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A single-degree-of-freedom (SDOF) oscillator grounded through a linear spring in parallel with a linear viscous
damper, and two inclined pairs of linear spring—damper elements forming an initial angle of inclination, ¢,
with the horizontal at equilibrium, is considered. It is assumed that there is no pre-compression in any element.
An impulsive excitation is applied to this system, and it is shown that, depending on the system parameters,
the intensity of the applied impulse and the initial angle of inclination, there are strong stiffness and damping
nonlinearities in the transient response induced solely due to geometric effects; these strong nonlinearities
occur even though all elastic and dissipative elements of the system are governed by linear constitutive laws.
Preliminary numerical simulations indicate that in different regimes of the dynamics the geometric nonlinearities
are of hardening, hardening-softening or softening type. An analytical study is then performed to reveal two
bifurcations in the dynamics with respect to the initial angle of inclination and detect the critical energy
beyond which the nonlinearity changes from hardening to softening. Another effect of the initial angle of
inclination is that it “slows” the decay rate of the transient response. To investigate this effect analytically,
the complexification-averaging method is applied to an approximate (truncated) equation of motion, to show
that, for non-zero initial angle of inclination, the time-scale of the slow dynamics of the system is directly
related to the initial angle of inclination. An experimental study is then performed to verify the analytical and
numerical predictions. The experimental system consists of a beam clamped at one of its ends and grounded by
the inclined linear spring element at its other end. System identification is performed to identify the (linear)
modal properties of the beam and detect the linear stiffness and viscous damping characteristics of the inclined
spring. The experiments are performed for several different initial angles and initial conditions in order to obtain
sufficient measured time series to be able to verify the theoretical predictions. The experimental results confirm
the theoretical findings. This study highlights the strong hardening-softening stiffness and damping nonlinearities
that may be induced by geometric (and/or kinematic) effects in oscillating systems composed of otherwise linear
stiffness and damping elements.

1. Introduction tuned vibration absorbers (TVAs) and tuned mass dampers (TMDs) [3—

8]. As for nonlinear vibration isolators, one can mention nonlinear

Despite the extensive current literature on the design of passive
vibration suppression systems, this area still attracts the attention of
scientists and engineers [1,2]. Examples of areas of current interest can
be found in civil engineering, e.g., in the design of vibration mitigation
systems that reduce the vibration transmitted to structures due to
seismic excitations; and in mechanical engineering, e.g., in mitigating

energy sinks (NESs) [9-12], negative-stiffness vibration isolators, and
magnetic vibration isolators [13-18]. Focusing on nonlinear designs,
nonlinear vibration isolators such as NESs are designed to dissipate
the unwanted vibrational energy through resonance captures in an
irreversible manner, i.e., by means of targeted energy transfer (TET).

flow-induced vibrations resulting from flow-structure interaction, and
in suppression of dynamic instabilities in rotating machineries such
as engines, motors, pumps, and fans. Numerous passive mechanisms
have been considered as vibration mitigation mechanisms, both with
linear and nonlinear dynamical characteristics. Examples of linear
vibration mitigation systems are tuned vibration neutralizers (TVNs),
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In the case of vibration isolators with negative stiffness, however, the
unwanted vibrational energy is dissipated by intentionally scattering
it to higher frequencies through excitation of higher harmonics or by
means of resonance captures between super-harmonics and structural
modes of the main structure [12]. For instance, Carella et al. intro-
duced and studied a quasi-zero-stiffness passive nonlinear vibration
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isolator [14,19]; their proposed vibration isolator could have negative
stiffness depending on the geometric parameters of the system. Also,
Sarlis et al. designed and experimentally tested a nonlinear vibration
isolator system to protect structures from seismic activity [20]; the
nonlinearity in that system was due to geometric effects of the isolator,
again yielding negative stiffness characteristics.

In this work we consider a nonlinear oscillator with geometrically-
induced stiffness and damping nonlinearities and examine its efficacy
as a vibration isolator. Due to their simplicity to implement, it is
common to utilize geometric and kinematic effects to realize non-
linearities in mechanical systems composed of linear elastic and/or
dissipative elements. Carella et al. introduced the nonlinearity in their
proposed system through the specific configuration of the nonlinear
attachment. In their study, the geometric effect introduced negative
stiffness to the system [14,19], and they were able to propose a vibration
isolator which was more efficient than the corresponding linear one.
Moreover, to enhance the efficiency of their proposed vibration isolation
mechanism compared to typical linear vibration isolators, Carella et al.
proposed an alternative nonlinear vibration isolator based on geometric
nonlinearity [21]. In that mechanism a system with high static stiffness
and low dynamic stiffness was introduced with the aim to minimize
the transmitted force through geometric effects. A more in-depth study
of the effects of geometric nonlinearity on the dynamics of a two
DOF system was presented in the work by Andersen et al. [22]. The
system studied in that work consisted of an elastically grounded linear
oscillator and an NES attached to it in which the nonlinearity was
realized through geometrical effects. A new feature of that work was
that the geometry of the motion introduced a combination of stiffness
and damping nonlinearities which affected significantly the response.
In particular, it was shown that geometrical nonlinear damping could
have unexpected effects on the dynamics, including multi-frequency
instabilities; in linear settings such damping-induced instabilities can be
induced only in gyroscopic systems, and, typically, the effect of linear
damping is parasitic, i.e., it yields a decay of the free response of the
damped system. Yet, the results reported in [22] showed for the first
time that geometrically nonlinear damping can have non-parasitic dy-
namical effects, e.g., yielding free responses that do not monotonically
decay with time. Moreover, Cho et al. showed that through geometric
effects it is possible to achieve transitions from hardening to softening
nonlinear stiffness behavior in micro/nanomechanical resonators by
properly tuning the system parameters [23]. In addition, in order to
improve the performance of microelectromechanical systems (MEMS)
and overcome the limitations of linear MEMS, Asadi et al. incorporated
geometric nonlinearity into their system [24]. They were able to induce
a drastic transformation between the axial and bending stiffnesses of
the Si and polymer components of their MEMS device by changing the
geometric properties.

The principal aim of this work is to study theoretically and validate
experimentally a new way to induce strong and tunable stiffness and
damping nonlinearities in an impulsively forced oscillator through
purely geometric effects. By this we mean that, although the oscillator is
composed of stiffness and damping elements obeying linear constitutive
laws, the effects of geometry yield strong nonlinearities, which depending
on the energy and the system parameters can be hardening, softening, or
a combination of both (in different regimes of the same response). The
oscillator is grounded by means of a linear spring—viscous damper pair in
parallel, as well as two inclined spring-damper pairs forming an initial
angle of inclination, ¢, with the horizontal at equilibrium. The transient
dynamics of this system are examined numerically by direct numerical
integration of the governing equations of motion, and analytically by
introducing slow—fast partitions of the transient dynamics and following
a complexification-averaging method. This enables us to gain predictive
capability of the design of the geometric nonlinearities in this system,
and to gain a good physical understanding of the effects on the transient
dynamics that are induced by these strong nonlinearities. In addition,
we provide an experimental validation of the theoretical findings by
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Fig. 1. Configuration of the nonlinear oscillator.

fabricating, characterizing and testing a specially built experimental
fixture. The experimental results confirm the theoretical predictions and
highlight the important local nonlinear effects that geometry can have
on the global dynamics of a mechanical system comprised of otherwise
linear components.

