Position Paper: Experiences on Clustering High-Dimensional
Data using pbdR’

Sadika Amreen
University of Tennessee, Knoxville
Knoxville, Tennessee
samreen@vols.utk.edu

ABSTRACT

Motivation: Software engineering for High Performace Computing
(HPC) environments in general [1] and for big data in particu-
lar [5] faces a set of unique challenges including high complexity
of middleware and of computing environments. Tools that make
it easier for scientists to utilize HPC are, therefore, of paramount
importance. We provide an experience report of using one of such
highly effective middleware pbdR [9] that allow the scientist to use
R programming language without, at least nominally, having to
master many layers of HPC infrastructure, such as OpenMPI [4]
and ScalaPACK [2]. Objective: to evaluate the extent to which mid-
dleware helps improve scientist productivity, we use pbdR to solve
a real problem that we, as scientists, are investigating. Our big data
comes from the commits on GitHub and other project hosting sites
and we are trying to cluster developers based on the text of these
commit messages. Context: We need to be able to identify developer
for every commit and to identify commits for a single developer.
Developer identifiers in the commits, such as login, email, and
name are often spelled in multiple ways since that information may
come from different version control systems (Git, Mercurial, SVN,
...) and may depend on which computer is used (what is specified
in .git/config of the home folder). Method: We train Doc2Vec [7]
model where existing credentials are used as a document identifier
and then use the resulting 200-dimensional vectors for the 2.3M
identifiers to cluster these identifiers so that each cluster represents
a specific individual. The distance matrix occupies 32TB and, there-
fore, is a good target for HPC in general and pbdR in particular. pbdR
allows data to be distributed over computing nodes and even has
implemented K-means and mixture-model clustering techniques in
the package pmclust. Results: We used strategic prototyping [3] to
evaluate the capabilities of pbdR and discovered that a) the use of
middleware required extensive understanding of its inner workings
thus negating many of the expected benefits; b) the implemented
algorithms were not suitable for the particular combination of n, p,
and k (sample size, data dimension, and the number of clusters); c)

“Produces the permission block, and copyright information

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SE-CoDeSE’17, November 12—17, 2017, Denver, CO, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5135-5/17/11...$15.00
https://doi.org/10.1145/3144763.3144768

Audris Mockus
University of Tennessee, Knoxville
Knoxville, Tennessee
audris@utk.edu

the development environment based on batch jobs increases devel-
opment time substantially. Conclusions: In addition to finding from
Basili et al., we find that the quality of the implementation of HPC
infrastructure and its development environment has a tremendous
effect on development productivity.

CCS CONCEPTS

« High Performance Computing; - Clustering; « Record Match-
ing;

KEYWORDS
developer productivity, prototyping, software engineering

ACM Reference format:

Sadika Amreen and Audris Mockus. 2017. Position Paper: Experiences on
Clustering High-Dimensional Data using pbdR. In Proceedings of Interna-
tional Workshop on Software Engineering for High Performance Computing in
Computational and Data-enabled Science and Engineering, Denver, CO, USA,
November 12-17, 2017 (SE-CoDeSE’17), 4 pages.
https://doi.org/10.1145/3144763.3144768

1 INTRODUCTION

The need for specialized software engineering techniques for HPC
is well known, e.g., [1]. It also calls for middleware that eliminates
some of the aspects of complexity associated with parallel compu-
tations essential in HPC. To validate these needs and the promises
of such middleware, we try to solve a real research problem of con-
structing an accurate social network. As this happens to be a big
data problem, we followed the suggestions for strategic prototyping
in [3].

