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Abstract Violence is a phenomenon that severely impacts
homeless youth who are at an increased risk of experiencing
it as a result of many contributing factors such as traumatic
childhood experiences, involvement in delinquent activities
and exposure to perpetrators due to street-tenure. Reducing
violence in this population is necessary to ensure that the in-
dividuals can safely and successfully exit homelessness and
lead a long productive life. Interventions to reduce violence
in this population are difficult to implement due to the com-
plex nature of violence. However, a peer-based intervention
approach would likely be a worthy approach as previous re-
search has shown that individuals who interact with more
violent individuals are more likely to be violent, suggesting
a contagious nature of violence. We propose Uncertain Voter
Model to represent the complex process of diffusion of vi-
olence over a social network, that captures uncertainties in
links and time over which the diffusion of violence takes
place. Assuming this model, we define Violence Minimiza-
tion problem where the task is to select a predefined number
of individuals for intervention so that the expected number
of violent individuals in the network is minimized over a
given time-frame. We also extend the problem to a proba-
bilistic setting, where the success probability of converting
an individual into non-violent is a function of the number of
“units” of intervention performed on them. We provide al-
gorithms for finding the optimal intervention strategies for
both scenarios. We demonstrate that our algorithms perform
significantly better than interventions based on popular cen-
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trality measures in terms of reducing violence. Finally, we
use our optimal algorithm for probabilistic intervention to
recruit peers in a homeless youth shelter as a pilot study.
Our surveys before and after intervention show significant
reduction in violence.

1 Introduction

There are an estimated 1.6–2.8 million youths experiencing
homelessness in the United States (Terry et al. 2010). Al-
though violence in the United States has steadily decreased
during the past decade, homeless youth remain dispropor-
tionately susceptible to violent victimization and perpetra-
tion (of Justice. 2013). These youths experience all types of
violence at higher rates than their housed counterparts (Pe-
tering et al. 2014; Heerde et al. 2014; Eaton et al. 2012a).

Violence perpetuates violence and diffuses through a net-
work like a contagious disease (Fagan et al. 2007). Cure Vi-
olence program1 is based on a similar idea of treating vi-
olence as a contagious disease, and has shown significant
reduction in violence. Motivated by the contagious nature,
a diffusion model is ideal for modeling spread of violence.
Doing so can lead to optimal intervention strategies under
certain assumptions.

While many diffusion models exist that are variations of
Independent Cascade Models, Linear Threshold Model, and
Susceptible-infected, they are “progressive” models, i.e., they
assume that once activated (or infected), the individuals re-
main activated. However, in the context of violence, it would
mean that a violent person can never become non-violent,
which is not applicable. Although some non-progressive ex-
tensions do exist (Kempe et al. 2003), accurate analytical so-
lutions of those models are hard to obtain. While these mod-
els reached popularity in the era of online social networks,

1 See http://cureviolence.org/
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a popular model of non-progressive diffusion of compet-
ing behaviors on real life networks, that has existed for a
longer time is voter model (Holley et al. 1975; Even-Dar
and Shapira. 2007). In voter model individuals are influ-
enced by a randomly selected neighbor2. But application of
voter model in real-life scenarios such as diffusion of vio-
lence has the following drawbacks. (a) There is some un-
certainty in the network structure, in the sense that, indi-
viduals may forget to mention someone as their peer, and
yet be influenced by them (Rice et al. 2014). (b) The num-
ber of discrete time steps over which the diffusion process
unfolds (a parameter required by Voter Model) is often un-
known in practice. To deal with these uncertainties, we pro-
posed Uncertain Voter Model (UVM) as an extension of
Voter Model (Srivastava et al. 2018). UVM allows for some
uncertainty in the knowledge of the neighborhood that may
arise from an individual being influenced by someone they
did not explicitly state as their “friend” during the survey
to create the network. Our model also incorporates uncer-
tainty in number of time-steps of the diffusion process. Un-
der UVM, we find the optimal intervention strategies to min-
imize violence. The task is to perform interventions on in-
dividuals with constrained “resources” so that they change
their state from “violent” to “non-violent” resulting in oth-
ers adopting “non-violent” state, eventually minimizing vi-
olence. We consider two types of interventions: (i) deter-
ministic, where selecting an individual turns them into non-
violent, with the constraint being the number of individuals
to select; (ii) probabilistic, where an individual’s probability
of becoming non-violent varies with the individual and is
increased based on number of “units” (hours, sessions, etc.)
of intervention, with the constraint being the total number
of units available. We also conducted a pilot study to test
the real life effectiveness of our probabilistic intervention
based on UVM. The pilot study consisted of two rounds of
data collection - one before the intervention and a longitudi-
nal follow-up. Due to the time consuming nature of the data
collection and fast changing network of homeless youth, it is
difficult to conduct more rounds of data collection and ver-
ify the modeling itself (see Section 8). We will explore this
issue in a future work.

Specifically, our contributions are as follows:

– We propose Uncertain Voter Model (UVM) for violence
that can capture its non-progressive nature and takes into
account the uncertainty in neighborhood as well as un-
certainty in the time period over which the diffusion of
violence unfolds. Under UVM, we define Violence Min-
imization problem where the task is to perform interven-
tion with finite resources, i.e., changing the state of some

2 We use the terms “neighbor” and “neighborhood” to refer to the
links of a given individual in the network and not their physical neigh-
borhood

violent individuals so that the total expected number of
violent individuals is minimized.

