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ABSTRACT: We describe a new method for simulating nonadiabatic
dynamics using stochastic trajectories. The method, which we call quantum
trajectory surface hopping (QTSH), is a variant of the popular fewest-
switches surface-hopping (FSSH) approach, but with important differences.
We briefly review and significantly extend our recently described consensus
surface-hopping (CSH) formalism, which captures quantum effects such as
coherence and decoherence via a collective representation of the quantum
dynamics at the ensemble level. Using well-controlled further approx-
imations, we derive an independent trajectory limit of CSH that recovers
the FSSH stochastic algorithm but rejects the ad hoc momentum rescaling
of FSSH in favor of quantum forces that couple classical and quantum
degrees of freedom and lead to nonclassical trajectory dynamics. The
approach is well-defined in both the diabatic and adiabatic representations.
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In the adiabatic representation, the classical dynamics are modified by a quantum-state-dependent vector potential, introducing
geometric phase effects into the dynamics of multidimensional systems. Unlike FSSH, our method obeys energy conservation
without any artificial momentum rescaling, eliminating undesirable features of the former such as forbidden hops and
breakdown of the internal consistency of quantum and ensemble-based state probabilities. Corrections emerge naturally in the
formalism that allow approximate incorporation of decoherence without the computational expense of the full CSH approach.
The method is tested on several model systems. QT'SH provides a surface-hopping methodology that has a rigorous foundation
and broader applicability than FSSH while retaining the low computational cost of an independent trajectory framework.

1. INTRODUCTION

Trajectory surface hopping is a popular and efficient method
for simulating the coupled electronic and nuclear dynamics of
molecular systems in a quantum-classical framework.' "' The
most commonly used implementation is the fewest-switches
surface-hopping (FSSH) method, originally introduced by
Tully in 1990," and its many subsequent variants (see, e.g., refs
9—11 for reviews). In the FSSH approach, the evolving
multicomponent nuclear quantum wavepacket is approximated
by an ensemble of independent classical trajectories, each of
which carries its own copy of an electronic Schrodinger
equation that evolves under the influence of the time-
dependent classical variables and determines the probability
of sudden stochastic transitions of the trajectory between the
quantum states. FSSH has proven to be a simple and robust
method for simulating classical molecular dynamics with
quantum electronic transitions.

The FSSH method has a number of well-known short-
comings that limit its applicability. In particular, the original
implementation does not treat quantum coherence, and
especially decoherence, properly, leading to a representation
of the quantum evolution that is overcoherent, in the sense
that the off-diagonal quantum density matrix elements of
individual trajectories can be spuriously large in magnitude
compared with the exact quantum coherence. Attempts to
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improve FSSH have mainly focused on corrections to this
problem. Another issue is related to the strict classical energy
conservation imposed on the individual trajectories in FSSH.
When a trajectory undergoes a transition between electronic
states, the corresponding difference in electronic-state energies
at the transition point is accommodated in the nuclear
dynamics by an ad hoc rescaling of the momentum along the
nonadiabatic coupling vector. This algorithm, although quite
physically reasonable prima facie, has no rigorous foundation
based on first principles. The FSSH algorithm also results in
practical problems, such as the spurious closing of classically
forbidden channels allowed by the full quantum evolution and
the presence of “frustrated hops”, transitions that are dictated
to occur by the surface-hopping stochastic process but rejected
by the ad hoc imposition of classical energy conservation.
These events break the consistency of surface hopping—the
agreement between the evolving quantum density matrix
probabilities and the state populations reflected by the hopping
trajectory ensemble. Furthermore, the use of the nonadiabatic
coupling vector in the momentum rescaling is only well-
defined in the adiabatic representation of electronic states,
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limiting the applicability of FSSH to dynamics in the adiabatic
representation.

Recently, we proposed an alternative surface-hopping
framework, consensus surface hopping (CSH),"> which avoids
the independent trajectory approximation and more rigorously
incorporates the nonclassical effects of nonlocality, uncertainty,
and quantum coherence.'® The advantages of CSH come at a
cost, however, and the method is numerically more expensive
than FSSH due to the interdependence of the trajectories in
the ensemble. Its use as a computational approach is thus
limited to low-dimensional model systems. The greatest value
of the CSH formalism, in our opinion, is not as a numerical
method for simulations but as a framework for developing
additional approximations and more economical methodology
in a well-controlled and rigorous manner.

In this Article, we describe such an approximate approach,
quantum trajectory surface hopping (QTSH). The theory
develops from a rigorous quantum-classical limit of the
multistate quantum Liouville equation'* > in the context of
the computationally efficient independent trajectory-based
FSSH method. We take an approximate independent trajectory
limit of the full CSH method, yielding an algorithm that is
equivalent to the standard FSSH stochastic trajectory hopping
approach. The main difference with FSSH is the abandonment
of ad hoc momentum rescaling to conserve the classical
kinetic-plus-potential energy at the individual trajectory level
and its replacement by quantum forces derived rigorously from
the semiclassical-limit quantum-classical Liouville equation.
This feature of the method restores the consistency of surface
hopping that is broken by the frustrated hops of the standard
FSSH approach. In addition, the energetics of the system are
treated correctly: The full quantum-classical energy is
conserved rigorously at the ensemble level. The ensemble
average energy conservation is the correct behavior required by
quantum mechanics; individual trajectory conservation of the
classical energy is a constraint that is too restrictive and too
classical and so precludes important quantum effects. Further
corrections are developed and implemented to incorporate
average ensemble-level decoherence as an approximation to
the full CSH treatment of coherence. The approach is tested
on standard 1D models. For cases where FSSH works well, the
QTSH approach gives similar results for an equivalent
computational cost. In situations where FSSH fails due to
spuriously frustrated hops, the QTSH method continues to
give results in close agreement with quantum mechanics.

The organization of the rest of this paper is as follows. In
Section 2, we review the standard FSSH methodology. We
then briefly summarize the full CSH approach as reported
previously'® and significantly extend its treatment of energy
conservation through electronic-state-dependent nonclassical
forces. The QTSH approach, the quantum trajectory
modification of FSSH, is developed in both the diabatic and
adiabatic representations. Numerical results comparing the
methods for a number of model systems are presented in
Section 3. Finally, a summary and discussion is given in Section
4.

2. THEORY

2.1. Fewest-Switches Surface Hopping. We begin by
briefly reviewing the FSSH method proposed by Tully in
1990." The total Hamiltonian describing the electronic and
nuclear degrees of a molecular system is given by
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H =1 + Hyr, q (1)
Here r and q are the electronic and nuclear coordinates,
respectively. T, is the nuclear kinetic energy, whereas H,(r,q)
is the electronic Hamiltonian, which depends parametrically on
the nuclear coordinates q. An electronic basis is chosen in
terms of states ¢,(r;q), which are functions of the electronic
coordinates r and may also depend parametrically on the
nuclear coordinates q. Matrix elements of the electronic
Hamiltonian are given by

Vo) = 065 L, (s @) dr o
In the adiabatic representation, the electronic wave functions
depend on q, and the derivative coupling matrix element
d,,.(q) results from off-diagonal matrix elements of the nuclear
kinetic energy

4@ = I OV h(x; @) dr “

The FSSH formalism approaches the problem of non-
adiabatic dynamics by using classical trajectories and ensemble
averaging to approximate the nuclear quantum dynamics of a
multicomponent wavepacket. These classical trajectories
capture the quantum electronic transitions by stochastic
“hops” between the electronic surfaces. The electronic degrees
of freedom are, in turn, driven by the time-dependent nuclear
trajectories q(t) that appear in the nuclear coordinate
dependence of the electronic Hamiltonian. For a given
classical path q(t), the electronic wave function can be
expanded in the chosen electronic basis as

RODEDNIOVCEI0)
p @)

The substitution of this expression into the time-dependent
Schrédinger equation yields a set of coupled equations for the
expansion coefficients

ife,(t) = Y. (V,, — ihq-d,,)c,(t)
n (5)

It is convenient to use the quantum density matrix, 4,,, = c,,c;,
rather than the wave function amplitudes, c,. The quantum
equations of motion then become

lhumn(t) = Z [(le - ihq'dml)aln - aml(‘/ln - lhqdln)]
1

(6)

Here the following relations hold
dj, = -d, (7)
d,, = (8)

The equation of motion for the population of the nth state,
represented by the diagonal density matrix element, a,,,, is then
given by

dnn = Z bnl

I#n (9)

where

i

2 * % .
=21 — 2Re(a*q:
by P m(a,V,) Re(a,q-d,;) (10)
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It should be remembered that V,,(q(t)) and d,(q(t)) as well
as q(t) all depend on the time-dependent classical path, q(t).

