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Abstract — This paper analyzes the damping and stiffness
terms of a 4-degree of freedom laboratory scale electrodynamic
wheel magnetic levitation vehicle. The vehicle creates both sus-
pension and propulsion forces through the simultaneous rota-
tion and translation of the electrodynamic wheels above a con-
ductive non-magnetic plate of finite thickness. The stiffness
and damping terms were derived using an analytic 3-D steady-
state eddy current model, and are analyzed based on their suit-
ability for a linear state-space model. The implications with
respect to static stability are discussed.
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L INTRODUCTION

Asigniﬁcant challenge to the realization of electrodynam-
ic wheel (EDW) magnetic levitation (maglev) vehicles
is the current lack of stability and controls analysis on eddy
current based systems that utilize conductive plate tracks.
Past authors have used lumped parameter circuit based ap-
proaches to model the forces created by electrodynamic
based maglev system [1-3]. For instance, Ooi [4-7] and Cai
[8] used a lumped parameter approach to derive the stiffness
and damping terms and then incorporated the terms within a
state-space electromechanical maglev model suitable for
control. However, lumped parameter based systems are in-
herently approximate as they cannot account for the skin
effect within a conductive plate nor model the complex cir-
culating current density paths within a solid conductor.

Chen et al. [9, 10] used an experimental setup to empiri-
cally determine the force relationship of a translationally
moving coil with respect to velocity and position, this al-
lowed stiffness and damping terms to be empirically deter-
mined. Chen termed this approach unsteady-motion theory.
Chu ef al. [11] used a similar type of empirical based ap-
proach when studying the dynamics of moving magnets over
a conductive plate. However, such an approach can only be
used after the maglev system is constructed.

Davis et al. [12] and Uranker [13, 14] pioneered the
use of using exact analytic eddy current equations to deter-
mine the eddy current stiffness and damping terms for a coil
translationally moving over a conductive plate. More recent-
ly, Paul et al. used a second order vector potential (SOVP)
formulation to analytically derive the stiffness and damping
matrices for an EDW above a conductive plate [15-17]. The
EDW has both rotational and translational velocity vectors.
A laboratory scale EDW vehicle is shown in Fig. 1 and the
vehicles coordinate axes are defined in Fig. 2. The EDW
vehicle is physically prevented from moving in the transla-
tional, and yaw, 6,, axis such that (z,6,) = (0,0).

In this paper, the SOVP-calculated stiffness and damping
terms are used in a semi-linear 4 degree of freedom (DOF)
maglev system, with a focus on stability and linearity. Rec-
ognizing which terms are approximately linear within an
EDW vehicle’s operating region is important, because highly

non-linear terms will cause the state-space model to become
inaccurate if the vehicle drifts from its desired operating
point. The non-linear terms will then need to be re-
calculated in real time for the vehicle motion to match the
model.
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Fig. 1. (a) Single EDW above aluminum conductive plate and (b) vehicle
setup consisting of 4 EDW and brushless DC drive motors [18]
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Fig. 2. Mechanical model of prototype EDW maglev vehicle

II.  ELECTRODYNAMIC WHEEL PROTOTYPE

The rotor and guideway parameters for which the analysis
is performed are shown in Table . The four EDWs have a
radius 7, = 26mm and contain P = 2 pole-pairs. The field is
created by using a four segment-per-pole Halbach rotor ty-
pology. By rotating the EDW over the conductive plate eddy
currents are induced in the conductive plate track that create
both a lift force and thrust or braking force. A thrust force is
created when the rotor circumferential velocity, v. becomes
greater than the translational velocity, vi. Therefore, a slip
speed, s, can be defined as

s=wv, —v, €8
where v, = Tw, )

and @, = rotor mechanical angular speed.



If the EDW vehicle is to remain levitated at a desired atti-
tude and location on a conductive track, then it is necessary
to control the vertical position, y, translational position (for-
ward and backward), x, roll, 6., and pitch, 6. angle. These
variables are defined in Fig. 2. The EDW’s are hard-
mounted to the vehicle (i.e. not allowed to pivot relative to
the vehicle body).

