
Position Paper: Experiences on Clustering High-Dimensional
Data using pbdR∗

Sadika Amreen
University of Tennessee, Knoxville

Knoxville, Tennessee

samreen@vols.utk.edu

Audris Mockus
University of Tennessee, Knoxville

Knoxville, Tennessee

audris@utk.edu

ABSTRACT

Motivation: Software engineering for High Performace Computing

(HPC) environments in general [1] and for big data in particu-

lar [5] faces a set of unique challenges including high complexity

of middleware and of computing environments. Tools that make

it easier for scientists to utilize HPC are, therefore, of paramount

importance. We provide an experience report of using one of such

highly effective middleware pbdR [9] that allow the scientist to use

R programming language without, at least nominally, having to

master many layers of HPC infrastructure, such as OpenMPI [4]

and ScalaPACK [2]. Objective: to evaluate the extent to which mid-

dleware helps improve scientist productivity, we use pbdR to solve

a real problem that we, as scientists, are investigating. Our big data

comes from the commits on GitHub and other project hosting sites

and we are trying to cluster developers based on the text of these

commit messages. Context: We need to be able to identify developer

for every commit and to identify commits for a single developer.

Developer identifiers in the commits, such as login, email, and

name are often spelled in multiple ways since that information may

come from different version control systems (Git, Mercurial, SVN,

...) and may depend on which computer is used (what is specified

in .git/config of the home folder). Method: We train Doc2Vec [7]

model where existing credentials are used as a document identifier

and then use the resulting 200-dimensional vectors for the 2.3M

identifiers to cluster these identifiers so that each cluster represents

a specific individual. The distance matrix occupies 32TB and, there-

fore, is a good target for HPC in general and pbdR in particular. pbdR

allows data to be distributed over computing nodes and even has

implemented K-means and mixture-model clustering techniques in

the package pmclust. Results: We used strategic prototyping [3] to

evaluate the capabilities of pbdR and discovered that a) the use of

middleware required extensive understanding of its inner workings

thus negating many of the expected benefits; b) the implemented

algorithms were not suitable for the particular combination of n, p,

and k (sample size, data dimension, and the number of clusters); c)

∗Produces the permission block, and copyright information

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SE-CoDeSE’17, November 12–17, 2017, Denver, CO, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5135-5/17/11. . . $15.00
https://doi.org/10.1145/3144763.3144768

the development environment based on batch jobs increases devel-

opment time substantially. Conclusions: In addition to finding from

Basili et al., we find that the quality of the implementation of HPC

infrastructure and its development environment has a tremendous

effect on development productivity.

CCS CONCEPTS

·HighPerformanceComputing; ·Clustering; ·RecordMatch-

ing;

KEYWORDS

developer productivity, prototyping, software engineering

ACM Reference format:

Sadika Amreen and Audris Mockus. 2017. Position Paper: Experiences on

Clustering High-Dimensional Data using pbdR. In Proceedings of Interna-

tional Workshop on Software Engineering for High Performance Computing in

Computational and Data-enabled Science and Engineering, Denver, CO, USA,

November 12–17, 2017 (SE-CoDeSE’17), 4 pages.

https://doi.org/10.1145/3144763.3144768

1 INTRODUCTION

The need for specialized software engineering techniques for HPC

is well known, e.g., [1]. It also calls for middleware that eliminates

some of the aspects of complexity associated with parallel compu-

tations essential in HPC. To validate these needs and the promises

of such middleware, we try to solve a real research problem of con-

structing an accurate social network. As this happens to be a big

data problem, we followed the suggestions for strategic prototyping

in [3].

2 BACKGROUND

Online data used in software engineering, social network analysis

and other domains often contains numerous synonyms for actors

and the objects they act upon. For example, the misspellings of user

credentials, multiplicity of emails and user name aliases are com-

mon for individuals’ profiles on platforms such as GitHub, Bitbucket

or Stack Overflow. Furthermore, the problem is even more severe

in cases of use of version control tools where the identity signature

may come from a profile that is stored locally as, for example with

the credentials in git version control system. A single individual is,

therefore, often represented as multiple identities. Such mistakes

profoundly affect most social network or productivity measures.

