It appears the contribution resolve time is reduced by us-

ing the pull request system, we, therefore, fit linear regres-
sion models to verify the impact. We start with the model:

log(resolve time) ∼is PR (1)

Each observation in it is a submitted contribution (patch
or pull request). The response is the resolve time, and the
predictors is whether the contribution is made via a pull
request system.

15Wilcoxon rank-sum test is used to examine the significance
that a particular population tends to have larger values than
the other [20].

Table 5: Resolve Time in Rails
Tools

Hours
(median)

P-value of Wilcoxon
rank-sum test

Median
decrease

issue
tracker

390.2
< 2.2 × 10−16 98.7%

pull
request
system

5.0

RS.IT RS.PR FR.IT FR.PR

1
e
+

0
0

1
e
+

0
2

1
e
+

0
4

1
e
+

0
6

T
im

e
 (

h
o
u
r)

* Group RS and Group FR indicate resolve and first

response time respectively. IT and PR are short for

issue tracker and pull request system respectively. The

Time axis is in log scale.

Figure 3: Time intervals in Rails.

The fitting results of Model 1 shows the use of the pul-
l request system is significantly correlated with the resolve
time. The factors that influence the resolve time of contri-
butions have been previously investigated. We, therefore,
add the predictors that have been widely considered (e.g.,
[25]) and fit a more complicated model:

log(resolve time) ∼ log(Churn+ 1) + log(#Reviewers+ 1)

+ log(CExperience+ 1) + log(RExperience+ 1)

+ log(CExpertice+ 1) + log(RExpertice+ 1)

+ is PR

(2)

The predictors are defined as following.
Churn of the contribution (Churn): the number of added

and removed lines of code in the contribution. This is a
common measure in the literature [25] and several studies
have found that the contributions with small change size
would have a higher chance to be accepted.

Experience of contributor (CExperience) and reviewer (R-
Experience): the time between a participant’s first message
in tool and the time of the submission.

Expertise of contributor (CExpertice) and reviewer (REx-
pertice): the adjusted amount of previous submissions or
reviews done by a participant. The adjustment is detailed
in Rigby et al.’s paper [25].

Number of reviewers (#Reviewers): the number of partic-
ipants who comment or manage the contribution except for
its contributor. The level of reviewer participation is found
to have the largest impact on review time [25].

The fitting results of Model 2 are shown in Table 6. The
coefficients of is PR (whether the submission is a pull re-
quest) is significant at <0.005 level. Its negative sign means
that use of the pull request system decreases the resolve
time. The analysis of variance shows that 3% of the de-
viance is explained by is PR in this model, which ranks in
the middle among all the predictors. The variations from
the previous studies are discussed in Section 5.1.

Contribution frequency (M3.1). The number of month-
ly contributions adjusted for codebase size increases as Rails
moves from the issue tracker to the pull request system, as
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Table 6: Model for Resolve Time in Rails
Model 1 Est Std.Err. P-value

(Intcpt) 13.481 0.077 < 2 × 10−16

is PR -3.379 0.900 < 2 × 10−16

adjusted R-square: 0.1488

Model 2 Est Std.Err. P-value

(Intcpt) 12.035 0.229 < 2 × 10−16

is PR -1.533 0.099 < 2 × 10−16

log(Churn + 1) 0.050 0.025 0.048

log(#Reviewers + 1) 1.927 0.066 < 2 × 10−16

log(CExperience + 1) -0.049 0.018 0.006

log(RExperience + 1) 0.053 0.053 0.314

log(CExpertise + 1) -0.430 0.035 < 2 × 10−16

log(RExpertise + 1) -0.430 0.040 < 2 × 10−16

adjusted R-square: 0.3264

Table 7: Number of Monthly Contributions in Rails

Tools
Average number
(SLOC adjusted)

P-value of
Wilcoxon

rank-sum test

Averagely
increase

issue
tracker

107.25 (8.11 × 10−4)
3.151 × 10−11 102.2%

pull
request
system

250.5 (1.64 × 10−3)

shown in Figure 4. Table 7 presents the normalized num-
ber of monthly contributions in Rails. The number in pull
request system period is double of that in issue tracker peri-
od. The Wilcoxon rank-sum test, where each observation is
the number of contributions adjusted for SLOC per month,
produces the p-value < 0.01 indicating that the difference is
statistically significant.