– We show that Uncertain Voter Model can be reduced
to the classic Voter Model, and thus a greedy algorithm
forms the optimal solution to Violence Minimization.

– We extend our solution to “probabilistic” intervention,
where the intervention reduces the probability of vio-
lence of selected individuals as a concave non-decreasing
function.

– We perform experiments on synthetic networks and a
real-life network of homeless youths and find the nodes
to be selected for intervention and demonstrate that base-
lines that do not take the diffusion model into account
perform significantly worse.

– We present results from a pilot study of intervention based
on our algorithms, that shows significant reduction in vi-
olence.

– We make the real-life homeless network publicly avail-
able for further research by the community.

2 Prior Work

In our prior work (Srivastava et al. 2018), we proposed Un-
certain Voter Model to model the spread of violence as a
non-progressive diffusion process. The model takes into ac-
count the uncertainty in the knowledge of the network, and
based on available network data, models interactions through
an existing edge or a non-existent edge that may be cre-
ated in the future. Based on the voter model we defined Vi-
olence Minimization problem and showed that greedy so-
lutions are optimal for both deterministic and probabilis-
tic version of intervention. In this work, we provide further
analysis of interventions based on UVM, suggesting that
better results are obtained considering uncertainty in edges
through Katz-centrality based edge-prediction compared to
ignoring the uncertainty. Further, while the prior work was
based on surveyed data, the intervention results were ob-
tained through simulations on the real-life network. This pa-
per presents results from a pilot study where actual inter-
vention was performed. Owing to the fast changing nature
of homeless youth network, new data was collected along
with a followup to measure the effect of intervention. We
discuss the transition to practice where further assumptions
were made to model the probability of response to interven-
tion. The followup data suggests that there was a signifi-
cant decrease in the number of individuals involved in vio-
lence. Also, there was a significant increase in the practice
of “mindfulness” which constituted the intervention.

To the best of our knowledge, intervention strategy to re-
duce violence using diffusion models has received very little
attention in the literature (Myers. 2000; Myers and Oliver.
2008). Violence is modeled based on susceptibility and in-
fectiousness in (Myers. 2000). In (Myers and Oliver. 2008)
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the idea of opposing forces, “provocation” and “repression”,
is used to model violence as two diffusing processes. This is
more accurate as it captures the non-progressive nature of
violence, where an individual may switch between the state
of “violence” and “non-violence”. However, it is a macro-
scopic approach, which disregards the network structure that
can be crucial in identifying best intervention strategies (Va-
lente. 2012). Finally, gang violence has been modeled as a
diffusion process in (Shakarian et al. 2014) in order to de-
ter violence by convincing members to dis-enroll, and exit
the gang network. Our setting is different as we aim to only
change the violent behavior of the individuals while they re-
main in the same network and continue to interact with their
“friends”.

3 Initial Data Collection

A sample of 481 homeless youth from ages of 18 to 25 years
accessing services from two day-service drop-in centers for
homeless youth in Hollywood and Santa Monica, CA, were
approached for study inclusion in October 2011 and Febru-
ary 2012. The research team approached all youths who en-
tered the service agencies during the data collection period
and invited them to participate in the study. The final sample
consisted of 366 individuals who agreed to participate.

The study consisted of a social network interview, where
each participant was asked to name anyone they interacted
with in person, on the phone, or through the internet in the
previous month prompted by interviewers stating, “These
might be friends; family; people you hang out with/chill
with/kick it with/ have conversations with; people you party
with–use drugs or alcohol; boyfriend/girlfriend; people you
are having sex with; baby mama/baby daddy; case worker;
people from school; people from work; old friends from
home; people you talk to (on the phone, by email); people
from where you are staying (squatting with); people you see
at this agency; other people you know from the street.” The
social network obtained through the survey has been made
publicly available3.

The variable of interest is violent behavior. Violent be-
havior was assessed by recent participation in a physical
fight. Participants were asked: “During the past 12 months,
how many times were you in a physical fight?” Eight ordi-
nal responses ranged from “zero times” to “over 12 times.”
The responses were dichotomized similar to previous litera-
ture on youth violence (Duong and Bradshaw. 2014; Eaton
et al. 2012b) to distinguish between participants who had
been in no physical fights and participants who had been in
at least one physical fight during the previous year (In real-
life implementation (see Section 7), we utilized actual val-
ues intead of binary 0/1). This question was adopted from

3 www-scf.usc.edu/~ajiteshs/datasets/HoSM.txt

the Youth Risk Behavior Survey, Centers for Disease Con-
trol and Prevention (Kann et al. 2014) and did not distin-
guish between victims and perpetrators of violence.

4 Model

To model the spread of violence we model the network of
homeless youth as a graph G(V,E) where every individual is
a node which can exist in one of two states: ‘violent’ or ‘non-
violent’. We chose to model violence as a non-progressive
diffusion process, i.e, a node may switch its state unlike the
progressive diffusion where once a node is violent it cannot
become non-violent again. Next, we provide a background
on Voter Model (Even-Dar and Shapira. 2007) on which our
model is based.

