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Abstract— This paper provides a review of integrated propul-
sion, suspension and guidance maglev technology that use fully
passive guideway structures.
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[.  INTRODUCTION

Maglev vehicles utilize magnetic fields in order to create sus-
pension, propulsion and guidance forces without physical
contact and thus speeds well in excess of 500 km/h are possi-
ble. Maglev can offer trip times that are competitive with air
travel for only a fraction of the energy consumed by an air-
craft [1]. The lack of frictional forces between the vehicle
and the guideway, and maglev’s low energy consumption
compared to aircraft means that the operational costs, once
the transportation system has been developed, should be low
[2]. Furthermore, whereas aircraft rely solely on petroleum
and consequently create a large amount of air pollutants, such
as CO, NO,, SO0, H.SO: ang soot [3] maglev’s electric power
can be derived from many renewable energy sources.

Recently there has been renewed interest in maglev vehi-
cle technology because of the SpaceX Hyperloop proposal to
use high-speed vehicles within partially evacuated tubes or
tunnels [4]. By reducing air resistance, vehicle speeds up to
1,200km/h could be achievable [5-7]. Such speeds cannot be
achieved using high-speed rail. Also, unlike high-speed rail,
maglev vehicles have the ability to accelerate rapidly, climb
steep grades, negotiate tight turns and operate in extremely
adverse weather conditions [2]. Maglev vehicles enable
lighter weight and smaller vehicles to be utilized and their
inherently quiet operation eliminates the need for costly noise
abatement in urban environments.

Despite maglev’s attractive characteristics U.S. firms and
Transit authorities have been reluctant to invest in this tech-
nology. Overseas high-speed rail has been extensively used
rather than maglev. The reason for this is undoubtedly, in
part, due to maglev’s extremely high initial capital cost [8].
The author believes that there are three main causes for mag-
lev’s high cost: (1) a specialized elevated guideway needs to
be constructed in order to house the vehicle suspension tech-
nology. (2) A linear synchronous motor for propulsion is in-
variably used, this turns the entire guideway into a motor. (3)
A highly elaborate mechanical guideway directional switch-
ing mechanism is needed to change lanes. This is because
maglev vehicles, unlike traditional rail, typically wrap around
the guideway. Unless further transformational research is
conducted to demonstrate that a radically lower cost maglev
technology can be developed it is unlikely maglev will be
taken up by future urban and intercity planners.

One potential method of significantly reducing guideway
costs would be to integrate the propulsion, suspension and

guidance forces into one motor and generate all the necessary
forces using only one guideway surface. The design and con-
trol of such a motor is undoubtedly significantly more com-
plex because all force requirements must be simultaneously
met using one motor. Nevertheless, using such an approach
appears to be the only foreseeable way that the guideway cost
can become comparable to high-speed rail and interstate
highway costs since rail and automobiles rely only one sur-
face element.

Proponents often claim that the disadvantage of using a
passive guideway is that a power source or power generator
must be on the vehicle and/or a high-speed power transfer
technique must be utilized. However, the rapid improvements
in power electronic technology in recent decades has made
inductive power transfer techniques a much more tenable so-
lution [9-14]. Also a traditional high-speed rail pantograph
system could be used at lower speeds especially if the maglev
guideway can be integrated into existing rail networks.

Integrated passive guideway designs were extensively
studied in the 1970’s and early 80’s [7, 15-46]. In this paper
these less well-known technologies are reviewed, and an at-
tempt is made to compare and critique the different tech-
niques. An in-depth review of all maglev technologies can
be found in [47]. This review is focused on past high-speed
maglev vehicle designs.

