
 

ΦAbstract – This paper analyzes the damping and stiffness 
terms of a 4-degree of freedom laboratory scale electrodynamic 
wheel magnetic levitation vehicle. The vehicle creates both sus-
pension and propulsion forces through the simultaneous rota-
tion and translation of the electrodynamic wheels above a con-
ductive non-magnetic plate of finite thickness.  The stiffness 
and damping terms were derived using an analytic 3-D steady-
state eddy current model, and are analyzed based on their suit-
ability for a linear state-space model. The implications with 
respect to static stability are discussed. 
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I.   INTRODUCTION 
significant challenge to the realization of electrodynam-
ic wheel (EDW) magnetic levitation (maglev) vehicles 

is the current lack of stability and controls analysis on eddy 
current based systems that utilize conductive plate tracks.  
Past authors have used lumped parameter circuit based ap-
proaches to model the forces created by electrodynamic 
based maglev system [1-3]. For instance, Ooi [4-7] and Cai 
[8] used a lumped parameter approach to derive the stiffness 
and damping terms and then incorporated the terms within a 
state-space electromechanical maglev model suitable for 
control.  However, lumped parameter based systems are in-
herently approximate as they cannot account for the skin 
effect within a conductive plate nor model the complex cir-
culating current density paths within a solid conductor.   
 Chen et al. [9, 10] used an experimental setup to empiri-
cally determine the force relationship of a translationally 
moving coil with respect to velocity and position, this al-
lowed stiffness and damping terms to be empirically deter-
mined. Chen termed this approach unsteady-motion theory.  
Chu et al. [11] used a similar type of empirical based ap-
proach when studying the dynamics of moving magnets over 
a conductive plate.  However, such an approach can only be 
used after the maglev system is constructed.  
     Davis et al.  [12] and  Uranker [13, 14] pioneered the 
use of using exact analytic eddy current equations to deter-
mine the eddy current stiffness and damping terms for  a coil 
translationally moving over a conductive plate.  More recent-
ly, Paul et al. used a second order vector potential (SOVP) 
formulation to analytically derive the stiffness and damping 
matrices for an EDW above a conductive plate [15-17]. The 
EDW has both rotational and translational velocity vectors. 
A laboratory scale EDW vehicle is shown in Fig. 1 and the 
vehicles coordinate axes are defined in Fig. 2. The EDW 
vehicle is physically prevented from moving in the transla-
tional, and yaw, y, axis such that (z, y) = (0,0). 

In this paper, the SOVP-calculated stiffness and damping 
terms are used in a semi-linear 4 degree of freedom (DOF) 
maglev system, with a focus on stability and linearity. Rec-
ognizing which terms are approximately linear within an 
EDW vehicle’s operating region is important, because highly 

                                                           
 

non-linear terms will cause the state-space model to become 
inaccurate if the vehicle drifts from its desired operating 
point.  The non-linear terms will then need to be re-
calculated in real time for the vehicle motion to match the 
model.  

 

                     
(a)

 
(b) 

Fig. 1. (a) Single EDW above aluminum conductive plate and (b) vehicle 
setup consisting of 4 EDW and brushless DC drive motors [18] 

 

 
Fig. 2.  Mechanical model of prototype EDW maglev vehicle 

 
II.   ELECTRODYNAMIC WHEEL PROTOTYPE  

The rotor and guideway parameters for which the analysis 
is performed are shown in Table I.  The four EDWs have a 
radius ro = 26mm and contain P = 2 pole-pairs. The field is 
created by using a four segment-per-pole Halbach rotor ty-
pology. By rotating the EDW over the conductive plate eddy 
currents are induced in the conductive plate track that create 
both a lift force and thrust or braking force.  A thrust force is 
created when the rotor circumferential velocity, vc becomes 
greater than the translational velocity, vx.  Therefore, a slip 
speed, s, can be defined as 

                              c xs v v  (1) 

where                        c o mv r  (2) 
and ωm = rotor mechanical angular speed. 
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If the EDW vehicle is to remain levitated at a desired atti-
tude and location on a conductive track, then it is necessary 
to control the vertical position, y, translational position (for-
ward and backward), x, roll, x, and pitch, z angle. These 
variables are defined in Fig. 2.  The EDW’s are hard-
mounted to the vehicle (i.e. not allowed to pivot relative to 
the vehicle body). 