In the FSSH method, an ensemble of independent
trajectories (qj(t),pj(t)) (i =12, ., N) is sampled from a
distribution representing the initial nuclear quantum state,
where p; is the canonical momentum conjugate to the jth
trajectory’s nuclear coordinate q;- Each trajectory so generated
is initiated on one of the electronic states and then evolves
under Hamilton’s equations that correspond to the instanta-
neous occupied state. Stochastic transitions occur between
these states with a probability that is proportional to the
relative rate of change of the quantum populations associated
with the trajectory.

To illustrate, we consider a system with two electronic states
and a trajectory currently evolving on state 1 (here we suppress
the trajectory index ;). In the FSSH method, this trajectory has
a probability of hopping from surface 1 to surface 2 if a,,(f) is
negative. In that case, Pfoy' (t), the probability of hopping at
time ¢ during a time step of duration Af, is then given by

Py (t) = by (t)At

1
ay(t) (11)
The hop is realized or not by generating a random number
between 0 and 1 and comparing it with PE(S,SH(t). An analogous
procedure is used for trajectories currently on state 2.

Strict energy conservation at the individual trajectory level is
imposed by rescaling the momenta at the instant of the hop so
that the total kinetic plus potential energy of the trajectory
remains unchanged during the transition. In multidimensional
systems, the momentum rescaling is performed along the
direction of the nonadiabatic coupling vector, d;,. If
insufficient energy is available for an upward hop in energy,
then the event is termed “frustrated” and does not occur
despite the stochastic algorithm dictating the transition. Such
aborted events lead to a breakdown of the consistency between
the density matrix populations and the trajectory ensemble
statistics.

2.2. Consensus Surface Hopping. The FSSH method is
a sensible but ad hoc solution to the problem of modeling
nonadiabatic dynamics with trajectories. The algorithm was
proposed based on physical reasoning rather than derived
systematically from the underlying exact quantum dynamics.
The CSH approach seeks to go beyond this and build a
trajectory-based method for nonadiabatic dynamics simula-
tions with a rigorous foundation.'”> The CSH formalism
focuses on solving the multistate quantum Liouville equation
for coupled electronic and nuclear dynamics in the semi-
classical limit using trajectory ensembles to represent phase-
space densities.'*"'® These states evolve quantum mechan-
ically, and so the trajectory dynamics must correspondingly
become nonclassical.

An initial description of the approach was given in ref 12.
Here we provide a review of that work and, in addition,
significantly extend the formalism to give a more rigorous
treatment of the energy conservation by the inclusion of
nonclassical terms in the phase-space dynamics. This addi-
tional aspect will be a key component of the QTSH approach
that is the focus of this paper and is developed below.

The quantum-mechanical Liouville equation for the density
operator p(t) is given by21
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., dp(t)
h (12)

where H is the Hamiltonian of the system. For dynamics on a
single potential surface, the classical limit of eq 12 is the well-
known classical Liouville equation of nonequilibrium statistical
mechanics™

dp

ot (13)

where p(qp,t) and H(qp,t) are now functions of the 2f
dimensional (for f nuclear degrees of freedom) phase-space
variables I' = (q,p) and time #, and {H,p} is the Poisson
bracket of H and p: {H,p} = 0H/0dq-0p/dp — dp/dq-0H/dp.
This correspondence can be derived systematically from eq 12
by performing a Wigner—Moyal expansion””** of the
quantum-mechanical Liouville equation. To lowest order in
7, this involves replacing commutators by Poisson brackets:
[A,B] — in{A,B} + O(h%).

Diabatic Representation. The semiclassical limit of eq 12
can be generalized to two coupled quantum states coupled to
classical degrees of freedom. The approach is general for mixed
quantum-classical problems. Here we consider two quantum
electronic states in the diabatic electronic representation
coupled to classical limit nuclear dynamics. The Hamiltonian
and density matrix are given by 2 X 2 matrices

=[A, p(1)]

= {H, p}

TG
H=]| .
V. Hy (14)
and
. Pu(t) py(t)
pt) =1 .
pZI(t) pzz(t) (15)

respectively. The elements of these matrices are nuclear
operators. With the replacement of the quantum-mechanical
operators by the corresponding classical phase-space functions,
this becomes a set of coupled classical-like Liouville

. 14—18,25—30
equations
Iy, 2V
% {Hy,pyt +{V,a} - 7/3 (16)
P2ty ) + 1V, a) +
o Tl TILETS (17)
oa 1
o {Hy, a} + of + E{V’ Pyt Pyl (18)
op v
E = {HO) ﬁ} - wa + E(p“ - pzz) (19)

Here we have written the coherence p,(I't) = a(lt) +
ip(I't) in terms of its real and imaginary parts and have
defined the average Hamiltonian H, = (Hy; + H,,)/2 and the
frequency @ = (H, — H,,)/h. All higher order terms in # have
been neglected, leading to a classical-limit formalism that
retains only the most important nonclassical corrections.

The CSH method employs a trajectory ensemble
representation of the phase-space functions describing the
density matrix in the coupled semiclassical Liouville equations.
Quantum population transfer is represented by stochastic
trajectory hops between the diagonal surfaces, whereas
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quantum coherence is represented collectively at the ensemble
level by interrelationships between nonclassical amplitudes and
phases associated with each trajectory.

The phase-space densities corresponding to the populations
of states 1 and 2 are together represented by a single ensemble
of N trajectories, each of which is characterized by a point in
phase space Fj(t) = (qj(t),pj(t)) and a binary integer oj(t),
which can take on the values 1 or 0, indicating whether the
trajectory is associated with quantum state 1 or 2, respectively.
The states 1 and 2 phase-space densities are then given by

(T, ) = Za(t>6(r T(t)
I 1 (20)
and
(T, 1) = Z(l—a(t))é(r I(t))
1 1 (21)

respectively. The 6 functions represent the discrete points of
the trajectories in phase space, whereas the coefficients o;
denote which state the trajectory currently occupies. In the
numerical implementation involving finite trajectory ensem-
bles, the ¢ functions are smoothed using phase-space
Gaussians, as described in ref 12. This results in the
replacement of the delta functions by the Gaussian basis
g(0): 8(T = T)) — g(T' = T).

The coherence p1()t) is also represented in terms of the
trajectory ensemble. Unlike the populations, however, the
coherence is a complex quantity, and thus the coefficients of
the trajectories are complex numbers. The populations and the
real and imaginary parts of the coherence are given in terms of
the smoothed trajectory ensemble as

AT 1) =~ X 6(0g( = (1)
j=1 (22)
p(T, 1) = 2 (1 = o(6)g( — (1))
1 1 (23)
ol 1) = ~ ¥ a0gT = ()
j=1 (24)
A ) = — 3 A0 = T(6)
(25)

The coefficients ¢;(t) are stochastic binary integers, whereas
a(t) and ﬁ(t) (j=1,2, ., N) are continuous real numbers.
(We note that it is not necessary to make such a distinction; in
a recent paper, we describe an alternative approach to the
general problem of quantum-state hopping that represents
both populations and coherence in terms of separate stochastic
processes.’")

The equations of motion for the trajectories, I'/(), and state
parameters, (0;(t), a;(t), fi(t)) (j = 1, 2, ..., N), are determined
by substltutlng the tra)ectory representatlons, eqs 22—25, into
the semiclassical Liouville eqs 16—19. In the uncoupled (V =
0) case, the evolution of the populations reduces to purely
classical Liouvillian dynamics corresponding to trajectory
ensemble evolution under the appropriate electronic-state
Hamiltonian. In the presence of coupling, two types of
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nonclassical terms appear. The first are sink and source terms
+2Vp/h, which are responsible for the population transfer
between states. The second type of nonclassical term is the
Poisson brackets {V,a}, which appear symmetrically in the
equations for both p,; and p,,. These interactions modify the
shape of the evolving distributions but do not change the total
state populations. Conservation of population under these
terms results from the fact that the classical trace (integral over
phase-space volume) of a Poisson bracket vanishes for
functions satisfying appropriate boundary conditions.

