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ABSTRACT

In this paper, we implement deep learning methods to re-
cover downsampled noisy signals often present in compressed
sensing applications. As an alternative to relying on previ-
ously established optimization based algorithms, we imple-
ment stacked denoising autoencoders and convolutional neu-
ral networks to perform signal reconstructions. Moreover,
we propose a Poisson autoencoder inverting network (PAIN)
architecture to reconstruct compressed signals imposed with
Poisson noise. We observe less computational costs asso-
ciated with this method while improving on reconstructions
from a traditional stacked denoising autoencoder and remain-
ing competitive with a more complex architecture in terms
of Mean Squared Error (MSE). We train all proposed archi-
tectures on the MNIST dataset and establish deep neural net-
works as a reconstruction method.

Index Terms— Deep Learning, Photon-limited imaging,
Poisson noise, Autoencoders

1. INTRODUCTION

Applications in image reconstruction and compressed sensing
require recovering a true signal from noisy and undersampled
linear measurements. These signals — often sparse in some
basis — allows for the use of penalty based algorithms to pro-
mote sparsity in its reconstruction [1, 2]. This modality is
typically found in applications such as medical imaging and
night vision where measurements at the photon detector are
corrupted by Poisson noise and thus modeled using the Pois-
son distribution [3].

Under this process of photon-limited imaging, we seek to
reconstruct sparse signals from noisy low-dimensional obser-
vations. Previous methods for solving the signal reconstruc-
tion problem include its reformulation into an optimization
problem and use iterative methods in order to arrive at a solu-
tion [4, 5, 6, 7, 8, 9]. Deep neural network architectures have
been used to effectively extract features from similar signals
through the use of autoencoders and convolutional neural net-
works (CNN) [10, 11, 12]. In this paper, we explore the use of
various architectures in deep learning techniques as applied to
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the area of compressed sensing and establish their effective-
ness in the field of photon-limited imaging.

2. PROBLEM FORMULATION

In the context of photon limited imaging, the arrival of pho-
tons at the detector are modeled by the following inhomoge-
neous Poisson process

y ~ Poisson(Af*),

where y € Z'[" is the observation vector whose entries con-
sists of photon counts, f* € R’ is the true signal and A" *"
is the system matrix projecting the true signal to the obser-
vation space with m < n. Our interest is in recovering the
higher dimensional signal f* given the lower dimensional ob-
servation vector y. Existing recovery methods use the maxi-
mum likelihood principle to maximize the probability of ob-
serving the vector y. Furthermore, under the assumption that
f* is sparse, a sparsity promoting penalty term is incorporated
in the reconstruction f. These iterative algorithms require tun-
ing parameters associated with the choice and enforcement of
penalties and also require a substantial number of iterations
to recover the signal [13, 14, 15].

We seek to avoid the complications associated with the
current iterative optimization methods by solving the sparsity-
promoting Poisson reconstruction problem using a variety of
deep learning architectures. We accomplish this by training
neural networks to process the low dimensional input y and
provide a reconstruction of the true signal f*. Recently, deep
learning techniques have been implemented separately for im-
age reconstruction from downsampled observations and for
Poisson denoising problems [16, 17, 18]. The novelty of the
proposed architecture is that it solves both problems simulta-
neously as is required in many photon-limited applications.

3. DEEP LEARNING ARCHITECTURES

We propose three different neural network configurations
with the purpose of recovering data from noisy low dimen-
sional observations. One architecture employs the use of a
convolution neural network (CNN) while the other two take
advantage of the structure of autoencoders. As is common
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in these types of networks, all three implementations were
trained using backpropagation and the mean squared error
(MSE) was used as a loss function.