2 BACKGROUND

Online data used in software engineering, social network analysis
and other domains often contains numerous synonyms for actors
and the objects they act upon. For example, the misspellings of user
credentials, multiplicity of emails and user name aliases are com-
mon for individuals’ profiles on platforms such as GitHub, Bitbucket
or Stack Overflow. Furthermore, the problem is even more severe
in cases of use of version control tools where the identity signature
may come from a profile that is stored locally as, for example with
the credentials in git version control system. A single individual is,
therefore, often represented as multiple identities. Such mistakes
profoundly affect most social network or productivity measures.
To solve this problem, we use a paragraph embedding technique
- Doc2Vec[7] which is an extension of Word2Vec [8] developed
by Tomas Mikolov et.al. Doc2Vec produces vectors from written
text aka paragraphs or documents which embeds the semantics of
the text. The underlying assumption behind our approach is that

SE-CoDeSE’17, November 12-17, 2017, Denver, CO, USA

written text can be used as a marker of the human-identity and
therefore will be indicative of the behavioral pattern unique to an
individual. After extracting the document vectors we start off a
preliminary investigation of the distance between these vectors
using clustering techniques.

In this paper, we talk about the software engineering issues for a
part of this research where we attempt to perform clustering meth-
ods in a distributed environment. The rest of this paper describes
the data and how we have approached the problem of clustering it
on the Titan supercomputer using an off-the-shelf project ppdR
(programming with big data in R).

3 DATA DESCRIPTION

As of April 2016, GitHub reports having more than 14 million
users and more than 35 million repositories, making it the largest
host of source code in the world. This massive operational data
from GitHub and other sources requires complicated modeling and
data accuracy improvement methods in order to build practically
relevant and scientifically significant discoveries. The overarching
goal of this project is to increase the accuracy of actor identities
by using written text to profile (and match) individuals through
(1) Coalescing of identities where multiple credentials belong to a
single actor and (2) Decomposing credentials into multiple actors
where a single credential i.e. organizational credentials, is used by
multiple entities.

3.1 Data Extraction and Filtering

We use data from a preliminary experiment that has approximately
40 billion commits. We filter the non-template messages from our
dataset, i.e. messages used by 5 or less authors and consider the
authors that have at least 10 commit messages that are at least
40 characters long. This highly reduced dataset contains commit
messages from more than 2 million users with over 125 million
commit messages. This data which is the labeled commit logs of
each author is used to generate Document Vectors that embed the
identity of each individual.

3.2 Preparing Data for Clustering

The generated document vectors that represent an individual as
produced by Doc2Vec are of 200 dimensions. We generate approxi-
mately 2.3 Million such vectors representing the users that meet
our filtering criteria. These vectors are written to a compressed
csv file (roughly 8GB) which is then split across several hundred
chunks (also compressed via gzip) so that they may be read into
different processors in parallel. We implement a reader function
that enables us to read the data across all ranks in a fraction of a
second. The following code snippet shows the implemented reader
function.

#Reader function
reader <— function(filepath ,filename ,
total _rows,nrows, ncols){
nprocs <—comm. size ()
if (comm.rank () == nprocs — 1){
nrows = total_rows — (nprocs—1)+nrows

}

data_dim <-ncols

Amreen and Mockus

dim_full <-c(total_rows, ncols)
MYCTXT <-2
blacs_ <—base.blacs (MYCTXT)

fn <—paste0(filepath , '/ ', filename ,comm.rank ())

df <— fread(fn, header = F,
sep = ';', colClasses=
c("character",
rep("numeric",data_dim)))
tags <— df[,1]
df <— df[,-1]
mdf <— as.matrix (df)
ldim <- dim(mdf)
if (nrows != ldim [1]){
print (paste("error: _wrong_input:"
, nrows, ldim))
}
dist_mdf <— new("ddmatrix", Data=mdf,
dim=dim_full , ldim=1dim,
bldim=1dim , ICTXT=MYCTXT)
return (list(labels=tags, data=dist_mdf))

4 USING THE pbdR PACKAGES

The programming with big data in R (pbdR) project [9] is a set of
highly scalable packages for distributed computing and profiling
in data science. The packages within this project interface with
softwares for distributed systems such as MPI, scaLAPACK, PAPI
and is designed to work best on large distributed platforms. For this
section of our work, we focus on the pmclust package which im-
plements model-based and k-means clustering for high dimensional
and ultra large data on a distributed environment.