4.2 Cross-Project Comparison
Compared to mailing lists, pull request systems double

the accept rate and decreases ignore rate around 90%. Both
the response and resolve time in pull request systems are less
than half of that in mailing lists. The number of (adjusted)
contributions is increased by a magnitude.
It’s worth noting not all of the mailing list sources appear

in each comparison because not all the compared measures
were reported in the papers from which we obtain them.
Accept rate of contributions (M1.1). Table 8 shows

the accept rates of projects that use mailing lists and pull
request systems respectively. Less than half of the contribu-
tions are accepted in all the mailing-list-based projects with
Postgres having the highest accept rate of 48.9%. Three out
of four projects using pull request systems have higher ac-

Figure 4: Monthly contributions of Rails.

Table 8: Contributions Accepted across Projects

Projects Tools
Submissions

Ref
All Accepted Ratio

Apache
mailing

list

4267 1087 25.5%

[3]Python 644 173 26.9%

Postgres 1209 591 48.9%

Rails

pull
request
system

9933 6571 66.2%

-
jQuery 1304 479 36.7%

PPSSPP 3666 3113 84.9%

Rust 6723 3377 50.2%

p-value, odds ratio of Fisher’s exact test: < 2.2 × 10−16, 3.86

Table 9: Contributions Ignored across Multiple
Projects

Projects Tools
Submissions

Ref
All Ignored Ratio

Apache

mailing
list

4.6K 1.2K 26.1%

[25]

SVN 2.9K 0.1K 3.4%

Linux 50K 22K 44%

FreeBSD 73K 48K 65.8%

KDE 22K 14K 63.6%

Gnome 12K 4K 33.3%

Rails

pull
request
system

9933 53 0.5%

-jQuery 1304 24 1.8%

PPSSPP 3666 14 0.4%

Rust 6723 59 0.9%

p-value, odds ratio of Fisher’s exact test: < 2.2 × 10−16, 0.0059

cept rates than Postgres, except for jQuery with a 36.7%
rate. We quantify the differences with Fisher’s exact test
where each observation is a contribution characterized by
whether or not it is a pull request and whether or not it
is accepted. The resulting p-value is statistically significan-
t with the odds ratio of 3.86 favoring accept rates in pull
request systems over accept rates in mailing lists.

Ignore rate of contributions (M1.2). For ignored
contributions, the performance difference between tools is
bigger than that of the within-project study (see Table 9).
Only a small portion (0.4% to 1.8%) of contributions are
ignored in pull-request-based projects, while ignore rates of
mailing-list-based projects are much higher except for SVN
(3.4%). There is a large variation among projects with mail-
ing lists. SVN has very low rates while more than 60% of
the contributions are ignored in FreeBSD and KDE. Mean-
while, SVN has 3.4% even in mailing lists while jQuery has
1.8% in pull request systems. The exceptional performance
of mailing lists in SVN may be at least partially attributed
to a very strong discipline of the team to follow community
policy of reviewing all published contributions [10]. Fisher’s
exact test yields p-value < 0.01 indicating statistical signif-
icance of the impact. The odds ratio of 0.0059 shows that
magnitude of the impact is large.