4.1 Voter Model

In the Voter Model (Even-Dar and Shapira. 2007), at every
time step a node u picks an incoming neighbor v at random
with a probability pv,u. The incoming probabilities are nor-
malized such that ∑v pv,u = 1. Let xu,t represent the probabil-
ity of node u being violent at time t. According to the model,
xu,t = ∑v pv,uxv,t−1 . Let xt represent the state of all the nodes
at time t, with ith element representing the probability that
vi ∈V is violent at time t. Suppose matrix M represents the
transpose of the adjacency matrix of the weighted network,
i.e., Mu,v = pv,u. Then xt = Mxt−1. It follows that xt = Mtx0.
Here x0 is the initial state of nodes, which is assumed to be
known. Now we wish to select k nodes out of those who are
violent at t = 0 and turn them into non-violent so that the
expected number of nodes that are violent at time t is min-
imized. Define IX for X ⊆ V as the vector in which the i-th
element is 1 if vi ∈ X . Then the expected number of violent
nodes at time t is

∑
i

P(vi is violent at time) = ∑
i

xi,t = IT
V xt (1)

4.2 Uncertain Voter Model

A network formed through a survey may have missing edges
due to the uncertainty in a person’s ability to recall all “friends”
they might be influenced by (Rice et al. 2014). To capture
this aspect, we propose the Uncertain Voter Model, where
we assume that a node which is not directly connected to
the node of interest may also influence it. In this model, two
mutually exclusive events happen: (i) with probability θ a
node randomly selects one incoming neighbor and adopts
its state, (ii) with probability (1− θ) it selects a node that
is not its neighbor in the network and adopts its state. We
propose two ways of selecting the node form outside the
neighborhood: (i) random and (ii) Katz-based.
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4.2.1 Random

In this case every node which is not a neighbor is equally
likely to be selected. Mathematically,

xu,t = θ ∑
{v|pv,u>0}

pv,uxv,t−1

+(1−θ) ∑
{v|pv,u=0}

1
|{v|pv,u = 0}|

xv,t−1 (2)

If n is the total number of nodes and du is the number of
incoming neighbors of u, then |{v|pv,u = 0}|= n−du. Sup-
pose we define,

qθ (v,u) =

{
θ pv,u if pv,u > 0
1−θ

n−du
if pv,u = 0 .

(3)

4.2.2 Katz-bazed

We treat the influence from outside the neighborhood as the
problem of finding missing edges (Lü and Zhou. 2011). A
popular method for missing edge detection is using Katz
similarity (Liben-Nowell and Kleinberg. 2007), which is based
on exponentially weighted number of paths between two
nodes:

K(u,v) = ∑
i

α
i|path of length i to u from v| . (4)

We chose Katz-based method for link prediction as it has
consistently performed well (Liben-Nowell and Kleinberg.
2007) and can also predict links between nodes that may
be more than 2 hops away, unlike common neighbor-based
methods. Since, we are only interested in nodes that are not
directly in the neighborhood we take the above summation
for i≥ 2. The entire similarity matrix is given by:

K = ∑
i≥2

α
iMi = α

2M2(I−αM) , (5)

We choose a small value of α = 0.005 (Liben-Nowell and
Kleinberg. 2007). We normalize the scores for each node u
over all nodes v which are not in its neighborhood, so that
that the probability of selecting node v is proportional to
K(u,v), i.e.,

K′(u,v) = K(u,v)/∑
w

K(u,w) . (6)

Now, the Katz-based Uncertain Voter Model is given by

xu,t = θ ∑
{v|pv,u>0}

pv,uxv,t−1

+(1−θ) ∑
{v|pv,u=0}

K′(u,v)xv,t−1 . (7)

Again, we can define

qθ (v,u) =

{
θ pv,u if pv,u > 0
(1−θ)K′(u,v) if pv,u = 0 .

(8)

From Equations 3 and 8, both random and Katz-based
Uncertain Voter Model lead to reduction of Equations 2 and
Equations 7 to

xu,t = ∑
v

q(v,u)xv,t−1 or xt = Qθ xt−1 (9)

where [Qθ ]u,v = qθ (u,v) which reduces to Voter Model (Sec-
tion 4.1) of a graph of which the transpose of the adjacency
matrix is Qθ . Now, we define the problem of Violence Min-
imization as follows.

Problem Definition 1 (Violence Minimization) Given a weighted
graph G(V,E), an initial set of violent nodes S, a time frame
t, and an integer k, find T ⊆ S such that |T |= k, turning the
nodes in T into non-violent minimizes the expected number
of violent nodes after time t, i.e., IT

V xt under Uncertain Voter
Model.

5 Greedy Minimization

Let x′0 be the vector formed by turning some k nodes into
non-violent initially. Suppose this results in the vector of
probabilities x′t at time t. Now, minimizing IT

V x′t is equiv-
alent to maximizing IT

V (xt− x′t) = IT
V Qt

θ
(x0− x′0), i.e., the

problem reduces to maximizing

IT
V ∆xt = IT

V Qt
θ ∆x0 = ∑

{u|∆x0(u)=1}
IT
V Qt

θ Iu (10)

which can be optimized using greedy strategy (Even-Dar
and Shapira. 2007) as presented in Algorithm 1.