4.1 Reading the Data

As our dataset is large, reading in the data must be done in an effi-
cient manner so that the bulk of the allocated execution time can be
used for computation. We need to balance the following parameters
carefully while reading the data (1) Distribute data efficiently by
maximizing processor utilization and minimizing communication
overhead (2) Consider that intermediate data structures, i.e. the
distance matrix created for clustering jobs, will consume at least
four orders of magnitude more memory than the input data. The
pbdR code is executed on each thread individually and, by default,
the variables are local to that thread (referred to as rank in defer-
ence to OpenMP framework on which pbdR relies upon). To handle
objects that span multiple ranks, pbdR offers two choices - (1) A
gbd (general block distributed) object, the most general distributed
object (2) ddmatrix, the more specific distributed object tailored for
dense distributed matrix calculations. While pbdR documentation
explains these concepts clearly, not all implications are transparent.
For example, what type of distributed object does a specific function
need? Often, functions check for object type and execute suitable
code, but not all functions implement all distributed object types.
Furthermore, basic R functions that operate on matrices may or
may not work depending on if they have been re-implemented in

Position Paper: Experiences on Clustering High-Dimensional Data using ppdR SE-CoDeSE’17, November 12-17, 2017, Denver, CO, USA

Extract Determine Cluster
Data Commit non-template Run Doc
Collection P Doc2Vec
Messages Messages Vectors

Determine
Cluster

Quality

Figure 1: Concept of Workflow

pbdR. The source code of pbdR, because of this overloaded func-
tionality, is rather difficult to follow as numerous if statements
are needed to handle differences between the types of distributed
objects. These and other challenges required us almost a month of
development effort to implement a reliable and very fast function
to read in the data. If, for example, we wanted to store (and read
in) the distance matrix, it would be even more challenging due to it
being 10K times larger.

4.2 Clustering

We were unable to perform clustering using native pmeclust func-
tion on our dataset because the application kept crashing running
the clustering algorithms. To debug the issue we substituted our
large and highly dimensional data set, with a smaller data set to
evaluate the speed and accuracy of the algorithms.

To begin the experiment we created a small sample (108 obser-
vations) of two dimensional data with small standard deviation
within clusters and a large standard deviation between clusters.
This enables us to create “clean” cluster samples that any clustering
algorithm could easily recover. Thus, we ended up with 12 clusters
with 9 data points in each cluster (K = 12, p = 2, n = 108). We split
the 108 data points into 9 chunks or files, each file containing 12
observations and allocate a single node on Titan and 9 processors
for this job. Each file is then read simultaneously onto different
ranks or processors using the reader. The tiny amount of data
takes 0.048 seconds to be read across all ranks.

Following this, we run the parallel k-means (pkmeans), algo-
rithm implemented in pmclust. pkmeans facilitates the initialization
of the centroids of the clusters through an optional parameter called
MU. By passing the actual centroids of the generated clusters to
pkmeans, it achieves perfect clustering results in a single run. How-
ever, invoking pkmeans without setting this parameter seldom
results in perfect clustering. Therefore, we designed a few exper-
iments to run pkmeans repeatedly for the following reasons: (1)
As this is a embarrassingly parallel job, we wanted to test how the
execution scales with increasing number of runs, (2) We can try to
infer how many runs pkmeans require before we can start getting
reliable results (or if such patterns exist at all).