Poisson Inverting ConvolutionS (PICS). The first implemen-
tation is a CNN based on the neural network known as Deep-
Inverse [17]. The Deeplnverse architecture was not intended
to denoise the signal, but rather recover signals from com-
pression. In [17] the disparity between the dimension of the
observation and the true signal is circumvented by the use of
the proxy signal # = ATy. The proxy is fed into the neu-
ral network and padding is used to keep the signal dimension
consistence throughout. Instead of assuming explicit access
to a measurement matrix, we added an extra fully connected
layer in place of the proxy signal. This transformation serves
two purposes. First, it increases the size of the observation
vector y to the dimensions of the original signal. Secondly, it
allows us to learn the transformation to the compressed space.
There are three primary layers to this CNN architecture. The
first consists of 64 filters of size 11 x 11 x 1 with the last
dimension pertaining to the depth of the filter . The next layer
consists of 32 filters each with a dimension of 11 x 11 x 64.
The final layer consists of one 11 x 11 x 32 filter to output the
original image. After each layer a ReLU nonlinearity is ap-
plied to the output. The network was originally trained in the
literature using 64 x 64 natural images and the preliminary
results showed that this method was not accommodating to
our database. Alternatively, the structure was modified using
2 x 2 filters while the number of filters was modified to reflect
the scale of the input data and the required final output. This
resulted in a slightly different architecture that was allowed to
scale with the size of the input vector. Because these changes
were not reflected in the literature, we will refer to the modi-
fied network as Poisson Inverting ConvolutionS (PICS).

Stacked Denoising Autoencoders (SDA). The authors in [16]
use stacked denoising autoencoders to learn and recover the
structure of sparse signals, again the intention of the method
did not include a denoising component. This type of architec-
ture was introduced in [19] as a way to make the learning ca-
pabilities more robust by introducing noise to the input before
each autoencoding layer. The architecture involves stacking a
decoder before encoding and decoding once again to arrive at
the dimension of the true signal. Layers are differentiated by
the dimensions of the weight matrix and bias vectors. After
the dimension has been increased or decreased, the sigmoid
function is applied to the output. The Stacked Denoising Au-
toencoder (SDA) structure implicitly resolves the increase in
dimension eliminating the need for modifications.

Poisson Autoencoder Inverting Network (PAIN). The final
architecture we propose in this work is Poisson Autoencoder
Inverting Network (PAIN). Similar networks have been effec-
tive in the application of image compression [20]. The archi-
tecture is similar to SDA, the difference being that each de-
coding and encoding layer consists of multiple layers. Under
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Fig. 1: Our proposed Poisson Autoencoder Inverting Net-
work (PAIN). Each encoder and decoder consists of two lay-
ers. This framework also incorporates the sigmoidal activa-
tion function 7 = 1/(1 4+ e~ ").

this structure, compression and decompression is done grad-
ually. The intuition is that the image must past through more
layers and therefore the compression is refined at each layer,
making the encoding more impervious to noise. In order to
adapt the architecture to the sparse Poisson reconstruction
problem, we required two modifications. The first change in-
volves initializing the weight matrix using a truncated normal
distribution instead of random samples from a normal distri-
bution. The truncated normal initialization eliminates values
more than 2 standard deviations from the mean. This immedi-
ately improved the architecture’s ability to denoise the given
signal. The network also utilizes a single layer decoder to ini-
tialize the process. The network starts with a layer that boosts
the dimension of the observation to the dimension of the true
signal. The next layer is a double encoder that reduces the
dimension of the true signal to a length of 256 and then to the
dimension of the observation. The dual layer decoder then
brings the dimension back to 256 and finally to the dimension
of the true signal (see Fig. 1).

4. NUMERICAL EXPERIMENTS

The proposed architectures PICS, PAIN and SDA were all im-
plemented using the open source machine learning language
Tensorflow. Training and testing of the neural networks was
performed using a quad core Intel i7-6700 CPU on a local
PC with 64 GB of ram. The networks were trained using
the stochastic gradient descent method known as RMSprop
[21, 22].

