q'n

Check for
updates

Non-parametric and Semi-parametric
Support Estimation Using SEquential

RESampling Random Walks
on Biomolecular Sequences

Wei Wang', Jack Smith®, Hussein A. Hejase?, and Kevin J. Liu'(®)

! Department of Computer Science and Engineering, Michigan State University,
East Lansing, MI 48824, USA
kjl@msu.edu
2 Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory,
Cold Spring Harbor, NY 11724, USA

Abstract. Non-parametric and semi-parametric resampling procedures
are widely used to perform support estimation in computational biology
and bioinformatics. Among the most widely used methods in this class
is the standard bootstrap method, which consists of random sampling
with replacement. While not requiring assumptions about any particu-
lar parametric model for resampling purposes, the bootstrap and related
techniques assume that sites are independent and identically distributed
(i.i.d.). Thei.i.d. assumption can be an over-simplification for many prob-
lems in computational biology and bioinformatics. In particular, sequen-
tial dependence within biomolecular sequences is often an essential bio-
logical feature due to biochemical function, evolutionary processes such
as recombination, and other factors.

To relax the simplifying i.i.d. assumption, we propose a new non-
parametric/semi-parametric sequential resampling technique that gener-
alizes “Heads-or-Tails” mirrored inputs, a simple but clever technique
due to Landan and Graur. The generalized procedure takes the form of
random walks along either aligned or unaligned biomolecular sequences.
We refer to our new method as the SERES (or “SEquential RESam-
pling”) method.

To demonstrate the performance of the new technique, we apply
SERES to estimate support for the multiple sequence alignment problem.
Using simulated and empirical data, we show that SERES-based support
estimation yields comparable or typically better performance compared
to state-of-the-art methods.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-00834-5_17) contains supplementary material, which is
available to authorized users.

© Springer Nature Switzerland AG 2018

M. Blanchette and A. Ouangraoua (Eds.): RECOMB-CG 2018, LNBI 11183, pp. 294-308, 2018.
https://doi.org/10.1007/978-3-030-00834-5_17

SERES 295

1 Introduction

Resampling methods are widely used throughout computational biology and
bioinformatics as a means for assessing statistical support. At a high level,
resampling-based support estimation procedures consist of a methodological
pipeline: resampled replicates are generated, inference/analysis is performed
on each replicate, and results are then compared across replicates. Among the
most widely used resampling methods are non-parametric approaches includ-
ing the standard bootstrap method [5], which consists of random sampling with
replacement. We will refer to the standard bootstrap method as the bootstrap
method for brevity. Unlike parametric methods, non-parametric approaches need
not assume that a particular parametric model is applicable to a problem at
hand. However, the bootstrap and other widely used non-parametric approaches
assume that observations are independent and identically distributed (i.i.d.).

In the context of biomolecular sequence analysis, there are a variety of bio-
logical factors that conflict with this assumption. These include evolutionary
processes that cause intra-sequence dependence (e.g., recombination) and func-
tional dependence among biomolecular sequence elements and motifs. Felsenstein
presciently noted these limitations when he proposed the application of the boot-
strap to phylogenetic inference: “A more serious difficulty is lack of independence
of the evolutionary processes in different characters. ... For the purposes of this
paper, we will ignore these correlations and assume that they cause no prob-
lems; in practice, they pose the most serious challenge to the use of bootstrap
methods.” (reproduced from p. 785 of [6]).

To relax the simplifying assumption of i.i.d. observations, Landan and Graur
[10] introduced the Heads-or-Tails (HoT) technique for the specific problem of
multiple sequence alignment (MSA) support estimation. The idea behind HoT
is simple but quite powerful: inference/analysis should be repeatable whether an
MSA is read either from left-to-right or from right-to-left — i.e., in either heads
or tails direction, respectively. While HoT resampling preserves intra-sequence
dependence, it is limited to two replicates, which is far fewer than typically
needed for reasonable support estimation; often, hundreds of resampled repli-
cates or more are used in practice. Subsequently developed support estimation
procedures increased the number of possible replicates by augmenting HoT with
bootstrapping, parametric resampling, and domain-specific techniques (e.g., pro-
gressive MSA estimation) [11,15,17]. The combined procedures were shown to
yield comparable or improved support estimates relative to the original HoT pro-
cedure [17] as well as other state-of-the-art parametric and domain-specific meth-
ods [9,13], at the cost of some of the generalizability inherent to non-parametric
approaches. In this study, we revisit the central question that HoT partially
addressed: how can we resample many non-parametric replicates that account
for dependence within a sequence of observations, and how can such tech-
niques be used to derive improved support estimates for biomolecular sequence
analysis?

296 W. Wang et al.

2 Methods

In our view, a more general statement of HoT’s main insight is the following,
which we refer to as the “neighbor preservation property”: a neighboring obser-
vation is still a neighbor, whether reading an observation sequence from the left
or the right. In other words, the key property needed for non-parametric resam-
pling is preservation of neighboring bases within the original sequences, where
any pair of bases that appear as neighbors in a resampled sequence must also
be neighbors in the corresponding original sequence. To obtain many resam-
pled replicates that account for intra-sequence dependence while retaining the
neighbor preservation property, we propose a random walk procedure which gen-
eralizes a combination of the bootstrap method and the HoT method. We refer
to the new resampling procedure as SERES (“SEquential RESampling”). Note
that the neighbor preservation property is necessary but not sufficient for sta-
tistical support estimation. Other important properties include computational
efficiency of the resampling procedure and unbiased sampling of observations
within the original observation sequence.

SERES walks can be performed on both aligned and unaligned sequence
inputs. We discuss the case of aligned inputs first, since it is simpler than the
case of unaligned inputs.

2.1 SERES Walks on Aligned Sequences

Detailed pseudocode for a non-parametric SERES walk on a fixed MSA is shown
in the Appendix’s Supplementary Methods section: Algorithm 1.