2. Formulation of the model

The system under consideration is a nonlinear single-degree-of-
freedom (SDOF) system of mass, M, which is grounded via a linear
spring with stiffness, k,, in parallel to a linear viscous damper with
damping coefficient, d,, and two inclined parallel spring—dashpot el-
ements with linear nominal stiffness and damping coefficient, k; and d;,
respectively. The inclined elements have an initial angle of inclination,
¢y, with the ground while the system is at rest; moreover, it is assumed
that the inclined springs and dampers are unstretched at the equilibrium
position of the system. The initial angle of inclination is the basic
geometric parameter that introduces stiffness and damping nonlinearity
to the system. The configuration of the system is shown in Fig. 1.

Assuming that the impulse F (r) = F5(¢) is applied to the system while
at rest, the governing equation of motion and the initial conditions at
t = 0+ are given by,

M 5 +d g + k,x + 2F; sin(¢y + 0) = 0, am
x(0+) = 0,%(0+) = F/M = I,
where F; is the combined force exerted by each inclined spring—damper
pair, x (¢) is the vertical displacement of the oscillator from equilibrium,
and 6(7) the corresponding increment of the angle of inclination. Using
simple geometric arguments, the total vertical component of the force
exerted by each inclined pair to the mass is determined to be

d(4u)
dt

k; [y— (Lsec¢0) y/\/Lz——{—y2] +d;yy?/ (L2 +y2)

F;sin(gpy +0) = [k,-Au +d; ] sin(gpy + 0) =

(1b)

where Au = \/[L sec ¢0]2 + x2 + 2x L tan ¢py— L sec ¢y and y = x+L tan ¢b,.
Combining all terms in (1) we may re-write these systems of equations
as,

Mi+F,+F,=0,

x(0+)=0,x(04+)=F/M = I,

(2a)

where F; and F, are the combined forces exerted in the vertical direction
by the stiffness and damping elements of the system, respectively, and
given by

F, = [kg + 2k [1 — (Lsecdy) /N2 + yz]] y—k,Ltan gy,
Fy=[d,+2d,y*/ (L2 +y*)] y
It is clear that the geometry of the motion introduces strongly

nonlinear effects in the dynamics, despite the fact that all stiffness and
damping elements of the oscillator obey linear constitutive laws. Hence,

(2b)
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Table 1

System parameters used in the numerical simulations.
Parameter Value
M [kgl 0.1
k; [N/m] 20000
k, [N/m] 240
d; [Ns/m] 0.25
d, [Ns/m] 0.5
L [m] 0.05

before we analyze the transient dynamics of this system it is necessary
to gain some more insight into the geometric effects on the stiffness
and damping forces that result from the variation of the initial angle
of inclination, ¢,. Specifically, it is of interest to consider the type of
nonlinearity (hardening or softening) that is obtained depending on the
selection of the angle ¢,,.

To this end, we express the Egs. (2a), (2b) in normalized form as,

'+ fi+fy=0,

1452

ﬁ+2ﬁ}7(1— 4 221147

kg+2k; sin? ¢

fs= 295 0 . , J=ZX+tangy

O+ =0,20+)=1,/L=A
3)

where the normalized stiffness and damping forces are defined as f, =
F,/(Lk,) and f, = F;/(Lw,d,), respectively, with & = x/L, f = k;/k,,

u=dg/d, t" = w,t and o, = |/ (k, +2k; sin® ¢by)/ M. Moreover, prime

in (3) denotes differentiation with respect to the non-dimensional time,
t*, and the frequency w, denotes the linearized natural frequency of the
oscillator, i.e., the approximate frequency of oscillation (in the absence
of damping) in the limit of low-intensity impulses (or, equivalently,
energies). The normalized system (3) will be the basis of the numerical
simulations and theoretical analysis of Sections 3 and 4.

In Figs. 2a and 4 we depict the nonlinear stiffness and damping forces
as functions of the normalized displacement % and velocity £/, for several
initial angles of inclination, ¢,, and the specific system parameters
listed in Table 1. These correspond to the non-dimensional parameters
B = 83.333, and depending on the configuration of the system, to u = 0
and/or f = 0 (for the purely nonlinear damping and/or purely linear
stiffness case — d, = 0 and/or k; = 0, respectively), or 4 — co and/or
f — oo (for the purely linear damping and/or purely nonlinear stiffness
case — d; = 0 and/or k, = 0, respectively). Additionally, to better
illustrate the positive or negative nonlinear stiffness characteristics
generated due to geometric effects, we provide the plots of Fig. 2b
which depict the derivative of the force produced by the springs with
respect to the normalized displacement. The analytical expression for
the derivative of the spring force with respect to the displacement is
expressed as:
afy 1

sV 1425 2psecd
99 1+2psin’ ¢, 0

VI -2+ ﬁ%“”] @

1452

Moreover, unless otherwise indicated, all the numerical results pre-
sented herein are obtained using this specific set of system parameters.

The plots shown in Fig. 2 highlight the strong stiffness nonlin-
earity induced by the inclined springs for several initial angles, ¢,.
Considering the case ¢, = 0, we note that the derivative df,/d% is
always positive, and its value increases as the value of normalized
displacement increases; this implies that the oscillator has hardening
stiffness nonlinearity. However, for ¢, = 9.37° and ¢, = 18.73° there
are ranges of the normalized displacement where d f,/d% < 0, whereas
in complementary ranges of the normalized displacement d f,/d% > 0;
it follows that, contrary to the previous case, the stiffness nonlinearity
can be either softening or hardening as the system experiences positive to
negative (or negative to positive) stiffness transitions depending on the
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Fig. 2. Normalized nonlinear spring (a) force and (b) derivative provided by the inclined
element with respect to the normalized displacement for different angles of inclination.

amplitude of the oscillation. Finally, in the limiting case ¢, = 90° the
inclined spring-damper terms become vertical, and the stiffness of the
oscillator is linear. These observations will be discussed later in more
detail.

These results are caused by two bifurcations which can be ana-
lytically studied when the normalized stiffness force is considered as
a function of the initial angle of inclination, ¢,. The first bifurcation
occurs at ¢y = ¢g, = cosT[28/(2f + 1)] where df,/d% = 0 at
% = —tan¢,; that is, for initial angles of inclination greater than ¢,
the derivative df,/d% vanishes at specific values of the normalized
displacement, yielding zero effective stiffness at these points. Hence,
for ¢y < ¢y the oscillator has positive stiffness, whereas for ¢, > ¢ 5
there exist ranges of the oscillation amplitude where the overall effective
stiffness is negative, so that the oscillator possesses stronger softening
stiffness nonlinearity. The second bifurcation occurs at the angle of
initial inclination where, along with the single equilibrium position, two
new stable and unstable equilibria are generated. This bifurcation point
is computed as

28-1
BB+1)/(482-1)

By = P = cos™! > Pop1 )

“4p+4)

For ¢y > ¢4 there are two stable attractors for the transient
dynamics of the oscillator (together with an unstable point); depending
on the specific initial conditions of the system the dynamics may
be attracted to either of the stable equilibria. It can be analytically
and numerically shown that the following necessary and sufficient
conditions for saddle-point bifurcation hold,

[P do)| s=5e = 0f(D.0)/0P| =5, =0,
bo=%0,2 P0=b0,p2
[02&()7, $0)/09%| o, ] <0, [afx(ﬁ,%)/@%l s=se | >0,
P0=b0,p2 $o=%0,2

where j, is the newly generated equilibrium point at the bifurcation
point (cf. Fig. 3). These conditions indicate that this is indeed a saddle—
node bifurcation point. Fig. 3 depicts the locus of the equilibrium
positions of the system for various initial angles of inclination, ¢, and
§ = 200.