TABLE I
EDW VEHICLE LABORATORY PARAMETERS

Parameter Value Unit
Outer radius, 7, 26 +0.58 mm
Inner radius, r; 9.6 mm

Rotor Wid.th of rotor, w, . 52 mm
Residual flux density, Bren 1.42 T
relative permeability, u, 1.108 -
Pole-pairs, P 2 -
Outer radius, r, 600+ 0.73 mm
Guideway model width, w 140 mm

Guideway | Guideway model length, / 140 mm
Thickness, & 6.3 mm
Conductivity, 6 (Al, 6061-T06) | 2.459x107 Sm’!

II. 3-D FORCE AND TORQUE EQUATION

If an EDW is rotating with rotational speed, @, and is
moving with a velocity described by

V=107 + vyg +0,z 3)
then the forces created by the induced eddy currents is [17]
1/2 w/2
== f f B(z.y,, z) B'(x, Y, 2)dzdz @)
Ho —1/2w/2

Solving for the source field, Bj, and the reflected eddy-
current field, B” the force equation yields
} ®)
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where By, is the source field term and R, is the reflected
eddy current field term for the m™ and »n" spatial harmonic.
The reflected eddy current term is created by the induced
currents in the conductive plate and is defined as [17]
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&, = 2mm/l (7
k, = 2mn/w (8)
B =X+ Yo ©)
A = 0.5, 1,0 (10)
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T = Fo¥, + J(Pw,, + &0, + k,0,) (13)

The terms given in (6) - (13) are defined in Table I. The
force equation assumes that the conductive, non-magnetic
plate has a model width, w, length, /, and thickness, 4, and it
is assumed that the plate is sufficiently wide and long that
the source and eddy current fields are zero at its length and
width edges. The steady-state reflected eddy-current field,
B’, created above the conductive plate is given by [15-17]
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The EDW source field term in (5) is defined by
B, =—|s,.[ (15)
0
where S,,, is the m™ and n™ spatial Fourier harmonic source
field term and y, is the air-gap height between the EDW and
the conductive plate. The Fourier harmonic source field
terms are determined by applying a 2-D spatial Fourier har-
monic analysis to the source field. For the EDW, the 3-D
steady state source field for a Halbach rotor can be shown to
be [15-17]
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The parameters (xc,vc,z.) in (18) defines the center position
of the rotor and r; = inner rotor radius. Utilizing (16) the
Fourier harmonic terms can be obtained by evaluating:
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The Fourier harmonic field at a height y, can then be ex-
pressed in Cartesian form as:
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where the complex exponential term in (20) accounts for the
rotational motion of the source field.
By a similar derivation, the eddy-current torque is [18]
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IV. EDDY-CURRENT STIFFNESS AND DAMPING TERMS

In [5], the force and torque term given by (5) and (21)
were used to derive 6-DOF stiffness and damping terms. As
this laboratory vehicle is suspended above a 1.2m guideway
wheel that approximates a flat guideway track it is not desir-
able to have the vehicle yaw, 6,, about the y-axis since this
could lead to the rotors approaching the edge of the finite
width conductive plate guideway. It is also assumed in this
analysis that the motion along the axial z-axis, as defined in
Fig. 2, is constrained and it is therefore not necessary to
model transverse z movement. These constraints result in

the eddy current model reducing to a 4-DOF model. The
damping and stiffness matrix then reduces to
or, oF,
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where the diagonal terms are given by
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From the energy equation used to form (4), it can be shown
that the diagonal stiffness terms in (22) are equal, so that [17]
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Therefore, the cross diagonal terms in (22) are both equal to

— wiRe (26)
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Note that the stiffness terms involving rotor angle, 6,, are
cyclic with the electrical frequency of the rotor, Pw,, and
average to zero for the comparatively larger time constants
of the vehicle and the torque stiffness and damping terms
with respect to x and y, are very small and are therefore ne-

glected.
Using analogous assumptions the damping terms are
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Note that unlike stiffness the diagonal damping terms in (27)
are not equal.