The quality of clustering is assessed through computing the
sum of squared distance from each data point to its corresponding
centroid. We ran pkmeans between 1,000 - 50,000 times. All data
points were eventually classified correctly with the assignment to
the 9 clusters. Table 1 documents the findings of this experiment.
The minimum error iteration column shows the iteration number
at which the minimum error (correct assignment) was reached. The

Table 1: pkmeans: K=12, p=2, n=108, Procs = 9, Node = 1

Iteration Min Error Iteration Time(min)

50,000 822 43.55
20,000 1568 17.22
10,000 40 8.46
5,000 227 4.24
1,000 50 0.86

Table 2: pkmeans: K=10, p=2, n=1000, Procs = 40, Node = 3

Iteration Min Error Iteration Time(min)

15,000 35 37.30
10,000 48 24.37
5,000 24 12.32

Table 3: pkmeans: K=20, p=2, n=2000, Procs = 200, Node = 13

Run Min Error Min Error Iter Time(min)

1 159.05 1235 24.54
2 155.62 1119 24.31
3 157.87 817 24.41
4 156.01 1729 24.17
5 155.75 1153 24.63

time column records the the time taken (in minutes) for the total
iterations to complete.

The same experiment was repeated with a larger (1000) samples
and with comparable K = 10. However, this time we allocate 40
nodes and 3 processors. Table 2 shows the performance of pkmeans
with this configuration. Again all data points were eventually cor-
rectly assigned to their clusters however, we notice that with the
larger data size the computation time has increased approximately
3 times despite the larger number of processors allocated.

A third experiment was designed to evaluate larger number of
clusters: n = 2000,p = 2,K = 20 with 100 data points in each
cluster and 200 processors on 13 nodes were allocated to this exper-
iment. There was an unanticipated memory management issue for
executing a large number of iterations within a single job, there-
fore, we repeated the run 10 times with 2000 times in each run.
Table 3 shows some of the results of this experiment. None of the
runs led to the convergence of the data points to form the correct
clusters. A fourth experiment (result not shown) replicates the third

SE-CoDeSE’17, November 12-17, 2017, Denver, CO, USA

with higher dimensions and larger data set and yields even less
satisfactory outcome.

This prototyping exercise, therefore, provided us with a better
understanding of the limitations of pkmeans with respect to increas-
ing sample size, data dimensionality, and the number of clusters. It
also provided an estimate of required memory for its intermediate
structures and execution time.

4.3 Challenges of developing in a HPC
environment

The need for the use of scientific softwares in a distributed environ-
ment is steadily increasing as academics and researchers are diving
deeper into analysis and usage of big data. Such computational
tools are typically not easy to use [6] and require some level of
prior knowledge and expertise. pbdR was no exception to this trend
and many of the functions in the provided packages could not be
used as a "black-box". We had to refer to the source code on various
occasions to understand how data should be fed in and will be
handled and this proved to be a tedious and highly time consuming
process mainly due to the lack of user-friendly and comprehensible
documentation. We found that the examples provided were brief
and frequently not useful for our tasks. Upon using the pmclust
package we also came across several bugs and submitted a report
to the development team. Such issues are not uncommon during
the development of scientific software, and particularly within the
HPC community can take years to overcome.

In addition to these hurdles, a distributed environment makes
things more challenging on the user as there are various configura-
tions to deal with, such as, the number of nodes and processors to
allocate keeping in mind the required memory and runtime for the
task. Often, distributed architectures that grant access to thousands
of users for highly resource-intensive tasks, have constraints on
wall-time as well as standard wait times in queues depending on
node allocation for a job.

4.4 Related Work

A study conducted by Basili et al. [1] discusses the perspectives of
understanding the HPC community through the examination of
a wide cross section of projects. The study discusses ways of how
software engineers can assist the HPC community such as adopting
mainstream practices in SE. This is complex as softwares for the
HPC environment are challenging to test because of the numerous
configurations it can use and thus should have the v&v processes
carefully designed to cater to the community.

Scientists using HPC systems require interactions with batch
queues where system utilization is often used as a productivity met-
ric. As utilization is inversely proportional to availability, policies
that favor maximizing utilization will have longer waits which we
experienced while working on our experiments. Therefore, we feel,
devising ways to reduce wait times for larger jobs will positively
impact productivity of users.

