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Abstract

Machine learning techniques have gained prominence for the analysis of
resting-state functional Magnetic Resonance Imaging (rs-fMRI) data. Here,
we present an overview of various unsupervised and supervised machine learn-
ing applications to rs-fMRI. We offer a methodical taxonomy of machine
learning methods in resting-state fMRI. We identify three major divisions of
unsupervised learning methods with regard to their applications to rs-fMRI,
based on whether they discover principal modes of variation across space,
time or population. Next, we survey the algorithms and rs-fMRI feature
representations that have driven the success of supervised subject-level pre-
dictions. The goal is to provide a high-level overview of the burgeoning field
of rs-fMRI from the perspective of machine learning applications.

Keywords: Machine learning, resting-state, functional MRI, intrinsic
networks, brain connectivity

1. Introduction

Resting-state fMRI (rs-fMRI) is a widely used neuroimaging tool that
measures spontaneous fluctuations in neural blood oxygen-level dependent
(BOLD) signal across the whole brain, in the absence of any controlled ex-
perimental paradigm. In their seminal work, Biswal et al. [1] demonstrated
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School of Electrical and Computer Engineering, 300 Frank H. T. Rhodes Hall, Cornell
University, Ithaca, NY 14853.
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temporal coherence of low-frequency spontaneous fluctuations between long-
range functionally related regions of the primary sensory motor cortices even
in the absence of an explicit task, suggesting a neurological significance of
resting-state activity. Several subsequent studies similarly reported other
collections of regions co-activated by a task (such as language, motor, at-
tention, audio or visual processing etc.) that show correlated fluctuations at
rest [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. These spontaneously co-fluctuating regions
came to be known as the resting state networks (RSNs) or intrinsic brain net-
works. The term RSN henceforth denotes brain networks subserving shared
functionality as discovered using rs-fMRI.

Rs-fMRI has enormous potential to advance our understanding of the
brain’s functional organization and how it is altered by damage or disease.
A major emphasis in the field is on the analysis of resting-state functional
connectivity (RSFC) that measures statistical dependence in BOLD fluc-
tuations among spatially distributed brain regions. Disruptions in RSFC
have been identified in several neurological and psychiatric disorders, such
as Alzheimer’s [12, 13, 14], autism [15, 16, 17], depression [18, 19, 20],
schizophrenia [21, 22], etc. Dynamics of RSFC have also garnered consid-
erable attention in the last few years, and a crucial challenge in rs-fMRI
is the development of appropriate tools to capture the full extent of this
RS activity. rs-fMRI captures a rich repertoire of intrinsic mental states or
spontaneous thoughts and, given the necessary tools, has the potential to
generate novel neuroscientific insights about the nature of brain disorders
[23, 24, 25, 26, 27, 28].

The study of rs-fMRI data is highly interdisciplinary, majorly influenced
by fields such as machine learning, signal processing and graph theory. Ma-
chine learning methods provide a rich characterization of rs-fMRI, often in a
data-driven manner. Unsupervised learning methods in rs-fMRI are focused
primarily on understanding the functional organization of the healthy brain
and its dynamics. For instance, methods such as matrix decomposition or
clustering can simultaneously expose multiple functional networks within the
brain and also reveal the latent structure of dynamic functional connectivity.

Supervised learning techniques, on the other hand, can harness RSFC
to make individual-level predictions. Substantial effort has been devoted
to using rs-fMRI for classification of patients versus controls, or to predict
disease prognosis and guide treatments. Another class of studies explores the
extent to which individual differences in cognitive traits may be predicted by
differences in RSFC, yielding promising results. Predictive approaches can
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also be used to address research questions of interest in neuroscience. For
example, is RSFC heritable? Such questions can be formulated within a
prediction framework to test novel hypotheses.

From mapping functional networks to making individual-level predictions,
the applications of machine learning in rs-fMRI are far-reaching. The goal
of this review is to present in a concise manner the role machine learning
has played in generating pioneering insights from rs-fMRI data, and describe
the evolution of machine learning applications in rs-fMRI. We will present a
review of the key ideas and application areas for machine learning in rs-fMRI
rather than delving into the precise technical nuances of the machine learning
algorithms themselves. In light of the recent developments and burgeoning
potential of the field, we discuss current challenges and promising directions
for future work.

1.1. Resting-state fMRI: A Historical Perspective

Until the 2000s, task-fMRI was the predominant neuroimaging tool to
explore the functions of different brain regions and how they coordinate to
create diverse mental representations of cognitive functions. The discovery
of correlated spontaneous fluctuations within known cortical networks by
Biswal et al. [1] and a plethora of follow-up studies have established rs-fMRI
as a useful tool to explore the brain’s functional architecture. Studies adopt-
ing the resting-state paradigm have grown at an unprecedented scale over
the last decade. These are much simpler protocols than alternate task-based
experiments, capable of providing critical insights into functional connectiv-
ity of the healthy brain as well as its disruptions in disease. Resting-state is
also attractive as it allows multi-site collaborations, unlike task-fMRI that is
prone to confounds induced by local experimental settings. This has enabled
network analysis at an unparalleled scale.