V. ANALYSIS OF STIFFNESS TERMS

One of the most significant challenges in the realization of
an EDW maglev systems is the control of such a non-linear
and highly coupled system. Linear control, while computa-
tionally efficient, is unsuited for modes of motion that are
non-linear and unstable. On the other hand, run-time calcu-
lations of stiffness and damping, while significantly faster
than other dynamic equations or finite element methods, are
still computationally intensive (on the order of tens to hun-
dreds of milliseconds), and need to be minimized for effi-
cient control. The contribution made by this paper is to uti-
lize the analytic damping and stiffness terms defined by (22)
and (27) within the framework of a maglev vehicle in order
to assess what terms create stability or instability. It should
be noted that the derived stiffness and damping terms plotted
in this paper are based on a steady-state model. However as
the eddy current time constant is much faster than the me-
chanical time constant it was shown in [19] that the steady-
state eddy current force model can be combined with a tran-
sient mechanical model to provide valid dynamic results, as
long as the steady-state force terms are actively updated
when the mechanical parameters change (such as position

and velocity). We call negative stiffness and damping terms
stabilizing, since they enact a restorative force towards equi-
librium.

In the following sections, when analyzing how the damp-
ing and stiffness terms are affected by slip, s, vy, and vy, it is
also beneficial to envision how the vehicle would typically
operate. Starting from a standstill, s =v,=v,=0, slip in-
creases until the vehicle levitates. Translational speed, vy,
then begins to catch up to slip, until it reaches steady-state,
at which point v, lags behind slip by a consistent amount.
Upon braking, slip lags behind v, by an amount dependent
on the amount of braking force desired. This is illustrated in
Fig. 3, noting that this is the generalized behavior and the
actual regions would vary based on operating conditions.

From Fig. 3, when slip magnitude is significantly larger
than the magnitude of v, and they are both have the same
direction, the vehicle operates in the blue zone and under-
goes acceleration. Steady state or near steady state operation
occurs in the yellow zone, where slip and v, operate in the
same direction and slip magnitude is only slightly larger than
vy magnitude. As slip slows down, the vehicle will undergo
braking, shown by the green zone. If the slip direction is
reversed, then the vehicle will experience a larger braking
force, shown by the dark pink zone.
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Fig. 3: Approximate vehicle operating regions

A.  Translational Thrust Stiffness

Fig. 4 shows the variation of translational force, F,, with
respect to slip, for various values of translational velocity, vy.
Note that a maximum slip and translational velocity magni-
tude of 20m/s was chosen to keep the Halbach rotors from
exceeding their mechanical limitations.

Fig. 5 shows how the translational stiffness in the x-
direction, k., is affected by slip and v, when v. = 0 m/s. The
near symmetry about the s = v, line implies that the stiffness
is affected similarly by both slip and v, velocity, as expected
from (1). As ki is always less than zero under these operat-
ing conditions, it enacts a force towards equilibrium and is
therefore a stabilizing influence in the x-direction. When
either v or slip increases in magnitude, the stabilizing force
becomes greater. Fig. 6 better shows the behavior when the
vertical speed and circumferential speed are held at (v, vc) =
(0,10) m/s. A rotor circumferential speed of v. = 10 m/s
equates to w, = 3691 rev/min. This value was selected asit is
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Fig. 4. F, vs. slip for various values of translational velocity, v,

20 kxx (N/m/s)
= 10
g 0 -2000
“-10
220 ’ -4000
-20 -10 0 10 20

v, (m/s)
Fig. 5. Contour plot of &« vs. slip vs. v, (v, = 0)



a sufficient rotational speed to levitate the prototype vehicle.
A minimum stiffness is achieved when the x velocity is off-
set by the rotor velocity such that

’UI = TOWT

(37)

In steady-state operation, k. is less stabilizing, and be-
comes more stabilizing as the vehicle accelerates and decel-
erates significantly. Light braking that moves the system

towards equation (37) can minimize the stabilization.
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Fig. 6. Plot of k., and F\ versus v, when (v,, v.) = (0,10) m/s.