 

TABLE I 
EDW VEHICLE LABORATORY PARAMETERS 

Parameter    Value Unit 

Rotor 

Outer radius, ro 26 ± 0.58 mm 
Inner radius, ri 9.6 mm 
Width of rotor, wr 52 mm 
Residual flux density, Brem 1.42 T 
relative permeability, r 1.108 - 
Pole-pairs, P 2 - 

Guideway 

Outer radius, rg 600 ± 0.73 mm 
Guideway model width, w 140 mm 
Guideway model length, l 140 mm 
Thickness, h 6.3 mm 
Conductivity,  (Al, 6061-T06) 2.459x10-7  Sm-1 

 
 

III.   3-D FORCE AND TORQUE EQUATION 
If an EDW is rotating with rotational speed, m and is 

moving with a velocity described by  
                       v x y zv x v y v z  (3) 

then the forces created by the induced eddy currents is [17] 
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Solving for the source field, , and the reflected eddy-
current field, Br the force equation yields 
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where  is the source field term and Rmn is the reflected 
eddy current field term for the mth and nth spatial harmonic. 
The reflected eddy current term is created by the induced 
currents in the conductive plate and is defined as [17]                        
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The terms given in (6) - (13) are defined in Table I.  The 
force equation assumes that the conductive, non-magnetic 
plate has a model width, w, length, l, and thickness, h, and it 
is assumed that the plate is sufficiently wide and long that 
the source and eddy current fields are zero at its length and 
width edges.  The steady-state reflected eddy-current field, 
Br, created above the conductive plate is given by [15-17] 
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The EDW source field term in (5) is defined by  
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where Smn is the mth and nth spatial Fourier harmonic source 
field term and yg is the air-gap height between the EDW and 
the conductive plate. The Fourier harmonic source field 
terms are determined by applying a 2-D spatial Fourier har-
monic analysis to the source field.  For the EDW, the 3-D 
steady state source field for a Halbach rotor can be shown to 
be [15-17] 
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The parameters (xc,yc,zc) in (18) defines the center position 
of the rotor and ri = inner rotor radius.  Utilizing (16) the 
Fourier harmonic terms can be obtained by evaluating: 
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The Fourier harmonic field at a height yg can then be ex-
pressed in Cartesian form as: 
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where the complex exponential term in (20) accounts for the 
rotational motion of the source field.   

By a similar derivation, the eddy-current torque is [18] 
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IV.   EDDY-CURRENT STIFFNESS AND DAMPING TERMS 
In [5], the force and torque term given by (5) and (21) 

were used to derive 6-DOF stiffness and damping terms. As 
this laboratory vehicle is suspended above a 1.2m guideway 
wheel that approximates a flat guideway track it is not desir-
able to have the vehicle yaw, y, about the y-axis since this 
could lead to the rotors approaching the edge of the finite 
width conductive plate guideway.  It is also assumed in this 
analysis that the motion along the axial z-axis, as defined in 
Fig. 2, is constrained and it is therefore not necessary to 
model transverse z movement.  These constraints result in 
the eddy current model reducing to a 4-DOF model.  The 
damping and stiffness matrix then reduces to  

                   k[ ] xy

xy

x x

xx

y yyy

F F
k x y

F
k

Fkk

x y

 (22) 

where the diagonal terms are given by 
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From the energy equation used to form (4), it can be shown 
that the diagonal stiffness terms in (22) are equal, so that [17]   
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Therefore, the cross diagonal terms in (22) are both equal to 
            Re s
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Note that the stiffness terms involving rotor angle, m, are 
cyclic with the electrical frequency of the rotor, P m, and 
average to zero for the comparatively larger time constants 
of the vehicle and the torque stiffness and damping terms 
with respect to x and y, are very small and are therefore ne-
glected.  

Using analogous assumptions the damping terms are 
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Note that unlike stiffness the diagonal damping terms in (27) 
are not equal. 