To solve this problem, we use a paragraph embedding technique

- Doc2Vec[7] which is an extension of Word2Vec [8] developed

by Tomas Mikolov et.al. Doc2Vec produces vectors from written

text aka paragraphs or documents which embeds the semantics of

the text. The underlying assumption behind our approach is that

SE-CoDeSE’17, November 12–17, 2017, Denver, CO, USA Amreen and Mockus

written text can be used as a marker of the human-identity and

therefore will be indicative of the behavioral pattern unique to an

individual. After extracting the document vectors we start off a

preliminary investigation of the distance between these vectors

using clustering techniques.

In this paper, we talk about the software engineering issues for a

part of this research where we attempt to perform clustering meth-

ods in a distributed environment. The rest of this paper describes

the data and how we have approached the problem of clustering it

on the Titan supercomputer using an off-the-shelf project pbdR

(programming with big data in R).

3 DATA DESCRIPTION

As of April 2016, GitHub reports having more than 14 million

users and more than 35 million repositories, making it the largest

host of source code in the world. This massive operational data

from GitHub and other sources requires complicated modeling and

data accuracy improvement methods in order to build practically

relevant and scientifically significant discoveries. The overarching

goal of this project is to increase the accuracy of actor identities

by using written text to profile (and match) individuals through

(1) Coalescing of identities where multiple credentials belong to a

single actor and (2) Decomposing credentials into multiple actors

where a single credential i.e. organizational credentials, is used by

multiple entities.

3.1 Data Extraction and Filtering

We use data from a preliminary experiment that has approximately

40 billion commits. We filter the non-template messages from our

dataset, i.e. messages used by 5 or less authors and consider the

authors that have at least 10 commit messages that are at least

40 characters long. This highly reduced dataset contains commit

messages from more than 2 million users with over 125 million

commit messages. This data which is the labeled commit logs of

each author is used to generate Document Vectors that embed the

identity of each individual.

3.2 Preparing Data for Clustering

The generated document vectors that represent an individual as

produced by Doc2Vec are of 200 dimensions. We generate approxi-

mately 2.3 Million such vectors representing the users that meet

our filtering criteria. These vectors are written to a compressed

csv file (roughly 8GB) which is then split across several hundred

chunks (also compressed via gzip) so that they may be read into

different processors in parallel. We implement a reader function

that enables us to read the data across all ranks in a fraction of a

second. The following code snippet shows the implemented reader

function.

Reade r f u n c t i o n

r e a d e r <− function (f i l e p a t h , f i l e n a m e ,

t o t a l _ rows , nrows , n c o l s) {

nprocs <−comm . s i z e ()

i f (comm . rank () == nprocs − 1) {

nrows = t o t a l _ rows − (nprocs −1) ∗ nrows

}

data _dim <−n c o l s

dim_ f u l l <−c (t o t a l _ rows , n c o l s)

MYCTXT <−2

b l a c s _ <−base . b l a c s (MYCTXT)

fn <−p a s t e 0 (f i l e p a t h , ' / ' , f i l e n a m e , comm . rank ())

df <− f r e a d (fn , header = F ,

sep = ' ; ' , c o l C l a s s e s =

c (" c h a r a c t e r " ,

rep (" numeric " , data _dim)))

t a g s <− df [, 1]

df <− df [, −1]

mdf <− as . matrix (df)

ld im <− dim (mdf)

i f (nrows ! = ld im [1]) {

print (paste (" e r r o r : ␣ wrong ␣ i n p u t : "

, nrows , ld im))