The evolution of the dynamical variables is determined by
numerically integrating the ordinary differential equations for
the trajectories and the coeflicients. Each time step of duration
At is divided into two parts. First, the coefficients are updated;
then, the phase-space trajectories are propagated forward in
time.

We first consider the population sink and source terms
responsible for the evolution of the stochastic variables ai(t).
To derive a probabilistic algorithm for updating the former we
consider the subsets of trajectories on surfaces 1 and 2
separately. For surface 1, substitution into the semiclassical
Liouville equations yields

2(I)
h

ﬂkg(r - Fk)At

(26)

with a similar expression for surface 2. We can evaluate the left
and right sides of these expressions at each of the trajectory
points of interest, I';, yielding coupled linear equations for the
change in coefficients. This gives, for the surface 1 coeflicients

( 7

1 « 1 <
EZ”kAo—kg(F_r}c) Z_EZ

k=1 k=1

— Z oAog(l, - T,) = )At

(27)

for j = 1, 2, .., N. In general, this presents a linear algebra
problem for the determination of the Ac;. We can simplify its
solution by making the following approximation that becomes
exact as N becomes infinite and the Gaussian functions, g(I'),
become localized

N
1
E Z O-kAo-kg(rj - rk) = <p11>}AO-1

k=1 (28)

where (p;;), the local density at point I'; on surface 1, is given
by

(pu Z Gkg(r Fk)

(29)

Similarly, we evaluate the value of the coherence at point j as

(ﬂ); = % Z ﬂkg(rj - 1)
k=1

(30)

The equation for updating the coeflicients of trajectories
currently on surface 1 becomes

1 2v(D)
<p11> h

A,

(ByAt
(1)

the

For trajectories currently evolving on surface 2,
corresponding result is
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1 2v(D)
h

(ByAt
(32)

These are then identified as the hopping probabilities for the
trajectories in the ensemble. For instance, for the jth trajectory
currently evolving on state 1, if Adj(t) is negative, then the
trajectory has a nonzero probability of undergoing a hop to
state 2 during the time step At. The CSH probability for this
event is

2
h(ﬁn);

These equations form the basis of a stochastic hopping
algorithm. A random number & between 0 and 1 is generated
for each trajectory at each time step and compared with the
appropriate value of Pfor |Agjl corresponding to the
occupied state. The value of O'j(t) is changed by +1 or kept at
its current value depending on the outcome.

The result in eq 33 is strongly reminiscent of the FSSH
hopping probability given in eq 11. But we emphasize the
essential difference between this approach and the FSSH
method. Here the ensemble collectively determines the
stochastic hopping probabilities of each of its members. The
local densities (p;,); and (py,); and the coherence (f3); at point
[; depend on the ensemble of evolving trajectories () (k=
1, 2, .., N). They are not independent dynamical variables
associated with independent trajectories, as in the FSSH
formalism. Quantum transitions are thus determined by a
“consensus” among the members of the ensemble representing
the full entangled electronic-nuclear quantum state rather than
by the independent trajectories of FSSH.

The electronic coherence evolves in parallel with, and
coupled to, the evolving population densities. A similar analysis
that includes the approximate neglect of terms in eqs 18 and 19
that leave the trace of p), unchanged yields expressions that
describe the evolution of the coefficients over the time step
At."? Because these equations are solved deterministically
rather than by a stochastic hopping algorithm, the limit At — 0
can be taken, yielding the coupled differential equations

CSH __
hop —

V(I)(p)At

(33)

& = o(T)f (34)
. 1
=] -ome + Lvyag - v -

These differential equations are integrated numerically using
standard methods.

The CSH equations for the coherences are identical to the
FSSH density matrix equations for coherences in the diabatic
representation if we identify the CSH parameters @; and f§; with
the real and imaginary parts of the jth independent trajectory
coherence in the FSSH method.

We emphasize that no artificial decoherence is added to the
evolving system in the CSH formalism. The role played by
coherence and its decay is treated accurately through the
collective nature of the method, as highlighted by eq 30. In
particular, decoherence is represented naturally via the
cancellation of the signed terms f, in the summation over I';
in the local vicinity of the hopping trajectory, j, to yield (f);. If
these terms exhibit destructive interference due to either the
nature of the pure-state evolution of the multicomponent
nuclear wavepacket or by environmental fluctuations in
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difference potential, @(I',), over the ensemble, then this
summation will be “decayed” by decoherence. The individual
Py values may be quite large; it is only the weighted sum of
their values, (), that becomes small with decoherence. In
contrast, FSSH determines hopping probabilities by using the
independent individual values of each trajectory’s quantum
density matrix. This difference is the origin of the over-
coherence problem of FSSH.

The rest of this section describes further developments of
the CSH formalism that were not included in our previous
publication.'?

We now consider the terms in the evolution equations that
involve trace-preserving Poisson brackets. These include both
the homogeneous classical phase-space evolution terms of the
form {H,p} and the inhomogeneous nonclassical terms {V,a}
coupling the density matrix elements.

It is convenient to consider the total nuclear density p = p;;

+ P

pu(apt) +p,(q p t)

< 28 - 0)
j=1

p(q, p, t)

(36)

This quantity is independent of the stochastic parameters 6;(t)
(j=1,2, ., N) (although we will see below that its evolution
depends on the quantum-state parameters). The total nuclear
density p(q,p,t) obeys the partial differential equation obtained
by adding eqs 16 and 17

dp

ot

Note that the terms involving Vf responsible for population
transfer between states 1 and 2 cancel from the evolution
equation. Equation 37 conserves the total population, given by
the phase-space trace of p, as it should.

The equations of motion for qj(t) and pi(t) Gi=12.,N)
are derived by substituting eq 36 into eq 37. We have for the
left-hand side of the resulting expression

N
1 g -T) . T -T)
LHS = —— Z i, +p,-
N & [qk P

= {H11r PM} + {sz; Pzz} +2{V, a} (37)

dq £ op
(38)
The right side of the equation becomes
N
0H, og(I' — T,
RHS = - Z _9H, o - L)
k=1 op Jq
O0H V(L og( = T,
+[—"+2 (k)ak]- o = 1)
dq dq op (39)
where
H, = oH([) + (1 — 6)Hy(T})
Pty + (- o))
m k1N k/ ¥\ (40)

which defines the diagonal diabatic potentials U,(q) (n =1, 2).

Equating the coefficients of the terms dg(I" — I',)/dq and
0g(I" — I'y)/0p of the LHS and RHS expressions yields the
modified classical equations of motion for the trajectory
ensemble
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(41)

p, = -VU(q) - 2¢VV(q) (42)
forj=1,2, .., N, where V = d/0q. In addition to the classical
force acting on the jth trajectory resulting from the
instantaneous Hamiltonian, H;, an additional quantum force
appears, which depends on both the gradient of the off-
diagonal diabatic coupling, V(q;), and the real part of the
coherence parameter, aj(t), corresponding to that trajectory.
The nonclassical force contributes whenever coupling and
coherence are present. In CSH, these continuous quantum
forces replace the sudden impulsive momentum rescaling of
FSSH. Each trajectory does not conserve the classical energy,
Hi(t). Rather, the total energy expectation value, E(t) =
Tr(Hp(t)), is conserved on average over the ensemble. We
have discussed the energy budget of nonadiabatic dynamics in
detail in a recent paper."” We will examine this point in more
detail below in the description of the approximate QTSH
method.