V.   ANALYSIS OF STIFFNESS TERMS 
One of the most significant challenges in the realization of 

an EDW maglev systems is the control of such a non-linear 
and highly coupled system.  Linear control, while computa-
tionally efficient, is unsuited for modes of motion that are 
non-linear and unstable.  On the other hand, run-time calcu-
lations of stiffness and damping, while significantly faster 
than other dynamic equations or finite element methods, are 
still computationally intensive (on the order of tens to hun-
dreds of milliseconds), and need to be minimized for effi-
cient control. The contribution made by this paper is to uti-
lize the analytic damping and stiffness terms defined by (22) 
and (27) within the framework of a maglev vehicle in order 
to assess what terms create stability or instability.  It should 
be noted that the derived stiffness and damping terms plotted 
in this paper are based on a steady-state model. However as 
the eddy current time constant is much faster than the me-
chanical time constant it was shown in [19] that the steady-
state eddy current force model can be combined with a tran-
sient mechanical model to provide valid dynamic results, as 
long as the steady-state force terms are actively updated 
when the mechanical parameters change (such as position 

and velocity).  We call negative stiffness and damping terms 
stabilizing, since they enact a restorative force towards equi-
librium. 

In the following sections, when analyzing how the damp-
ing and stiffness terms are affected by slip, s, vx, and vy, it is 
also beneficial to envision how the vehicle would typically 
operate.  Starting from a standstill, s = vx = vy = 0, slip in-
creases until the vehicle levitates.  Translational speed, vx, 
then begins to catch up to slip, until it reaches steady-state, 
at which point vx lags behind slip by a consistent amount.  
Upon braking, slip lags behind vx by an amount dependent 
on the amount of braking force desired.  This is illustrated in 
Fig. 3, noting that this is the generalized behavior and the 
actual regions would vary based on operating conditions.   

From Fig. 3, when slip magnitude is significantly larger 
than the magnitude of vx and they are both have the same 
direction, the vehicle operates in the blue zone and under-
goes acceleration.  Steady state or near steady state operation 
occurs in the yellow zone, where slip and vx operate in the 
same direction and slip magnitude is only slightly larger than 
vx magnitude.  As slip slows down, the vehicle will undergo 
braking, shown by the green zone.  If the slip direction is 
reversed, then the vehicle will experience a larger braking 
force, shown by the dark pink zone. 

   
Fig. 3: Approximate vehicle operating regions 

A.   Translational Thrust Stiffness 
Fig. 4 shows the variation of translational force, Fx, with 

respect to slip, for various values of translational velocity, vx.  
Note that a maximum slip and translational velocity magni-
tude of 20m/s was chosen to keep the Halbach rotors from 
exceeding their mechanical limitations. 

Fig. 5 shows how the translational stiffness in the x-
direction, kxx, is affected by slip and vx when vc = 0 m/s.  The 
near symmetry about the s = vx line implies that the stiffness 
is affected similarly by both slip and vx velocity, as expected 
from (1).  As kxx is always less than zero under these operat-
ing conditions, it enacts a force towards equilibrium and is 
therefore a stabilizing influence in the x-direction.  When 
either vx or slip increases in magnitude, the stabilizing force 
becomes greater.  Fig. 6 better shows the behavior when the 
vertical speed and circumferential speed are held at (vy, vc) = 
(0,10) m/s.   A rotor circumferential speed of vc = 10 m/s 
equates to m = 3691 rev/min. This value was selected as it is 

 
Fig. 4.  Fx vs. slip for various values of translational velocity, vx 

 
Fig. 5.  Contour plot of kxx vs. slip vs. vx, (vy = 0) 

 



 

a sufficient rotational speed to levitate the prototype vehicle.  
A minimum stiffness is achieved when the x velocity is off-
set by the rotor velocity such that 

                            x rv r  (37) 
In steady-state operation, kxx is less stabilizing, and be-

comes more stabilizing as the vehicle accelerates and decel-
erates significantly.  Light braking that moves the system 
towards equation (37) can minimize the stabilization. 

 

 
Fig. 6.  Plot of kxx and Fx versus vx  when (vy, vc) = (0,10) m/s. 

In order to evaluate how vy affects kxx, it can first be ob-
served how the force is affected by a range of heave values, 
as shown in Fig. 7.  Note that any non-zero heave is consid-
ered transient, and is expected to be small, so the vy terms 
only range from ±5 m/s. 

The contour plot in Fig. 8 shows how kxx changes as slip 
and vy vary, while vx = 0. While kxx is negative and therefore 
stabilizing for a majority of the operating region, kxx be-
comes positive and therefore destabilizing when the vertical 
velocity is strongly positive and the slip is small. While this 
must be accounted for when considering transient behavior, 
during cruise, the vehicle would have significant slip and 
very little vertical velocity.   