}

d i s t _mdf <− new (" ddmat r ix " , Data=mdf ,

dim=dim_ f u l l , ld im =ldim ,

b ld im =ldim , ICTXT=MYCTXT)

return (l i s t (l abe l s = tags , data= d i s t _mdf))

}

4 USING THE pbdR PACKAGES

The programming with big data in R (pbdR) project [9] is a set of

highly scalable packages for distributed computing and profiling

in data science. The packages within this project interface with

softwares for distributed systems such as MPI, scaLAPACK, PAPI

and is designed to work best on large distributed platforms. For this

section of our work, we focus on the pmclust package which im-

plements model-based and k-means clustering for high dimensional

and ultra large data on a distributed environment.

4.1 Reading the Data

As our dataset is large, reading in the data must be done in an effi-

cient manner so that the bulk of the allocated execution time can be

used for computation. We need to balance the following parameters

carefully while reading the data (1) Distribute data efficiently by

maximizing processor utilization and minimizing communication

overhead (2) Consider that intermediate data structures, i.e. the

distance matrix created for clustering jobs, will consume at least

four orders of magnitude more memory than the input data. The

pbdR code is executed on each thread individually and, by default,

the variables are local to that thread (referred to as rank in defer-

ence to OpenMP framework on which pbdR relies upon). To handle

objects that span multiple ranks, pbdR offers two choices - (1) A

gbd (general block distributed) object, the most general distributed

object (2) ddmatrix, the more specific distributed object tailored for

dense distributed matrix calculations. While pbdR documentation

explains these concepts clearly, not all implications are transparent.

For example, what type of distributed object does a specific function

need? Often, functions check for object type and execute suitable

code, but not all functions implement all distributed object types.

Furthermore, basic R functions that operate on matrices may or

may not work depending on if they have been re-implemented in

SE-CoDeSE’17, November 12–17, 2017, Denver, CO, USA Amreen and Mockus

with higher dimensions and larger data set and yields even less

satisfactory outcome.

This prototyping exercise, therefore, provided us with a better

understanding of the limitations of pkmeans with respect to increas-

ing sample size, data dimensionality, and the number of clusters. It

also provided an estimate of required memory for its intermediate

structures and execution time.

4.3 Challenges of developing in a HPC

environment

The need for the use of scientific softwares in a distributed environ-

ment is steadily increasing as academics and researchers are diving

deeper into analysis and usage of big data. Such computational

tools are typically not easy to use [6] and require some level of

prior knowledge and expertise. pbdR was no exception to this trend

and many of the functions in the provided packages could not be

used as a "black-box". We had to refer to the source code on various

occasions to understand how data should be fed in and will be

handled and this proved to be a tedious and highly time consuming

process mainly due to the lack of user-friendly and comprehensible

documentation. We found that the examples provided were brief

and frequently not useful for our tasks. Upon using the pmclust

package we also came across several bugs and submitted a report

to the development team. Such issues are not uncommon during

the development of scientific software, and particularly within the

HPC community can take years to overcome.

In addition to these hurdles, a distributed environment makes

things more challenging on the user as there are various configura-

tions to deal with, such as, the number of nodes and processors to

allocate keeping in mind the required memory and runtime for the

task. Often, distributed architectures that grant access to thousands

of users for highly resource-intensive tasks, have constraints on

wall-time as well as standard wait times in queues depending on

node allocation for a job.

4.4 Related Work

A study conducted by Basili et al. [1] discusses the perspectives of

understanding the HPC community through the examination of

a wide cross section of projects. The study discusses ways of how

software engineers can assist the HPC community such as adopting

mainstream practices in SE. This is complex as softwares for the

HPC environment are challenging to test because of the numerous

configurations it can use and thus should have the v&v processes

carefully designed to cater to the community.

Scientists using HPC systems require interactions with batch

queues where system utilization is often used as a productivity met-

ric. As utilization is inversely proportional to availability, policies

that favor maximizing utilization will have longer waits which we

experienced while working on our experiments. Therefore, we feel,

devising ways to reduce wait times for larger jobs will positively

impact productivity of users.

