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Abstract—Deep learning algorithms often require solving a
highly non-linear and nonconvex unconstrained optimization
problem. Generally, methods for solving the optimization prob-
lems in machine learning and in deep learning specifically are
restricted to the class of first-order algorithms, like stochastic gra-
dient descent (SGD). The major drawback of the SGD methods
is that they have the undesirable effect of not escaping saddle-
points. Furthermore, these methods require exhaustive trial-and-
error to fine-tune many learning parameters. Using the second-
order curvature information to find the search direction can help
with more robust convergence for the non-convex optimization
problem. However, computing the Hessian matrix for the large-
scale problems is not computationally practical. Alternatively,
quasi-Newton methods construct an approximate of Hessian ma-
trix to build a quadratic model of the objective function. Quasi-
Newton methods, like SGD, require only first-order gradient
information, but they can result in superlinear convergence,
which makes them attractive alternatives. The limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) approach is one of
the most popular quasi-Newton methods that construct positive-
definite Hessian approximations. Since the true Hessian matrix is
not necessarily positive definite, an extra initialization condition
is required to be introduced when constructing the L-BFGS
matrices to avoid false negative curvature information. In this
paper, we propose various choices for initialization methods of the
L-BFGS matrices within a trust-region framework. We provide
empirical results on the classification task of the MNIST digits
dataset to compare the performance of the trust-region algorithm
with different L-BFGS initialization methods.

Index Terms—Quasi-Newton Methods, L-BFGS, Trust-Region,
Initialization, Deep Learning

I. INTRODUCTION

Deep learning is becoming the leading technique for solving

the large-scale machine learning problems, including image

classification, natural language processing, and large-scale

regression tasks [1]. Deep learning algorithms attempt to train

a function approximation (model), usually a convolutional

neural network (CNN), over a large dataset. In most of deep

learning algorithms, solving an unconstrained optimization of

a highly nonlinear and non-convex objective function of the

form

min
w∈Rn

L(w) � 1

N

N∑
i=1

�i(w) (1)
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is required [2], where w ∈ R
n is the vector of trainable

parameters of the CNN model, N is the size of dataset, and

�i(w) is the error of model’s prediction for the ith observation

of the training dataset.

A. Existing Methods

Finding an efficient optimization algorithm for the large-

scale, non-convex problem (1) has attracted many researchers

[1]. There are various algorithms proposed in machine learning

and optimization literature to solve (1), among those one can

name first-order methods such as stochastic gradient descent

(SGD) methods [3]–[6], and the quasi-Newton methods [7]–

[10], and also Hessian-free methods [11]–[14].

Since, in large-scale machine learning problems usually N
and n are very large numbers, the computation of the true

gradient ∇L(w) is expensive and the computation of the

true Hessian ∇2L(w) is not practical. Hence, most of the

optimization algorithms in machine learning and deep learning

literature are restricted to the variant of first-order gradient

descent methods such as SGD methods. SGD methods use a

small random sample of data (S) to compute an approximate of

the gradient of the objective function, ∇L(S)(w) ≈ ∇L(w).
At each iteration of the learning update, the parameters are

updated as wk+1 ← wk−ηk∇L(Sk)(wk), where ηk is referred

to as the learning rate.

The computational cost-per-iteration of SGD algorithm is

small, making them the most widely used optimization method

for vast majority of the deep learning applications. However,

these methods require fine-tuning of many hyperparameters,

including the learning rates. The learning rates are usually

chosen to be very small; therefore, the SGD algorithms

require revisiting many epochs of data during the learning

process. Indeed, it is unlikely that the SGD methods perform

successfully in the first trial, though there are recent works

that address tuning these hyperparameters automatically (see

e.g., [15], [16]).