Algorithm 1 Greedy algorithm to minimize violence
function MINVIOLENCE(G,S,θ ,k, t)

Compute Qt
θ

for G
∀u ∈ S compute σ(u) = IV Qt

θ
Iu

Sort {σ(u)} in descending order and return top k.
end function

The most expensive step of the algorithm is the compu-
tation of Qt

θ
which can be computed in O(|V |2.4 log t).

5.1 Uncertainty in Time

Uncertain Voter Model requires t as a parameter which is
unknown in real life. While we may have a certain time pe-
riod (days or weeks) over which we want the intervention
to work, finding a relation between that time period and the
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Fig. 1 Visualization of the homeless youth network. The red nodes
represent the violent nodes and the green ones represent non-violent
ones. The black nodes have unknown state.

parameter t is non-trivial as it depends on how often the in-
dividuals interact. To capture this uncertainty, we assume
that time t takes a value τ with probability P(t = τ). Now,
we wish to minimize E(IV xt) where the expectation is taken
over t. Therefore,

E(IT
V x′t) = ∑

τ

P(t = τ)IT
V Qτ

θ x′0 = IT
V

(
∑
τ

P(t = τ)Qτ
θ

)
x′0.

(11)

Notice from Equation (11) that a greedy solution like Algo-
rithm 1 still applies.

5.2 Probabilistic Intervention

In the previous section, we assumed that performing inter-
vention on a “violent” node turns it into “non-violent”, i.e.,
an intervention is always successful. However, in real life
this may not be true, and some nodes may require more
“units” (hours, sessions, etc.) of intervention than others. Let
su(zu) be the probability of success after applying zu units of
intervention to node u. These functions can be different for
different nodes, as different individuals may respond differ-
ently to interventions. We assume that these functions {si}
are non-decreasing, i.e, adding more units of intervention
cannot decrease the probability of success. We also assume
that theses functions are concave, i.e., the marginal increase
in probability reduces with increasing number of interven-
tions. Such assumptions are similar to those made in immu-
nization literature (Prakash et al. 2013). Mathematically, if
z′ ≥ z, si(z′)≥ si(z), and si(z′+1)−si(z′)≤ si(z+1)−si(z),
∀i. Rewriting Equation 10 for probabilistic intervention, the
utility (reduction in violence) obtained by an allocation of
{z1,z2, . . . ,zn},zi ∈ N∪{0} is

IT
V Qt

θ ∆xt = ∑
u

IT
V Qt

θ Iusu(zu) (12)

Let fu(zu) = IT
V Qt

θ
Iusu(zu). This leads to the probabilis-

tic intervention version of Violence Minimization problem,
which is equivalent to maximizing ∑u fu(zu), such that ∑u zu =

k. Note that, IT
V Qt

θ
Iu is a non-negative constant and su(zu) is

non-decreasing concave function, and so, fu(zu) is also non-
decreasing and concave. Formally, we define this as follows.

Problem Definition 2 (Units Assignment Problem) Given
k ∈ Z resources and n concave non-decreasing utility func-
tions fi : Z→ R, where fi(zi) represents the utility of as-
signing zi units to function fi, maximize the total utility F =

∑i fi(zi) subject to ∑i zi = k.

Algorithm 2 Greedy Maximization using Marginal Returns
1: function GREEDYMAX(( f1, f2, . . . , fn),k)
2: for i← 1 : n do
3: zi← 0
4: end for
5: for j← 1 : k do
6: idx← argmaxi( f (zi +1)− f (zi))
7: zidx← zidx +1
8: end for
9: return (z1,z2, . . . ,zn)

10: end function

Lemma 1 For a non-decreasing concave function f : Z→
R, and h≥ 1,

f (x+h)− f (x)≤ h( f (x)− f (x−1)) (13)

f (x)− f (x−h)≥ h( f (x)− f (x−1)) (14)

We prove the following.

Theorem 1 Algorithm 2 produces the optimal assignment
for Units Assignment Problem.

Proof Suppose the greedy assignment results in an assign-
ment of zi to the function fi. Without loss of generality, we
assume that the functions are ordered as following: if i < j
then fi(zi)− fi(zi− 1) ≥ f j(z j)− f j(z j − 1),∀i, j such that
zi,z j ≥ 1.

Assume that the optimal assignment (z∗1,z
∗
2, . . . ,z

∗
n) is dif-

ferent from greedy assignment and produces a greater F =

∑i fi(z∗i ).
Choose the smallest index p such that fp(zp) 6= fp(z∗p).

Case fp(zp)> fp(z∗p) Since, ∑i zi =∑z∗i = k,∃p< i1 < i2 <
· · · < iM , for some M > 0 such that z∗ir > zir and ∑r(z∗ir −
zir)≥ zp−z∗p. Therefore, it is possible to pick hir ≤ (z∗ir−zir)

such that ∑r hir = zp−z∗p. Suppose we take hir out of the op-
timal assignment z∗ir ,∀r and assign them to the function fp,
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then we should not expect any gain (∆F ≤ 0) as the assign-
ment we started with was optimal. We note that

∑
r
( fir(z

∗
ir)− fir(z

∗
ir −hir))

≤∑
r

hir( fir(z
∗
ir −hir)− fir(z

∗
ir −hir −1)) [Using Lemma 1]

≤∑
r

hir( fir(zir)− fir(zir −1)) [Due to concavity]

≤∑
r

hir( fp(zp)− fp(zp−1)) [Due to ordering of functions]

≤ (zp− z∗p)( fp(zp)− fp(zp−1)) [Since ∑r hir = zp− z∗p]

≤ ( fp(zp)− fp(z∗p)) [Using Lemma 1]

Therefore, the gain obtained in this case is ∆F = ( fp(zp)−
fp(z∗p))+∑r( fir(z

∗
ir −hir)− fir(z

∗
ir))≥ 0.