The expression LHS = RHS resulting from equating eqs 38
and 39 is a single equation for the 2f unknowns ¢; and p; (j = 1,
2, .., N). One possible solution is given by our quantum
trajectory equations of motion, eqs 41 and 42. Other solutions
are also possible. This is related to the general ambiguity
associated with trajectory representations of quantum-state
evolution in any quantum trajectory approach. We have
discussed this issue in other contexts in previous publica-
tions.”” ™

We note that the quantum trajectory equations of motion,
eqs 41 and 42, (as well as the corresponding adiabatic
expressions described below) also appear in other non-surface-
hopping trajectory-based approaches to nonadiabatic dynam-
ics, such as in the Meyer—Miller classical analogue
approach®*™** and in the recent work of Tao.*”*

We emphasize that no momentum rescaling is performed in
the CSH method when electronic transitions occur. In general,
individual trajectories representing a quantum system have no
requirement to separately conserve energy,'**>** and they do
not do so in this method. We believe that energy conservation
of individual trajectories imposed by momentum rescaling is
too classical from a physical perspective. The trajectories in a
surface-hopping ensemble comprise a statistical representation
of an underlying quantum density matrix and should not
separately be overinterpreted as being “real”. In particular,
there is no reason why they should individually conserve
energy. In quantum mechanics, it is the expectation value of
the Hamiltonian (and its moments) that should be conserved
by the time evolution. Whereas the adoption of momentum
rescaling can lead to accurate results in some situations by
imposing correct asymptotic properties by hand, as it were, it
also leads to serious problems such as spuriously frustrated
hops and corresponding forbidden processes that are allowed
by exact quantum dynamics.

From a mathematical perspective, momentum rescaling is
undesirable because it violates the phase-space locality of the
underlying coupled semiclassical Liouville equations. This
locality is readily apparent in eqs 16 and 17, which highlights
the symmetrical appearance of the transition-inducing terms in
the equations: Every element of population that is induced to
leave surface 1 by the term —2V(I")3(T")/# appears on surface
2 as +2V(I)B(T")/h at the same point I = (q,p) in phase
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space. Momentum rescaling to impose energy conservation
induces a spurious shift of the probability in the phase space
upon a transition that is unjustified by, and in conflict with, the
mathematical form of the underlying semiclassical Liouville
equation.

Adiabatic Representation. The CSH method can be
implemented equally well in the adiabatic representation,
where electronic-state coupling appears through off-diagonal
terms in the kinetic energy.'®*"*> We start with the quantum-
mechanical Hamiltonian and density matrix in the adiabatic
representation. These are given by

I A
H = .
w'oA__ (43)
and
) A1) p_(b)
p) =1 . A
/)_+(t) P__(f) (44)

respectively. The adiabatic eigenstates {|+),|—)} are defined in
terms of the diabatic basis {I1),12)} as

[+) = 1) cos(¢p/2) + I12) sin(¢h/2) (45)
|—=) = —I1) sin(¢p/2) + 12) cos(¢p/2) (46)
where the mixing angle ¢(q) is given by
_ 2v(q)
fan ) = U(a) — Uy(q) (47)

Here U;(q) and U,(q) are the diagonal diabatic-state
potentials, and V(q) is the off-diagonal diabatic coupling.

In terms of these states, the off-diagonal nonadiabatic
couplings are

. . i . R,
W = (+ITl-) = %Vfﬁ(q)'P + 4—mV #(q) (48)

and

W= (<I1fl+) = - (49)

The nonadiabatic coupling vector matrix element, d(q), is
defined as

d(q) = (+IVI-) (50)

This can be evaluated for the nonadiabatic states in terms of
the diabatic states and position-dependent angle, ¢(q),
yielding the result

1

In terms of this quantity, the off-diagonal element W= (4
HI—) can be written as

N ih p P
w=-"lag-2 + 2a

S [ (@ +— (q)] (52)
with W' = (—IHl+) = —W. In the semiclassical limit employed

below, this becomes

W(r) = ~ihd(q)" -

with WH(T') = —W(T) .
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By evaluating the Wigner transform of the quantum
Liouville equation in the adiabatic representation, eq 12, to
lowest order in 71, we obtain the corresponding semiclassical
Liouville equations in the adiabatic representation'*'**'

a’;j ={H.p,) - h{dﬁ p } - 2“'5“ (54)
% ={H__,p_} - h{d%, ﬂ} + 2‘1%“ (55)
‘;_(: = (Hya) +of + a2, ) (56)
gﬂHm/)’}‘“””_g{d%‘pﬁw“} (57)

where H,,(I") = p*/2m + E,(q), H_._(T') = p*/2m + E_(q),
H, = %(HJr+ + H__), and o(T") = (E,(q) — E_(q))/#; here
E,(q) and E_(q) are the adiabatic potentials, the position-
dependent eigenvalues of the diabatic potential matrix. The
density matrix elements p,,,(I',t) are now phase-space
functions, and we have written the coherence p,_ = a + if§
in terms of its real and imaginary parts.

The phase-space-generalized densities in the adiabatic
representation are written in terms of an ensemble of N
trajectories as

IRODEESIIORGENO)
j=1

(58)
P10 ==Y (1= g0 - T0)
j=1 (59)
a(l’, 1) = ~ ¥ a0 = ()
j=1 (60)
AT ) = — 3 A0 = T(6)
P (61)

A similar analysis to the one performed above for the diabatic
case then yields the CSH equations of motion for the
quantum-state parameters and phase-space trajectories.

The stochastic parameters {6}-} (i=1,2, .., N) are updated
as follows. For the jth trajectory at phase-space point I'; =
(q;(t),p,(t)) currently occupying state |+), the probability of
hopping to state |-) at time ¢ during a time interval At is given

by
2 d(qj)'P-

®..)

CSH __
Phop = AO'j

(62)

with an analogous expression for hops from |—) — I+). The
equations of motion for the coherence parameters yield the
differential equations

d(q)-p,
@ = w(l“})ﬂ] +

(2 - 1) (63)

f = —o()aft) (64)
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The trajectory equations of motion for q;(t) and p;() can be
derived from the equation of motion for the total nuclear
density p = p,, + p__ using the same procedure employed
above in the diabatic case. The result is

L P, " d(q}_)

q,=— - 2h)— (65)
v 2R 5 o v)a

B, =-VU(a) + —A(p-V)d(a) (66)

forj=1,2, .., N. The second term can also be written in terms
of the time derivative of the nonadiabatic coupling vector along
the resulting trajectories d = (v-V)d, where v = p/m is the
trajectory velocity

P = —VU,'(‘II-) + Zh,ﬁjd(qj) (67)
In numerical implementation, it is much easier to determine
the time derivative of d along a trajectory than to evaluate the
spatial derivatives directly.

These equations of motion are closely related to those
appearing in the Miller—Meyer treatment of coupled
electronic-nuclear dynamics.**"** In ref 38, Miller and
coworkers introduce a non-Hamiltonian “kinematic momen-
tum”, given in our notation by py;,; = p; — 2#$,d(q;), and show
that its use simplifies numerical calculations by avoiding the
appearance of Vd. This approach may also be useful in the
numerical application of the present method.

The quantum forces acting on the classical trajectories in the
adiabatic representation are in the form of Hamilton’s
equations in the presence of a vector potential A(q,A(t))

(p — Alg A1)
2m

H(T, 6, f) = + U (q)

(68)
where A(q,8(t)) = 2A5(t)d(q) (neglecting terms of order /%)
This vector potential depends on the quantum subsystem
dynamics through the appearance of the imaginary part of the
coherence, ﬁj(t). Interesting geometric phase effects resulting
from these nonclassical forces may result in systems with two
or more dimensions in the presence of, for example, conical
intersections.”~*” This will be explored in future work.

The CSH method is based on a systematic derivation of the
equations of motion for a trajectory ensemble representation of
the nonadiabatic dynamics from the underlying quantum
Liouville equation in the semiclassical limit. CSH eliminates
the ad hoc instantaneous momentum rescaling and strict
energy conservation of FSSH by incorporating continuous
state-dependent quantum forces into the trajectory equations
of motion. In addition, a correct treatment of quantum
coherence emerges naturally in the CSH formalism through
the collective and interdependent nature of the trajectories
across the ensemble in determining hopping probabilities. The
numerical implementation of the method can be quite accurate
for model systems. However, the interdependent nature of the
trajectories greatly increases the numerical cost of the method
in direct implementations. For multidimensional systems, the
CSH method quickly becomes prohibitively expensive with
increasing size. Furthermore, the complexity of the method can
lead to errors if conditions and parameters such as the
Gaussian smoothing width are not chosen carefully. The main
value of CSH is not as a practical method per se but as a
framework for introducing further approximations in a well-
controlled manner
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2.3. Quantum Trajectory Surface Hopping. We now
describe a new surface-hopping approach based on an
independent trajectory limit of the full CSH formalism. We
provide a derivation of the individual trajectory quantum
electronic-state density matrix dynamics and stochastic
hopping algorithm for the independent trajectories of the
FSSH method by employing additional well-defined approx-
imations to CSH. The ad hoc impulsive momentum jumps of
FSSH are abandoned, however, and replaced by the
continuous quantum forces that emerge from the CSH
formalism. We call the resulting method QTSH, a quantum
trajectory-based variant of FSSH with a rigorous foundation.