According to the bifurcation plot of Fig. 3, before the bifurcation
point, there exists only one stable equilibrium position, whereas after
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Fig. 3. Stable (solid curves) and unstable (dashed curves) equilibrium positions of the
system as a function of initial inclination angle, ¢, for g = 200.

the bifurcation point, ¢, > ¢, two additional equilibrium positions
appear alongside the previous stable equilibrium. Applying linear per-
turbation analysis about each equilibrium one can easily determine the
stability of each equilibrium positions as shown in Fig. 3.

In Fig. 4(a, b) we depict the corresponding nonlinear damping force
as a function of normalized displacement and velocity while assuming
that 4 = 0, i.e., the case of no grounding linear viscous damper —

d, = 0. In these plots we include the overall linear damping force

International Journal of Non-Linear Mechanics 107 (2018) 94-111

corresponding to ¢, = 90° in order to highlight the difference between
the linear and geometrically nonlinear cases. These curves show the
strong geometric effects on the overall nonlinear damping force, and
especially the striking differences in the nonlinear damping forces for
different initial angles of inclination. The effect of the geometrically
induced nonlinear dissipative terms on the dynamics of the impulsively
forced oscillator will be discussed in detail in the next sections.

3. Transient nonlinear dynamics

In this section we study the nonlinear transient (decaying) impulsive
response of the oscillator of Fig. 1. Our principal aim is to study the
influence of the combined effects of geometrically nonlinear damping
and stiffness in the transient dynamics and, in particular, to investigate
how the hardening-softening nonlinear stiffness characteristics affect
the transient response. To this end, we performed a series of numerical
simulations by numerically integrating the strongly nonlinear equation
of motion (1) subject to the specified initial conditions that correspond
to impulsive excitation at the time instant r* = 0.

In Fig. 5(a, c) we depict the response of the system obtained by
numerically integrating the equation of motion (1), together with its
wavelet transform spectrum for the case corresponding to u = 0,
i.e., when the only dissipative forces are those produced by the geo-
metrically nonlinear dampers, subjected to an applied initial impulse,
I, = 20, and angle of inclination, ¢, = 0. For comparison, in Fig. 5(b,
d) we consider the corresponding results when only linear dissipative
forces exist in the system, under identical impulse excitation and angle
of initial inclination. A first conclusion is that the purely nonlinear
damping changes drastically the time decay of the transient response,
in the sense that it slows considerably the dynamics. This indicates
the presence of a much slower time scale in the transient dynamics
compared to the case of purely linear viscous damping.

Furthermore, to physically interpret the transient responses in Fig. 5
we refer to the nonlinear stiffness plots depicted in Fig. 2. For the

()
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Fig. 4. Normalized damping force as function of (a) the normalized displacement and (b) the normalized velocity.
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Fig. 5. Normalized time response of the system subject to the normalized initial impulse I, = 20, for the initial angle of inclination ¢, = 0: (a) Purely geometrically nonlinear damping
(u = 0), and (b) purely linear viscous damping (4 — 0); the corresponding wavelet spectra of these responses are depicted in (c) and (d).

case of geometrically nonlinear damping and stiffness — cf. Fig. 5(a,c) —
the nonlinear force is both odd and symmetric. The symmetry of the
nonlinear stiffness force should yield symmetric oscillations about the
zero equilibrium of the mass about the zero equilibrium, and this is
confirmed by the plot of Fig. 5(a). Moreover, the fact that the nonlinear
stiffness is an odd function of the displacement should yield only odd
harmonics in the wavelet spectrum of Fig. 5(c), which is again confirmed
by the fact that a strong third harmonic (and higher odd harmonics)
exists in that plot. Equivalently, since the force produced by the springs
is an odd function of the displacement, the Taylor series expansion of
the force only admits odd powers of the displacement (cf. Appendix). By
replacing this force by its Taylor series expansion in (3) and performing
harmonic balance one notes that only terms with frequencies equal
to odd factors of the fundamental harmonic contribute to the free
response of the system. We note that the presence of higher harmonics
in the response strongly depends on the input energy to the system.
The same observations hold for the case of linear viscous damping and
geometrically nonlinear stiffness — cf. Fig. 5(b, d); however, in this
case the decay of the transient response occurs on a strikingly faster
time scale. Lastly, the hardening behavior of the stiffness nonlinearity is
clear, since the decrease of the energy of the system (due to nonlinear or
linear dissipation) leads to the decrease of the frequencies of the main
harmonics of the response. In particular, the frequencies of the dominant
(fundamental) harmonics in the wavelet spectra of Fig. 5(c) and (d)
monotonically decrease with increasing time (or, equivalently, with
decreasing energy) reaching eventually the asymptotic limit w/w, = 1,
where w, = /k, /M is the linearized natural frequency of the oscillator
in the low energy regime; we note, however, the strikingly slow rate of
convergence of the dominant harmonic to this asymptotic limit in the
case of nonlinear damping in Fig. 5(c).

In Fig. 6(a—d) we depict the responses and corresponding wavelet
spectra of the oscillator with non-zero initial angle of inclination,
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¢y = 9.37°. We note that this angle is above the critical threshold
corresponding to the first bifurcation but less than that corresponding
to the second bifurcation. It follows that, in this case and in contrast
to the case of ¢, = 0, the geometrically nonlinear springs force
is neither symmetric nor odd with respect to the displacement (cf.
Fig. 2). Lacking these features the impulsive response of the oscillator
is not symmetric about the zero equilibrium; that is, the mean of
the response time-series is non-zero and varies as the energy of the
oscillator decreases. An additional consequence is the existence of even
as well as odd harmonics in the wavelet spectra of Fig. 6(c) and (d).
However, perhaps the main qualitative difference between this case
and the previous one is that now the oscillator exhibits both hardening
as well as softening nonlinear behavior in the initial and latter parts
of the response, respectively. Indeed, up to * ~ 500 the oscillations
exhibit hardening behavior as the normalized frequencies of the main
and the higher harmonics decrease with decreasing energy; for larger
times, however, these frequencies start to increase, with the dominant
(fundamental) harmonic approaching the limiting linearized frequency,

, =4/ (k, +2k; sin® ¢hy)/ M. Similar to the previous case of zero angle

of initial inclination, however, we deduce that for the case of nonlinear
damping the decaying transient response is governed by a much slower
time scale compared to the case of linear viscous damping.