It can also be noted that increasing slip magnitude is a 
stabilizing action on kxx with respect to vy, since increasing 
the slip magnitude drives the stiffness down. Fig. 9 shows 
that when the rotor speed is held constant at (vx, vc) = (0,10) 
m/s, kxx increases nearly linearly with vy.  This bolsters the 
argument for linearizing this dynamic for control purposes.  
Also note that at this reasonable rotor speed, kxx is always 
negative and therefore stabilizing. 

 

 
Fig. 7.  Thrust force, Fx, versus slip for various values of vy (vx = 0) 

 
Fig. 8.  Contour plot of kxx vs. slip vs. vy 

(note vx = 0, so slip is s = mro ) 

 
Fig. 9.  Plot of kxx and Fx, vs. vy when (vx, vc) = (0,10) m/s 

B.   Translational Heave Stiffness 
The definition of the translational heave stiffness, kxy, is 

given by (26) it is the partial derivative of the thrust force 
with respect the vertical position change.  

Note that due to symmetry of the stiffness matrix defined 
in equation (22), kxy, can also be thought of as the partial 
derivative of the lift force with respect to change in transla-
tional position. Therefore, due to this off-diagonal equiva-
lence in (22), the vertical force will be affected by x the 
same way that translational force is affected by y.   

Fig. 10 shows the relationship of kxy with slip and vx.  The 
near symmetrical behavior about s = vx is expected from 
equation (1).  Note that despite the nonlinear behavior, there 
exists a general trend of a positive, destabilizing stiffness for 
larger slip and translational velocities, and a negative, stabi-
lizing stiffness for smaller slip and translational velocities.  
The line s = vx is the cutoff between stabilizing and destabi-
lizing kxy contribution.  From Fig. 3, we can see that this dy-
namic would be strongly stable during acceleration, weakly 
stable during steady-state operation, and less stable as more 
braking force is applied.  Note that stability while braking is 
only possible when only a small brake force is applied as to 
not cross the s = vx threshold.  

Fig. 11 shows how kxy changes as vx changes while (vy, vc) 
= (0,10) m/s.  The non-linear, non-quadratic behavior can 
have an adverse impact on the application of control if we 
chose to use a linear system representation, necessitating 
updating the model during run-time to reflect the actual kxy 
term.  Large forward translational speeds (an expected oper-
ating condition) lead to instability. 

The contour plot in Fig. 12 shows how kxy varies with slip 
and vy.  Slices of kxy with respect to slip show that kxy be-
comes more stabilizing with increased slip and slices of kxy 
with respect to vy show that kxy is more stabilizing with in-
creased vy when slip is positive and more destabilizing with 
increased vy when slip is negative.  From (26) we can also 
infer the same stabilizing/destabilizing action in the x-axis.  
A slice of kxy versus vy in Fig. 11 shows a strong linearity 
around an operating point with constant rotor velocity.  This 
term therefore lends itself well to linear modeling in this 
mode.   

Observing both Fig. 10 and Fig. 12, a possible detrimental 
synergistic effect can be noticed.  If the system is operating 
in an unstable braking region, then the braking force will be 
increased, leading to a larger change in x.  This larger change 
in x, from (26), will lead to larger changes in Fy and there-
fore y, which, because of (25), will lead to larger changes in 
Fx and therefore x, thus indicating a positive feedback loop. 

 
Fig. 10.  Contour plot of kxy vs. slip vs. vx, (vy = 0) 

 
Fig. 11.  Plot of kxy and Fx vs. vx when (vy, vc) = (0,10) m/s 



 

C.   Vertical Heave Stiffness 
The vertical heave stiffness, kyy, is defined by (24) and is 

the partial derivative of Fy with respect to vertical position, 
y.  The vertical lift force, Fy, is always positive when vy = 0 
and roughly tends to increase when the quantity s - vx in-
creases, as shown in Fig. 14. 

The contour plot in Fig. 15 shows the relationship of kyy 
with slip and vx.  Again we obtain near symmetry about 
s = vx.  The negative values suggest kyy with respect to slip 
and vx is always stabilizing under these expected operating 
conditions.  Additionally, the magnitude gets larger for 
larger slip and vx values, further applying restorative forces.  
The magnitude of kyy at extreme slip and translational 
velocities is also larger than other stiffness terms, so kyy has a 
very pronounced open loop stabilizing effect.  The negative 
kyy value is why past researchers have stated that electrody-
namic levitation is stable [8].  Fig. 16 shows a slice of kyy vs. 
vx, showing a nonlinear characteristic when (vy, vc) = (0,10) 
m/s.  Note that for mild braking in the vicinity of s = vx, there 
is a reduction in the stabilizing force, but during more pro-
nounced transient operation (accelerating or braking), kyy 
increases.   