I. LINEAR INDUCTION MOTOR USING SEPARATE
ELECTROMAGNETIC SUSPENSION AND GUIDANCE

The linear induction motor (LIM) is similar in many respects
to its rotary counterpart. However, unlike the rotary induc-
tion motor, the secondary of the LIM is much shorter than the
primary and this introduces new detrimental electromagnetic
effects. The single-sided linear induction motor (SLIM), and
double sided linear induction motor (DSLIM) typologies [48]
are shown in Fig. 1.
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Fig. 1 Double and single sided LIM

The DSLIM iron or alloy secondary must be positioned ver-
tically on the guideway with the short primary placed on the
vehicle. Whilst the SLIM primary is positioned horizontally
on the ground and usually has a thin copper or aluminum
sheet on top of the back-iron to provide a low resistance cur-
rent path. For a given weight, the DSLIM develops greater



thrust than a SLIM [49], and unlike the SLIM the large attrac-
tive force between the primary and secondary members is
cancelled out [49]. The German Transrapid 04 [40, 50, 51],
shown in Fig. 2 used the DSLIM. The DSLIM has somewhat
better electrical characteristics but the design of the guideway
and track switching using a SLIM is far simpler.

Fig. 2 The German Transrapid 04, DSLIM driven maglev obtained a maxi-
mum speed of 253km/h in 1977 [40, 50, 51]

The SLIM can be designed to have either an axial or a
transverse flux path, as illustrated in Fig 2. The transverse
flux SLIM can be superior to the axial SLIM if the stack
length is small compared with the pole-pitch because the
transverse SLIM has a shorter magnetic path and this results
in a lighter design with less back iron [52, 53]. However,
when using a variable frequency supply the pole pitch can be
made smaller than the stack length and therefore the use of a
transverse flux SLIM for high-speed operation no longer has
a significant advantage [45, 54]

The LIM air-gap flux is inductively created and therefore
with an increased air-gap, the power factor becomes inevita-
bly low [45]. Also, because the primary is short relative to
the secondary, it is always coming into contact with new un-
magnetized guideway regions resulting in a reduction in
thrust force at high translational speeds. This effect gets in-
creasingly worse when the relative translational speed ex-
ceeds the speed with which the electromagnetic field diffuses
through the conductor of the secondary [54, 55].
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Fig. 2 Axial (a) and transverse flux Fig. 3. Romg vehicle, 1972
SLIM (b), showing flux paths [56] [19]

For a given design speed, the end-effect can be reduced by
using a higher frequency and a greater number of pole-
pairs [54, 57, 58]. However, the number of poles that can fit
onto the primary for a given design length, L, is limited by
tooth saturation, and more importantly by the air-gap leak-
age [59]. For pole pitches much less than 200mm the air-gap
leakage increases significantly, Nonaka recommended a
pole-pitch no less than 300mm regardless of the design speed
[59]. Therefore, the frequency to pole number ratio can only

be increased so far before the primary length, L, of the LIM
must be increased in order to operate at a good efficiency.
This means that for high-speed applications, the LIM primary
must be very long and unwieldy.

Problems with the end effect and low power factor have
limited the use of the LIM to low-speed applications. Cur-
rently the Japanese HSST and Korean UTM use the LIM with
electromagnetic suspension [60, 61].

Although electromagnetic suspension is highly efficient
for low speed operation at high speed the iron guideway must
be laminated in order to mitigate the induced eddy currents
and drag forces. The use of laminated steel on the guideway
will greatly add to the maglev guideway cost [62].

II. SINGLE SIDED LINEAR INDUCTION MOTOR USING IRON
ATTRACTION

The SLIM creates a large attractive force between the pri-
mary and secondary. Therefore, this attractive force can be
used to provide a vehicle with the magnetic suspension force
[15-18]. Such a maglev vehicle was developed and show-
cased in 1972 by the Romag Corporation [15, 18, 19]. Fig.
3. shows that both an overhead and a ground vehicle config-
uration were developed. However, at higher speeds large in-
duced currents in the track created by the SLIM result in the
attractive force becoming significantly diminished, and at
high enough speeds the normal force becomes a large repul-
sive force [63-65]. Therefore, this integrated method is not
effective, or safe, for very high speed applications. Further-
more, since AC electromagnetic attraction produces only half
the average suspension force per unit area compared to a DC
electromagnet attraction [44] using a purely alternating cur-
rent will result in poor suspension performance. In order to
improve the suspension performance using this technique a
DC current bias can be used to improve the attractive force,
such a technique has been used more recently for low speed
steel plate transportation [66-68].