In the CSH methodology, the underlying focus is on solving
the coupled evolution of the phase-space functions p,,,(I',t)
using a trajectory ensemble representation. This naturally leads
to the appearance of ensemble-level quantities in the equations
of motion for the phase-space trajectories and quantum
parameters. Consider, for example, the stochastic hopping of
the jth trajectory from state 1 to state 2 in the diabatic
representation. The local values of the functions representing
state 1 population density p,,(It) = (1/N)}0/()g(l" —
F(t)) and the imaginary part of the coherence f(I';t) = (1/
N)Z]ﬁ](t)g(f‘ [;(t)) at the phase-space point I' = T}
determine the CSH hoppmg probability of trajectory j through
the expression

2v(T)
h

1

CSH __

Iy hop — < >
Y

where <p11>j = pll(rj) and (ﬁ); = ﬁ(rj)'

This “consensus” involvement of the entire ensemble in the
hopping decision making emerges systematically from first
principles. The rigor of the methodology comes with a
relatively high cost of numerical effort, however, as the local
values of these quantities at every trajectory point I'; for (j = 1,
2, .., N) must be determined from the ensemble as a whole at
each time step. It is therefore desirable to introduce further
well-controlled approximations to seek a “disentangling” of the
ensemble to yield an approximate independent trajectory
method, perhaps with ensemble-level corrections. One such
approximate method, QTSH, will now be described.

The FSSH algorithm proposed by Tully relies on an
assumption of consistency between two complementary
representations of the quantum evolution—the trajectory
populations of the electronic states and the corresponding
individual trajectory auxiliary quantum density matrix pop-
ulations." We seek to establish a rigorous connection between
Tully’s ensemble of auxiliary density matrices and the local
values of the CSH phase-space functions and its relation to
surface-hopping consistency.

Returning to the hopping of the jth trajectory in our
example, recall that the ensemble representation of the local
phase-space population density at phase-space point I' =T’ on
state 1 is

(69)

(P = 2 ol - T})

(70)

‘We now make the assumption that the stochastic variables, oy,
have a well-defined local average (6); in the phase-space region
IT; — 'l < AL, where AT is the width of the Gaussian
function, g(T"). This suggests the approximation
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(P = Z (0)8(T; = 1) = (o) (p),

(71)
where (p); is the local value of the total nuclear density p = p;;
+ py at point I';. Now consider the local value of the phase-

space function representing the imaginary part of the
coherence at I

), = % 3 B - T)
k=1

(72)

Here we make the simplifying assumption that the system is
fully coherent, in the sense that the parameters 3 are slowly
varying in the vicinity of I'; with values of the index k
corresponding to II'; — [',l < AT'. For small enough AT, we can
then make the replacement f; — f; in the expression, giving
the approximation

1
By =~ szjﬂ,g(r 1) = Bl -

Under these approximations, the CSH hopping probability
becomes

CSH/,\ 1
Phop (t) = ‘ <0'>j<ﬂ>i

h
1 2v(T)
N ,B}.At‘

with the total nuclear density at point I; canceling from
numerator and denominator.

The connection between the independent limit of CSH and
the conventional FSSH formalism can now be made. Within
the consistency assumption underlying FSSH, the populations
of the auxiliary density matrix elements of each trajectory
should agree with the state population statistics of the
trajectory ensemble. We assume that the proper correspond-
ence should hold locally in the phase space, so the independent
trajectory population anyj(t) should be equated with the
appropriate local average behavior of the ensemble. In our
notation

“11,,‘(t) = <0'>j(t)

With these identifications, we finally arrive at the QTSH
hopping probability expression

1 2v(T)
—— L pAt

2V(T)
ey} .At‘

(74)

(75)

P =

an

J (76)

which is identical to the corresponding FSSH result, eq 11.
The consistency assumption of FSSH further assumes that the
ay(t) parameters can be computed by solving the auxiliary
quantum equations of motion for each trajectory, eq 6.

A similar line of reasoning gives the QTSH hopping
probability in the adiabatic representation

» d(q)p,

QTSH __
P hop

ajAt
m

Ay j (77)

In this independent trajectory limit, (p..); = a..(p); and (@),
= ap),
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The numerical implementation of the QTSH method uses
the following procedure (given here for the adiabatic
representation): The continuous equations, eq 6, for the
quantum subsystem of each trajectory are integrated to
determine the smoothly varying quantities a,.; a__; @, and
B In addition, the stochastic variable o; is propagated using the
probabilistic algorithm in eq 77. The classical variables are
propagated under the influence of the instantaneous
Hamiltonian H; = ¢;H,, + 1 - aj)H__ augmented by the
CSH nonclassical terms derived above, eqs 65 and 66. The
classical forces in the equations of motion change discontin-
uously at the points of transition, whereas the nonclassical
forces are continuous there. The resulting phase-space path
(q}-(t),p}-(t)) is continuous, unlike in the FSSH method, as we
do not rescale the momenta to impose energy conservation.

Energy Conservation. The FSSH method for surface
hopping imposes strict conservation of the classical energy of
each independent trajectory H(F (t),t) = E;, where in our
notation Hy([',t) = o)(t)H,(T") + (1 - a(t))HZ(F) and E; is the
initial classmal energy. This is accomphshed by the ad hoc
rescaling of the individual trajectory momenta at the time of
each hop, which imposes energy conservation on each
trajectory by hand.

Quantum mechanics, of course, requires energy conservation
as well but at the state level. Furthermore, the full Hamiltonian
H and density matrix p are involved, not just the diagonal
elements. The total conserved energy of the quantum system is
the operator trace E = Tr(Hp) , and its quantum-classical limit
is given by the corresponding classical trace

E(t) = TeHp = [H(D)p(T, 6) T o)
where the integral is over the 2f-dimensional phase space. Here
both H(I") and p(T't) are 2 X 2 matrices of the corresponding
classical-limit phase-space functions. Writing this out in terms
of the matrix elements in the diabatic representation gives

E(t) = Tr(Hp)
= Tr(HHpH) + Tr(HZZpZZ) + 2ReTr(Vp12) (79)
or
E(t) = Tr(Hp,,) + Tr(Hyp,,) + 2Tr(Va) (80)
The total energy consists of three terms
E=E, +E, + E® (81)
In terms of the trajectory representation, this becomes
Z oH,(T) + (1 = 6)Hy(T) + 2V(T)q
] 1
(82)
which defines the terms
L X
= N Z GjHll(Fj)
j=1 (83)
L&
E,= E Z (1 - Gj)sz(Fj)
j=1 (84)
and
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dla _
coh

Z V([

(85)

The diagonal energy is the sum Ey,, = E; + E,. It should be
noted that the total energy, E, is not equal to Eg,,. This
diagonal energy is the quantity that FSSH rigorously conserves
at the individual trajectory level by momentum rescaling.
When coherence a; # 0 and the coupling V(I'}) is present, a
third coherence energy term, EX, is required to balance the
energy budget."”

We can write the total energy as the sum over single
trajectory contributions

s
j=1

The QTSH method conserves this energy on average at the
level of the consistency of the FSSH approach. To prove this,
we take the time derivative of eq 82. This gives

E(t) =
(86)

Ly
E(t)=— ) E(t)
N (87)
where
B
E(®) = b~ + 6lU(q) = Uxa)]
+ q};[(ijUl(qj) + (1 - g)VUy(q)
+2VV(q)a] +2V(q) (88)

From the equations of motion for the density matrix elements,
we have

o 2v(q)
0= dayy; = — P ﬁl (89)
s tum o,

where we have used @ = (H;; — H,,)/# and have indicated
that the first equation holds on average.