Finally, in Fig. 7 we depict the impulsive response of the oscillator
for the initial angle of inclination, ¢, = 18.73°. Again, the oscillator
exhibits strong hardening behavior until * =~ 360, after which the
behavior abruptly switches to softening. In addition, as energy decreases
sufficiently the dynamics approach the linear limit, and the frequency of
the dominant harmonic approaches the normalized linearized frequency

o, =/ (k, +2k; sin® ¢by)/ M. In this case the initial angle of inclination

exceeds the critical threshold for the second bifurcation, so the response
of the oscillator exhibits bi-stability in the initial, highly energetic
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regime of the response. This yields significantly stronger and more
broadband energy scattering to higher frequencies compared to the
previous two cases, a feature that is clearly visible in the corresponding
wavelet spectra. Moreover, the switch between the (early) hardening
and the (later) softening behavior is much more abrupt compared to the
case with ¢, = 9.37°, which again is attributed to the initial bi-stable
response regime which is absent in the prior case.

In the next section we analytically study the damped transient
dynamics by a methodology that combines slow-fast partitions and
complexification-averaging (CX-A). The time series depicted in Figs. 5-
7 are amenable to such an analysis as they are composed of “fast”
oscillations (i.e., the fast parts of the dynamics) that are modulated
by “slow” envelopes (or slow modulations — the slow parts of the
dynamics). By studying the time evolutions of the envelopes (i.e., the
slow dynamics) we will be able to identify the “slowing down” of the
transient dynamics induced by the geometrically nonlinear damping
observed in the previous numerical simulations.

4. slow-fast partition of the dynamics and slow flow analysis

The analysis in this section will consider the normalized oscillator
(3). To apply the complexification-averaging (CX-A) method of analysis
it is convenient to replace the geometrically exact expressions for
the nonlinear spring and damping forces — Eq. (3) - by truncated,
approximate expressions derived by Taylor-series expansions of the
exact formulas. The resulting polynomial expressions will be amenable
for CX-A analysis.

4.1. Taylor series approximation of the force exerted by the inclined element

To this end, the normalized expressions for the nonlinear forces are
expanded in Taylor series up to the 6th order,

L [1H+28(Co+ Cix+ CE2 + CF3 + Cy3* + Cs2°)| &

fomts= 1+25C, ©
2 &2 3 o4 25\ &/
A 5[;4+2(D0+D1x+D2x + D3x° + DyX* + Dsx )]x
JamJa= 1+24C,

where £, and f,; denote the approximate truncated nonlinear spring and
damping forces, § = d,w,/k,, and the coefficients C, through Cs, and D,
through Djs are listed in the Appendix. Based on these approximations
the exact system (3) is replaced by the following approximate system,

"+ f+f=0,

. y @)
X(0+)=0,2'(0+) = A

which will be the basis for the asymptotic analysis that follows.

However, before the CX-A analysis can commence it is necessary the
assess the validity of the approximate system (6) and (7). Accordingly,
a detailed numerical convergence study was undertaken to ensure that
the approximate normalized restoring force f,(1*) + f,(t*) based on the
previous truncated Taylor-series expressions accurately reproduced the
exact normalized restoring force f,(r*) + f,(*) in Eq. (3).

Some representative results of this convergence study are depicted
in Figs. 8 and 9 that depict the restoring force time series for oscillators
with initial angle of inclination 9.37° and 18.73°, respectively. We
note that the Taylor-series approximations accurately reproduce the
exact expressions. Moreover, the approximations accurately capture
both the initial hardening and the later softening response regimes, as
well as the abrupt end of the bi-stable oscillation regime for the larger
initial angle of inclination (cf. Fig. 9 — which also signifies an abrupt
qualitative change in the transient dynamics). Based on this convergence
study we conclude that we may replace the exact system (3) with the
simplified polynomial model (6-7) without compromising the validity
of the asymptotic analysis.
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4.2. Applying the complexification-averaging method (CX-A)

Proceeding now to the CX-A analysis, we define the new complex
variable w(t*) = R'(t*) + i%(*) where i = 4/—1, and express the
normalized displacement and its derivatives as follow, ¥ = —(i/2)(y —
w), & = (/2w + ), and £ = "d—"; — (i/2)(y + ), where overbar
denotes complex conjugate and the dependence on the normalized time
was omitted. Substituting these expressions into the approximate model
(6-7) we complexify the dynamics and derive the following first-order
complex differential equation:

d — P . —

LW+ + 1, [F = =/ - )

+fy [2=-G/Dw —9). ¥ =1/ + )] =0,
yw(0+) =1,

(8)

Whereas this operation might seem to complicate the analysis, its
major advantage over system (7) is that it allows for a fast-slow partition
of the transient dynamics. Indeed, motivated by the observation that
the damped responses are in the form of ”fast” oscillations that are
modulated by “slow” envelopes (or modulations) we introduce a slow—
fast partition of the complex response as, w(t*) ~ @(r*)e’"” where e
represents the fast oscillation (with fast normalized frequency equal
to unity), and ¢(*) its (complex) slow modulation. In that way we
separate the slow and fast components of the system response. We
note at this point that this particular slow—fast representation is only
valid for the regime of the damped response where the fast oscillation
contains a single dominant normalized fast frequency close to unity
(or equivalently close to the linearized natural frequency w, in terms
of physical time ¢). This implies that our analysis is valid in the later
regime of the dynamics where the decaying normalized response is
dominated by that fast frequency or relatively small initial angles of
inclination where the frequency of the fundamental harmonic does
not change significantly with respect to total energy of the system.
In early regimes of the damped response, where the dominant fast
frequencies are different than unity or there exist multiple dominant
fast frequencies, the analysis is not valid, and the response cannot be
captured by the present analysis. Nevertheless, our analysis will reveal
the (slow) time scale of the decay of the damped oscillations and will
prove that the geometrically nonlinear damping “slows down” the decay
of the oscillations compared to linear viscous damping.