Time until first response (M2.1). Third column in
Table 10 shows the median first response time of contri-
butions in the projects. The median first response time in
projects using mailing lists ranges from 2.3 to 6.5 hours, and
for pull request systems, it ranges from 0.5 to 5.3. The s-
lowest and fastest of pull-request-based projects are faster
than the two of mailing-list-based project respectively. We
quantify the difference through Fisher’s exact test. Because
only the shortest and longest median first response times of
mailing-list-based projects (those without ∼ prefix in Ta-
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Table 10: First Response and Resolve Time across
Multiple projects

Projects Tool
First response
time (hour)

Resolve time
(hour)

Ref

Apache

mailing
list

∼2.5 ∼26

[25]

SVN ∼5 46

Linux 2.3 ∼33

FreeBSD ∼6 23

KDE ∼3 ∼35

Gnome 6.5 ∼38

Rails

pull
request
system

0.5 5.1

-
jQuery 2.3 44.2

PPSSPP 0.5 1.6

Rust 4.0 21.6

Fisher’s exact
test

p-value:

< 2.2 × 10−16

odds ratio: 1.55

p-value:

< 2.2 × 10−16

odds ratio: 1.76

-

* all the values are median. Numbers with prefix ∼ are estimated according
to the figure in [25].

ble 10) are given in Rigby et al.’s paper [25], we select Linux
kernel, which has the shortest time, as benchmark to test
the pull-request-based projects. In the test, each observa-
tion is the first response time of a contribution characterized
by whether it is made via a pull request system and whether
it is lower than the median first response time of Linux k-
ernel. The p-value is lower than 0.01, i.e., the difference is
significant.
Time until resolution (M2.2). The forth column of

Table 10 presents the median16 resolve time of contribution-
s in the projects. The median resolve time in the projects
using mailing lists ranges from 23 to 46 hours. For pull-
request-based projects, the fastest is PPSSPP where it takes
only 1.6 hours in median, and the slowest, jQuery (44.2
hours in median), is still faster than the mailing-list-based
SVN.
We quantify the difference through Fisher’s exact test.

Similar to the response time, only the shortest and longest
median resolve times of mailing-list-based projects (those
without ∼ prefix in Table 10) are given in [25], we use the
fastest one, FreeBSD, as benchmark to test the pull-request-
based projects. In the test, each observation is the resolve
time of a contribution, and each contribution is character-
ized by whether it is a pull request and whether it has lower
than the median resolve time of FreeBSD. The resulting p-
value is lower than 0.01, suggesting the difference is signifi-
cant.
Contribution frequency (M3.1). Table 11 shows the

average number of monthly contributions adjusted for code-
base size. All the numbers of mailing-list-based projects are
higher than those of pull-request-based projects. We quan-
tify the difference through Wilcoxon rank-sum test, where
each observation is the (adjusted) average number of month-
ly contributions to a project. The p-value of the test is lower
than the significance level of 0.01, therefore, we accept the
alternative hypothesis that pull request systems are associ-
ated with more contributions than mailing lists.
So far, we obtain positive answers to RQ2 and RQ3 but

no firm answer to RQ1. In summary, the answer to RQ0
is that contributions are processed faster, and participants
contribute more frequently in pull-request-based tools. The

16we use median because the time until resolution is heavily
skewed and mean is not a good summary statistic for such
data.

Table 11: Number of Monthly Contributions across
Multiple Projects

Tools Projects
Number of contributions

Ref
All (months,

SLOC)
/month*

mailing
list

Apache 4600 (118, 402972) 9.67 × 10−5

[25]

SVN 2900 (67, 300527) 1.44 × 10−4

Linux
50000 (42,
9950703)

1.20 × 10−4

FreeBSD
73000 (144,
4746027)

1.07 × 10−4

KDE
22000 (67,
6494034)

5.06 × 10−5

Gnome
12000 (70,
4076395)

4.21 × 10−5

pull
request
system

Rails 9933 (39, 172305) 1.48 × 10−3

-
jQuery 1304 (39, 64692) 5.17 × 10−4

PPSSPP 3666 (19, 201785) 9.56 × 10−4

Rust 6723 (39, 216041) 7.98 × 10−4

p-value of Wilcoxon rank-sum test 0.0095 -

* all the values are mean and adjusted with (divided by) the codebase
size, in terms of average SLOC in the studied period.