MNIST Dataset. The MNIST data set first used in [23] was
altered in order to create pairs of signals to fit the Poisson
model. The dataset consists of 70,000 28 x 28 images of
handwritten numbers from 0-9 and their associated classifi-
cation labels. From this dataset, 60,000 examples are used
for training and 10,000 examples are used for testing. The re-
construction problem does not make use of the labels because
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Fig. 2: The evolution of the MSE versus CPU runtime for
PAIN (our proposed method, in blue), PICS (in orange), and
SDA (in green) on a log-log scale for the purpose of recon-
structing 28 x 28 images from (a) 28 x 28, (b) 14 x 14, (¢)
7 x 7, and (d) 4 x 4 Poisson realizations. All CPU time is
recorded in seconds.

we are not concerned with classification. For the purposes of
this paper, we consider the original 28 x 28 image as the true
signal f*. The associated observation vectors are created by
taking the mean average of blocks of pixels, taking care that
the size of the blocks reduce the size of the image without
the need for padding. We then impose Poisson noise on the
downsampled signal. Data sets were created by pairing true
signals with observational signals of varying size. Under
this structure the neural network is expected to train on a set
of noisy observations with a fixed dimension (n x n with
n € {4,7,14, 28}) and reconstruct the full image (28 x 28).

Performance. The proposed architectures were able to per-
form suitable reconstructions of the test data sets. Both the
MSE and the CPU runtime were used to quantify the effec-
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Fig. 3: Boxplots comparing mean squared error (MSE) com-
puted using the MNIST validation images (5,000) and their
reconstructions for the three architectures proposed (SDA,
PAIN, and PICS). We observe that all three architectures be-
have similarly in terms of their MSE as the amount of com-
pression increases.

tiveness of the architectures during training (Fig. 2). Both
PICS and PAIN achieved a lower MSE over the training sets
than the SDA architecture for observation vectors in all di-
mensions. Furthermore, PICS completed 10,000 iterations
(10,000 iterations are reported since the MSE does not show
significant improvement after this number) in the same com-
putational time required for 45,000 iterations of PAIN and
SDA. This is expected as PICS is a CNN and is therefore a
more computationally intensive process than the other two
methods. Although the PICS architecture takes longer to
complete a given number of training iterations, it reaches a
lower MSE faster than SDA or PAIN. This can been seen in
the restoration of 28 x 28 and 14 x 14 images. This shows
that PICS is learning at a faster rate, making each training
step more valuable when compared to the other architectures.
While the CNN structure is initially more accurate than the
autoencoder structures, a decrease in input dimension results
in competitive MSE from the less complex PAIN structure.
The output for a set of input digits is displayed in Fig. 4. As
the amount of compression increases, the quality of the re-
construction decreases for all three types of architecture. The
PAIN and PICS architectures clearly outperform the SDA
when it comes to the 4 x 4 compression. The surprising
observation is that PAIN seems to have a higher intensity
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Fig. 4: The first row is comprised of 16 original MNIST images and their corresponding downsampled Poisson realizations.
Given these input images, we present the reconstructions using Stacked Denoising Autoencoders (SDA), our proposed methods
Poisson Autoencoder Inverting Network (PAIN) and Poisson Inverting ConvolutionS (PICS) for each dimension of images.

and smoothing effect when it comes to recreating the initial
image. This is counterintuitive considering that we expect
higher intensity from PICS since it uses the ReLU activation
function.

The models were also tested on the 5,000 entries of the
MNIST validation set. All MSE scores comparing the orig-
inal signal and the reconstructed signal were computed and
the results are presented in Fig. 3. We note that the MSE
for all three architectures is skewed towards a lower MSE
value. Also, we observe that as the amount of compression
increases, the SDA and PAIN architectures become compara-
ble to the more computationally intensive PICS architecture.

5. CONCLUSION

In this paper we implemented three deep learning architec-
tures to solve the Poisson inverse problem. These neural net-
works have proven to be very effective in the reconstruction
of images under the same modality. The first two networks

involved modified autoencoders, while the third used a convo-
lutional neural network. The results show that the stacked de-
noising autoencoder did not perform as well as the PAIN and
PICS networks during training using the Mean Squared Error
(MSE) as a performance metric. PAIN also has the benefit
of being less computationally intensive, which could suggest
that it will scale better with larger image sizes. Furthermore,
PAIN has a smoothing characteristic in the reconstructions
which is not reflected in the MSE. While the image smooth-
ing could negatively effect the MSE, this property could have
advantages during classification. In future work, we hope to
improve on this architecture by modifying the number of lay-
ers and exploring the use of another (perhaps more appropri-
ate) loss function. We also hope to apply these reconstruction
architectures to more complex images.
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