Substituting the previous slow-fast partition in (8), we express the
complex equation of motion in terms of ¢(*). Then, the final step of
the analysis is to average the resulting complex equation with respect
to the fast frequency, which is equivalent to omitting fast components
in the modulation equation with fast frequencies higher than unity. This
yields the complex first-order differential equation governing the slow
evolution of the envelope (or modulation) ¢(t*),

. u+2D, | [ 6D, 3ipC, )
20 +ip+ 6 ——xn — + = - +
¢ e < 1250, )t 2132, Twasg, )17
| [ 6D, 5ipC, .
2 - lol" =0,
s \T+25C, ~ 1+24C,
o0+) = I,

(C)]

where 6 = d;o,/k,. Eq. (9) is referred to as the slow-flow which governs
the slow-dynamics of the system after the (rather trivial) fast dynamics
have been eliminated by the previous averaging operation. Introducing
at this point the notation, u = |g|, 4, = & (u+2Dy)/ (1+2pCy),
ly = 6D,/ (2+4pCy) and i3 = 6D,/ (8+16C,), and performing
straightforward algebraic manipulations, complex Eq. (9) reduces to
the real first-order differential equation for the modulus of the slow

modulation ¢(t*),
2+ Au+ Ay + Ayud = 0,u(0+) = I (10$)

This is referred to as the real slow flow of the problem, in contrast to the
complex slow flow (9).
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Fig. 6. Normalized time response of the system subject to the normalized initial impulse 7, = 20, for the initial angle of inclination ¢, = 9.37°: (a) Purely geometrically nonlinear
damping (¢ = 0), and (c) purely linear viscous damping (4 — o0); the corresponding wavelet spectra of these responses are depicted in (b) and (d).
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Fig. 7. Normalized time response of the system subject to the normalized initial impulse 7, = 60, for the initial angle of inclination ¢, = 18.73°: (a) Purely geometrically nonlinear
damping (4 = 0), and (c) purely linear viscous damping (4 — o); the corresponding wavelet spectra of these responses are depicted in (b) and (d).
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(a) Force time series for normalized initial impulse I, = 20 and initial angle of inclination
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Fig. 9. Comparison of the exact restoring force obtained by superposition of the normalized nonlinear spring and damping forces in (3) with the corresponding approximate restoring
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¢, = 18.73°; corresponding wavelet spectrum of (b) the exact restoring force, and (c) the approximate restoring force.

Two representative examples confirming the validity of the analysis
are now given. In Fig. 10(a) and (b) we show the comparison between
the results from direct numerical integration of the exact oscillator
(3) and the real slow flow (10) for two cases. Fig. 10(a) depicts the

response of the oscillator for the case of purely geometrically nonlinear
damping (¢ = 0) and nonlinear stiffness corresponding to an initial angle
of inclination ¢, = 9.37°, whereas Fig. 10(b) depicts the response of
the oscillator for the same initial angle of inclination but with only
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Fig. 10. Comparison between direct numerical integration of the exact oscillator (3) and the analytical prediction (10) for the oscillator with initial angle of inclination, ¢, = 9.37°, and
normalized impulse intensity I, = 8: (a) Purely nonlinear damping, 4 = 0, and (b) purely linear damping, y — .
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Fig. 11. Comparison between direct numerical integration of the exact oscillator (3) and the analytical prediction (10) for the case of initial angle of inclination, ¢, = 18.73°, and

normalized impulse intensity, = 40: (a) Purely nonlinear damping, 4 = 0, and (b) purely linear damping, y — .

linear damping (4 — o0). It is clear from these results that in this
particular case the slow-flow Eq. (10) is capable of accurately capturing
the rate of decay of the impulsive response for the entire duration of
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the oscillation and not only in the later regime of the oscillation. This
occurs since, for this relatively small angle ¢, the fast frequency is close
to the normalized linearized frequency (i.e., unity), and as a result the
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slow—fast partition and the CX-A methodology are valid for the entire
oscillation. In the next example this is not so. In Fig. 11(a) and (b) we
depict similar comparisons for the case of the larger angle ¢, = 18.73°,
where there is a bi-stable regime at the initial, highly energetic phase
of the oscillation. During this initial (hardening) regime the oscillator
undergoes transitions between the two stable bi-stable equilibrium
points, and the oscillation is not governed by a fast frequency close to
unity; as a result, the CX-A analysis is not valid there. However, with
decreasing energy the oscillation switches to the softening regime which
indeed is governed by a fast frequency close to unity, so the analytical
prediction from (10) matches the decay of the amplitude in this lower-
energy regime of the response.

Having established the validity of the CX-A analysis and its capacity
to accurately predict the decay of the oscillation, we reconsider (10)
and derive an approximate analytical solution for the envelope u(t*). To
do this we take into account the fact that the CX-A method is valid in
the later small-energy regime of the oscillation or, equivalently, under
the assumption of small displacement. In that regime of the decaying
response the highest power of u may be omitted in (10), and the
resulting simplified first-order nonlinear ordinary differential equation
can be solved by the separation of variables method and integration by
quadratures. The resulting analytical solution is,

) = I
u 0\/Alexp(/llt*)

Following this, we define the decay time constant, z, corresponding to
the normalized time satisfying the condition u(r)/u(0+) = 0.01. This
yields the analytical expression for the time constant,

()

where y is the decay rate of the damped response. We note at this
point that the analytical approximations (11) and (12) are based on
the truncated (up to the sixth-order) approximate oscillator (6-7), so
they are valid only for relatively small values of the initial angle
of inclination, ¢,. Nevertheless, these analytical estimates prove and
predict the increase of the decay time constant of the oscillator due to
geometrically nonlinear damping.

To this end, we introduce the linear and nonlinear decay time
constants 7y, (¢,) and 7;;,, corresponding to oscillators with purely
linear and purely nonlinear damping,

4M

)”l
+ A I3 [exp (441%) = 1]

(1)

4 2
10%4; + Aouy 12)
A+ Al

1
Ty (do) = ~ In(10)
N YN L (@) 2d; sin® ¢, a3
1 = —— ~ M 15310y
YLin g
and show that,
inL(@0) _ Yoin dg (14)

T Yne(@o) 2, sin? @0

Moreover, for the specific choice of damping parameters, d, = 2d;
(which indeed corresponds to the selected system parameters listed in

Table 1), this relation simplifies to,
ine(Po) 1 o1
sin® ¢y B3
for sufficiently small initial angles of inclination. The analytical results
(14) and (15) provide the quantification of the increase of the decay
time constant (or equivalently, the decrease of the decay rate) of the
impulsive response of the nonlinear oscillator due to geometrically
nonlinear damping.

In Fig. 12 we depict the comparison, between the results of CX-
A analysis and direct numerical simulation of system (3), of the log-
arithmic decays of the normalized velocity &' for normalized impulse
intensity I, = 8 and different initial angles of inclination. Clear agree-
ment between analysis and numerical simulation is noted, which further

d, =2d,,

o i singy <1 (15)

TLin
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Table 2
Ratios of the velocity logarithmic decays of Fig. 12 for the cases of geometrically nonlinear
(¢ = 0) and linear (4 — o) damping, predicted by analysis and simulation.

Slope ratio (CX-A)

Slope ratio (Simulation) Tl TN = B

¢y =0° 0.0012 0.0111 0
¢y =9.37° 0.0212 0.0232 0.0267
¢y = 12.23° 0.0299 0.0311 0.0456

confirms the validity of the CX-A analysis and highlights the slower time
scale governing the response decay due to geometric damping. An addi-
tional quantification of the results of Fig. 12 is provided in Table 2 which
validates numerically the approximate theoretical prediction (15). The
numerical results in that Table compute the ratios of the velocity
logarithmic decays of Fig. 12 for geometrically nonlinear (¢ = 0) and
linear (4 — o) damping, predicted by the CX-A analysis or computed by
direct numerical simulation of system (3). Again, the theoretical result
accurately predicts the logarithmic decay and quantifies the slower rate
of response decay due to geometrically nonlinear damping.