GitHub pull request system showed a substantial improve-
ment on accept and ignore rates in cross-project comparison,
but not in the within-project comparison. These variations
in the effort reduction may be most simply explained by the
differences in contribution practices the projects employ and
may be less affected by the type of tool used for code contri-
bution. For example, older projects (with exception of SVN)
may be used to the low accept and high ignore rates for his-
toric reasons, while newer projects may be more tolerant.
The accept rates may be more likely to be underestimat-
ed in mailing-list-based projects than in pull-request-based
projects.

5. DISCUSSION
We discuss the differences of our findings from previous

studies in Section 5.1 and the insights of using pull request
systems in Section 5.2.

5.1 Differences from Previous Findings
We model resolve time with predictors used in the existing

literature and with an additional consideration on tool type.
We discovered several interesting exceptions and variations.

Compared to earlier results [25], the significance and co-
efficient sign of some predictors flip over in our results. In
particular, the significance of code churn and reviewers’ ex-
perience disappears, while it emerges for reviewers’ exper-
tise. The sign of contributors’ experience changes from pos-
itive to negative. We speculate that pull request systems
may simplify the review of complex contributions and make
code churn less impact the resolve time. These may be
instances of the theory that social media has dramatically
changed the landscape of software engineering, challenging
some old assumptions about how developers learn and work
with one another [31]. We develop conjectures for the vari-
ations in 5.2.

In the survey conducted by Gousios et al. [14], respon-
dents told that reaching consensus of the decision on a con-
tribution was challenging and the process could be delayed.
However, we find that pull request systems reduce the time
spent. The respondents did not mention how pull request
systems perform compared to other tools, it would be in-
teresting to make further investigation with developers who
have experience in using different tools.
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We reproduced the analysis used by Gousios et al. [12] to
model the chance of a contribution getting accepted in Rails.
We didn’t find the most relevant factor (the number of total
commits on files touched by the patch or pull request over
three months before the submission time) to be significant
and that may require further investigation.

5.2 Insights of Using Pull Request Systems

5.2.1 Advanced Features of Pull Request Systems

Integrating with DVCS. The pull request systems are
built on the distributed version control system (DVCS) like
Git. The branch model of DVCS is considered to be efficien-
t and help participants save effort [2]. Contributors could
rebase their branches [4] to relieve the core team members
from solving the merge conflicts. A contribution through a
pull request system is a sequence of commits on the contrib-
utor’s branch, which can be easily merged into the target
branch in the central repository. The update of a contribu-
tion is simple: what the contributor needs to do is making
new commits on the branch in his own fork.
The pull request systems’ close relationship with code-

base may also lead to quick response. When maintainers
are working on the central codebase, they will immediately
find new contributions and give a quick response. If there is
no conflict, the maintainer can merge the accepted submis-
sion through just clicking a button.
Track mechanism. The pull request systems automati-

cally track the contributions. In the track mechanism [28],
contributions are tracked independently, and participants
can easily find the new submitted or updated contributions
through key words, status, etc. While, mailing lists broad-
cast contributions, i.e., users are passively receiving emails,
and core developers may receive as many as 300 emails per
day [27]. Participants have to make strategies to filter the
mails themselves to avoid being overwhelmed. If the filtering
is not well handled, they may miss what they are interest-
ed in or spend a long time to discover them. Meanwhile,
the states (e.g., open, resolve) of the contributions bene-
fit awareness that is considered important in the distribut-
ed tasks [19]. For example, the open pull requests always
make developers aware that there are still contributions not
resolved. However, contributions via mailing lists are not
traced with a state, and participants have to remember the
unresolved ones. Naturally, some contributions may remain
forgotten and ignored.
The insignificant difference between pull request systems

and issue trackers on ignore rate indicates that pull request
systems and issue trackers may be more adept at keeping
track of submissions. As the primary function of an issue
tracker is to keep track of things, it is reasonable that it does
well as a pull request system in this regard.
Review board. The pull request systems’ review board

has two modules, the code viewer and the review list.
The diff and comment functionalities of the code view-

er clearly present the code changes with colored lines, e.g.,
red for deletion and green for addition. That could pro-
mote the communication between submitters and reviewers
to improve the code quality iteratively and lead to the ac-
ceptance [32]. Comments can be attached on code lines in
diff view. It associates the review comment with specific
code to make the discussion convenient and efficient. While,
mailing lists and issue trackers do not have such functions.