Case fp(zp)< fp(z∗p) Since, ∑i zi =∑z∗i = k,∃p< i1 < i2 <
· · ·< iM , for some M > 0 such that zir−z∗ir and ∑r(zir−z∗ir)≥
zp− z∗p. Therefore, it is possible to pick hir ≤ (zir − z∗ir) such
that ∑r hir = z∗p − zp. Now, we take z∗p − zp resources out
of the optimal assignment on fp and distribute them such
that fir gets zir + hir . Since we have obtained the sequence
z1,z2, . . . ,zn using greedy assignment, fi(zi + 1)− fi(zi) ≤
f j(z j)− f (z j − 1),∀i 6= j, otherwise the last unit that went
to f j would have gone to fi instead. We have fp(z∗p)− fp(zp)

≤ (z∗p− zp)( fp(zp +1)− fp(zp)) [Using Lemma 1]

≤∑
ir

hir( fp(zp +1)− fp(zp)) [Since ∑r hir = zp− z∗p]

≤∑
ir

hir( fir(zir)− fir(zir −1)) [From of Algorithm 2]

≤∑
ir

hir( fir(z
∗
ir +hir)− fir(z

∗
ir +hir −1))

≤∑
ir

( fir(z
∗
ir +hi,r)− fir(z

∗
ir)) [Using Lemma 1]

≤∑
ir

( fir(zir)− fir(z
∗
ir)) [ fir is non-decreasing].

Therefore, ∆F =∑ir hir( fir(zir)− fp(z∗ir))+( fp(zp)− fp(z∗p))≥
0.

But ∆F ≤ 0., and so ∆F must be zero, i.e., for any opti-
mal assignment that differs from the greedy assignment first
at index p, we can perform a reassignment that retains opti-
mality so that they no longer differs at index p. Proceeding
thus we get z∗i = zi,∀i. Hence, the greedy assignment is op-
timal.

Suppose the exact response to intervention for individu-
als is hard to predict, and instead we have some estimation
of the response. In other words, if the exact functions fi are
not known but we have an approximation gi of fi, the fol-
lowing can be shown.

Theorem 2 If concave non-decreasing functions {gi} esti-
mate { fi}, such that (1−ε) fi(z)≤ gi(z)≤ (1+ε) fi,∀i,z, for
some ε ≥ 0, then Algorithm 2 applied on the functions {gi}
produces a (1− ε)-approximation for Units Assignment Prob-
lem.

Proof Let the vector z∗ = [z∗1,z
∗
2, . . . ,z

∗
n] represent the opti-

mal solution for Units Assignment Problem. Let F(x∗) =
∑i fi(z∗i ). Suppose, Algorithm 2 produces the vector z′ =
[z′1,z

′
2, . . . ,z

′
n] based on the functions {gi}, and G(z′)=∑i gi(z′i).

Since, (1− ε) fi(z) ≤ gi(z) ≤ (1+ ε) fi(x),∀i,z, taking the
sum over all i, we get (1−ε)F(z)≤G(z)≤ (1+ε)F(z),∀z.
Then,

G(z′)≥ G(z∗)≥ (1− ε)F(z∗). (15)

6 Experiments

We have shown that the greedy algorithms described in Al-
gorithms 1 and 2 are optimal under Uncertain Voter Model
for deterministic and probabilistic interventions, respectively.
However, to study how prominent the difference is from
other choices of intervention strategies, we compare it against
the following baselines:

– Degree: We define the degree of a node based on the
weighted graph as dv = ∑u pv,u. Then we select top k
nodes.

– Betweenness Centrality: Top k nodes are selected based
on the betweenness centrality in the graph.

We have performed two sets of experiments:

Synthetic Kronecker graphs We generated random Kronecker
graphs (Leskovec et al. 2010) with roughly same number of
nodes and edges as the real Homeless Youth network, de-
scribed next.

Real-world Homeless Youth Network We constructed the net-
work obtained by the surveyed data, which consists of 366
nodes and 558 directed edges. Due to the lack of the knowl-
edge of edge-weights, we assume that all incoming links for
a node are equally weighted.