These results complete the theoretical study of the impulsive re-
sponse of the nonlinear oscillator (3). In the next section an experimental
study is performed to validate the theoretical predictions. The exper-
imental fixture consists of a clamped-free linear beam with inclined
parallel springs at its end; only the first bending mode of the beam is
considered in the study in order to approximate the theoretical model
of Fig. 1. For the experimental study we will revert to dimensional
parameters.

5. Experimental study and theoretical validation

The experimental fixture is shown in Fig. 13. It consists of a uniform
beam clamped at one of its ends and pinned at its other end to a pair of
identical inclined parallel springs. The length of each spring is 76.2 mm,
its inner diameter is 19.3 mm and the diameter of its wire is 2.67 mm.
The neutral length of the moving part of the attachment supporting
each spring is 0.15 m due to bolts that are attached to both ends of
the spring — cf. Fig. 13(a, b). Due to its internal structural damping
(which is identified below), each of the experimental springs acts, in
essence, as a spring—damper pair in parallel. The beam is made of low-
carbon steel with density 7784 kg/m?, length 1.676 m, and cross-section
0.045 x 0.008 m2. The modulus of elasticity of the beam is estimated to
be 192 GPa by means of an optimization computation discussed below.
A PCB Piezotronics shear accelerometer (model 353B15) with nominal
sensitivity of 1.100 mV/(m/s?) is attached close to the tip of the beam
(at a distance of 1.65 m from the clamped end of the beam) right at the
location where the inclined attachment is pinned. The entire fixture is
installed on an optical table which serves as ground.

Since the theoretical study of the previous sections was based on the
assumption that the inclined spring—-damper elements in the system of
Fig. 1 are pinned to the mass, in the experimental setup each of the
inclined springs was connected to the beam by bolting one of its ends
to a steel shaft (roller) which passed through two Teflon sleeve bearings
made of PTFE that are firmly attached to the tip of the beam; a detail of
the pinned connection is provided in Fig. 13(c). Teflon sleeve bearings
were selected to reduce friction in the pinned joints as much as possible.
Similarly, the other end of each of the inclined springs is grounded by
securing that end to a roller that is attached to a vertical threaded rod
bolted to the optical table (which acted as “ground” for the experimental
fixture). Note that the lengths and stiffnesses of the inclined springs
were chosen so that they do not buckle under small compression loads.
Moreover, to ensure the least amount of residual pre-tension or pre-
compression of the inclined springs when varying their initial angle of
inclination, while still attached to the beam we unbolt their grounded
connection (the threaded vertical rod) and rotate the entire attachment
until we find a threaded hole on the optical table so that in its new
position the inclined pair of springs is nearly unstretched. This ensures
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Fig. 13. Experimental fixture: (a) Beam with pinned pair of parallel inclined springs, (b, c) detail of the pinned connection, and (d) associated mathematical model.

that the attachment is close to its natural length when the system is at
equilibrium and satisfies this basic assumption of the theoretical study.
Finally, we note that an axial force is applied to the beam by the inclined
attachment during the transient response. Since the axial stiffness of the
beam is much larger compared to its transverse stiffness (we estimated
that the natural frequencies for axial oscillations of the beam are much
higher compared to those of the leading-order transverse modes. For
instance, the natural frequency corresponding to the first axial mode of
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vibration of the beam is computed to be 740.65 Hz which indicates that
the axial stiffness of the beam is much greater than that of the leading-
order transverse modes), the resulting axial deformation of the beam is
orders of magnitude smaller than the transverse deformation, so it can
be neglected. The associated mathematical model of the experimental
fixture is shown in Fig. 13(d). A regime of small oscillations is assumed,
so in the mathematical model the beam is based on first-order Euler—
Bernoulli linear beam theory.
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Table 3 Table 4
Results of the experimental modal analysis of the uncoupled beam. Identified parameters for the system of parallel springs in the inclined attachment.
Mode No. Nat. Freq. [Hz] Modal damping ratio Unstretched length, /, [m] 0.0762
1 2126 0.0253 Mass of springs, Msprings [kgl 0.1400
9 13.391 0.0019 Attachment A'dded m'ass at the tip, m;, [kg] 0.1955
3 37.975 0.0010 Linear stiffness, Kqpyings [N/m] 6816.0517
Linear viscous damping, dqyings [N s/m] 0.7492

We note at this point that the beam has an infinite number of bending
modes and as such differs from the simplified oscillator depicted in
Fig. 1; nevertheless, by considering the response of only the first bending
mode (i.e., by confining our attention to the frequency range close to the
first bending mode) it should be possible to approximately reproduce
the theoretical system in the experiment. Of course, this hypothesis
neglects the effects of the higher bending modes to the beam response,
but it is assumed that these higher frequency effects are much smaller
in the range of energies and frequencies considered in the present
experimental study.

5.1. Linear modal analysis and parameter identification

In the first phase of the experimental study we perform (linear)
modal analysis of the clamped-free beam by disconnecting the inclined
springs and referring to it as the “‘uncoupled beam.“ This task is
performed to experimentally identify the natural frequency and modal
damping of each of the leading bending modes of the uncoupled (linear)
beam. To perform this study the beam is forced by an impulsive excita-
tion using a modal impact hammer (PCB model 086C01) at the location
where the accelerometer is attached — cf. Fig. 14(a). We note that in
the experiments with the coupled (geometrically nonlinear) system —
i.e., the beam connected to the spring elements — that were performed
for the purpose of validating the theoretical study, the beam was excited
differently, namely by prescribing an initial tip displacement. Since the
internal damping of the plain beam was observed to be very low, all
the data used for the linear modal analysis was recorded at a 40.96 kHz
sampling frequency for 52.2 s to capture the decay of the response more
accurately using the Polytec Scanning Vibrometer software (version
8.722). In the later experiments with the integrated system, however,
the data used for the theoretical validation was recorded at a 20.48 kHz
sampling frequency for at least 12.8 s using the same software. After the
acceleration time series of the tip of the plain beam was recorded by the
accelerometer, the corresponding velocity and displacement time series
were computed by numerically integrating the measured accelerations
and the computed velocities, respectively. After each integration, a
third-order high-pass Butterworth filter with cutoff frequency of 1 Hz
was applied to remove the artificial low frequency component added
to the signal due to numerical integration. In addition, the temporal
non-zero constant or linearly increasing/decreasing mean-value of each
time signal was removed before and after each integration. An impulse
of maximum magnitude 491.2 N is applied by the modal hammer at the
tip of the beam, and the measured response time series is post-processed
for modal analysis. Assuming proportional modal damping, the modal
parameters of the uncoupled beam are extracted by applying the RFP
method [25], and the results of the experimental modal analysis are
listed in Table 3 for the leading three modes of the beam.

Based on the identified modal parameters of the uncoupled beam,
a computational finite element (FE) model is created using 16 Euler—
Bernoulli beam elements. The Young’s modulus of the FE model is
obtained by applying natural frequency optimization to minimize the ac-
cumulate relative error between the natural frequencies of the first four
bending modes of the beam and those measured from the experiment,
whereas the proportional damping matrix is obtained by matching the
experimental modal damping ratios. The optimized Young’s modulus is
computed as 192 GPa. In Fig. 14(a) we depict the applied experimental
impulse, and in Fig. 14(b—e) the comparison between the experimental
and computational responses of the uncoupled beam. From these results
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it is clear that the computational model captures accurately at least the
leading three bending modes of the uncoupled system; regarding higher
modes it is anticipated that their contribution to the response is small
and can be neglected.