For the phase-space variables (q;p;), we have the quantum
trajectory equation of motion

(91)

= —lgVU(q) + (1 - 6)VUy(q)] - 2VV(q)q,

(92)
By eliminating q;, p, 6j, and ¢, from the equation for Ej, we can
show the time derivative of each term vanishes on average, E; ~
0, so that

Et)=0 (93)

It should be noted that this energy conservation, which holds
rigorously if 5(t) evolves continuously, is not strictly obeyed at
the individual trajectory level when a stochastic algorithm is
employed to propagate ¢;. A sudden “hop” of Uj(t) =0to Gj(t)
1, for instance, leads to an instantaneous change in the
Hamiltonian H; = o;H,; + (1 - aj)H22 from H,; to H,,.
However, on average, o; obeys the smooth differential

j
equation, and so averaged over the ensemble the energy
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conservation of the state re-emerges. The assumptions required
for this quantum energy conservation are equivalent to the
consistency assumption underlying the surface-hopping
method itself.

The same approach can be followed to show the average
energy conservation in the adiabatic representation by using
the adiabatic ensemble energy

E= = Y oH.L([) + (1 - )H_(T) - 2nd(a)nf
j=1

(94)

and the corresponding adiabatic equations of motion for ¢, a;,
B, q; and p;. The diagonal and coherence contributions to the

total energy, E, are then

N
adia 1
Eing = 37 2 9H(T) + (1= )H_(T))
j=1 (95)
and
N
; 2h
BN =-=>d(q)pp
NS 7 (%)

respectively. The equations of motion then lead to E = 0 for
the ensemble within the consistency assumption.

Conventional FSSH surface hopping imposes energy
conservation by an accompanying rescaling of the momentum
p; = p; + Ap;. We stress here that this is not necessary and, in
fact, is incorrect. The nonclassical term in the equations of
motion for (q;p;) smoothly modifies the evolution of
individual trajectories in the phase space and guarantee the
average conservation of the state energy. This is the only
rigorous energetic requirement of quantum dynamics.

Time Reversibility. Individual surface-hopping trajectories
are not time-reversible due to the stochastic nature of their
evolution. The time reversibility of the FSSH method is further
sabotaged by two additional features of the method. First, the
presence of frustrated hops breaks the consistency between the
auxiliary quantum density matrices of individual trajectories
and the population statistics of the ensemble in a manner that
erodes the consistency of these quantities in a time-irreversible
manner. Second, the energy-conserving momentum jumps
introduce discontinuities in the classical phase-space evolution
that cannot be back-integrated, even on average. The
consequence of these features is that an ensemble of FSSH
trajectories cannot be time-reversed. The lack of time
reversibility of the state evolution represented by a time-
dependent FSSH ensemble has led to much attention and
effort being expended on exploring important but less rigorous
requirements such as detailed balance.**™°

Unlike standard FSSH, the QTSH approach is manifestly
time-reversible on average, within the consistency assumption.
Individual trajectories are stochastic and thus lose strict time-
reversal symmetry. These objects, however, are not “knowable”
parts of a quantum theoretical description. Quantum
mechanics describes the evolution of states that in a trajectory
context places constraints only on ensemble behavior with
nothing to say about its individual members. The QTSH
approach formally satisfies time reversibility: An initial density
matrix p,(I',0) propagated for a given system from t =0 to t =
T will produce an intermediate state p,,,(I',T). The reversal of
the signs of all intermediate momenta and imaginary parts of
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the auxiliary density matrices pj(T) — —pj(T) and ﬁj(T) —
-B(T) (i 1, 2, .., N) produces another ensemble.
Propagation for an additional time period, T, then is equivalent
to integrating the system dynamics back to ¢ = 0. Formally, this
will reproduce a final state p{(I",2T) that is equivalent to the
initial ensemble, p,(I',0) = p«(I',2T), although differing in the
details of each trajectory’s dynamical variables. This is
confirmed in numerical simulations, as we will see below.

Decoherence Corrections. The QTSH method is an
independent trajectory limit of the CSH formalism. This
reintroduces the problem of “overcoherence” that characterizes
the standard FSSH approach. In our notation, this corresponds
to approximating the ensemble-level representation of the
coherence by the individual trajectory contributions, for
example: (@); =~ a{p). In some situations, this is an accurate
approximation, but in cases where pure-state dynamics or
system-bath interactions lead to significant variation of the
phase of trajectories over the local neighborhoods of
trajectories, this approximation will lead to an overestimation
of the hopping probabilities. Many attempts have been made
to develop decoherence corrections in the context of the FSSH
approach (see, e.g., refs 9 and 10).

Here we propose a simple empirical ensemble-level
decoherence correction. Rather than employing a theoretical
approach based on approximations to the underlying equations
of motion, we estimate the quantities (); and (f); empirically
from the statistics of the evolving trajectory ensemble itself.

We define a proxy phase for each trajectory, ¢; (j = 1, 2, ..,
N), given by

40 = [ ola () a

This quantity is not identical to the phase of the complex
number a}-(t) + iﬂ}-(t) that represents the coherence of the jth
trajectory, which may be undefined or have a particular
nonzero value at ¢ = 0, but rather is a phase-like quantity for
that trajectory that can be compared across the ensemble. To
do so, we calculate the ensemble averages of the phase and its
square

(97)

1 N
(D) == ), &)
NS (98)
1 N
(@' (1) == D, #(t)
N E ] (99)

which then allows the time-dependent phase variance 5¢)*(t)
over the ensemble to be defined

8 (1) = (#*(1)) = (D(1))

By assuming Gaussian statistics, we can define a global time-
dependent decoherence factor y(t)

(100)

2(t) = /200 (101)
Unlike most other approaches, which estimate decoherence
corrections to independent trajectory coherences from local
properties, we determine y(t) from the nonlocal characteristics
of the ensemble as a whole, in line with the lessons learned
from the full CSH formalism.

A decoherence-corrected version of QTSH can then be
implemented by incorporating the correction factor, y, into the
hopping probabilities of the individual trajectories.
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Figure 1. (a,b) Time dependence of the lower adiabatic state population for Tully’s single-crossing model. The FSSH (green), QTSH (blue), and
CSH (red) results are compared with exact wavepacket calculations (black). (a) 7k = 10. (b) 7k = 15. (c) Final upper state population is shown as
a function of the initial momentum 7%k. (d) Coherence for 7k = 15. Exact (black solid) and QTSH (dashed) results for the real (blue) and
imaginary (red) parts of Trp,, are compared. See the text for details. (e) Energy budget for the 7ik = 10 state is shown. Exact quantum results
(black solid) are compared with the QTSH ensemble (dashed colored). See the text for discussion. Calculations are done in the adiabatic

representation.

2 b
PES(E) — |[——d(q) = (yap) At

Gy I om (102)
This modified hopping algorithm makes the egalitarian
approximation (a); = yayp) for j = 1, 2, .., N. It should be
noted that this approach retains the full coherence of the
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individual trajectories during their propagation but modifies
the probability of hopping during each time step using the
global-ensemble-level decoherence factor, y(t). Most other
approaches add dissipation to the equations of motion for the
terms ;(t) themselves, introducing a pure dephasing
component to the quantum evolution that leads to a mixed-
state density matrix even for pure-state dynamics. The
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Figure 2. Comparison of FSSH and QTSH with an “energy aloof” variant, EASH. (a) Time dependence of the adiabatic lower state population for
Tully’s single-crossing model with ik = 10. The FSSH (green), QTSH (blue), and EASH (red) results are compared with exact wavepacket
calculations (black). (b) Energy budget for the state is shown. Exact quantum results (black solid) are compared with the QTSH (blue) and EASH
(red). The total, E,, and diagonal, Ey,g, contributions are shown as a function of time. See the text for discussion.

approach here is derived from the full CSH formalism as a
well-defined approximation and, we feel, is more faithful to the
underlying exact quantum evolution.

The ensemble-level correction described here is based on
the simplest possible assumption regarding the relationship
between the evolving phase-space function p,(It) (or
p.—(t) in the adiabatic representation) and its representation
as an ensemble of trajectories: The local interplay of the phases
of individual trajectories can be represented uniformly across
the ensemble by a single average factor, y. More elaborate and
complicated methods can be imagined, where variations of the
effect are estimated theoretically or statistically. The advantage
of the current proposal is its simplicity and numerical
efficiency. In particular, if the system under study is simple
enough that the entire ensemble of trajectories can be
propagated in parallel, then the averages required to estimate
 lead to a negligible additional cost to the calculations. Large
systems where the trajectories comprising the ensemble must
be integrated independently will require a different approach.
In the next section, we will test this simple decoherence
correction.