In order to evaluate how v, affects kx, it can first be ob-
served how the force is affected by a range of heave values,
as shown in Fig. 7. Note that any non-zero heave is consid-
ered transient, and is expected to be small, so the v, terms
only range from £5 my/s.

The contour plot in Fig. 8 shows how k., changes as slip
and v, vary, while vy = 0. While k.. is negative and therefore
stabilizing for a majority of the operating region, ki be-
comes positive and therefore destabilizing when the vertical
velocity is strongly positive and the slip is small. While this
must be accounted for when considering transient behavior,
during cruise, the vehicle would have significant slip and
very little vertical velocity.

It can also be noted that increasing slip magnitude is a
stabilizing action on k. with respect to v,, since increasing
the slip magnitude drives the stiffness down. Fig. 9 shows
that when the rotor speed is held constant at (vx, v¢) = (0,10)
m/s, k.. increases nearly linearly with v,. This bolsters the
argument for linearizing this dynamic for control purposes.
Also note that at this reasonable rotor speed, k. is always
negative and therefore stabilizing.
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Fig. 7. Thrust force, F, versus slip for various values of v, (v, = 0)
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Fig. 9. Plot of &, and F\, vs. v, when (v, v.) = (0,10) m/s

B.  Translational Heave Stiffness

The definition of the translational heave stiffness, 4y, is
given by (26) it is the partial derivative of the thrust force
with respect the vertical position change.

Note that due to symmetry of the stiffness matrix defined
in equation (22), ky, can also be thought of as the partial
derivative of the lift force with respect to change in transla-
tional position. Therefore, due to this off-diagonal equiva-
lence in (22), the vertical force will be affected by ox the
same way that translational force is affected by dy.

Fig. 10 shows the relationship of k., with slip and v.. The
near symmetrical behavior about s = v, is expected from
equation (1). Note that despite the nonlinear behavior, there
exists a general trend of a positive, destabilizing stiffness for
larger slip and translational velocities, and a negative, stabi-
lizing stiffness for smaller slip and translational velocities.
The line s = v, is the cutoff between stabilizing and destabi-
lizing k., contribution. From Fig. 3, we can see that this dy-
namic would be strongly stable during acceleration, weakly
stable during steady-state operation, and less stable as more
braking force is applied. Note that stability while braking is
only possible when only a small brake force is applied as to
not cross the s = v, threshold.

Fig. 11 shows how k., changes as v, changes while (v,, v.)
= (0,10) m/s. The non-linear, non-quadratic behavior can
have an adverse impact on the application of control if we
chose to use a linear system representation, necessitating
updating the model during run-time to reflect the actual &,
term. Large forward translational speeds (an expected oper-
ating condition) lead to instability.

The contour plot in Fig. 12 shows how &, varies with slip
and v,. Slices of ky, with respect to slip show that i, be-
comes more stabilizing with increased slip and slices of ki,
with respect to v, show that k,, is more stabilizing with in-
creased v, when slip is positive and more destabilizing with
increased v, when slip is negative. From (26) we can also
infer the same stabilizing/destabilizing action in the x-axis.
A slice of k, versus v, in Fig. 11 shows a strong linearity
around an operating point with constant rotor velocity. This
term therefore lends itself well to linear modeling in this
mode.

Observing both Fig. 10 and Fig. 12, a possible detrimental
synergistic effect can be noticed. If the system is operating
in an unstable braking region, then the braking force will be
increased, leading to a larger change in x. This larger change
in x, from (26), will lead to larger changes in F, and there-
fore y, which, because of (25), will lead to larger changes in
F, and therefore x, thus indicating a positive feedback loop.
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Fig. 10. Contour plot of &y, vs. slip vs. vy, (v, = 0)
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Fig. 11. Plot of k, and F\ vs. v, when (v, v¢) = (0,10) m/s



C. Vertical Heave Stiffness

The vertical heave stiffness, k,,, is defined by (24) and is
the partial derivative of F, with respect to vertical position,
y. The vertical lift force, F), is always positive when v, = 0
and roughly tends to increase when the quantity s - vy in-
creases, as shown in Fig. 14.