In the second phase of the experimental study the linear stiffness and
viscous damping properties of the pair of inclined springs is identified.
To this end, the inclined element is placed in a perpendicular position
to the beam (i.e., at an initial angle of inclination ¢, 90°), so
there should be complete absence of geometric nonlinearities in the
dynamics, and the impulsive response of the coupled beam-springs
system should be linear. We refer to this system as the “coupled system.*
Taking into account the previously identified modal properties of the
uncoupled beam, a second experimental modal analysis is performed
for the coupled system, and the revised modal properties are again
experimentally identified with the RFP method. Then, the previous
computational FE model of the uncoupled beam is augmented with
the perpendicular system of parallel springs, and the stiffness and
damping properties of the springs are identified by natural frequency
and modal damping optimization, i.e., by matching the experimental
and computational natural frequencies and modal damping ratios of
the integrated system for the first four bending modes of the beam. In
Table 4 we list the resulting identified parameters for the two parallel
springs, which completes the computational model.

In Fig. 15 we depict the results of the experimental modal analysis
of the coupled beam subject to an applied impulsive load of similar
magnitude and duration with that shown in Fig. 14(a). In Fig. 15(a—
d) we present the comparison between the experimental and compu-
tational responses of the coupled beam. Comparing these results with
the corresponding plots of Fig. 14, we note the significant and rapid
reduction of the transient oscillations due to the overall stiffening of
the system and the added damping provided by the attachment. From
these results it is also clear that the computational model again captures
accurately the leading in-plane bending modes of the uncoupled system.
The mode at 66 Hz we conjecture to be a torsional mode and the mode
at 78 Hz is the natural frequency of an out of plane bending mode of the
beam (cf. Fig. 14). It should be mentioned that the mismatch between
the model and the experiment for the modes above the third in-plane
bending modes is irrelevant for our study which is primarily based on
the response of the first (fundamental) bending mode of the beam.

5.2. Experimental results—Beam with the inclined spring—damper attached
to its free end

After modal analysis and construction of the FE of the coupled
beam, the third and final experimental phase was performed, with
the basic aim being the verification of the theoretical predictions.
A series of experimental tests was performed by fixing the inclined
element to a (small) initial angle, ¢,, and applying an initial tip
displacement to the beam which is expected to excite primarily the
first bending mode. In Figs. 16-18 we depict some typical results,
comparing the experimental and computational velocity time series.
In Fig. 16 we consider an initial angle of inclination, ¢, = 20°, and
initial tip displacement, u; = —0.060 m. The results in Fig. 17 correspond
to the initial angle of inclination, ¢, 16.5°, and same initial tip
displacement, u, = —0.060m. Finally, in Fig. 18 we consider the case
¢ = 16.5° and uy = —0.050m. Each experimental or computational
velocity time series was post-processed by wavelet-bounded Empirical
Mode Decomposition (WBEMD) to obtain the corresponding dominant
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Fig. 15. Experimental modal analysis of the coupled beam: (a) Experimental and computational time series of the tip velocity of the beam, (b, c) experimental and computational wavelet
spectra of the shown velocity time series, and (d) corresponding experimental and computational direct receptance frequency response functions.

intrinsic mode functions (IMFs) [26-28]. WBEMD is a closed-loop,
optimization-based method for post-processing measured oscillating
time series, yielding the dominant embedded component oscillations
that are governed by different time scales. Hence, WBEMD is a numerical
method to compute the different oscillating processes (the IMFs) and the
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corresponding governing time scales (or frequencies) that are embedded
in the oscillating time series. The superposition of all identified IMFs
reconstructs the measured signal, and the dominant (i.e., the first)
IMF reveals the dominant time scale (or frequency) that governs the
oscillating signal. In our case the first IMF of each velocity time series is
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(red lines in (c) and (d) indicate instantaneous frequency of the IMFs.

at the frequency of the first bending mode of the beam and confirms that
it is that mode that dominates the nonlinear response; in essence, the
time series of the first IMF of each velocity time series that is depicted
in Figs. 15-17 represents the response of the first bending mode of the
coupled beam.

As expected from the previous theoretical analysis with the SDOF
model of Fig. 1, the geometric nonlinearity induces both hardening
and softening behavior. Indeed, it is clear from the results of Fig. 17
that the frequency of the first bending mode and its higher harmonics
are initially decreasing with decreasing energy (indicating hardening
nonlinearity) until 3.3 s. After 3.3 s, however, the behavior of the
nonlinearity switches from hardening to softening nonlinearity with the
frequency increasing with decreasing energy. Higher bending modes are
almost not affected by the geometric nonlinearity. Similar trends are
noted for the other responses depicted in Figs. 16 and 18.

Moreover, comparing the experimental and computational time-
series and their associated wavelets in Figs. 16-18, we conclude that
the FE model can accurately model the dynamics of the experimental
coupled beam. In particular, the computational time series appears to
capture accurately the high frequency nonlinear scattering of energy
observed in the experiments, as well as the hardening/softening be-
havior of the coupled system as evidenced in the dominant IMFs and
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Table 5

Logarithmic decays for the first IMFs of the experimental and computational velocity time
series.

Initial Disp. [m] 7y () - Experiment 7y (¢y) - Simulation

b = 16.5° B =20° b = 16.5° B =20°
0.037 6.1023 4.8804 15.5262 10.7852
0.050 7.9840 5.9739 16.3504 11.6186
0.055 8.6301 6.3481 16.9023 11.7009
0.060 11.2021 8.1016 18.1719 12.8816

their wavelet transforms. However, since friction in the hinges of the
inclined element is not modeled in the FE model, the response of the
FE model appears to be more lightly damped, persisting longer than
that of the experiment. This affects the later rather than the earlier
transient response of the coupled beam. It is clear from these results
that primarily the first bending mode is affected by the geometric
nonlinearity. Moreover, one can clearly see the hardening behavior
along with the higher harmonics of the first mode. This hardening
behavior confirms our previous observations in the SDOF system and
show that the nonlinearity behaves the same way in this case as well.
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Fig. 17. Comparison between experimental and computational results for initial angle of inclination ¢, = 16.5° and initial tip displacement u, = —0.06 m: (a) Experimental tip velocity and
associated wavelet spectrum, (b) Computational tip velocity and associated wavelet spectrum; leading order experimental (c) and computational IMF, and associated wavelet spectrum

(red lines in (c) and (d) indicate instantaneous frequency of the IMFs.