3. RESULTS

In this section, we briefly illustrate the numerical implementa-
tion of the QTSH method and compare it with exact quantum-
wavepacket results and standard FSSH for several simple
systems. We highlight both the strengths and shortcomings of
the QTSH approach. More thorough numerical benchmarking
of CSH, QTSH, and decoherence corrections will be given in a
future publication.

We apply the QTSH method to two model systems
originally proposed by Tully as benchmark problems and
adopted universally by the surface-hopping community as test
cases.' The first is Tully’s single-crossing system, which is a 1D
model corresponding to two electronic surfaces undergoing a
single crossing. The system has been treated in many previous
publications. We adopt the potentials and parameters from
Tully’s original paper' and treat ensembles of 2000 trajectories
sampled randomly from an initial minimum uncertainty phase-
space Gaussian distribution with spatial width o, = 1.0 and

q
with mean initial position g, = —6. A range of ensembles with
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varying initial mean momenta p, = #hk is generated and
propagated using the QTSH method. The results are
compared with standard FSSH and corresponding quantum-
wavepacket calculations using the method of Kosloff.>!

In Figure 1, we show results obtained for Tully’s single-
crossing system.' Here calculations are performed in the
adiabatic representation for the QTSH method and compared
with standard FSSH' as well as the full CSH approach'?
(incorporating the modified classical equations of motion
described above) and quantum-wavepacket calculations. In
Figure 1a,b, we show the time dependence of the population of
the initially occupied lower adiabatic state as a function of time
for initial momenta 7k = 10 and Ak = 15, respectively. In
Figure 1c, the dependence of the final population of the upper
adiabatic state on the initial momentum #k is given.

All of the methods are in reasonable agreement with the
exact quantum results. For this system, the FSSH method gives
superior agreement for low momenta (k < 8), presumably due
to the explicit imposition of energy conservation; here the
presence of frustrated hops improves the results. For higher
energies, the CSH method gives slightly better agreement with
the quantum results. For this system, the QTSH method
slightly overestimates the extent of nonadiabatic transition.
The asymptotic energetic constraints imposed by FSSH must
emerge naturally here from the method itself, and the
independent trajectory approximation apparently leads to
overcoherence and thus too extensive population transfer
that is corrected for by the FSSH energy constraint. We will
return to this point below in the context of the ensemble-level
decoherence correction.

In Figure 1d, we investigate the agreement between exact
quantum and QTSH ensemble dynamics in more detail. For
the state with an initial momentum of ik = 15 we show a
comparison of exact and QTSH values for Tr p;,, a metric for
the total coherence of the evolving states. The exact quantum
values were calculated by taking the time-dependent overlap of
the adiabatic-state wavepackets. The QTSH values for the real
and imaginary parts are given by the ensemble averages of ¢;
and f, respectively. For this case, nearly quantitative
agreement is observed, indicating that the evolving ensemble
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shown. Calculations are done in the diabatic representation.

of hopping trajectories is capturing well this feature of the fully
coherent quantum dynamics.

Despite the error in population transfer, the QTSH method
correctly conserves the quantum-classical energy E = Tr(Hp).
In Figure 1d, we show the energy budget of the Ak = 10
ensemble by separately plotting the diagonal and coherence
contributions to the total energy, given for the adiabatic
representation by eqs 95 and 96, as well as their sum E,, and
compare with a similar partitioning of the exact quantum
energy. The QTSH total energy is constant and in agreement
with the exact value to within numerical error. The classical
diagonal energy is not constant, in contrast with the
assumption of the FSSH formalism, but is compensated by
the contribution of the coherence energy. The QTSH
estimates of these are in essentially quantitative agreement
with the quantum-mechanical results.

It is instructive to consider an even simpler surface-hopping
simulation using a pared-down methodology defined by
ignoring the energy conservation requirement and momentum
rescaling of FSSH, or equivalently, by removing the non-
classical forces from QTSH. We compare this “energy aloof
surface-hopping” variant, which we denote EASH, with FSSH
and QTSH in Figure 2 for the Tully 1 7k = 10 case in the
adiabatic representation, considered in Figure 1. In Figure 2a,
we show the time-dependent lower state population, whereas

1122

Figure 2b displays the energy budget of total and diagonal
(e.g, classical) contributions. Removing the imposition of
energy conservation leads to an overestimate of the non-
adiabatic probability by EASH, as otherwise frustrated hops are
allowed to occur. The results are not as accurate as FSSH but
are still closer to the exact results than QTSH. A bigger
difference is seen in Figure 2b), where the energetics of the
evolution are displayed. QTSH (blue dashed lines) shows
nearly quantitative agreement with the exact quantum diagonal
and total energies (solid black lines). Neglecting the
nonclassical forces of QTSH yields the EASH method (red
dashed lines). The breakdown of energy conservation of EASH
is clearly visible. Both the diagonal and total energies deviate
from the exact values, and asymptotically the system has
violated energy conservation by a nontrivial amount. For the
FSSH method, the final total energy would be constrained to
be conserved by the individual trajectory momentum rescaling,
which conserved the diagonal (classical) contribution at all
times.

This example illustrates the important point that the
rigorous energy conservation of the QTSH method without
momentum jumps is independent of the accuracy of the
method. For this particular initial state, the EASH results are
actually more accurate than QTSH, despite its failure to
conserve energy.
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In Figure 3, we present results for the same initial states as
presented in Figure 1 but calculated in the diabatic
representation. The QTSH results are compared with FSSH
and exact quantum-wavepacket calculations.

In Figure 3a,b, we show the time dependence of the
population of the initially occupied diabatic state 1 as a
function of time for initial momentum %Ak = 10 and Ak = 15,
respectively. In Figure 3c, the dependence of the final
population of state 1 on the initial momentum 7k is given.
Again, close agreement between the methods is observed, with
the QTSH results being in better agreement at lower k values
in this case.

It should be emphasized that unlike FSSH the applicability
of the QTSH formalism is independent of the electronic-state
representation. For this 1D problem, the application of the
FSSH in the diabatic representation is unambiguous, but in
higher dimensions, the absence of the nonadiabatic coupling
vector, d, in the diabatic formulation complicates the
momentum rescaling component of the FSSH method.
QTSH, on the contrary, can be straightforwardly and
unambiguously applied in the diabatic representation.

In Figure 4, we consider Tully’s dual-crossing model.'
Results obtained using the QTSH method in the adiabatic
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representation are compared with FSSH and exact quantum-
wavepacket calculations.

In Figure 4ab, the populations of the initially occupied
lower adiabatic state as a function of time for initial momenta
hk = 30 and Ak = 40 are shown, respectively. Figure 4c
compares the real and imaginary parts of the QTSH coherence
Trp,_ for Aik = 40. In Figure 4d, the dependence of the final
population of the upper adiabatic state on the initial
momentum 7k is given. Again, close agreement is obtained
except at low k, where both surface-hopping methods are
slightly shifted from the exact quantum results.

Figure S presents results obtained by applying the QTSH
method to the 1D three-state superexchange model introduced
by Prezhdo and coworkers.”* In this system, population
transfer from the lowest-lying state 1 to final state 3 is
calculated. These states are not directly coupled in the diabatic
representation but are each coupled to a high-lying and, for
some initial momenta, classically forbidden state 2. The system
consists of three constant diagonal diabatic potentials coupled
at the coordinate origin by off-diagonal potential couplings.
The potential functions and system parameters are given in the
original references.”*” We start an initial minimum uncertainty
phase-space distribution with coordinate width ¢, = 1 and

q
mean momentum 7k to the left of the coupling region and use
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the QTSH and FSSH methods to calculate the population
transfer. These results are compared with corresponding
quantum-wavepacket results. All simulations are performed in
the diabatic representation.

For hk < 6.3, the mean kinetic energy of the state is
insufficient to reach the intermediate state 2; the range of
initial momenta between the minimum value to reach state 3
and this value is known as the superexchange region.

Figure Sa shows the state populations versus time for an
initial state with momentum ik = S within the superexchange
region. The QTSH results are compared with exact quantum
calculations. For this initial state, virtually all FSSH hops are
frustrated, leading to no population transfer out of state 1
(results not shown). The QTSH populations are in nearly
quantitative agreement with the quantum results for this
classically forbidden process. Even the “virtual” state 2
populations are accurately represented by the ensemble of
QTSH trajectories.