The random walk is performed on the sequence of aligned characters (i.e.,
MSA sites). The starting point for the walk is chosen uniformly at random from
the alignment sites, and the starting direction is also chosen uniformly at random.
The random walk then proceeds in the chosen direction with non-deterministic
reversals, or direction changes, that occur with probability ~y; furthermore, rever-
sals occur with certainty at the start and end of the fixed MSA. Aligned charac-
ters are sampled during each step of the walk. The random walk ends once the
number of sampled characters is equal to the fixed MSA length.

The long-term behavior of an infinitely long SERES random walk can be
described by a second-order Markov chain. Certain special cases (e.g., v = 0.5)
can be described using a first-order Markov chain.

In theory, a finite-length SERES random walk can exhibit biased sampling of
sites since reversal occurs with certainty at the start and end of the observation
sequence, whereas reversal occurs with probability - elsewhere. However, for
practical choices of walk length and reversal probability -, sampling bias is
expected to be minimal.

2.2 SERES Walks on Unaligned Sequences

Detailed pseudocode for SERES resampling of unaligned sequences is shown in
the Appendix’s Supplementary Methods section: Algorithm 2. Figure 1 provides
an illustrated example.

SERES 297

The procedure begins with estimating a set of anchors — sequence regions
that exhibit high sequence similarity — which enable resampling synchroniza-
tion across unaligned sequences. A conservative approach for identifying anchors
would be to use highly similar regions that appear in the strict consensus of mul-
tiple MSA estimation methods. In practice, we found that highly similar regions
within a single guide MSA produced reasonable anchors. We used the average
normalized Hamming distance (ANHD) as our similarity measure, where indels
are treated as mismatches.

Unaligned sequence indices corresponding to the start and end of each anchor
serve as “barriers” in much the same sense as in parallel computing: asyn-
chronous sequence reads occur between barrier pairs along a current direction
(left or right), and a random walk is conducted on barrier space in a manner
similar to a SERES walk on a sequence of aligned characters. The set of barriers
also includes trivial barriers at the start and end of the unaligned sequences. The
random walk concludes once the unaligned sequences in the resampled replicate
have sufficient length; our criterion requires that the longest resampled sequence
has minimum length that is a multiple maxReplicateLengthFactor of the longest
input sequence length.

Technically, the anchors in our study make use of parametric MSA estimation
and the rest of the SERES walk is non-parametric. The overall procedure is
therefore semi-parametric (although see Conclusions for an alternative).

2.3 Performance Study

Our study evaluated the performance of SERES-based support estimation in
the context of MSA support estimation. Of course, there are many other appli-
cations for non-parametric/semi-parametric support estimation — too many to
investigate in one study. We focus on this application since it is considered to be
a classical problem in computational biology and bioinformatics and its outputs
are useful for studying a range of topics (e.g., phylogenetics and phylogenomics,
proteomics, comparative genomics, etc.).

Computational Methods. We examined the problem of evaluating support in
the context of MSA estimation. The problem input consists of an estimated MSA
A which has a corresponding set of unaligned sequences S. The problem output
consists of support estimates for each nucleotide-nucleotide homology in A, where
each support estimate is on the unit interval. Note that this computational
problem is distinct from the full MSA estimation problem.

There are a variety of existing methods for MSA support estimation. The cre-
ators of HoT and their collaborators subsequently developed alignment-specific
parametric resampling techniques [11] and then combined the two to obtain two
new semi-parametric approaches: GUIDANCE [15] (which we will refer to as
GUIDANCEL) and GUIDANCE2 [17]. Other parametric MSA support estima-
tion methods include PSAR [9] and T-Coffee [13].

We focus on GUIDANCE1 and GUIDANCE2, which subsume HoT and have
been demonstrated to have comparable or better performance relative to other

298 W. Wang et al.

state-of-the-art methods [17]. We used MAFFT for re-estimation on resampled
replicates, since it has been shown to be among the most accurate progressive
MSA methods to date [8,12].

We then used SERES to perform resampling in place of the standard boot-
strap that is used in the first step of GUIDANCE1/GUIDANCE2. Re-estimation
was performed on 100 SERES replicates — each consisting of a set of unaligned
sequences — using MAFFT with default settings, which corresponds to the FFT-
NS-2 algorithm for progressive alignment. The SERES resampling procedure
used a reversal probability v = 0.5, which is equivalent to selecting a direction
uniformly at random (UAR) at each step of the random walk; each SERES repli-
cate utilized a total of [2—%j anchors with anchor size of 5 bp and a minimum
distance between neighboring anchors of 25 bp, where k is the length of the
input alignment A. All downstream steps of GUIDANCE1/GUIDANCE2 were
then performed using the re-estimated alignments as input.

(a) Estimate consensus alignment on input set of unaligned sequences.

s1 AGTCTGGACTATAATGAAAGCCGA
s2 AGTCTGGTATAATGAAAGCTGGTACGA

53 AGTCTGTAC GTGGACAGCCGA
s4 AGTCTGTACTATAATGCGACAC 'CGA
s5 AGTCTGTACTAT: AGCCGA

Bl GTCTGGACTATAAT GAAAGC cGA
s2 [NREREE] LFR V] GAAAGCTGGTACGA
EEWA GTCTGTACTATAATGGAAGTGGGGACACGTGGACAGC CGA
BB AGTCTGTACTATAATGC GACACGTGGATAGC CGA
ELBA GTCTGTACTATAATGG G A GGAAAGC CcGA

(b) Obtain anchors on consensus alignment. Barriers (dashed lines)
consist of anchor boundaries plus trivial start/end barriers.