6.1 Synthetic Networks

To simulate the fact that individuals often forget to mention
some individuals they might be influenced by (Rice et al.
2014), for every Kronecker graph G, we randomly removed
a certain fraction φ of edges to form graph G′. We applied,
our greedy algorithm to obtain optimal set of nodes for inter-
vention under UVM for both random and Katz-based varia-
tion, assuming θ = 1− φ on G′. We chose φ from [0,0.5].
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(b) Probabilistic Intervention (θ = 0.9)
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(c) Deterministic Intervention (θ = 0.8)
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(d) Probabilistic Intervention (θ = 0.8)
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(e) Deterministic Intervention (θ = 0.7)
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(f) Probabilistic Intervention (θ = 0.7)
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(g) Deterministic Intervention (θ = 0.6)
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(h) Probabilistic Intervention (θ = 0.6)
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(i) Deterministic Intervention (θ = 0.8)
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(j) Probabilistic Intervention (θ = 0.8)
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(k) Deterministic Intervention (θ = 0.6)

0 5 10 15 20

Intervention size (k)

85

90

95

100

105

110

115

120

E
x
p

ec
te

d
 #

 o
f 

v
io

le
n

t 
in

d
iv

id
u

a
ls

Greedy (VM)

Greedy (UVM
m

)

Greedy (UVM
K

)

Degree

Betweenness

(l) Probabilistic Intervention (θ = 0.6)

Fig. 2 Comparison of the baseline against the greedy algorithm for varying intervention sizes under the Uncertain Voter Model on random
Kronecker graphs.

We consider this to be a sensible range for φ as φ > 0.5 (i.e.,
θ < 0.5) would represent very low confidence in the col-
lected data, i.e, it would mean that a node is more likely to be
influenced by one of the nodes it is not connected to. The pa-
rameter t was assumed to be uniformly distributed between 1
and 5. We also applied the greedy algorithm assuming θ = 1,
which would be the optimal for Voter Model. Intervention

was performed by selecting these sets, but on original graph
G. Figure 2 shows the number of violent nodes that result
from different intervention strategies, while varying the in-
tervention size k. Figures 2(a), 2(c), 2(e), 2(g), 2(i) and 2(k)
are for deterministic intervention scenario, where selected
nodes become non-violent. Figures 2(b), 2(d), 2(f), 2(h), 2(j)
and 2(l) are for probabilistic intervention scenario, where
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a selected node u becomes non-violent with a probability
1− ru

zu , where zu is the number of units of intervention ap-
plied on u, and ru ∈ [0,1] is randomly selected to simulate
how well u responds to the intervention. We obtained the
plots for many synthetic Kronecker graphs, but only report
a few as they all had the same trends.

UV Mm and UV MK represent UVM with random and
Katz-based selection of out of neighborhood nodes, respec-
tively. Greedy algorithm on Katz-based UVM significantly
outperforms the baselines. Greedy algorithm on Voter Model
(θ = 1) performs worse and UVM based on random selec-
tion while comparable, is still slightly worse. This suggests
that taking the uncertainty of edges into account by predict-
ing links produces better intervention strategy. Most of these
graphs were generated with approximately 50% initial vio-
lent nodes to match the real-world network. As expected, for
high values of θ VM and UVM have similar performances.

6.2 Homeless Youth Network

For the real Homeless Youth Network, we performed selec-
tion and simulated intervention on the same graph, as the
network that includes the “forgotten” links is not available.
Out of the 366 nodes, 55.01% were “violent” (xu,0 = 1) and
42.55% are “non-violent” (xu,0 = 0). Data on the rest of
2.44% are missing and are assumed to be equally likely to
be of either state (xu,0 = 0.5). Based on this “initial state”
we run Greedy Minimization for Uncertain Voter Model.

Figure 3 show the deterministic intervention compari-
son for expected number of nodes that are violent after t = 5
and t = 10. Figure 4 shows the comparison for probabilis-
tic intervention. The value of θ was set to 0.75 to generate
these plots. Other values for parameters t and θ show sim-
ilar trends and hence, have been omitted. We set su(zu) =

ru∀zu ≥ 1, where ru is chosen randomly in [0,1). We com-
pare the results obtained using Algorithm 2 labeled Greedy
(PI) against a number of baselines: (1) Algorithm 1 labeled
Greedy (DI), deterministic intervention ignoring su; (2) De-
gree; (3) Betweenness; (4) PageRank; (5) IMM, state-of-the-
art influence maximization seed set selection algorithm un-
der Independent/Weighted Cascade Model (Tang et al. 2015).
We observe that the greedy algorithm maximizing marginal
returns for probabilistic intervention significantly outperforms
all baselines.

The upper limit of number of time steps (t) was chosen
to be a small number in our experiments, keeping in mind
that homeless youth networks are dynamic, and so in prac-
tice, the intervention should be performed in short-term.

Choosing individuals in practice So far we have presented
the comparison of our greedy method against the baseline
centrality measures in terms of reduction in violence. Now,
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Fig. 3 Comparison of the baseline against the greedy algorithm for
varying intervention sizes under the UVM for deterministic interven-
tion.

we proceed to examine individuals chosen for intervention
based on our method. We experimented with different values
for parameter θ = 1,0.9,0.8,0.7,0.6 and 0.5, i.e., increas-
ing edge uncertainty. Table 1 presents the top 10 nodes (in
terms of PID assigned in the survey) chosen for interven-
tion (deterministic). Note that there are many nodes such
as PIDs 47, 4, 2086, 2156, and 51, that consistently appear
in the top 10, suggesting that the set of chosen individuals
is not highly sensitive to the choice of parameters within a
sensible range. However, the significant deviation from be-
tweenness and degree centralities (Figure 3) suggests that
finding this set is non-trivial. We also varied the value of
t = 2,4,6,8,10, and 12. The lists of seeds obtained for dif-
ferent values of t have not been presented for brevity, as
they had the same PIDs frequently occurring in the lists.
These individuals were selected based on deterministic in-
tervention, which should be applied when the knowledge of
personal traits is not available. However, with the availabil-
ity of personal traits sufficient to model how an individual
may respond to intervention (su(zu)), probabilistic interven-
tion should be used. Next, we describe how we utilized our
approach to perform real-life intervention to decrease vio-
lence.
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Table 1 Top 10 seeds for various values of θ output by Greedy Minimization