In Figure Sb, the QTSH energy budget for the state shown
in panel a is presented and compared with the corresponding
quantum-mechanical quantities. The total energy is well-
conserved by the quantum trajectories. Again, we see that the
diagonal energy is not conserved by the QT'SH method or by
the exact quantum evolution. This nonconservation is what
allows the nonclassical superexchange mechanism to pass
through state 2 and then populate the final state 3, and artificial
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imposition of energy conservation by FSSH is what leads to
spuriously frustrated hops and the failure of that method.

In Figure Sc, the dependence of the final population of state
3 on the initial momentum 7k is given. QTSH results are
compared with FSSH and exact quantum simulations. For
values of k > 7, above the superexchange region, both QTSH
and FSSH are in nearly exact agreement with the quantum
results. As Ak decreases into the classically forbidden
superexchange region, the FSSH method fails to capture the
population-transfer process, whereas QT'SH remains in good
agreement with the exact results.

In Figure 6, we demonstrate the time reversibility of the
QTSH method. We consider the state treated in Figure 1 for
the Tully single-crossing system in the adiabatic representation.
Here we integrate the minimum uncertainty state with initial
momentum 7k = 10 from ¢ = 0 until an intermediate time t =
2400, for which the system has left the interaction region. The
momentum, pj, and imaginary part of the coherence, By of each
trajectory are then reversed in sign, and the ensemble is
integrated to the final time of t = 2 X 2400 = 4800. The figure
shows the population of the initially occupied lower state as a
function of time. The QTSH results are compared with the
FSSH method. The QTSH method demonstrates nearly
quantitative reversibility of the initial population, with only a
slight asymmetry around the intermediate time t = 2400 and
recovery of the full initial unit population to within statistical
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uncertainty. The FSSH method, on the contrary, demonstrates
strong irreversibility resulting from the presence of frustrated
hops and momentum rescaling of the trajectories.

In Figure 7, we investigate the efficacy of the ensemble-level
decoherence correction described in the last section. Figure 7a
compares the decoherence-corrected QTSH results with the
uncorrected QTSH and exact quantum results, reproduced
from Figure la. The incorporation of the decoherence factor
() into the hopping probability brings the long-time lower
state probability into close agreement with the quantum
results, although the full time-dependent populations are not
superimposable. In Figure 7b, we show the time dependence of
the proxy phase variance 6¢*(t) = (¢*(t)) — (¢(t))* and the
global decoherence factor y(t) = exp(—d¢*(t)/2) for the
ensemble describing the state in Figure 7a. The effect of phase

dispersion across the ensemble is apparent, with significant
variance of the trajectory phases during the hopping process.
This results in the value of y dropping from the fully coherent
value of 1.0 to ~0.5 during the transition period. Importantly,
though, it is observed that the ensemble recoheres to nearly full
coherence by the end of the evolution. This is a characteristic
of the underlying pure-state evolution of the system. Alternate
methods for decoherence correction that irreversibly cause a
decay of the trajectory coherence will miss this important
feature of the ensemble dynamics.

4. CONCLUSIONS

We reviewed the CSH approach, introduced in a recent
publication."” In addition, we significantly extended the
formalism to include nonclassical state-dependent forces that
take the place of the physically sensible but ad hoc momentum
rescaling and resulting strict classical energy conservation of
the FSSH method. The result is a quantum-trajectory -based
formalism for simulating molecular dynamics with electronic
transitions, where the quantum and classical portions of the
mixed quantum-classical system are correctly entangled with
each other.

The CSH method is based solidly on a solution of the
underlying quantum Liouville equation in a mixed quantum-
classical approximation using an ensemble of trajectories. A key
aspect of the approach is that the trajectories in the ensemble
are no longer independent, but their evolution is mutually
coupled by their role in propagating the phase-space
representation of the full quantum-classical density matrix.
Quantum coherence emerges naturally as a characteristic of the
ensemble as a whole via the interrelationships between
individual trajectory phases. Decoherence is captured by the
method without externally imposed corrections.

Despite these formal advantages, the CSH method is too
intensive numerically to be a practical method for anything
beyond simple model systems. To address this shortcoming,
we have introduced further well-defined approximations to the
CSH approach to derive an independent trajectory limit of the
theory, which we call QTSH. This method recovers the fewest-
switches stochastic algorithm for independent trajectories
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Figure 7. Ensemble-level coherence correction. (a) Time dependence of the adiabatic lower state population for Tully’s single-crossing model.
Exact wavepacket calculations (black) are compared with both the unmodified QTSH (blue) and QTSH + ensemble-level decoherence-corrected
(cyan) results for initial momentum of 7k = 30. Calculations are done in the adiabatic representation. (b) Time dependence of the phase variance

5¢p*(t) and decoherence factor y(t) for the QTSH ensemble in panel a.
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employed in FSSH. However, the momentum rescaling and
classical trajectory energy conservation of FSSH are discarded
in favor of the rigorously derived quantum forces of the CSH
formalism. The cost of QTSH is comparable to that of FSSH.
We illustrated the QTSH methodology by treating several
simple model systems commonly used as benchmarks for
surface-hopping approaches.

QTSH rigorously conserves the correct quantum-classical
energy Tr(Hp) without ad hoc momentum rescaling. This is
due to the presence of the nonclassical forces in the quantum
trajectory evolution. Energy conservation results without any
artificial momentum rescaling, eliminating undesirable features
of FSSH such as forbidden hops and the breakdown of the
internal consistency of quantum- and ensemble-based state
probabilities. In the adiabatic representation, the classical
dynamics are modified by a quantum-state-dependent vector
potential, introducing geometric phase effects into the
dynamics for multidimensional systems. Another advantage
of the QTSH method is that it is time-reversible at the
ensemble level, unlike FSSH, where frustrated hops and
momentum rescaling break the time-reversal symmetry of even
pure-state quantum evolution. We have proposed further
approximate corrections inspired by the underlying CSH
formalism that allow the incorporation of ensemble-level
decoherence without the accompanying computational ex-
pense of CSH.

The present manuscript has mainly focused on the formal
development of the CSH and QTSH approaches. Detailed
numerical investigations and extensions to higher dimensional
systems and realistic applications, including geometric phase
effects resulting from the nonclassical forces in the adiabatic
representation, will be presented in future publications.

The surface-hopping approach to simulating molecular
dynamics in the quantum-classical limit is just one example
of a “quantum trajectory” formalism. Methods that treat
quantum-mechanical processes with trajectory ensembles are
effectively hidden variable theories, where the evolving
quantum state, wave function, Y, or density operator, f),
depends on hidden parameters that are not themselves
immediately accessible to scruting. *° In the quantum
trajectory case, these variables are the unobservable positions
and momenta of the individual trajectories comprising the
ensemble representing the quantum state.

In the classical limit, the relationship between a single
trajectory and a statistical ensemble of independent trajectories
is a familiar example of a local hidden variable theory, where
each trajectory has a well-defined and independent motion,
representing a “real” realization of the statistical state. In
classical mechanics there are no problems, such as entangle-
ment, nonlocality, or the uncertainty principle, preventing the
arbitrarily fine dissection of the phase-space probability
distribution into its constituent trajectories and considering
them as independent deterministic time histories. In quantum
systems, however, Bell's theorem shows quite generally that no
local hidden variable theory is compatible with quantum
mechanics.”*” In a quantum trajectory context, this leads to
nonclassical trajectory dynamics that cannot be treated
independently from the quantum state itself, or, equivalently,
from the full trajectory ensemble. Bohm’s original causal theory
is the earliest nonlocal theory, where the system wave function
leads to a quantum force that guides trajectories.”>*” Examples
of methods based on nonlocal hidden variable theories in

chemical physics include Bohmian dynamics,*™%* many
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. ) . 63,64
interacting worlds formalism,””

tunneling using entangled trajectories.
In the surface-hopping context, the independent trajectory
basis of both FSSH and QTSH leads them to be local hidden
variable theories. As such, although they may be accurate for
many problems in practice, they cannot, in principle, give exact
agreement with quantum mechanics generally. CSH, on the
contrary, is an example of a nonlocal hidden variable theory.
Future work will focus on developing the CSH framework into
an exact trajectory representation of nonadiabatic processes,
not as a practical method, but as a context in which to
understand fundamental aspects of quantum theory.

and our work on quantum
32,34,65,66
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