Anchor Anchor Anchor Anchor Anchor
1 2 3 4 5

= 1
AGTCTGGACTATAAT

AGTCTGTACTATAATGC
AGTCTGTACTATAATGG
—]]

o
Barriers (dashed lines)

Fig. 1. Illustrated example of SERES resampling random walk on unaligned
sequences. Detailed pseudocode is provided in the Appendix’s Supplementary Meth-
ods section (Algorithm 2 in Appendix). (a) The resampling procedure begins with the
estimation of a consensus alignment on the input set of unaligned sequences. (b) A set
of conservative anchors is then obtained using the consensus alignment, and anchor
boundaries define a set of barriers (including two trivial barriers — one at the start of
the sequences and one at the end of the sequences). (¢) The SERES random walk is
conducted on the set of barriers. The walk begins at a random barrier and proceeds
in a random direction to the neighboring barrier. The walk reverses with certainty
when the trivial start/end barriers are encountered; furthermore, the walk direction
can randomly reverse with probability 7. As the walk proceeds from barrier to barrier,
unaligned sequences are sampled between neighboring barrier pairs. (d) The resam-
pling procedure terminates when the resampled sequences meet a specified sequence
length threshold.

SERES 299

(c) Choose an initial barrier and walk direction at random.
Begin random walk (red arrow) from first barrier to neighboring barrier.
As walk proceeds from one barrier to neighboring barrier,
sample unaligned sequences between barrier pairs.

[]
AGTCTGGACTATAAT

AGTCTGTACTATAATGC
AGTCTGTACTATAATGG
-]

sl TA
Resampled 52 T2
s3 TA
sequences 1 Ta
s5 TA

(d) Random walk terminates when resampled sequences reach required length.

— -
AGTCTGGACTATAAT
actcTeGlllTaTAaAT

AGTCTGTACTATAATGC
AGTCTGTACTATAATGG
1

|
i Reversal

I I I B —

I HE HE HE L

s1 TATAATGAAAGCCGAGCCGAAAGCC

s2 TATAATGAAAGCTGGTACGAGCATGGTCGAAAGCTGGTAC
Resam pl ed s3 TATAATGGAAGTGGGGACACGTGGACAGCCGAGCCGACAGCC
SEeQUENCES s4 TATAATGCGACACGTGGATAGCCGAGCCGATAGCC

s5 TATAATGGGAGGAAAGCCGAGCCGARAGCC

Fig. 1. (continued)

Simulated Datasets. Model trees and sequences were simulated using INDELi-
ble [7]. First, non-ultrametric model trees with either 10 or 50 taxa were sampled
using the following procedure. Model trees were generated under a birth-death
process [18], branch lengths were chosen UAR from the interval (0,1), and the
model tree height was re-scaled from its original height hg to a desired height
h by multiplying all branch lengths by the factor h/hg. Next, sequences were
evolved down each model tree under the General Time-Reversible (GTR) model
of substitution [16] and the indel model of Fletcher and Yang [7], where the root
sequence had length of 1 kb. We used the substitution rates and base frequencies
from the study of Liu et al. [12], which were based upon empirical analysis of
the nematode Tree of Life. Sequence insertions/deletions occurred at rate r;, and
we used the medium gap length distribution from the study of Liu et al. [12].
The model parameter values used for simulation are shown in Table 1, and each
combination of model parameter values constitutes a model condition. Model
conditions are enumerated in order of generally increasing sequence divergence,
as reflected by average pairwise ANHD. For each model condition, the simu-
lation procedure was repeated to generate twenty replicate datasets. Summary
statistics for simulated datasets are shown in Table 1.

We evaluated performance based upon receiver operating characteristic
(ROCQC) curves, precision-recall curves (PR), and area under ROC and PR curves
(ROC-AUC and PR-AUC, respectively). Consistent with other studies of MSA

300 W. Wang et al.

Table 1. Model condition parameter values and summary statistics. The
simulation study parameters consist of the number of taxa, model tree height, and
insertion/deletion probability. Each model condition corresponds to a distinct set of
model parameter values. The 10-taxon model conditions are named 10.A through 10.E
in order of generally increasing sequence divergence; the 50-taxon model conditions are
named 50.A through 50.E similarly. The following table columns list average summary
statistics for each model condition (n = 20). “NHD” is the average normalized Ham-
ming distance of a pair of aligned sequences in the true alignment. “Gappiness” is the
percentage of true alignment cells which consists of indels. “True align length” is the
length of the true alignment. “Est align length” is the length of the MAFFT-estimated
alignment [8] which was provided as input to the support estimation methods. “SP-
FN” and “SP-FP” are the proportion of homologies that appear in the true alignment
but not in the estimated alignment and vice versa, respectively.

Model Number |Tree Insertion/deletion |NHD | Gappiness| True align |Est align |SP-FN|SP-FP
condition |of taxa height |probability length length

10.A 10 0.4 0.13 0.297/0.474 1965.3 1552.3 0.294 |0.341
10.B 10 0.7 0.1 0.394/0.512 2165.1 1563.5 0.483 |0.533
10.C 10 1 0.06 0.514/0.526 2162.8 1554.0 0.657 |0.684
10.D 10 1.6 0.031 0.599|0.485 1874.4 1507.5 0.747 |0.752
10.E 10 4.3 0.013 0.693|0.465 1849.3 1612.8 0.945 |0.943
50.A 50 0.45 0.06 0.281/0.516 2043.5 1785.7 0.086 |0.088
50.B 50 0.7 0.03 0.398|0.475 1935.5 1714.2 0.105 |0.102
50.C 50 1 0.02 0.514/0.498 2047.6 1703.1 0.245 |0.230
50.D 50 1.8 0.012 0.594/0.471 1945.0 1712.2 0.455 |0.419
50.E 50 4.3 0.004 0.688|0.459 1890.2 2319.2 0.963 |0.948