5 CONCLUSION

The motivation behind these experiments was to develop a pro-

totype which was necessary to understand how well the problem

scales so that we can approach the larger and more complex problem

more efficiently. However, we lacked any guidance on the software

engineering techniques needed to prototype this kind of research

so most of the designs implemented here are on a trial-and-error

basis.We believe that this is a common situation for researchers

and standard HPC specific prototyping for software engineering

framework or guideline techniques would greatly assist any similar

work.

This prototyping experiment has clarified some of the challenges

of the full-scale problem Ð (1) the clustering algorithm does not

converge to globally optimal clusters even with a known K even

after 20,000 iterations. Therefore, for an unknown and extremely

large K (on order of a million) and a high dimensional (200) data

we will need to implement a different algorithm which we have

outlined via email interactions with the original developers.

This experience strongly suggests the need to develop software

engineering techniques and practices for prototyping. It also high-

lights the limitations of the middleware, whereby the complexity of

the underlying frameworks is not hidden, but, instead, reincarnated

in the complexity of the middleware. Some of the supposedly useful

software engineering techniques, such as overloading, appear to

hinder the development more than help it.

ACKNOWLEDGMENTS

We would like to thank Dr. Ostrouchov, D. Schmidt and W.C. Chen

for their continuous support with all pbdR related question that

we had throughout this project. They have been extremely kind to

communicate with us on using the various packages on pbdR and

have been very forthcoming regarding feedback on implementation

methods.

We would also like to thank the Oak Ridge Leadership Comput-

ing Facility (OLCF) for granting us access to Titan.

REFERENCES
[1] Victor R Basili, Jeffrey C Carver, Daniela Cruzes, Lorin M Hochstein, Jeffrey K

Hollingsworth, Forrest Shull, and Marvin V Zelkowitz. 2008. Understanding the
high-performance-computing community: A software engineer’s perspective.
IEEE software 25, 4 (2008), 29.

[2] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.
1997. ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA.

[3] Hong-Mei Chen, Rick Kazman, and Serge Haziyev. 2016. Strategic Prototyping
for Developing Big Data Systems. IEEE Softw. 33, 2 (March 2016), 36ś43. https:
//doi.org/10.1109/MS.2016.36

[4] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S.
Woodall. 2004. Open MPI: Goals, Concept, and Design of a Next Generation MPI
Implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting.
Budapest, Hungary, 97ś104.

[5] I. Gorton, A. B. Bener, and A. Mockus. 2016. Software Engineering for Big Data
Systems. IEEE Software 33, 2 (Mar 2016), 32ś35. https://doi.org/10.1109/MS.2016.
47

[6] Nicole Hemsoth. 2006. Seven Challenges of High Performance Comput-
ing. (2006). https://www.hpcwire.com/2006/07/21/seven_challenges_of_high_
performance_computing-1/

[7] Quoc Le and Tomas Mikolov. 2014. Distributed Representation of Sentences and
Documents. In Proceedings of the 31 st International Conference on Machine Learn-
ing, Vol. 32. JMLR, Beijing,China. https://cs.stanford.edu/~quocle/paragraph_
vector.pdf

[8] T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient Estimation of Word
Representation in Vector Space. 3, 1 (Sept. 2013). https://doi.org/10.1145/1188913.
1188915

[9] G. Ostrouchov, W.-C. Chen, D. Schmidt, and P. Patel. 2012. Programming with
Big Data in R. (2012). http://r-pbd.org/

	Abstract
	1 Introduction
	2 Background
	3 Data Description
	3.1 Data Extraction and Filtering
	3.2 Preparing Data for Clustering

	4 Using the pbdRR packages
	4.1 Reading the Data
	4.2 Clustering
	4.3 Challenges of developing in a HPC environment
	4.4 Related Work

	5 Conclusion
	Acknowledgments
	References