θ Selected Seeds E(IT
V x′t)

1 47 4 2156 51 13 2086 169 2115 2099 2056 179.43
0.9 47 4 2156 2086 51 13 169 2115 2056 2099 183.327
0.8 47 4 2086 2156 51 13 169 2115 2056 89 185.86
0.7 47 4 2086 2156 51 2115 13 169 2056 2125 187.54
0.6 47 4 2086 2115 2156 51 169 13 2056 2125 188.66
0.5 47 4 2086 2115 2156 51 169 13 2056 2125 189.43

Table 2 Top 10 seeds for various values of t output by Greedy Minimization

t Selected Seeds E(IT
V x′t)

2 47 2086 4 2115 51 2156 169 13 2056 2125 189.92
4 47 4 2086 2115 51 2156 169 13 2056 2125 188.66
6 47 4 2086 51 2156 2115 169 13 2056 2125 187.81
8 47 4 2086 51 2156 2115 13 169 2056 2125 187.22
10 47 4 2086 2156 51 13 2115 169 2056 2125 186.79
12 47 4 2086 2156 51 13 2115 169 2056 2125 186.45
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Fig. 4 Comparison of the baseline against the greedy algorithm for
varying intervention sizes under the UVM for probabilistic interven-
tion.

7 Pilot Study

While the data collection discussed in Section 3 was used
only to perform simulated experiments, we also performed
a pilot study to deploy actual intervention based on UVM
on a different site. A group of homeless youth (HY) were
recruited in the summer of 2018 from a homeless support
services drop-in agency for in Los Angeles that serves more
than 1000 unique HYA every year. Baseline data collection

was conducted for approximately six days. The survey con-
sisted of questions as described in Section 3 with added em-
phasis on mindfulness related questions (Baer et al. 2008).
During the agency’s open hours, study staff approached all
HY utilizing services to verbally describe the study. HY who
endorsed interest in participating signed a voluntary consent
form which assured youth of the confidentiality of their in-
formation. All HY that were approached were interested in
participating, however, some HY were not enrolled due to
limits on staffing capacity, time constraints and other com-
mitments that prevented enrollment during the study recruit-
ment period. We also collected detailed contact informa-
tion for each participant to ensure longitudinal follow-up,
which was performed after a month and more follow-ups
are planned. Research staff members sat with them while
youth completed the baseline survey on an iPad. During this
process, network data was also collected by eliciting partic-
ipants information about their social connections with other
participants in the study. This network data is also made
publicly available4

The intervention consisted of Yoga and Mindfulness ses-
sions informed by Brofenbrenner’s ecological theory (Bron-
fenbrenner. 1977) and Bandura’s theory of social learning (Ban-
dura. 1986). The intervention also derives from Positive Youth
Development model (Catalano et al. 2004) that suggests an
integrated approach for prevention that incorporates strate-
gies that promote youth development such as social skills,
communication, self-awareness and community commitment.

7.1 Peer Selection

The selection of “peers” (seeds/individuals to invite for in-
tervention), we used Algorithm 2 with some heuristics to
represent the probability of violence xu,t and how well an in-
dividual responds to intervention su. For computing xu,0, we

4 www-scf.usc.edu/~ajiteshs/datasets/SPY.txt
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computed a score of violence Xu as the number of times an
individual was involved in violent incidents, and then took
the sigmoid of the standardized Xu, i.e.,

xu,0 = sigmoid
(

Xu−µ(Xu)

std(Xu)

)
. Response to the intervention was calculated as a function of
an aggregate score of mindfulness measure Su based on the
15 item version of the Five Factor Mindfulness Question-
naire (Baer et al. 2008). Again, the probability of respond-
ing to intervention was assumed to be sigmoid function of
standardized Su, i.e.,

su = sigmoid
(

Su−µ(Su)

std(Su)

)
.

Using these values of xu,0 and su, Algorithm 2, 11 top
candidates where invited who attended the intervention ses-
sions. The parameter θ was set to 0.75 and t was assumed
to be uniformly distributed in {1, . . . ,5}.

7.2 Intervention Results

Table 3 summarizes the effects of intervention by provid-
ing a comparison of mindfulness and violence related counts
before and after intervention. Note that approximately 90
HY where present in the baseline data (t1), only 58 of them
where present in the second round of data collection (t2).
The reason is difficult to assess formally, but it may be due
to the fact that HY often move and are difficult to locate or
contact. We observe that a significant increases in the num-
ber of individuals who reported daily mindfulness practice
(from 13 to 24). Also, there is a significant decrease in the
number of individuals who had a physical fight (from 20 to
12).