support estimation techniques [15,17], the MSA support estimation problem
in our study entails annotation of nucleotide-nucleotide homologies in the esti-
mated alignment; thus, homologies that appear in the true alignment but not the
estimated alignment are not considered. For this reason, the confusion matrix
quantities used for ROC and PR calculations are defined as follows. True pos-
itives (TP) are the set of nucleotide-nucleotide homologies that appear in the
true alignment and the estimated alignment with support value greater than or
equal to a given threshold, false positives (FP) are the set of nucleotide-nucleotide
homologies that appear in the estimated alignment with support value greater
than or equal to a given threshold but do not appear in the true alignment, false
negatives (FN) are the set of nucleotide-nucleotide homologies that appear in the
true alignment but appear in the estimated alignment with support value below
a given threshold, and true negatives (TN) are the set of nucleotide-nucleotide
homologies that do not appear in the true alignment and appear in the esti-
mated alignment with support value below a given threshold. The ROC curve
plots the true positive rate (|TP|/(JTP| 4+ |FN|)) versus the false positive rate
(|JFP|/(JFP| + |TN])). The PR curve plots the true positive rate versus preci-
sion (|TP|/(/TP|+ |FP])). Varying the support threshold yields different points
along these curves. Custom scripts were used to perform confusion matrix calcu-
lations. ROC curve, PR curve, and AUROC calculations were performed using
the scikit-learn Python library [14].

SERES 301

Table 2. Empirical dataset summary statistics. The empirical study made use
of reference alignments (“Ref align”) from the CRW database [2]. The reference align-
ments were curated using heterogeneous data including secondary structure informa-
tion. The column description is identical to Table 1, where the empirical study made
use of reference alignments in lieu of the simulation study’s true alignments.

Dataset | Number | NHD | Gappiness | Ref align | Est align | SP-FP | SP-FN
of taxa length length
IGIA 110 0.606 | 0.915 10368 6675 0.734]0.784
IGIB 202 0.579 | 0.910 10633 7379 0.825 |0.864
IGIC2 32 0.533 | 0.700 4243 3514 0.689 |0.715
IGID 21 0.719]0.782 5061 3023 0.874 10.904
IGIE 249 0.451|0.838 2751 2775 0.393 0.376
IGITA | 174 0.668 | 0.814 6406 7005 0.816 | 0.800
PA23 | 142 0.293 | 0.267 3991 3552 0.078 | 0.077
PE23 | 117 0.300 | 0.612 9436 10083 0.202 |0.213
PM23 | 102 0.361 | 0.797 10999 8803 0.262 | 0.288
SA16 | 132 0.2120.205 1866 1673 0.031 |0.028
SA23 | 144 0.304 | 0.460 4048 3678 0.077 |0.081

Empirical Datasets. We downloaded empirical benchmarks from the Compar-
ative RNA Web (CRW) Site database, which can be found at www.rna.icmb.
utexas.edu [2]. In brief, the CRW database includes ribosomal RNA sequence
datasets than span a range of dataset sizes and evolutionary divergence. We
focused on datasets where high-quality reference alignments are available; the
reference alignments were produced using intensive manual curation and analysis
of heterogeneous data, including secondary structure information. We selected
primary 16S rRNA, primary 23S rRNA, primary intron, and seed alignments
with at most 250 sequences. Aligned sequences with 99% or more missing data
and/or indels were omitted from analysis. Summary statistics for the empirical
benchmarks are shown in Table 2.

2.4 Computational Resources Used and Software/Data Availability

All computational analyses were run on computing facilities in Michigan State
University’s High Performance Computing Center. We used compute nodes in
the intel16-k80 cluster, each of which had a 2.4 GHz 14-core Intel Xeon E5-
2680v4 processor. All replicates completed with memory usage less than 10 GiB.
Open-source software and open data can be found at https://gitlab.msu.edu/
liulab/SERES-Scripts-Data.

302 W. Wang et al.

Table 3. Simulation study results. Results are shown for five 10-taxon model
conditions (named 10.A through 10.E in order of generally increasing sequence diver-
gence) and five 50-taxon model conditions (similarly named 50.A through 50.E). We
evaluated the performance of two state-of-the-art methods for MSA support estima-
tion — GUIDANCEL1 [15] and GUIDANCE2 [17] — versus re-estimation on SERES and
parametrically resampled replicates (using parametric techniques from either GUID-
ANCE1 or GUIDANCE2). (See Methods section for details.) We calculated each
method’s precision-recall (PR) and receiver operating characteristic (ROC) curves.
Performance is evaluated based upon aggregate area under curve (AUC) across all
replicates for a model condition (n = 20). The top rows show AUC comparisons of
GUIDANCEL (“GUIDANCEL”) vs. SERES combined with parametric techniques from
GUIDANCE1 (“SERES+GUIDANCE1”), and the bottom rows show AUC compar-
isons of GUIDANCE2 (“GUIDANCE2”) vs. SERES combined with parametric tech-
niques from GUIDANCE2 (“SERES+GUIDANCE2”); for each model condition and
pairwise comparison, the best AUC is shown in bold. Statistical significance of PR-AUC
or AUC-ROC differences was assessed using a one-tailed pairwise t-test or DeLong et
al. [4] test, respectively, and multiple test correction was performed using the method
of Benjamini and Hochberg [1]. Corrected g-values are reported (n = 20) and all were
significant (o = 0.05).