Another major drawback of the SGD methods is that they

struggle with saddle-points that occur in most of the non-

convex optimization problem and has the undesirable effect

on the model’s generalization of learning. In the other hand,

using the second-order curvature information, can help with

more robust convergence for the non-convex optimization
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problem. The second-order methods like Newton method use

the Hessian ∇2L(w) and the gradient to find the search

direction, pk = −∇2L(wk)
−1∇L(wk) and then use line-

search method to find the step length along the search di-

rection. The main bottleneck in the second-order methods is

the serious computational challenges involved in computation

of the Hessian ∇2L(w) for large-scale , which is not practical

when n is large. The quasi-Newton methods and Hessian-free

methods are both using approaches to approximate the Hessian

matrix without computing and storing the true Hessian matrix

∇2L(w). Hessian-free methods attempts to find an approxi-

mate Newton direction by solving ∇2L(wk)pk = −∇L(wk)
without forming the Hessian using the conjugate-gradient

methods [11]–[14].

Quasi-Newton methods form an alternative class of first-

order methods for solving the large-scale non-convex opti-

mization problem in deep learning. These methods, like SGD,

require only computing the first-order gradient of the objective

function. By measuring and storing the difference between

consecutive gradients, quasi-Newton methods construct quasi-
Newton matrices {Bk} which are low-rank updates to the

previous Hessian approximations for estimating ∇2L(wk) at

each iteration. They build a quadratic model of the objective

function by using these quasi-Newton matrices and use that

model to find a sequence of search directions that can result in

superlinear convergence. Since these methods do not require

the second-order derivatives, they are more efficient than

Newton’s method for large-scale optimization problems [17].

There are various quasi-Newton methods proposed in lit-

erature. They differ in how they define and construct the

quasi-Newton matrices {Bk}, how the search directions are

computed, and how the parameters of the model are updated.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [18]–

[21] is considered the most popular quasi-Newton algorithm,

which produces positive semidefinite matrix Bk for each

iteration. The conventional BFGS minimization employs line-
search, which first attempts to find the search directions by

computing pk = −B−1
k ∇L(wk) and then decides on the step

size αk ∈ (0, 1] based on sufficient decrease and curvature

conditions [17] for each iteration k and then update the

parameters wk+1 = wk + αkpk. The line-search algorithm

first tries the unit step length αk = 1 and if it does not satisfy

recursively reduce αk. There are computational cost regard-

ing the satisfaction of the sufficient decrease and curvature

conditions and finding αk using line-search methods. Also if

the curvature condition does not satisfy for αk ∈ (0, 1], the

BFGS matrix may not stay positive definite and the update will

become unstable. On the other hand if the search direction

is rejected in order to preserve the positive definiteness of

L-BFGS matrices, the progress of learning might stop or

become very slow. Finally, solving Bkpk = −∇L(wk) can

become computationally expensive when Bk becomes a high-

rank update.

The Limited-memory BFGS (L-BFGS) method constructs a

sequence of low-rank updates to the Hessian approximation

and consequently solving pk = B−1
k ∇L(wk) can be done

efficiently. Recently, an L-BFGS quasi-Newton method based

on trust-region methods have been implemented and employed

for the classification task in the deep learning framework

[22]. Trust-region methods attempt to find the search direction

in a region that they trust the accuracy of the quadratic

model of the objective function. These methods not only

have the benefit of being independent from the fine-tuning

of hyperaparameters related to SGD learning methods, but

they also improve upon the training performances and the

convergence robustness compared to the line-search methods.

Furthermore, trust-region L-BFGS methods can easily reject

the search directions if the curvature condition does not satisfy

to preserve the positive definiteness of the L-BFGS matrices.

Based on the distinguishing characteristics of trust-region

algorithms, unlike line-search methods, the progress of the

learning will not stop or slow down due to the occasional

rejection of the undesired search directions.