The review list offers more convenient communications for
a code submission [28]. First, most of the discussions of one
contribution are recorded in single track, which simplifies
the review of previous discussions. Second, any contribu-
tor can subscribe to a contribution to receive notification-
s. This makes followers aware of news of a contribution.
Third, the states of contributions can remind the followers
the in-processing contributions. However, the communica-
tions around a contribution via mailing list are scattered into
different mails, threads, and even lists [27, 16]. It’s hard for
the followers to recall the ongoing contributions and review
the discussion thread each time a change is made to the con-
tribution. Therefore, the iteration of contributions via pull
request systems are likely to be more efficient.

It’s worth noting that the convenience of communication
may make the inspection outcome more complex than simple
acceptance or rejection [32]. Both core project members and
third-party stakeholders sometimes implemented alternative
solutions to address the issues over both the appropriateness
of the problem that the submitter attempted to solve and
the correctness of the implemented solution.

5.2.2 Influence of Social Platform

We observed a statistically significant increase of contri-
butions for projects using pull request systems. The pull
request system we studied is embedded in the popular plat-
form, GitHub. In addition to integrating the advanced fea-
tures of the pull request system, being a social collaboration
platform itself, GitHub may substantially contribute to the
broader participation.

Integration. GitHub integrates code submission, issue
tacking and review discussion together, helping simplify the
pull request contribution process and therefore may stim-
ulate the participation. The publication of a contribution
can be easily achieved within the system through clicking
the New pull request button, and for maintainer if there
is no conflict, she merges the accepted submission through
clicking the Merge button. While in issue trackers and mail-
ing lists, contributors have to follow guidances to make a
patch, and publish the patch by sending an email or re-
porting/commenting an issue. Meanwhile, the authorship
of contributions through pull requests on DVCS is kept by
default and is easy to trace. That helps to build a contrib-
utor’s reputation [5] and therefore, may motivate contribu-
tors to stay and continue their contributions. While in issue
trackers and mailing lists, the authorship has to be manually
maintained and is easy to get lost in the codebase.

Some automatic technologies that have been integrated
into GitHub may also facilitate the contribution process.
For example, the continuous integration system, Travis-CI,
is found to increase software quality and team productivi-
ty [33].

Collaboration. GitHub is a fast growing software de-
velopment platform17. It promotes “social coding” with a
number of features which are similar to those of the social
network sites such as Twitter. The users can follow others,
star repositories, watch a repositories, etc. The transparen-
cy of such social activities can help people find what they
are interested in and participate [7]. Moreover, the social
network on GitHub is found to connect the projects with
common participants [36]. As a result, GitHub provides the

17It has been used for other purpose, e.g., education, data
sharing, writing books, etc.
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hosted projects a large pool of potential contributors and is
likely to facilitate the contribution participation.

6. LIMITATIONS
The way measures are collected, the confounding factors

that may not be considered, and the generalization of the
results are primary limitations of this study.
Measures. First, the measures of contributions using

patch-based and pull-request-based tools in different epochs
may introduce bias as the practice may evolve over time.
This limitation is unavoidable as discussed at the end of
Section 3.2.2. Second, in mailing lists, different versions of
a patch may scatter into multiple mails and mail thread-
s. In the study of Bird et al. [3], related patch versions
are not grouped and each patch is split by files, therefore,
the number of contributions is higher than actual. In this
study we only use the accept rate, which is relative value
and may not be sensitive to the absolute number. Third,
both related papers and our analysis may suffer from the
method of detecting accepted submissions. There could be
accepted submission being detected as rejected (false neg-
ative) and rejected submission being identified as accepted
(false positive). Fourth, the contributions through pull re-
quest systems may be made by mistake and closed by the
authors themselves without external response. The metric
defined in the literature would incorrectly regard such con-
tributions as ignored. In this paper, we filter out the pull
requests closed by their authors within one hour. Final-
ly, the within-project study is conducted between the issue
tracker and the pull request system rather than mailing lists
and pull request systems because Rails switched from the
issue tracker to the pull request system and we do not have
other projects in our sample where a switch between mailing
lists and pull request systems has occurred.
Confounding factors. Software development is a knowledge-