 
Fig. 12.  Contour plot of kxy vs. slip vs. vy  
(note vx = 0, so slip is analogous to m) 

 
Fig. 13.  Plot of kxy and Fx vs. vy when (vx, vc) = (0,10) m/s  

 

 
Fig. 14.  Fy vs. slip for various values of vx 

 
Fig. 15.  Contour plot of kyy vs. slip vs. vx (vy = 0) 

 
Fig. 16.  Plot of kyy and Fx vs. vx when (vy, vc) = (0,10) m/s  

The variation of vertical force with respect to vertical veloci-
ty is shown in Fig. 17.  The contour plot in Fig. 18 shows 
how kyy is affected by slip and vy. The kyy and vy terms are 

positively correlated, implying that increasing vy reduces 
stabilizing action.  More stability is observed as the slip 
magnitude increases.  This is a fortunate dynamic, since one 
would expect a significant slip in order to maintain an airgap 
and provide thrust.  Fig. 19 shows this strong linearity when 
rotational velocity is held such that (vx, vc) = (0,10) m/s.  This 
can be exploited to simplify run-time re-calculations of kyy in 
a state-space system. 

 

 
Fig. 17.  Fy vs. slip for various values of vy 

 
Fig. 18.  Contour of kyy vs. slip vs. vy (note vx = 0, so slip is analogous to m) 

 
Fig. 19.  Plot of kyy and Fx vs. vy when (vx, vc) = (0,10) m/s  

VI.   ANALYSIS OF DAMPING TERMS 

A.   Thrust Translational Damping 
The thrust translational damping, dxx, is defined in (28) as 

the partial derivative of Fx with respect to vx.  Fig. 20 shows 
the how dxx varies with slip and vx.  Stabilizing damping is 
observed near s = vx.  The damping increases nonlinearly as 
the system moves away from this line until plateauing near 
zero for large slip and vx values.  Fig. 21 shows the behavior 
of dxx as vx varies and (vy, vc) = (0,10) m/s.  When the rotor’s 
surface velocity matches the x velocity, the damping is min-
imized to produce more stable dynamics.  The non-linear 
behavior means a more compute-intensive algorithm is re-
quired for re-calculating dxx during run-time, rather than a 
linear interpolation. 

Steady-state cruising and mild to moderate braking will 
keep the EDW in the stable region.  Heavy acceleration and 
emergency braking will push dxx towards instability. 

 
Fig. 20.  Contour plot of dxx vs. slip vs. vx, (vy = 0) 

 
Fig. 21.  Plot of dxx and Fx vs. vx when (vy, vc) = (0,10) m/s 



 

The contour plot in Fig. 22 shows the relationship of dxx 
with respect to slip and vy.  While slices with respect to slip 
are non-linear, slices with respect to vy are only weakly non-
linear and for control purposes may be approximated as line-
ar.  Reduced slip magnitude and larger vertical velocities 
affect the stabilization on dxx.  During operation one would 
expect slip to be moderately large, which would lead to a 
near zero contribution on the x-axis dynamics from dxx.  Fig. 
23 confirms that while dxx vs. vy is not exactly linear, it could 
be approximated as linear within a subset of the operating 
region. 

 
Fig. 22.  Contour plot of dxx vs. slip vs. vy 
(note vx = 0, so slip is analogous to m) 

 
Fig. 23.  Plots of dxx and Fx vs. vy when (vx, vc) = (0,10) m/s 

 

B.   Translational Heave Damping 
The thrust translational damping, dxy, is defined as the par-

tial derivative of Fx with respect to vy.  Fig. 24 shows that dxy 
varies with vx and slip non-linearly.  The largest and smallest 
values of dxy lie in the heavy braking operating region.  Note 
that for negative values of the quantity vx - s, the translational 
heave damping is stabilizing, while for positive values of vx –
 s, it is destabilizing.  The non-linearity complicates the line-
ar modeling and control of the system, and will require up-
dating the dxy term using the analytic model during run-time 
to achieve high accuracy. A near-zero damping is observed 
when s = vx.  Fig. 25 shows one slice of dxy vs. vx when (vy, 
vc) = (0,10) m/s, again showing nonlinearity and the fact that 
faster translational velocity leads to instability in dxy. 