5 CONCLUSION

The motivation behind these experiments was to develop a pro-
totype which was necessary to understand how well the problem
scales so that we can approach the larger and more complex problem

Amreen and Mockus

more efficiently. However, we lacked any guidance on the software
engineering techniques needed to prototype this kind of research
so most of the designs implemented here are on a trial-and-error
basis.We believe that this is a common situation for researchers
and standard HPC specific prototyping for software engineering
framework or guideline techniques would greatly assist any similar
work.

This prototyping experiment has clarified some of the challenges
of the full-scale problem — (1) the clustering algorithm does not
converge to globally optimal clusters even with a known K even
after 20,000 iterations. Therefore, for an unknown and extremely
large K (on order of a million) and a high dimensional (200) data
we will need to implement a different algorithm which we have
outlined via email interactions with the original developers.

This experience strongly suggests the need to develop software
engineering techniques and practices for prototyping. It also high-
lights the limitations of the middleware, whereby the complexity of
the underlying frameworks is not hidden, but, instead, reincarnated
in the complexity of the middleware. Some of the supposedly useful
software engineering techniques, such as overloading, appear to
hinder the development more than help it.

ACKNOWLEDGMENTS

We would like to thank Dr. Ostrouchov, D. Schmidt and W.C. Chen
for their continuous support with all pbdR related question that
we had throughout this project. They have been extremely kind to
communicate with us on using the various packages on pbdR and
have been very forthcoming regarding feedback on implementation
methods.

We would also like to thank the Oak Ridge Leadership Comput-
ing Facility (OLCF) for granting us access to Titan.

REFERENCES

[1] Victor R Basili, Jeffrey C Carver, Daniela Cruzes, Lorin M Hochstein, Jeffrey K
Hollingsworth, Forrest Shull, and Marvin V Zelkowitz. 2008. Understanding the
high-performance-computing community: A software engineer’s perspective.
IEEE software 25, 4 (2008), 29.

[2] L.S.Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.
1997. ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA.

[3] Hong-Mei Chen, Rick Kazman, and Serge Haziyev. 2016. Strategic Prototyping
for Developing Big Data Systems. IEEE Softw. 33, 2 (March 2016), 36-43. https:
//doi.org/10.1109/MS.2016.36

[4] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,

Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew

Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S.

Woodall. 2004. Open MPI: Goals, Concept, and Design of a Next Generation MPI

Implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting.

Budapest, Hungary, 97-104.

L Gorton, A. B. Bener, and A. Mockus. 2016. Software Engineering for Big Data

Systems. IEEE Software 33, 2 (Mar 2016), 32-35. https://doi.org/10.1109/MS.2016.

47

[6] Nicole Hemsoth. 2006. Seven Challenges of High Performance Comput-
ing. (2006). https://www.hpcwire.com/2006/07/21/seven_challenges_of high_
performance_computing-1/

[7] Quoc Le and Tomas Mikolov. 2014. Distributed Representation of Sentences and
Documents. In Proceedings of the 31 st International Conference on Machine Learn-
ing, Vol. 32. JMLR, Beijing,China. https://cs.stanford.edu/~quocle/paragraph_
vector.pdf

[8] T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient Estimation of Word
Representation in Vector Space. 3, 1 (Sept. 2013). https://doi.org/10.1145/1188913.
1188915

[9] G. Ostrouchov, W.-C. Chen, D. Schmidt, and P. Patel. 2012. Programming with
Big Data in R. (2012). http://r-pbd.org/

—
i)

	Abstract
	1 Introduction
	2 Background
	3 Data Description
	3.1 Data Extraction and Filtering
	3.2 Preparing Data for Clustering

	4 Using the pbdRR packages
	4.1 Reading the Data
	4.2 Clustering
	4.3 Challenges of developing in a HPC environment
	4.4 Related Work

	5 Conclusion
	Acknowledgments
	References