To validate the effect of the initial angle on the time-scale of the
slow-dynamics of the damped dynamics and verify the theoretical
predictions, the main harmonic consisting of the first bending mode
response was computed by WBEMD and examined further. This enables
us to have a fairer comparison between the theoretical prediction
from the SDOF system of Fig. 1 and the experimental results with the
coupled beam of Fig. 13, which is a continuous elastic system. Hence,
only the dominant first IMF of each experimental measurement was
considered in the following study. To this end, the decay time constant
as defined in the theoretical section can be determined by computing the
instantaneous amplitude of the first IMF, using the Hilbert transform.
Experiments were performed for four different initial tip displacements,
namely —0.06 m, —0.055 m, —0.05 m, —0.037 m, and two different initial
angles of inclination, that is, ¢, = 16.5° and ¢, = 20°. Along with
each experimental measurement, a similar post-processing analysis was
performed for the corresponding computational times series. The results
are listed in Table 5.

Fig. 19(a) illustrates the comparison between the ratios of velocity
logarithmic decays — each computed by relation (13) - for the two initial
angles of inclination considered in Table 5, both for the experimental
measurements and the computational simulations. As inferred from
theoretical relations (14) and (15), the predicted ratio of logarithmic
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decays should not depend on the initial energy of the oscillation (i.e., the
initial amplitude). Yet, in the experimental system and its corresponding
numerical model, due to the existence of higher flexible modes and other
unmodeled effects (e.g., friction at the pinned joints of the attachment,
and noise in the measurements), the percentage of the input energy that
applies to the first bending mode (the first IMF) is different for different
initial displacements. Hence, the ratios of logarithmic decays for the
coupled beam do vary for different initial displacements. However,
there is satisfactory agreement between the predicted values and the
experimental and computational ones for the coupled beam, especially
at higher initial tip displacements (energies). This might be explained by
the fact that at higher energies the geometric nonlinearities are expected
to be more profound and to dominate the transient response compared
to the underlying linear dynamics. In fact, as the initial displacement
decreases, the effect of friction becomes more dominant compared to
the effect of viscous damping in the system, and so the errors compared
to the theoretical prediction increase. In addition, at higher amplitudes
of the oscillations the effect of noise and unmodeled effects on the results
appear to decrease. Fig. 19(b) depicts the errors of the experimental and
computational ratios compared to the theoretical prediction.
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Fig. 18. Comparison between experimental and computational results for initial angle of inclination ¢, = 16.5° and initial tip displacement u, = —0.05m: (a) Experimental tip velocity
and associated wavelet spectrum, (b) Computational tip velocity and associated wavelet spectrum; leading order experimental (¢) and computational (d) IMF, and associated wavelet

spectrum (red lines in (c) and (d) indicate instantaneous frequency of the IMFs.
6. Concluding remarks

In this work a new way to induce geometrically nonlinear stiffness
and damping nonlinearities in a system composed of otherwise linear
elements was studied. The study contained analytical, computational
and experimental parts. In the theoretical study a SDOF oscillator was
considered, consisting of a mass restricted to oscillate in the vertical
direction and grounded by a linear spring and a linear damper and two
parallel spring—dashpot elements which while at rest, create in initial
inclination angle with the ground. When at equilibrium all stiffness and
damping elements of this system are assumed to be uncompressed, so
no gravity forces are included in the analysis. The mass is forced with
an initial impulse of varying intensity.

In the theoretical part it was shown that the initial angle of incli-
nation can cause two bifurcations in the transient damped dynamics of
the system. The first bifurcation corresponds to the initial angle after
which the system experiences negative stiffness in its restoring force.
The second bifurcation corresponds to the initial angle after which
the number of equilibrium points in the system changes from being
one to three, two of which are stable and one is unstable. Moreover,
it was shown that for zero initial angle, the stiffness nonlinearity is
purely hardening, while for any non-zero initial angle, and depending
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in the input energy to the system, the nonlinearity can either change its
behavior from hardening (in the initial high energy regime) to softening
(in the later lower energy regime), or to only softening behavior
(at sufficiently low input energy). In addition, the linearized natural
frequency that the system eventually attains at the end of the low-energy
softening response was shown to be tunable with the initial angle of the
inclined elements.

In the numerical simulations it was observed that by changing
the initial inclination angle one can affect the time-scale of the slow-
dynamics of the transient decay of the impulsive response, and at that
low-energy regime the effect of the geometrically nonlinear damping on
the dynamics was analytically investigated. Using the complexification-
averaging (CX-A) method the slow-flow equation governing the slow-
dynamics of the decaying response was derived and solved exactly. The
numerical observations then were verified by the results obtained from
the CX-A method.

In the experimental part of this work, a validation of the theo-
retical predictions was sought. To this end, a series of experimental
tests was undertaken with a beam which was clamped at one end
and grounded through an inclined dissipative spring element. Further-
more, a numerical FE model of the experiment was constructed to
be able to predict the behavior of the system and further verify the
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theoretical results. The gathered data from the experiment and their
corresponding numerical simulations with the FE model validated the
theoretical results and the numerical observations which were derived
based on the theoretical SDOF model. The fact that we observed the
same types of experimental nonlinear behaviors to those predicted
with the theoretical discrete model, confirmed the robustness of the
geometrically nonlinear effects induced by the inclined spring—damper
elements.

The results reported in this work underscore the need to carefully
evaluate the effects of geometry and kinematics on the responses of
discrete or continuous oscillators, since strong hardening-softening
stiffness and damping nonlinearities may result in certain frequency and
energy ranges, despite the fact that these systems may consist of stiffness
and damping elements with linear constitutive laws.
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Appendix. Taylor series expansions of the nonlinear stiffness and
damping forces

The leading order coefficients of the Taylor series expansions of
the nonlinear stiffness force in the approximate system (6) are given
by,
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Cy = %sin2 ¢ tan @,
Cy = — 3= tan gy cos? gy (128 — 192 cos? y) + 1 sin’ gy,
C, = 735 tan g cos® gy sin ¢y (128 — 320 cos by )
1
-% cos? b (128 — 192 cos? ¢y ) ,

Cy = _1;_8 tan ¢y cos? bo (128 — 640 cos? ¢y + 560 cos* q.')o) +

+ﬁ cos? g sin ¢y (128 — 320 cos? ¢y ) »

Cy = 7= tan ¢y cos® by sin b (128 — 896 cos? by + 1008 cos* ) —
_llTs cos* ¢y (128 — 640 cos? ¢y + 560 cos* ¢by) ,

Cs = 735 cos’ gy sin b (128 — 896 cos? g + 1008 cos ) .

(A1)

where ¢, denotes the initial angle of inclination. Similarly, the cor-
responding leading-order Taylor-series coefficients for the nonlinear
damping force are given by:

Dy = % (1=cos® ¢y) ,

D, = i (sin* g + 2 sin® by ,

D, = % (cos® ¢y + 3 cos* g +3cos? gy + 1),

D; = _1_I6 (sin8 $o + 4sin® ¢y + 6sin* g + 4 sin’ ¢o) .

(A.2)
Dy = —3—12 (cos 10¢p + 5 cos® g + 10 cos® ¢p

+10cos* ¢y + 5 cos? gy + 1),

= é (sin12 b + 65in'® gy + 15sin® ¢ + 205in® ¢

+15sin* gy + 6sin® ¢y ) ,

D;

Hence, these coefficients depend only on the initial angle of inclination
and on no other system parameter.
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