intensive activity with a large number of potentially con-
founding factors [37], and this makes it difficult or impossi-
ble to discern the impact of code contribution tools. We ad-
dress the challenges from a study design including a within-
project comparison, where the project context is controlled,
and a cross-project comparison, where the external validity
is considered. We spend effort on reusing existing metric-
s and reproducing published analysis in order to make fair
comparisons between different tools.
Generalization. In the comparison of tools, the mailing-

list-based projects are borrowed from previous papers [25, 3]
and the pull-request-based projects are selected from GitHub
covering a variation of domain and scale. They may not be
able to represent all the FLOSS projects, but they cover
a relatively large scope of application domains and project
size. Moreover, the comparison between issue trackers and
pull request systems is only conducted with the data of one
project, Rails, because of the availability of projects that
changed their tools, and this may restrict the generalization
of our findings.

7. CONCLUSIONS
“Build software better, together.” is the slogan of GitHub,

meaning that it aims for a better collaboration in software
development through implementing the distributed fork&pull
request model, which makes contributions easier to make,
evaluate, improve and integrate. In this study, we investi-

gate the effectiveness of FLOSS code contribution practice
through the GitHub pull request system and compare it to
patch-based tools. We measure tool effectiveness via the
effort, time and activeness, and compare within a project
that changed from an issue tracker to an pull request sys-
tem and across projects that use mailing lists and pull re-
quest systems respectively. The results show that modern
tools, such as pull request systems, have a lower processing
time and attract more participation. We argue that these
improvements are at least partially attributed to advanced
features of pull request systems. In particular, the coupling
with code repository, issue tracking and review discussion
enables easier participation and better traceability. This, in
turn, helps reduce time and effort. Furthermore, the social
features enhanced by the collaboration platform of GitHub
may help attracting new contributors and contributions.

In practice, this knowledge may help improve tools and
practices for code contribution. Projects using tradition-
al tools may want to add features of pull request systems
that are associated with higher contribution effectiveness by
plug-ins, additional modules, ect. Practitioners who have
already used or intend to move to pull request systems may
need to pay more attention to leveraging these features. Pul-
l request systems’ high efficiency, however, does not imply
that patch-based tools should be abandoned. We observe
that good discipline and skills of using traditional patch-
based tools may work well too. For example, Linux kernel
still uses its mailing list to do code inspection even though
it has a mirror repository hosted on GitHub. It provides a
guidance of making contribution title prefixed by tags en-
closed in square brackets: “Subject: [PATCH tag] <sum-
mary phrase>”18. SVN has the community norm to have
contribution reviewed that appears to be quite effective [10].
Such strategies should not be discounted when trying to im-
prove the effectiveness of code contribution. Although pull
request systems have a higher effectiveness, they may have
weakness that can be improved. For example, some develop-
ers think there should be code analysis functionality for qual-
ity assurance on the GitHub pull request system, some are
still unsatisfied with the way GitHub handles notification-
s [14]. Maintainers find reaching consensus of the decision of
a contribution through the pull request comment mechanism
and handling the workload imposed by the open submission
process of pull request systems to be sometimes challeng-
ing [14]. Contributors think the communication within pull
requests, although effective for discussing low-level issues,
appears to be limited for other types of their communica-
tion needs [13].

In future, we intend to conduct a survey with developers
who have experience of using different types of tools to im-
prove our understanding of exactly what has been achieved
and what challenge of contribution practices are still out-
standing.
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