Table 3 Summary of results from Pilot Study of proposed intervention

Variables t1 t2 p-value
Practice mindfulness daily 13 24 < 0.05
Practice Yoga at least once in the
previous month

22 25 < 0.02

Had a physical fight 20 12 < 0.05
Had a verbal fight that you felt
might escalate to a physical fight

37 32 < 0.05

8 Discussion

UVM with Individual-specific Uncertainty We have assumed
that the uncertainty parameter θ is same for all individu-
als. However, it is possible to incorporate different levels
of uncertainty for different individuals θu. In our collected

dataset, there is a variable that measures how attentive the
individual was, which can be used as a proxy to individual-
specific uncertainty. We can rewrite Equation 8

qθ (v,u) =

{
θu pv,u if pv,u > 0
(1−θu)K′(u,v) if pv,u = 0 .

(16)

Therefore, we can still use Equation 9 to represent the dy-
namics.

UVM with Personal Traits. We have taken certain personal
traits into account only to model response to intervention
along with the network structure and history of violence of
the individuals. A more complex diffusion model can be
learned that accurately models the dynamics of violence by
accounting for personal traits in the diffusion as well. Here,
we discuss one such extension of our model.

In our collected dataset, one feature of particular interest
is Difficulty in Emotion Regulation (DERS). Intuitively, an
individual with high DERS is likely to have a higher propen-
sity for violence. Other factors such as gender may affect the
propensity of violence as well. Suppose α(u) is the propen-
sity of a node u for being violent. Mathematically,

xu,t =

α(u)∑ j qθ (v,u)xv,t−1

α(u)∑v qθ (v,u)xv,t−1 +(1−α(u))∑v qθ (v,u)(1− xv,t−1)

=
α(u)∑ j qθ (v,u)xv,t−1

α(u)∑v qθ (v,u)xv,t−1 +(1−α(u))(1−∑v qθ (v,u)xv,t−1)
.

(17)

Note that this model can be represented as

xt = C (Qθ xt−1) = C (Qθ C (. . .C (Qθ x0))), (18)

where C (Qxτ) is a vector of functions with uth element
given by Cu(∑v qθ (v,u)xu,t). Each Cu is a non-decreasing
concave function, and since a linear combination of concave
functions and composition of concave functions is also con-
cave, RHS of Equation 18 is also concave. Let that function
be C t(x0). Therefore, effect of intervention is given by

IT
V ∆xt = IT

V x0− IT
V C t([x1,0(1− s1(z1)) . . .xn,0(1− sn(zn))])

(19)

The utility of intervention can be represented as a function
over multisets U(T ) = IT

V ∆xt, where T = {(u,zu)|zu units
assigned to node u}. The following can be shown.

Theorem 3 U(T ) is submodular and non-decreasing.

Due to Theorem 3 the greedy algorithm maximizing marginal
returns admits a (1−1/e)-approximation (Soma and Yoshida.
2016).



Network-based Intervention Strategies to Reduce Violence among Homeless 11

Data Limitations. To verify the modeling, multiple snap-
shots of the network as well as data associated with the indi-
viduals are required. Multiple snapshots would also enable
the analysis of how quickly the diffusion process takes place.
This would aid in understanding a mapping between time
parameter of the model vs time elapsed in real life. Another
advantage of multiple snapshots would be to understand and
take into account the evolution of the network itself, i.e.,
rate of addition and removal of nodes and links. However,
surveying individuals is a time consuming process, and the
homeless youth networks change rapidly. Thus, collecting
multiple snapshots of data within a short period of time is
not feasible, and alternate methods of data collection need
to be explored. For the current scenario, we suggest that the
intervention should be performed iteratively, over short pe-
riods of time and the effects should be observed. This new
set of data would help in retraining the model and finding
more accurate nodes for intervention in the next iteration.

9 Conclusions

We have proposed Uncertain Voter Model (UVM) to cap-
ture the non-progressive diffusion of violence. Under UVM,
a node selects one of its neighbors with probability θ or one
of the remaining nodes with probability 1− θ , and adopts
its state. The parameter θ captures the certainty of being
influenced by the neighbors. The model also captures un-
certainty in time over which the diffusion of violence takes
place. We have shown that a greedy algorithm is the opti-
mal intervention strategy to minimize violence under this
model. We have also extended the deterministic intervention
by considering a scenario where the intervention succeeds
only with a certain probability as a function of number of
resources (units of interventions) allocated to the individual.
We have also shown that the greedy algorithm maximizing
marginal returns forms the optimal intervention strategy. Ex-
periments on synthetic Kronecker graphs suggest that UVM
is a better choice than the classic Voter Model, where edges
may have been omitted during data collection. Experiments
on real-world Homeless Youth network have demonstrated
that our intervention strategy significantly outperforms in-
terventions based on popular centrality based measures. We
show in our experiments that for sensible choices of param-
eters the top individuals selected for intervention roughly
remain the same. We also presented the results from a pilot
study that demonstrates that probabilistic intervention based
on proposed model led to significant reduction in violence.

As future work, we plan to incorporate personal traits
(such as Difficulty in Emotion Regulation Score) to more
accurately model the diffusion process and the response to
the intervention. We also plan to apply our modeling and
intervention scheme to other behaviors that are contagious
and non-progressive in nature, such as such as drug-abuse.
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