Model PR-AUC (%) Pairwise t-test | ROC-AUC (%) DeLong et al.
condition corrected test corrected
g-value g-value
GUID- SERES+ GUID- SERES+
ANCE1l | GUID- ANCE1l | GUID-
ANCE1 ANCE1
10.A 88.74 91.17 5.4x 1077 80.22 85.57 < 10710
10.B 82.21 86.26 1.5 x 1076 84.83 88.66 < 10710
10.C 76.23 83.49 1.9 x 10~% 86.98 91.23 <1010
10.D 74.65 85.81 1.9 x 10~% 88.55 93.72 <1010
10.E 42.61 59.20 3.1x 1074 82.24 87.40 < 10710
50.A 98.22 98.92 5.3 x 10710 83.09 90.64 < 10710
50.B 97.84 98.69 2.8 x 1079 82.85 90.39 < 10710
50.C 95.08 96.80 5.6 x 108 85.54 90.64 < 10~10
50.D 90.79 95.75 5.3 x 106 88.89 94.56 < 10710
50.E 62.47 79.14 8.0 x 1010 91.02 93.23 <1010
Model PR-AUC (%) Pairwise t-test | ROC-AOC (%) DeLong et al.
condition corrected test corrected
g-value g-value
GUID- SERES+ GUID- SERES+
ANCE2 | GUID- ANCE2 | GUID-
ANCE2 ANCE2

10.A 92.55 93.33 7.4 % 1076 87.17 88.34 <1010
10.B 88.08 89.31 8.4 x 1074 89.45 90.56 < 10710
10.C 84.28 86.86 3.1x 104 91.36 92.88 <10710
10.D 86.03 88.75 1.9 x 10~% 93.34 94.69 <1010
10.E 51.17 62.30 1.3 x 1073 86.00 88.28 <1010
50.A 98.98 99.14 5.3 x 106 91.17 92.50 <1010
50.B 98.79 98.96 1.5 x 10~6 91.24 92.44 <1010
50.C 96.86 97.45 3.2x 107 90.81 92.31 <1010
50.D 94.04 96.23 1.5 x 10~° 92.67 95.09 <1010
50.E 72.61 81.47 1.5 x 1078 92.94 94.22 <1010

SERES 303

3 Results

3.1 Simulation Study

For all model conditions, SERES-based resampling and re-estimation yielded
improved MSA support estimates compared to GUIDANCE1 and GUIDANCE2,
two state-of-the-art methods, where performance was measured by PR-AUC or
ROC-AUC (Table3). In all cases, PR-AUC or ROC-AUC improvements were
statistically significant (corrected pairwise t-test or DeLong et al. [4] test, respec-
tively; n = 20 and a = 0.05). The observed performance improvement was robust
to several experimental factors: dataset size, increasing sequence divergence due
to increasing numbers of substitutions, insertions, and deletions, and the choice
of alignment-specific parametric support estimation techniques (i.e., the para-
metric approaches used by either GUIDANCE1 or GUIDANCE2) that were used
in combination with SERES-based support estimation.

Compared to dataset size, sequence divergence had a relatively greater quan-
titative impact on each method’s performance. For each dataset size (10 or 50
taxa), PR-AUC differed by at most 3% on the least divergent model condition.
The SERES-based method’s performance advantage grew as sequence diver-
gence increased — to as much as 28% — and the largest performance advantages
were seen on the most divergent datasets in our study. The most divergent
datasets were also the most challenging. For each method, PR-AUC generally
degraded as sequence divergence increased; however, the SERES-based method’s
PR-AUC degraded more slowly compared to the non-SERES-based method.
Consistent with the study of Sela et al. [17], GUIDANCE2 counsistently outper-
formed GUIDANCE]1 on each model conditions and using either AUC measure.
The performance improvement of SERES+GUIDANCE]1 over GUIDANCE1 was
generally greater than that seen when comparing SERES+GUIDANCE2 and
GUIDANCE2; furthermore, the PR-AUC-based corrected g-values were more
significant for the former compared to the latter in all cases except for the 10.D
model condition, where the corrected g-values were comparable. Finally, while
the SERES-based method consistently yielded performance improvements over
the corresponding non-SERES-based method regardless of the choice of perfor-
mance measure (either PR-AUC or ROC-AUC), the PR-AUC difference was
generally larger than the ROC-AUC difference, especially on more divergent
model conditions. On average across all replicates of all model conditions with a
given dataset size, the runtime overhead contributed by SERES was minimal —
amounting to just a few minutes per replicate dataset — and all methods in the
simulation study completed analysis of each replicate dataset in less than half
an hour (Supplementary Table S1 in Appendix).

3.2 Empirical Study

Relative to GUIDANCE1 or GUIDANCE2, SERES-based support estimates
consistently returned higher AUC on all datasets — primary, seed, and intronic
— with a single exception: the comparison of SERES+GUIDANCE2 and

304 W. Wang et al.

Table 4. Empirical study results. The empirical study made use of benchmark
RNA datasets and curated reference alignments from the CRW database [2]. Results
are shown for intronic (“IG” prefix) and non-intronic datasets (“P” prefix and “S”
prefix, following “primary” and “seed” nomenclature from the CRW database). For
each dataset, we report each method’s PR-AUC and ROC-AUC. For each dataset and
pairwise method comparison, the best AUC is shown in bold. Methods, performance
measures, table layout, and table description are otherwise identical to Table 3.

Dataset | PR-AUC (%) ROC-AUC (%)
GUIDANCEL | SERES+ GUIDANCEL | SERES+
GUIDANCE1 GUIDANCE1
IGIA 62.67 69.28 89.50 91.62
IGIB 73.60 87.47 94.49 97.39
IGIC2 | 72.67 75.36 82.25 83.87
IGID 63.74 76.30 95.10 96.73
IGIE 93.56 95.42 90.08 93.30
IGIIA | 73.03 83.06 86.49 96.45
PA23 98.54 99.41 82.59 93.63
PE23 98.44 99.27 94.75 97.41
PM23 | 97.53 98.48 94.20 96.44
SA16 99.72 99.86 91.07 95.57
SA23 98.35 99.24 81.76 92.18
Dataset | PR-AUC (%) ROC-AUC (%)
GUIDANCE2 | SERES+ GUIDANCE2 | SERES+
GUIDANCE2 GUIDANCE2