III. TRON CORED LINEAR SYNCHRONOUS MOTOR

The linear reluctance motor inherently creates a large attrac-
tive magnetic force; it was proposed by Ross that this attrac-
tive force could be used to create an integrated maglev motor
[15-18], where the reluctance forces created by salient track
poles could be used for propulsion while the iron’s attraction
could be used for suspension. However, the disadvantage of
such a motor is that all the air-gap flux is provided by the AC
magnetizing current flowing in the three-phase primary wind-
ings and this creates a low power factor. In order to improve
on this design Levi proposed that a DC excitation on the pri-
mary be used to provide the magnetic suspension force and
magnetization field, while an AC winding is used to synchro-
nously interact with the salient pole guideway structure to
create a propulsive force. This type of integrated maglev mo-
tor has been termed Iron Cored Linear Synchronous Motor
(ICLSM) [21, 22]. A variety of different salient track struc-
tures have been proposed for the ICLSM, three such types,
the homopolar, heteropolar, zig-zag ICLSM [20, 42, 45, 69]
designs are illustrated in Fig. 4 — 6. It has also been suggested



that magnets could provide the fixed field MMF excita-
tion [23, 24].
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Fig. 4. Transverse flux seg-
mented homopolar linear syn-
chronous motor [20, 31, 45, 70]
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Fig. 5. Transverse flux heteropolar li-
near synchronous motor [20, 31, 45]

Fig. 6. Transverse flux zig-zag linear synchronous motor [20, 25, 46, 69]

Many past published designs used lumped parameter round

rotor theory to predict the ICLSM performance. Therefore,
there were often large discrepancies between the calculated
and measured values particularly when the saturation, leak-
age effects and iron eddy current losses were neglected [26-
28, 70]. Based on actual linear motor and rotary experimental
test-rig results it has been reported that the ICLSM perfor-
mance is approximately 70-85% of the values predicted by
the round-rotor based calculations [29, 30]. A large scale low-
speed ICLSM test vehicle on a 150m track was developed by
Boldea in the mid 1980’s in order to demonstrate the principle
[71, 72].

The ICLSM was also considered for use in a Swiss under-
ground high-speed transportation system, in which the vehi-
cles traveled within partially evacuated tubes [7, 73, 74].
This homopolar track design with magnetic attractive guid-
ance is illustrated in Fig. 7.

At high speeds induced eddy currents will create a signifi-
cant magnetic drag force and power loss therefore a lami-
nated guideway must be used for high-speed operation [7, 27,
31,42,45,70]. Asthe ICLSM requires a high magnetization
in the air-gap the track and vehicle stator iron must be very
thick in order to prevent saturation. For the high speed de-
signs, which require higher magnetization currents, over 2
times as much (laminated) track iron is required compared
with an LIM [20, 43].

Reactive surface of
the magnetic attractive guidance

design [74]

IV. THE ELECTROMAGNETIC RIVER

Eastham and Laithwaite proposed that if the SLIM was
used without any track back-iron then the induced currents in
the conductive, non-magnetic, track could create a large re-
pulsive force between the primary and the conductive second-
ary, and this could allow the SLIM to create both the suspen-
sion and thrust forces simultaneously [32, 33]. An illustration
of a prototype model vehicle using this method, which
Laithwaite imaginatively termed an Electromagnetic River
(ER), is shown in Fig 8. The primary is on the ground and the
model vehicle has an aluminum secondary on its underside.
Such a method of eddy current repulsion goes back to the first
proposed maglev system by Bachelet in 1912 in which guide-
way solenoids were used to suspend a conductive ‘vehicle’
[40, 75]. Unfortunately, the suspension of a vehicle using
the LIM’s inductive repulsive forces, with a reasonable air-
gap, requires a very large amount of reactive power. There-
fore the ER motor must operate with an extremely low power
factor [34-36, 76] In order to create a sufficient suspension-
to-weight ratio water cooling of the windings would be es-
sential [36] and, the primary would need to be very long (at
least 8m) in order to accommodate enough poles to counter-
act the end-effects and provide sufficient thrust force at high
speeds [59].