B. Motivation For This Research

In order to construct the quasi-Newton matrices at each

iteration k, it is required to start with an initial matrix B0

that is often set to some multiple B0 = γkI of the identity

[17]. Then once B0 is given, the L-BFGS matrices Bk can be

constructed using the L-BFGS compact representation formula

[7], [23]. The choice of the initial quasi-Newton matrix B0

is crucial because it has a direct impact on the quality of

the approximation of the Hessian [9], [24] and the quality

of the robustness of L-BFGS convergence. L-BFGS matrices

are attempting the hard task of approximating the indefinite

Hessian matrix with positive definite matrices, which might

result in false negative curvature information. This motivates

some researchers to prefer indefinite quasi-Newton matrices

such as Limited-memory Symmetric Rank One (L-SR1) update

over the L-BFGS. However, the L-SR1 methods, unlike L-

BFGS, do not guarantee a descent direction. We hypothesize

that by introducing an extra condition for safe-guarding γk, the

false negative curvature information can be avoided to some

degree when approximating the Hessian matrix in an L-BFGS

framework. We note that this work builds upon the results in

[9] for defining γk.

C. Our Objective

In this paper we discuss the choices for initializing L-

BFGS matrices to obtain parameter γk that result in better

training performance and generalization of learning, without

introducing significant computational cost. We define extra

conditions that requires solving a general eigenvalue problem

of form A∗z = λB∗z, where A∗ and B∗ are obtained from

the compact representation of the L-BFGS matrix. Conse-

quently, solving this general eigenvalue problem does not add

significant computational cost. We test our hypothesis on a

supervised learning problem, namely the classification task of

MNIST handwritten digits dataset, in the trust-region L-BFGS

framework.
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D. Outline

In Section II, we review the L-BFGS trust-region opti-

mization method. First, we introduce the trust-region method

and its properties. Second, we introduce the compact rep-

resentation of the L-BFGS quasi-Newton matrices. Third,

we introduce an efficient high accuracy method for solving

the trust-region subproblem based on optimality conditions

in order to define the search direction. In Section III, we

examine three methods for initializing the L-BFGS matrices.

In Section IV, we describe our numerical experiments on the

classification task of the MNIST digits dataset, using the L-

BFGS trust-region optimization method with our proposed

initialization methods. In Section V, we present the results of

the numerical experimentation and compare the effect of the

different initialization methods on the training performance of

the L-BFGS trust-region algorithm. In Section VI, we provide

the concluding remarks.

II. METHODOLOGY

In this section, we give a summary of the trust-region

method to solve the unconstrained optimization problem (1),

where L(w) is a continuously differentiable function.

A. Trust-Region Methods

Trust-region methods generate a sequence of iterates

wk+1 = wk + pk, where each search step pk is obtained from

solving the following trust-region subproblem:

pk = arg min
p∈Rn

Qk(p) � gTk p+
1

2
pTBkp

T (2)

subject to ‖p‖2 ≤ δk

where gk � ∇L(wk) is the gradient of the objective function,

Bk is an approximation to the Hessian ∇2L(wk), and δk >
0 is the trust-region radius. The global solution to the trust-

region subproblem (2) can be characterized by the optimality

conditions given in the following theorem due to Gay [25] and

Moré and Sorensen [26]:

Theorem 1: Let δk be a positive constant. A vector p∗ is a

global solution of the trust-region subproblem (2) if and only

if ‖p∗‖2 ≤ δk and there exists a unique σ∗ ≥ 0 such that

B + σ∗I is positive semidefinite and

(B + σ∗I)p∗ = −g and σ∗(δ − ‖p∗‖2) = 0. (3)

Moreover, if B + σ∗I is positive definite, then the global

minimizer is unique.

The computational bottleneck of trust-region methods is the

solution of the trust-region subproblem (2). However, recent

work (see e.g., [27], [28]) has shown that (2) can be efficiently

solved if the Hessian approximation Bk is chosen to be a

quasi-Newton matrix, which we describe next. (For further

details on trust-region methods, see [29].)

B. Quasi-Newton Methods

For large-scale problems, computing the Hessian ∇2L(wk)
and using it as Bk in the quadratic model in (2) is not practical

because of the memory and computational requirements . In

contrast, quasi-Newton methods, like gradient descent meth-

ods, require only the computation of first-derivative informa-

tion. They can construct a model of objective function by mea-

suring the changes in the consecutive gradients for estimating

the Hessian that can produce a super-linear convergence rate.