IGIA 67.4 68.49 91.38 91.94
1IGIB 80.66 86.72 96.47 97.38
1GIC2 | 74.44 73.27 84.63 82.51
1GID 75.15 78.38 96.44 97.09
IGIE 94.6 95.44 91.84 93.49
IGITA | 78.16 85.09 94.50 96.82
PA23 99.24 99.53 91.48 94.88
PE23 99.07 99.34 96.72 97.63
PM23 | 98.68 98.85 96.93 97.28
SA16 99.88 99.91 96.22 97.22
SA23 99.04 99.33 89.93 93.18

GUIDANCE2 on the intronic IGIC2 dataset, where the PR-AUC and ROC-
AUC differences were 1.17% and 2.12%, respectively. For each pairwise
comparison of methods (i.e., SERES+GUIDANCEl1 vs. GUIDANCEL or
SERES+GUIDANCE2 vs. GUIDANCE2), the SERES-based method returned
relatively larger PR-AUC improvements on datasets with greater sequence

SERES 305

divergence, as measured by ANHD and gappiness. In particular, PR-AUC
improvements were less than 1% on seed and primary non-intronic datasets.
Intronic datasets yielded PR-AUC improvements of as much as 13.87%. Observed
AUC improvements of SERES+GUIDANCE]L over GUIDANCE]1 were relatively
greater than those seen for SERES+GUIDANCE2 in comparison to GUID-
ANCE2. Finally, GUIDANCE2 consistently returned higher AUC relative to
GUIDANCEL1, regardless of whether PR or ROC curves were the basis for AUC

comparison.

4 Discussion

Re-estimation using SERES resampling resulted in comparable or typically
improved support estimates for the applications in our study. We believe that
this performance advantage is due to the ability to generate many distinct repli-
cates while enforcing the neighbor preservation principle. The latter is critical
for retaining sequence dependence which is inherent to the application in our
study.

On all model conditions, SERES+GUIDANCE1 support estimation
resulted in significant improvements in AUC-PR and AUC-ROC com-
pared to GUIDANCEL. A similar outcome was observed when comparing
SERES+GUIDANCE2 and GUIDANCE2. The main difference in each com-
parison is the resampling technique — either SERES or standard bootstrap. Our
findings clearly demonstrate the performance advantage of the former over the
latter. SERES accounts for intra-sequence dependence due to insertion and dele-
tion processes, while the bootstrap method assumes that sites are independent
and identically distributed. Regarding comparisons involving GUIDANCE2 ver-
sus GUIDANCEIL, a contributing factor may have been the greater AUC of
GUIDANCE2 over GUIDANCE1. We used SERES to perform semi-parametric
support estimation in conjunction with the parametric support techniques of
GUIDANCE]1 or GUIDANCE2. The latter method’s relatively greater AUC may
be more challenging to improve upon (Table4).

The performance comparisons on empirical benchmarks were consistent with
the simulation study. In terms of ANHD and gappiness, the non-intronic datasets
in our empirical study were more like the low divergence model conditions in
our simulation study, and the intronic datasets were more like the higher diver-
gence model conditions. Across all empirical datasets, SERES-based support
estimation consistently yielded comparable or better AUC versus GUIDANCE1
or GUIDANCE2 alone. The SERES-based method’s AUC advantage generally
increased as datasets became more divergent and challenging to align — partic-
ularly when comparing performance on non-intronic versus intronic datasets.
We found that the support estimation methods returned comparable AUC
(within a few percentage points) on datasets with 1-2 dozen sequences and
low sequence divergence relative to other datasets. In particular, IGIC2 was the
only dataset where SERES+GUIDANCE2 did not return an improved AUC rel-
ative to GUIDANCE2. IGIC2 was the second-smallest dataset — about an order

306 W. Wang et al.

of magnitude smaller than all other datasets except the IGID dataset — and
IGIC2 also had the second-lowest ANHD and lowest gappiness among intronic
datasets. IGID was the smallest dataset, but had higher ANHD and gappi-
ness compared to the IGIC2 dataset. Compared to the other empirical datasets,
SERES+GUIDANCE2 returned a small AUC improvement over GUIDANCE2
on the IGID dataset — at most 3.2%.

On simulated and empirical datasets, greater sequence divergence generally
resulted in increased inference error for all methods. However, the SERES-based
method’s performance tended to degrade more slowly than the corresponding
non-SERES-based method as sequence divergence increased, and the greatest
performance advantage was seen on the most divergent model conditions and
empirical datasets.

Finally, we note that non-parametric/semi-parametric resampling techniques
are orthogonal to parametric alternatives. Consistent with previous studies [15,
17], we found that combining two different classes of methods yielded better
performance than either by itself.

5 Conclusions

This study introduced SERES, which consists of new non-parametric and semi-
parametric techniques for resampling biomolecular sequence data. Using simu-
lated and empirical data, we explored the use of SERES resampling for support
estimation involving a classical problem in computational biology and bioinfor-
matics. We found that SERES-based support estimation yields comparable or
typically better performance compared to state-of-the-art approaches.

We conclude with possible directions for future work. First, the SERES
algorithm in our study made use of a semi-parametric resampling procedure
on unaligned inputs, since anchors were constructed using progressive multiple
sequence alignment. While this approach worked well in our experiments, non-
parametric alternatives could be substituted (e.g., unsupervised k-mer clustering
using alignment-free distances [3]) to obtain a purely non-parametric resam-
pling procedure. Second, the unaligned input application focused on nucleotide-
nucleotide homologies to enable direct comparison against existing MSA sup-
port estimation procedures (i.e., GUIDANCEL and GUIDANCE?2). The SERES
framework can be extended in a straightforward manner to estimate support
for nucleotide-indel pairs. Third, SERES resampling can be used to perform full
MSA inference. One approach would be to analyze homologies that appeared
in re-estimated inferences across resampled replicates, without regard to any
input alignment. Fourth, in the case where biomolecular sequences evolved under
insertion/deletion processes, we consider the distinction between aligned and
unaligned inputs to be an unnecessary dichotomy. In theory, the latter sub-
sumes the former. We can apply this insight using a two-phase approach: (1)
perform SERES-based re-estimation on unaligned sequences to estimate sup-
port for aligned homologies (from either an input MSA or the de novo procedure
proposed above), and (2) perform support-weighted SERES walks on the anno-
tated MSA from the previous stage to obtain support estimates on downstream

SERES 307

inference. Alternatively, we can simultaneously address both problems using co-
estimation. Finally, we envision many other SERES applications. Examples in
computational biology and bioinformatics include protein structure prediction,
detecting genomic patterns of natural selection, and read mapping and assem-
bly. Non-parametric resampling for support estimation is widely used throughout
science and engineering, and SERES resampling may similarly prove useful in
research areas outside of computational biology and bioinformatics.