The contour plot in Fig. 15 shows the relationship of £,
with slip and v.. Again we obtain near symmetry about
s=v. The negative values suggest k,, with respect to slip
and v, is always stabilizing under these expected operating
conditions.  Additionally, the magnitude gets larger for
larger slip and v, values, further applying restorative forces.
The magnitude of k,, at extreme slip and translational
velocities is also larger than other stiffness terms, so k;, has a
very pronounced open loop stabilizing effect. The negative
kyy value is why past researchers have stated that electrody-
namic levitation is stable [8]. Fig. 16 shows a slice of &, vs.
vy, showing a nonlinear characteristic when (v, v.) = (0,10)
m/s. Note that for mild braking in the vicinity of s = v,, there
is a reduction in the stabilizing force, but during more pro-
nounced transient operation (accelerating or braking), &,
increases.
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Fig. 16. Plot of k,, and F, vs. v, when (v,, v.) = (0,10) m/s
The variation of vertical force with respect to vertical veloci-

ty is shown in Fig. 17. The contour plot in Fig. 18 shows
how k,, is affected by slip and v,. The £, and v, terms are

positively correlated, implying that increasing v, reduces
stabilizing action. More stability is observed as the slip
magnitude increases. This is a fortunate dynamic, since one
would expect a significant slip in order to maintain an airgap
and provide thrust. Fig. 19 shows this strong linearity when
rotational velocity is held such that (v, v¢) = (0,10) m/s. This
can be exploited to simplify run-time re-calculations of 4,, in
a state-space system.
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VI. ANALYSIS OF DAMPING TERMS

A.  Thrust Translational Damping

The thrust translational damping, d.., is defined in (28) as
the partial derivative of F, with respect to v,. Fig. 20 shows
the how d.. varies with slip and v.. Stabilizing damping is
observed near s =v,. The damping increases nonlinearly as
the system moves away from this line until plateauing near
zero for large slip and v, values. Fig. 21 shows the behavior
of d. as v, varies and (v, v¢) = (0,10) m/s. When the rotor’s
surface velocity matches the x velocity, the damping is min-
imized to produce more stable dynamics. The non-linear
behavior means a more compute-intensive algorithm is re-
quired for re-calculating d., during run-time, rather than a
linear interpolation.

Steady-state cruising and mild to moderate braking will
keep the EDW in the stable region. Heavy acceleration and
emergency braking will push d., towards instability.
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Fig. 20. Contour plot of d., vs. slip vs. vy, (v, = 0)
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Fig. 21. Plot of d\ and F\ vs. v, when (v, v¢) = (0,10) m/s



The contour plot in Fig. 22 shows the relationship of d.
with respect to slip and v,. While slices with respect to slip
are non-linear, slices with respect to v, are only weakly non-
linear and for control purposes may be approximated as line-
ar. Reduced slip magnitude and larger vertical velocities
affect the stabilization on d,,. During operation one would
expect slip to be moderately large, which would lead to a
near zero contribution on the x-axis dynamics from d,.. Fig.
23 confirms that while dx vs. v, is not exactly linear, it could
be approximated as linear within a subset of the operating
region.
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Fig. 22. Contour plot of d,. vs. slip vs. v,
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Fig. 23. Plots of dy and F; vs. v, when (vy, vc) = (0,10) m/s

B.  Translational Heave Damping

The thrust translational damping, d.,, is defined as the par-

tial derivative of F with respect to v,. Fig. 24 shows that d.,
varies with v, and slip non-linearly. The largest and smallest
values of d,, lie in the heavy braking operating region. Note
that for negative values of the quantity v, - s, the translational
heave damping is stabilizing, while for positive values of v,—
s, it is destabilizing. The non-linearity complicates the line-
ar modeling and control of the system, and will require up-
dating the d., term using the analytic model during run-time
to achieve high accuracy. A near-zero damping is observed
when s =v,. Fig. 25 shows one slice of dy, vs. v. when (v,
ve) = (0,10) m/s, again showing nonlinearity and the fact that
faster translational velocity leads to instability in d..