The most well-known quasi-Newton method is the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) update, given by

Bk+1 = Bk − 1

sTkBksk
Bksks

T
kBk +

1

yTk sk
yky

T
k , (4)

where

sk = wk+1 − wk, and yk = ∇L(wk+1)−∇L(wk).

The matrix Bk+1 is guaranteed to be positive definite if Bk

is positive definite and the curvature condition sTk yk > 0 is

satisfied.

Using this update alone is not efficient for unconstrained

optimization problem since it requires solving Bkpk =
−∇L(wk) for each iteration to find the search step pk which

can be expensive when the rank of Bk is high.

C. Limited-Memory BFGS

For large-scale optimization problems, the limited-memory
BFGS (L-BFGS) is more efficient (see [30]). In practice, only

a limited collection of recent {(sj , yj)} pairs is stored in

memory, say m, where m 	 n (usually m < 100). The

recently computed pairs {(sj , yj)} are stored in matrices Sk

and Yk as

Sk � [sk−m . . . sk−1] and Yk � [yk−m . . . yk−1].

At each iteration, the L-BFGS matrix Bk is then computed

recursively using the BFGS rank-2 update rule in (4) with

some initial B0 = γkI . In Section III, we will propose methods

to find γk.

D. Compact Representation of L-BFGS matrices

Since the BFGS updates are low rank, the L-BFGS matrix

Bk can be represented in the compact form

Bk = B0 +ΨkMkΨ
T
k , (5)

where Ψk and Mk are defined as

Ψk =
[
B0Sk Yk

]
, Mk =

[−ST
k B0Sk −Lk

−LT
k Dk

]−1

, (6)

and Lk is strictly lower triangular part and Dk is the diagonal

part of the matrix ST
k Yk, i.e.,

ST
k Yk = Lk +Dk + Uk, (7)

where Uk is a strictly upper triangular matrix. (See [23] for

further details.)
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E. Trust-Region Subproblem Solution

To efficiently solve the trust-region subproblem (2), we

exploit the compact representation of the L-BFGS matrix to

obtain a global solution based on optimality conditions (3).

In particular, we compute the spectral decomposition of Bk

using the compact representation of Bk. First, we obtain the

QR factorization of Ψk = QkRk, where Qk has orthonormal

columns and Rk is strictly upper triangular. Then we compute

the eigendecomposition of RkMkR
T
k = VkΛ̂kV

T
k , so that

Bk = B0 +ΨkMkΨ
T
k = γkI +QkVkΛ̂kV

T
k QT

k . (8)

Note that since Vk is an orthogonal matrix, the matrix QkVk

has orthonormal columns. Let P = [ QkVk (QkVk)
⊥ ] ∈

R
n×n, where (QkVk)

⊥ is a matrix whose columns form an

orthonormal basis for the orthogonal complement of the range

space of QkVk, thereby making P an orthonormal matrix.

Then

Bk = P

[
Λ̂ + γkI 0

0 γkI

]
PT . (9)

Using this eigendecomposition to change variables and diag-

onalize the first optimality condition in (3), a closed form

expression for the solution p∗k can be derived.

The general solution for trust-region subproblem using the

Sherman-Morrison-Woodbury formula is given by

p∗k = − 1

τ∗
[
I −Ψk(τ

∗M−1
k +ΨT

kΨk)
−1ΨT

k

]
gk, (10)

where τ∗ = γk + σ∗, and σ∗ is optimal Lagrange multiplier

in (3) (see [31] for details). The L-BFGS trust-region method

is described in Algorithm 1.

III. PROPOSED QUASI-NEWTON MATRIX INITIALIZATIONS

The most common choice for initializing quasi-Newton

methods is a scalar multiple of the identity matrix, i.e.,

B0 = γkI for γk > 0. In this section, we examine three

choices for the scalar parameter γk. In particular, we label

these choices as Method I, Method II, and Method III.