Acknowledgments. This work has been supported in part by the National Science
Foundation (grant nos. CCF-1565719, CCF-1714417, and DEB-1737898 to KJL) and
MSU faculty startup funds (to KJL). Computational experiments were performed using
the High Performance Computing Center (HPCC) at MSU.

References

1. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J. Royal Stat. Soc. Ser. B (Methodol) 57(1),
289 300 (1995)

2. Cannone, J.J., et al.: The Comparative RNA Web (CRW) site: an online database
of comparative sequence and structure information for Ribosomal, Intron and
Other RNAs. BMC Bioinform. 3(15) (2002). http://www.rna.ccbb.utexas.edu

3. Daskalakis, C., Roch, S.: Alignment-free phylogenetic reconstruction. In: Berger, B.
(ed.) RECOMB 2010. LNCS, vol. 6044, pp. 123-137. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12683-3_9

4. DelLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under
two or more correlated receiver operating characteristic curves: a nonparametric
approach. Biometrics 44(3), 837-845 (1988)

5. Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7(1), 1-26
(1979)

6. Felsenstein, J.: Confidence limits on phylogenies: an approach using the bootstrap.
Evolution 39(4), 783-791 (1985)

7. Fletcher, W., Yang, Z.: INDELible: a flexible simulator of biological sequence evo-
lution. Mol. Biol. Evol. 26(8), 1879 1888 (2009)

8. Katoh, K., Standley, D.M., Kazutaka Katoh and Daron: MAFFT multiple sequence
alignment software version 7: improvements in performance and usability. Mol.
Biol. Evol. 30(4), 772 780 (2013)

9. Kim, J., Ma, J.: PSAR: measuring multiple sequence alignment reliability by prob-
abilistic sampling. Nucleic Acids Res. 39(15), 6359-6368 (2011)

10. Landan, G., Graur, D.: Heads or tails: a simple reliability check for multiple
sequence alignments. Mol. Biol. Evol. 24(6), 1380-1383 (2007)

11. Landan, G., Graur, D.: Local reliability measures from sets of co-optimal multiple
sequence alignments. In: Biocomputing, pp. 15-24. World Scientific (2008)

12. Liu, K., et al.: SATé-II: very fast and accurate simultaneous estimation of multiple
sequence alignments and phylogenetic trees. Syst. Biol. 61(1), 90-106 (2012)

13. Notredame, C., Higgins, D.G., Heringa, J.: T-Coffee: a novel method for fast and
accurate multiple sequence alignment. J. Mol. Biol. 302, 205-217 (2000)

14. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825 2830 (2011)

308 W. Wang et al.

15. Penn, O., Priviman, E., Landan, G., Graur, D., Pupko, T.: An alignment confidence
score capturing robustness to guide tree uncertainty. Mol. Biol. Evol. 27(8), 1759
1767 (2010)

16. Rodriguez, F.; Oliver, J.L., Marin, A., Medina, J.R.: The general stochastic model
of nucleotide substitution. J. Theor. Biol. 142, 485-501 (1990)

17. Sela, 1., Ashkenazy, H., Katoh, K., Pupko, T.: GUIDANCEZ2: accurate detection of
unreliable alignment regions accounting for the uncertainty of multiple parameters.
Nucleic Acids Res. 43(W1), W7-W14 (2015)

18. Yang, Z., Rannala, B.: Bayesian phylogenetic inference using DNA sequences: a
Markov chain Monte Carlo method. Mol. Biol. Evol. 14(7), 717 724 (1997)

Appendix: non-parametric and semi-parametric
support estimation using SEquential
RESampling random walks on biomolecular
sequences

Wei Wang!, Jack Smith!, Hussein A. Hejase?, and Kevin J. Liu!

! Department of Computer Science and Engineering, Michigan State University, East
Lansing, MI 48824, USA
2 Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold
Spring Harbor, NY 11724, USA
Correspondence: kjl@msu.edu

1 Supplementary Methods

1.1 SERES walks on aligned sequences

The pseudocode for a non-parametric SERES walk on a fixed MSA A is shown
in Algorithm 1.

Algorithm 1 SERES walk on aligned sequences

1: procedure SERESWALKONALIGNEDSEQUENCES(A, v, numReplicates)
> Input: MSA A, walk reversal probability v, number of SERES replicates numReplicates
> Output: list of SERES replicates

2: replicates = <>
3: for i = 1 to numReplicates do
4: direction = (rand() > 0.5) 7 +1 : —1 > Uniformly at random (UAR) choose direction
(right vs. left)
5: i = | length(A) * rand() | + 1 > UAR draw from [1,length(A)]
> rand() returns floating point number sampled UAR from [0, 1)
6: replicate = <>
7 while length(replicate) < length(A) do
8: replicate .= A; > read A;, which is the ith character in alignment A
> Alignment characters A; are one-indexed
9: i+= direction
10: if (i <0) or (i > length(A)) or (rand() < v) then
> Reflection of random walk
11: direction *= -1
12: if (¢ < 0) or (¢ > length(A)) then
13: i+= direction * 2 > Always reflect at start/end of alignment A
14: replicates .= replicate
15: return(replicates)

1.2 SERES walks on unaligned sequences

The pseudocode for SERES resampling of a set of unaligned sequences S is
shown in Algorithms 2 through 4.