As the vehicle accelerates from a standstill, the damping is 
pushed into the negative region.  As vx increases up to 
steady-state, the damping magnitude is decreased, but re-
mains negative.  Beyond mild braking (s - vx < 0) the damp-
ing becomes positive and destabilizing. 

 
Fig. 24.  Contour plot of dxy vs. slip vs. vx, (vy = 0)  

 
Fig. 25.  Plot of dxy and Fx vs. vx when (vy, vc) = (0,10) m/s 

The contour plot in Fig. 26 show how dxy varies with slip 
and vy.  The heave, vy, does not have a large effect on dxy.  

This is convenient for an accurate linearization around an 
operating point in this region.  The nonlinear behavior with 
respect to slip shows that dxy is negative in the expected run-
time scenario where slip is positive, and therefore stabilizing 
when vx = 0.  Fig. 27 shows the quadratic shape of dxy with 
respect to vy.  To reduce compute time, dxy variation in vy 
could be approximated by a quadratic function during run-
time.  Note the stabilizing effect of dxy when (vy, vc) = (0,10) 
m/s, although the stabilization becomes smaller as the mag-
nitude of vy increases. 

 
Fig. 26.  Contour plot of dxy vs. slip vs. vy 
(note vx = 0, so slip is analogous to m) 

 
Fig. 27.  Plot of dxy  and Fx vs. slip vs. vy when (vx, vc) = (0,10) m/s 

VII.   DISCUSSION  
The stability of the selected damping and stiffness terms 

in relation to vx when (s, vy) = (0,0) is summarized in Table 
II.  Note that kxy and dxy are unstable when vx is positive, and 
dxx becomes unstable if the magnitude of vx becomes large 
enough.  Another positive feedback loop exists between kxx 
and dxy for positive vx values, since kxx can exert more effect 
on Fx (and therefore vx) with larger y, and dxy becomes in-
creasingly unstable with larger vx.  From a control perspec-
tive, Table II shows that kxy and dxy should be recalculated at 
run-time when vx changes. 

The stability in relation to vy when (s, vx) = (0,0)  is shown 
in Table III, which indicates that kxx and kyy are unstable 
when vy is positive, and that vy does not have a strong influ-
ence on kxy and dxy at this operating point. 

 
TABLE II 

STABILITY OF DAMPING AND STIFFNESS TERMS WHEN 
(s, vy ) = (0,0) AND vx VARIES 

Term vx (m/s) 
-20        -10         0        10        20 Legend 

kxx  
kxy  
kyy  
dxx  
dxy  

 
TABLE III 

STABILITY OF DAMPING AND STIFFNESS TERMS WHEN 
(s, vx ) = (0,0), AND vy VARIES 

Term vy (m/s) 
-5        -2.5         0        2.5        5 Legend 

kxx  
kxy  
kyy  
dxx  
dxy  

 
Finally, the stability in relation to s when (vx, vy) = (0,0)  is 

shown in Table IV.  In this case, kxy and dxy are unstable 

UNSTABLE 

STABLE 

UNSTABLE 

STABLE 



 

when s is negative and dxx becomes weakly unstable when 
the magnitude of s becomes large.  The synergistic effect 
(positive feedback loop) when kxy and dxy are both positive is 
also present with the slip dynamic. 
 

TABLE IV 
STABILITY OF DAMPING AND STIFFNESS TERMS WHEN 

(vy,vx) =(0,0) AND s VARIES 

Term s (m/s) 
-20        -10         0        10        20 Legend 

kxx  

 

kxy  
kyy  
dxx  
dxy  

 
From a control perspective, these tables show that kxy and 

dxy should be recalculated at run-time when vx or s changes, 
while kxx and kyy should be recalculated when vy changes.  
Other terms should be recalculated periodically as cpu time 
permits to keep the estimated system as accurate as possible.   

VIII.   CONCLUSION 
In this paper, an exact 3-D eddy current based stiffness 

and damping model has been used to study the static stability 
of a 4-DOF EDW maglev system. Although many of the 
terms are highly nonlinear, one can make general notes 
about the stability contribution of these terms in the operat-
ing regions and one can determine which terms can be treat-
ed as linear and which must be recalculated during run-time.   
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