A. Initialization Method I

A conventional method to choose γk for L-BFGS is

γk =
yTk−1yk−1

sTk−1yk−1
. (11)

This choice is proposed for optimal conditioning, and it can

be viewed as a spectral estimate for Hessian ∇2L(wk). The

parameter γk is the minimizer of the optimization problem

γk = argmin
γ

‖B−1
0 yk−1 − sk−1‖22, (12)

where B−1
0 = γ−1I . We put a lower bound on γk =

max(ε, γk), where ε > 0, to avoid producing sequences of

nearly singular quasi-Newton matrices [32]. In our experi-

ments, we used ε = 1.0.

Algorithm 1 Limited-memory BFGS trust-region method.

Input: starting point w0, tolerance ε > 0, δ0, η < 1
4

Choose initialization Method I, Method II, or Method III
for k = 0, 1, 2, . . . do

Compute gk = ∇L(wk)
Compute γk to initialize B0 = γkI
γk ← max{γk, 1}
Compute Ψk and Mk from (6)

Form Bk orthonormal matrices in (9)

Compute search step pk by solving TR subproblem (2)

Compute sk = pk and yk = ∇L(wk + pk)−∇L(wk)
if sTk yk > 0 then

Store {sk, yk} in storage Sk+1 and Yk+1

Discard {sk−m, yk−m} from storage if k > m
end if
ρk ← (L(wk)− L(wk + pk))/(Qk(0)−Qk(pk))
if ρk > η then

wk+1 = wk + pk
else

wk+1 = wk

end if
Update trust-region radius δk+1

if ‖g‖2 < ε or k reached to maximum episodes then
break

end if
end for

B. Initialization Method II

The second method for finding γk for initialization of

B0 = γkI requires solving a general eigenvalue problem.

This method is inspired by [9] where γk is chosen in a

way that avoids the false curvature information for limited-

memory Symmetric Rank-1 (L-SR1) trust-region method. We

summarize the method described in [9] below.

Consider a quadratic objective function of the form L(w) =
1
2w

THw + gTw, where H ∈ R
n×n is symmetric and w, g ∈

R
n. The true Hessian ∇2L(w) is equal to matrix H . Note that

for this quadratic function, ∇L(wk+1)−∇L(wk) = Hwk+1+
g − (Hwk − g) = H(wk+1 − wk). Equivalently, yk = Hsk
for all k. Therefore, HSk = Yk and consequently, ST

k HSk =
ST
k Yk. Using the compact representation of Bk in (5) with

B0 = γkI for this quadratic function, we obtain

ST
k HSk − γkS

T
k Sk = ST

k ΨkMkΨ
T
k Sk. (13)

Note that if H is not positive definite, then ST
k ΨkMkΨ

T
k Sk

may not be positive definite either. Therefore, by choosing

γk > 0, negative curvature information of H can be cap-

tured by ST
k ΨkMkΨ

T
k Sk. If H is positive definite and γk

is chosen too big, then false negative curvature information

can be produced. To avoid this undesired outcome, we choose

γk ∈ (0, λmin) where λmin is the minimum eigenvalue of the

following generalized eigenvalue problem:

(Lk +Dk + LT
k )z = λST

k Skz, (14)
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TABLE I
SUMMARY OF THE PROPOSED L-BFGS INITIALIZATION METHODS

Initialization Source Formula

Method I
Solve the optimization problem (12):

γk = max
{
1,

yT
k−1yk−1

sT
k−1

yk−1

}
γk = argminγ ‖B−1

0 yk−1 − sk−1‖22

Method II
Solve the generalized eigenvalue problem (14):

γk =

{
max{1, 0.9λmin} if λmin > 0,

Use Method I if λmin ≤ 0.(Lk +Dk + LT
k )z = λST

k Skz

Method III
Solve the generalized eigenvalue problem (17):

γk =

{
max{1, 0.9λmin} if λmin > 0,

Use Method I if λmin ≤ 0.A∗z = B∗λz

where Lk and Dk are defined in Section II. If the smallest

eigenvalue in (14) is negative, i.e., λmin < 0, we choose γk
from Method I instead.

C. Initialization Method III

We note that in (13), the right-hand side also depends on γk
because the matrices Ψk amd Mk depend on γk (see (6)). Yet

the generalized eigenvalue value problem (14) for determining

bounds on γk does not take this into account. In Method III,

we attempt to derive the generalized eigenvalue problem with

considering the dependency of matrices Mk and Ψk on γk as

defined in (6).