Wang et al.

Algorithm 2 SERES resampling of unaligned sequences

1:

-

29:

SOOI qRwN

procedure SERESWALKONUNALIGNEDSEQUENCES(S, «, numReplicates)
> Input: set of unaligned sequences S, walk reversal probability v, number of SERES
replicates numReplicates
> Output: list of SERES replicates
replicates = <>
barriers = <>
Ainit = ObtainGuideAlignments(.S) > See Algorithm 3
¥ = GetAnchorsFromGuideAlignments(S, Ainit) > See Algorithm 3
AddTrivialBarriers(barriers)
for each (a, b) ¥ do
barriers .= a . b
for ¢ = 1 to numReplicates do
replicates .= SERESWalkOnUnalignedSequences(S, v, i, barriers)

return(replicates)

static variable maxReplicateLengthFactor > Maximum replicate length is factor of longest
unaligned sequence length
procedure SERESWALKONUNALIGNEDSEQUENCES(S, v, replicateNum, barriers)
direction = (rand() > 0.5) ? +1: —1 > UAR choose direction (left vs. right)
i = | length(barriers) * rand() | + 1
replicate = <>

while maxLength(replicate) < maxLength(S) * maxReplicateLengthFactor do >
maxLength(S) is length of longest unaligned sequence in S
if ((+ == 1) and (direction == —1)) or ((¢ == length(barriers)) and (direction ==
+1)) then > reflect at first or last barrier
direction *= —1

AsynchronousReadBetweenAdjacentBarriers(S, barriers, ¢, direction, replicate) > read
result passed by reference to mutable object replicate
i += direction

if rand() < v then > change walk direction with probability
direction *= —1
return(replicate)

: procedure ASYNCHRONOUSREADBETWEENADJACENTBARRIERS(S, barriers, 4, direction, replicate)

j = i + direction
for z = i to n do
replicate[z] .= (direction > 0) ? substr(S[z], barriers[i], barriers[j]) : reverse(substr(S[z],
barriers[j] + 1, barriers[i] + 1)
> substr(z, 4, j) returns substring in index interval [i, j) if ¢ < j or empty string if i > j
return > read result passed by reference to mutable object replicate

Appendix 3

Algorithm 3 Obtain anchors

R

23:

24:

25:

e ®

static variable M > MSA methods M =< M1,M2,... >
procedure OBTAINGUIDEALIGNMENTS(S)
alignments = <>
for each (m) M do
alignments .= m(S)
return(alignments)

procedure GETANCHORSFROMGUIDEALIGNMENTS(S, Ainit)

a = <>

B =<>

canonicalAlignment = Ajnit[1] > anchors are indexed based on a fixed alignment in Ajpit
(WLOG chosen to be the first alignment in Ajpiy)

Csirict = GetStrictConsensusColumns(Ajnit) > GetStrictConsensusColumns() returns
column indices into first alignment in canonical Alignment

astrict = MergeAdjacentColumns(Ainit, Cstrict) > merges adjacent columns

> returns array of ordered pairs (@, y) where start indices @ and end indices y are indexed
based on canonicalAlignment
SortAnchors(asgrict, canonicalAlignment)
for z = 1 to length(astrict) do
for i = 1 ton do
(T, y) = Astrics[2]
if substr(canonicalAlignment[:], @[i], y[¢]) contains only indels then

a[i][z] = LookupUnalignedSequenceIndex(
GetLastNonIndelIndexInPrefix(canonical Alignment[i], z[:]))
Bl = alillz]
else
ali][z] = LookupUnalignedSequenceIndex(

GetFirstNonIndelIndexInRange(canonicalAlignment[z], z[i], y[i] + 1))
Bli][z] = LookupUnalignedSequencelndex(
GetLastNonIndellndexInRange(canonicalAlignment[i], z[i], y[i] + 1))

return(a, 3)

procedure SORTANCHORS(a, canonicalAlignment)
> « is an array of ordered pairs (@, y) where start indices @ and end indices y are indexed
based on canonicalAlignment
sort (ComputeModifiedHammingDistance(u, canonicalAlignment) <=>
ComputeModifiedHammingDistance(v, canonicalAlignment)) o
> perl sort syntax
> See Algorithm 4

Algorithm 4 Modified Hamming distance calculation

PaEwE

N

procedure COMPUTEMODIFIEDHAMMINGDISTANCE(u, A)

dist =0

(@.y) = u

for i =1 ton do

for j =i+ 1ton do
dist += ComputeModifiedHammingDistancePair(substr(A[i],2[i],y[4]),

substr(Alj],2[j],yli]))

return(dist / (3))

procedure COMPUTEMODIFIEDHAMMINGDISTANCEPAIR(z, v)
alignedLength = length(z) > aligned sequences x and y have same length
matches = 0
for i = 1 to alignedLength do
if (z[i] != INDEL) and (y[¢{] != INDEL) and (x[i] == y[i]) then
> homologies involving indels are penalized as mismatch
matches++
return(matches / alignedLength)

4 Wang et al.

2 Supplementary Results

Runtime information for simulation study experiments are shown in Supplemen-
tary Table S1.

Supplementary Table S1. Method runtime in simulation study experiments.
Method runtime in seconds is reported as an average across all replicates of all model
conditions with a given dataset size — either 10 or 50 taxa (n = 100).

Model condition class

(based on number of taxa) Method Runtime (s)

10 GUIDANCE1 62.52

10 SERES+GUIDANCE1 105.60
10 GUIDANCE2 218.16
10 SERES+GUIDANCE2 326.19
50 GUIDANCE1 523.49
50 SERES+GUIDANCE1 760.75
50 GUIDANCE2 1025.83

50 SERES+GUIDANCE2 1318.27