As the vehicle accelerates from a standstill, the damping is
pushed into the negative region. As v, increases up to
steady-state, the damping magnitude is decreased, but re-
mains negative. Beyond mild braking (s - v < 0) the damp-
ing becomes positive and destabilizing.
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Fig. 24. Contour plot of d,, vs. slip vs. vy, (v, = 0)
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Fig. 25. Plot of dy, and F\ vs. v, when (v, v.) = (0,10) m/s

The contour plot in Fig. 26 show how d., varies with slip
and v,. The heave, vy, does not have a large effect on d,.

This is convenient for an accurate linearization around an
operating point in this region. The nonlinear behavior with
respect to slip shows that d., is negative in the expected run-
time scenario where slip is positive, and therefore stabilizing
when v, =0. Fig. 27 shows the quadratic shape of d., with
respect to v,. To reduce compute time, d., variation in v,
could be approximated by a quadratic function during run-
time. Note the stabilizing effect of dy, when (v,, vc) = (0,10)
m/s, although the stabilization becomes smaller as the mag-
nitude of v, increases.

20 dxy (N/m/s)
210 2
€o 0

-10 destabilizing ’
20 : : )
-5 -2.5 0 2.5 5
vy (m/s)
Fig. 26. Contour plot of d., vs. slip vs. v,
(note v, = 0, so slip is analogous to w,,)
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Fig. 27. Plot of d, and F, vs. slip vs. v, when (vy, v.) = (0,10) m/s
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The stability of the selected damping and stiffness terms
in relation to v, when (s, v,) = (0,0) is summarized in Table
II. Note that k,, and d,, are unstable when vy is positive, and
dyx becomes unstable if the magnitude of v, becomes large
enough. Another positive feedback loop exists between k.
and d,, for positive v, values, since k. can exert more effect
on F. (and therefore v,) with larger dy, and d., becomes in-
creasingly unstable with larger v.. From a control perspec-
tive, Table II shows that k., and d., should be recalculated at
run-time when v, changes.

The stability in relation to v, when (s, vx) = (0,0) is shown
in Table III, which indicates that k.. and k,, are unstable
when v, is positive, and that v, does not have a strong influ-
ence on ky, and d,, at this operating point.

DISCUSSION

TABLE II
STABILITY OF DAMPING AND STIFFNESS TERMS WHEN
(s, v, ) = (0,0) AND v, VARIES

v, (m/s
Term |55 o ( 0 ) 10 20 Legend
o
ey UNSTABLE
ko 4
s STABLE
4,

TABLE III
STABILITY OF DAMPING AND STIFFNESS TERMS WHEN
(s, v« ) =(0,0), AND v, VARIES

Term | 5 25 W (II(I)/S) 25 5 Legend
fee
ky |UNSTABLE
kyy T
j” lSTABLE

Finally, the stability in relation to s when (v, v,) = (0,0) is
shown in Table IV. In this case, k., and d., are unstable



when s is negative and d.. becomes weakly unstable when
the magnitude of s becomes large. The synergistic effect
(positive feedback loop) when k., and d,, are both positive is
also present with the slip dynamic.

TABLE IV
STABILITY OF DAMPING AND STIFENESS TERMS WHEN
(v,,v) =(0,0) AND s VARIES

s (m/s
Term |55 o ( 0) 10 20 Legend
ke
ko IUNSTABLE
%, 1
d lSTABLE
dx\’

From a control perspective, these tables show that k., and
dy, should be recalculated at run-time when v, or s changes,
while k.. and k,, should be recalculated when v, changes.
Other terms should be recalculated periodically as cpu time
permits to keep the estimated system as accurate as possible.

VIII.

In this paper, an exact 3-D eddy current based stiffness
and damping model has been used to study the static stability
of a 4-DOF EDW maglev system. Although many of the
terms are highly nonlinear, one can make general notes
about the stability contribution of these terms in the operat-
ing regions and one can determine which terms can be treat-
ed as linear and which must be recalculated during run-time.

CONCLUSION
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