First, we compute the inverse of Mk explicitly using the

following block partitioning:

Mk =

[−γST
k Sk −Lk

−LT
k Dk

]−1

=

[
Ã B̃

B̃T D̃

]
(15)

where Ã, B̃, and D̃ are computed as follows:

Ã = −(γST
k Sk + LkD

−1
k LT

k )
−1

B̃ = −(γST
k Sk + LkD

−1
k LT

k )
−1LkD

−1
k

D̃ = D−1
k −D−1

k LT
k (γS

T
k Sk + LkD

−1
k LT

k )LkD
−1
k .

By substituting Mk from (15) and Ψk = [γSk Yk] into (13),

we have

ST
k HSk = γST

k Sk + ST
k YkD̃Y T

k Sk + γ2
(
ST
k SkÃST

k Sk

)
+ γ

(
ST
k SkB̃Y T

k ST
k + ST

k YkB̃
TST

k Sk

)
. (16)

The last two terms in (16) depend nonlinearly on γ. To

find a linear condition for safe-guarding γk, we compute

these nonlinear terms in (16) using the γ parameter from the

previous iteration, i.e. γk−1 (with initial value of γ0 = 1).

Then, to find an upper bound for γk, we solve the following

generalized eigenvalue problem:

A∗z = λB∗z, (17)

where A∗ and B∗ is defined as

A∗ = Lk+Dk+LT
k − ST

k YkD̃Y T
k Sk− γ2

k−1(S
T
k SkÃST

k Sk),

B∗ = ST
k Sk + ST

k SkB̃Y T
k ST

k + ST
k YkB̃

TST
k Sk.

As in Method II, if λmin < 0 in (17), we choose γk from

Method I.

IV. NUMERICAL EXPERIMENTS

In this section, we test the trust-region L-BFGS optimization

algorithm on the image classification task of the MNIST

dataset with the three different initialization methods for B0

discussed in this paper. All simulations were performed on a

cluster with 4 NVIDIA Tesla K20m GPU, 256 GB memory,

and 20 virtual Intel 1.2 GHz processors.

A. Supervised Learning Application: Classification Task

All methods are implemented to train the LeNet-5 convolu-

tional neural network for the image classification task of the

MNIST dataset. The MNIST dataset consists of 70, 000 exam-

ples of handwritten image of digits 0 to 9, with N = 60, 000
image training set {(xi, yi)}, and 10, 000 used as the test set.

Each image xi is 28×28 pixel, and each pixel value is between

0 and 255. Each image xi in training set include a label

yi ∈ {0, . . . , 9} describing its class. The objective function for

the classification task in (1) uses the cross entropy between

model prediction and true labels given by

�i(w) = −
J∑

j=1

yij log(pi),

where the pi(xi;w) = pi(y = yi|xi;w) is the probability

distribution of the model, i.e., the likelihood that the image is

correctly classified, J is the number of classes (J = 10 for

MNIST digits dataset) and yij = 1 if j = yi and yij = 0 if

j 
= yi (see [2] for details).

B. Convolutional Neural Network Architecture

We use the convolutional neural network architecture,

LeNet-5 for computing the likelihood pi(yi|xi;wi). The

LeNet-5 CNN is mainly used in literature for character and

digit recognition tasks [33]. This architecture is given in Table

II. The input to the network is 28× 28 image and the output

is 10 neurons followed by a softmax function attempts to

approximate the likelihood probability distribution p(yi|xi;w).
There are total of n = 431, 080 trainable parameters (weights)

in LeNet-5 CCN.

C. Computing Gradients

Computing the gradient ∇L(w) can be expensive when the

size of data is large. In addition, some of the data points are
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TABLE II
LENET-5 CNN ARCHITECTURE [33].