It has also been proposed that superconducting winding
could be used in order to improve the suspension/weight ratio
at a large air-gap [39, 77]. However, superconductors have
losses when transmitting alternating current and these losses
increase with the operating frequency and field density. At
the high operating frequencies required by the ER the AC
losses will become excessively large [78]. Also, the use of
an even larger air-gap, will result in an even greater leakage
flux, and make for an especially abysmal power factor [39].

The ER concept has never developed past the construction
of small-scale models, where the track is active and the vehi-
cle has a passive aluminum underside.

NASA’s Marshall space flight center in Huntsville, Alabama [79]

V. MECHANICAL ROTATION OF MAGNETS

Rather than creating a traveling magnetic field using wind-
ings, it is also possible to create the traveling field by rotating
magnets or superconducting magnets. The rotation of the
magnets over a conductive non-magnetic surface, such as alu-
minum, will induce currents in the aluminum that can then
create suspension and thrust forces like with the ER concept.
However, as the air-gap field is provided by the magnet
sources there will be no associated low power factor seen by
the motor. Therefore, unlike with the LIM and ER increasing
the air-gap will not require more reactive power. However,
the rotation of the magnetic sources will introduce new me-
chanical losses and a motor will be required to rotate the mag-
nets. With the use of rare-earth magnets or superconductors



the combined system maybe designed to be relatively light
weight. [38, 80-82]

This concept was first proposed by Davis and
Borcherts [37]. They proposed rotating superconductors be-
cause using superconductors in a LIM configuration would
create large AC losses [37, 38]. A radial and a helical super-
conducting magnet configuration were proposed [37, 38, 41,
65], as shown in Fig. 9 and Fig. 10.

As with the LIM the propulsion forces are dependent on the
relative velocity of the rotor compared to the translational ve-
locity and therefore a slip is always present [83]. Large brak-
ing forces result when the peripheral speed of the rotor is ro-
tated slower than the vehicles traveling speed.

Although low or high-temperature superconductors may
be used a significantly lower cost solution is achieved by us-
ing rare-earth Nd-Fe-B magnets [81]. Fujii and Ogawa first
considered rotating axially placed rare-earth magnets [80, 84-
87]. Two proposed methods for creating thrust and suspen-
sion force simultaneously using a tilt and an overlap type
magnet wheel is shown in Fig. 11 and Fig. 12. The overlap
type has better magnetic coupling to the guideway than the
tilt type, but in order to create a large thrust a large portion of
the rotor has to be rotated over air [85]. Greater guidance can
be achieved by using an inclined guideway as shown in Fig.
13 [85]. However, such a guideway will make vehicle direc-
tional switching complex and the guidance force is at the per-
manent expense of a reduced suspension force. Only results
for standstill operations of these two topologies have been
published.

A Nd-Fe-B Halbach rotor configuration was considered by
Bird as shown in Fig. 14 [47, 81, 88, 89]. Using the illustrated
split-sheet topology creates some re-centering lateral forces
[47]. However, the re-centering forces do not scale well and
result in a significant reduction in the lift and thrust. Although
the magnetic coupling between the guideway and magnetic
rotor is poor this electrodynamic wheel typology has the po-
tential to enable a completely flat guideway structure to be
utilized, such a typology could therefore potentially be as low
cost as high-speed rail.

VI. CONCLUSION

A review of less studied passive integrated suspension, pro-
pulsion and guidance technologies has been presented. A dis-
cussion of the advantages and disadvantages of each technol-
ogy was highlighted. The ICLSM and the use of mechanical
rotational magnets, such as the electrodynamic wheel appear
to offer the best means of attaining similar cost-performance
to the prevailing high-speed linear synchronous motor de-
signs with separate electromagnetic or electrodynamic sus-
pension. The use of a radial magnet electrodynamic wheel
topology offers the tantalizing possibility of reducing the
guideway costs to a similar level as incurred by high-speed
rail. However, significant control challenges must be over-
come before this technology can be implemented in a full-
size vehicle.
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