Layer Connections
0: input 28× 28 image
1 convolutional, 20 5× 5 filters (stride = 1), followed by ReLU
2 max pooling, 2× 2 window (stride = 2)
3 convolutional, 50 5× 5 filters (stride = 1), followed by ReLU
4 max pool, 2× 2 window (stride = 2)
5 fully connected, 500 neurons (no dropout)

followed by ReLU
6: output fully connected, 10 neurons followed by softmax (no dropout)

similar, and consequently, usually a smaller random sample S
can be used to estimate the loss and the gradients

L(W ) ≈ L(S)(w) =
1

|S|
∑
i∈S

�i(w),

∇L(w) ≈ ∇L(S)(w) =
1

|S|
∑
i∈S

∇�i(w)

where, S is a random subset of indices from {1, 2, . . . , N}.

D. Multi-batch Sampling

The quality of the gradients directly impacts the quality

of the search step and also in approximating the Hessian

matrix. We perform our experiments using different data-to-

sample ratio N/|S| ∈ {1, 2.5, 5, 12.5, 25, 50, 100, 250,

500, 1000}. In particular, the smaller N/|S| becomes, the

larger batch size |S| becomes. In all simulations, we use the

sample that have overlap between consecutive samples Sk and

Sk+1. For iteration k, we use Sk to compute the gradient

gk = ∇L(Sk)(wk).

E. Computing yk

Inspired by [34], we use the overlap between the consecutive

multi-batch samples Ok = Sk ∩ Sk+1 to compute yk as

yk = ∇L(Ok)(wk+1)−∇L(Ok)(wk). (18)

The use of overlap to compute yk has been shown to result

in more robust convergence in L-BFGS since L-BFGS uses

gradient differences to update the Hessian approximations (see

[9], [34]).

F. Other parameters

We performed the experiments for two choices of the

quasi-Newton memory storage m ∈ {10, 20}. All simula-

tions stopped after 300 iterations or if the gradient satisfied

‖gk‖2 < ε = 10−5.

V. RESULTS AND DISCUSSIONS

The results of the training the trust-region L-BFGS algo-

rithm with different initialization (Method I, Method II, and

Method III), different multi-batch samples (1 ≤ N/|S| ≤
1000) and also different memory size m are depicted in Fig.

1. For each simulation, the training and test losses, the training

and test accuracy, and the total time of simulation were stored.

The minimum losses for both training and test sets for m = 10

are plotted in Fig. 1(a), for different sample sizes. Note that

N/|S| increases from left to right, meaning that the multi-

batch sample size is becoming smaller. For larger sample sizes

(e.g., for smaller values of N/|S|), the initialization Method I,

which is commonly used in the literature, performs the best.

However, as the mini-batch sample size decreases (e.g., for

N/|S| > 100), Methods II and III outperforms Method I.

For instance, the minimum training loss for Method II for

N/|S| = 500 is ∼ 287% lower than the one for Method I,

and the test loss for the same simulation is ∼ 120% lower.

For N/|S| = 1000, the training loss is ∼ 286% lower and the

test loss is ∼ 79% lower. The training loss for Method III is

∼ 131% lower than the one for Method I for N/|S| = 500,

and it is ∼ 450% lower for N/|S| = 1000. The test loss is 58%
lower for N/|S| = 500 and ∼ 100% lower for N/|S| = 1000.

Similar phenomena can be observed for the training and test

loss for m = 20, which is plotted in Fig. 1(b). The minimum

training loss for simulations with initialization Method II is

∼ 846% lower for N/|S| = 500, and test loss is ∼ 178%
lower. The training loss with Method III is ∼ 279% lower

than Method I for N/|S| = 250 and the test loss is ∼ 98%
lower. The training loss with Method III is ∼ 426% lower for

N/|S| = 500 and the test loss is ∼ 125% lower.

The training and test maximum accuracy for m = 10
is reported in Fig. 1(c), and we see similar improvements

using Methods II and III for simulations with smaller multi-

batch sample sizes (N/|S| ≥ 100). Our proposed initialization

methods results improves the test accuracy of prediction form

94.3% using Method I to 97.4% using Method II and to

96.3% using Method III, when N/|S| = 500. We saw similar

behavior in the maximum train and test accuracy for m = 20
which is plotted in Fig. 1(d). The maximum test accuracy

improved from 93% using Method I to 97.5% when we used

our proposed Method II and we saw improvement to 96.8%
when we used the proposed initialization Method III.

The total training time for m = 10 is reported in Fig. 1(e).

There is only ∼ 1% average increase in training time for

simulations using Method II, and ∼ 10% average increase in

training time for simulations using Method III, in comparison

to Method I. Similarly, for the training run time for simulations

with larger storage memory m = 20 in Fig. 1(f), there is no

significant difference between Method II and Method I, but

Method III was about 10% slower than the Method I.

VI. CONCLUSIONS

In this paper, we investigated three methods for initializing

L-BFGS matrices in a trust-region optimization framework.

The L-BFGS quasi-Newton matrix attempts to approximate the

curvature informations of the Hessian matrix ∇2L(wk) with a

positive definite quasi-Newton matrix Bk. In each iteration k,

an initial matrix B0 is required, and the usual choice for B0

is a non-negative scalar multiple of the identity matrix, i.e.,

B0 = γkI with γk > 0. The Hessian matrix ∇2L(wk) can be

indefinite if L(w) is nonconvex, and a careless initialization

of the quasi-Newton matrix can have the undesired effect

of definiteness mismatch between the true Hessian and the
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Fig. 1. A trust-region algorithm with different L-BFGS initialization methods is used for training LeNet-5 CNN to learn the task of classification of the
MNIST digits set. The performance of learning is depicted for different sample batch sizes S and different memory storage m = 10 and m = 20. N is the
size of data and |S| is the size of the sample batch. (a) Train and test minimum loss for m = 10. Note that as the batch size becomes smaller, i.e. N/|S|
becomes larger, Methods II and III outperform Method I. (b) Train and test minimum loss for m = 20. Similar phenomena occur for most of the smaller
batch sizes. (c) Train and test maximum accuracy for m = 10. As the batch sizes get smaller, the test accuracy for Method II and III are better than that for
Method I. (d) Train and test maximum accuracy for m = 20. The test accuracy for Method II and III are better than that for Method I. (e) Training time for
m = 10. As the batch sizes gets smaller, the training time is also decreases. (f) Training time for m = 20. There is no significant difference training time
of Method I and Method II. Method III is about %10 slower.
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quasi-Newton Hessian approximation. We investigated three

methods for the initial matrix B0 = γkI (see Table I for a

summary of the initialization methods). We also experimented

on the effects of initialization on the performance of the

training using the LeNet-5 CNN on the classification task of

the MNIST handwritten digits dataset.

The initialization Method I given in (11), which is conven-

tionally used in literature [17], [32], is simple to compute and

usually is a great choice when the sample size is considerably

large, i.e. (|S|/N ≥ 1% or N/|S| ≤ 100). However, once the

sample sizes gets smaller, i.e. (|S|/N < 1% or N/|S| > 100),

the performance of the training drops dramatically.

Our proposed initialization Method II (based on [9]) intro-

duces a new condition on safeguarding γk by finding an upper

bound which requires solving a low-rank general eigenvalue

problem which does not add significant computational cost.

For smaller sample sizes (|S|/N < 1% or N/|S| > 100),

this initialization method outperformed the Method I in all

training and testing minimum loss and maximum accuracy

performances. However this method does not consider the fact

that Ψk and Mk is a function of γk when constructing the

general eigenvalue problem in (14).

Our proposed initialization Method III introduces a more

sophisticated condition on safeguarding γk. The key difference

between this method and Method II is that this method takes

into account that Ψk and Mk are functions of γk when defining

the generalized eigenvalue problem in (17). The computation

of A∗ and B∗ adds about 10% to the computational cost.

For smaller sample sizes i.e. (|S|/N < 1% or N/|S| > 100)

this initialization method also outperformed the initialization

Method I in all training and testing minimum loss and

maximum accuracy performances. There was no significant

difference between the performance of the training when using

initialization Methods II and III.
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