Traditionally, rs-fMRI studies have focused on identifying spatially-distinct
yet functionally associated brain regions through seed-based analysis (SBA).
In this approach, seed voxels or regions of interest are selected a priori and
the time series from each seed is correlated with the time series from all brain
voxels to generate a series of correlation maps. SBA, while simple and easily
interpretable, is limited since it is heavily dictated by manual seed selection
and, in its simplest form, can only reveal one specific functional system at a
time.

Decomposition methods like Independent Component Analysis (ICA) emerged
as a highly promising alternative to seed-based correlation analysis in the
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early 2000s [29, 2, 30]. This was followed by other unsupervised learning
techniques such as clustering. In contrast to seed-based methods that ex-
plore networks associated with a seed voxel (such as motor or visual func-
tional connectivity maps), these new class of model-free methods based on
decomposition or clustering explored RSNs simultaneously across the whole
brain for individual or group-level analysis. Regardless of the analysis tool, all
studies largely converged in reporting multiple robust resting-state networks
across the brain, such as the primary sensorimotor network, the primary vi-
sual network, fronto-parietal attention networks and the well-studied default
mode network. Regions in the default mode network, such as the poste-
rior cingulate cortex, precuneus, ventral and dorsal medial prefrontal cortex,
show increased levels of activity during resting-state suggesting that this net-
work represents the baseline or default functioning of the human brain. The
default mode network has sparked a lot of interest in the rs-fMRI commu-
nity [31], and several studies have consequently explored disruptions in DMN
resting-state connectivity in various neurological and psychiatric disorders,
including autism, schizophrenia and Alzheimer’s. [32, 33, 34]

Despite the widespread success and popularity of rs-fMRI, the causal ori-
gins of ongoing spontaneous fluctuations in the resting brain remain largely
unknown. Several studies explored whether resting-state coherent fluctua-
tions have a neuronal origin, or are just manifestations of aliasing or physi-
ological artifacts introduced by the cardiac or respiratory cycle. Over time,
evidence in support for a neuronal basis of BOLD-based resting state func-
tional connectivity has accumulated from multiple complementary sources.
This includes (a) observed reproducibility of RSFC patterns across indepen-
dent subject cohorts [5, 4], (b) its persistence in the absence of aliasing and
distinct separability from noise components [5, 35], (c) its similarity to known
functional networks [1, 2, 11] and (d) consistency with anatomy [36, 37], (e)
its correlation with cortical activity studied using other modalities [38, 39, 40]
and finally, (f) its systematic alterations in disease [23, 24, 25].

1.2. Application of Machine Learning in rs-fMRI

A vast majority of literature on machine learning for rs-fMRI is devoted
to unsupervised learning approaches. Unlike task-driven studies, modelling
resting-state activity is not straightforward since there is no controlled stim-
uli driving these fluctuations. Hence, analysis methods used for characteriz-
ing the spatio-temporal patterns observed in task-based fMRI are generally
not suited for rs-fMRI. Given the high dimensional nature of fMRI data,
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Figure 1: Traditional seed based analysis approach

it is unsurprising that early analytic approaches focused on decomposition
or clustering techniques to gain a better characterization of data in spatial
and temporal domains. Unsupervised learning approaches like ICA catalyzed
the discovery of the so-called resting-state networks or RSNs. Subsequently,
the field of resting-state brain mapping expanded with the primary goal of
creating brain parcellations, i.e., optimal groupings of voxels (or vertices in
the case of surface representation) that describe functionally coherent spatial
compartments within the brain. These parcellations aid in the understand-
ing of human functional organization by providing a reference map of areas
for exploring the brain’s connectivity and function. Additionally, they serve
as a popular data reduction technique for statistical analysis or supervised
machine learning.

More recently, departing from the stationary representation of brain net-
works, studies have shown that RSFC exhibits meaningful variations during
the course of a typical rs-fMRI scan [41, 42]. Since brain activity during
resting-state is largely uncontrolled, this makes network dynamics even more
interesting. Using unsupervised pattern discovery methods, resting-state pat-
terns have been shown to transition between discrete recurring functional
connectivity ”states”, representing diverse mental processes [42, 43, 44]. In
the simplest and most common scenario, dynamic functional connectivity
is expressed using sliding-window correlations. In this approach, functional
connectivity is estimated in a temporal window of fixed length, which is sub-
sequently shifted by different time steps to yield a sequence of correlation
matrices. Recurring correlation patterns can then be identified from this
sequence through decomposition or clustering. This dynamic nature of func-
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tional connectivity opens new avenues for understanding the flexibility of
different connections within the brain as they relate to behavioral dynamics,
with potential clinical utility [45].

Figure 2: Applications of machine learning methods in resting-state fMRI

Another, perhaps clinically more promising application of machine learn-
ing in rs-fMRI expanded in the late 2000s. This new class of applications
leveraged supervised machine learning for individual level predictions. The
covariance structure of resting-state activity, more popularly known as the
”connectome”, has garnered significant interest in the field of neuroscience as
a sensitive biomarker of disease. Studies have further shown that an individ-
ual’s connectome is unique and reliable, akin to a fingerprint [46]. Machine
learning can exploit these neuroimaging based biomarkers to build diagnos-
tic or prognostic tools. Visualization and interpretation of these models can
complement statistical analysis to provide novel insights into the dysfunction
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of resting-state patterns in brain disorders. Given the prominence of deep
learning in today’s era, several novel neural-network based approaches have
also emerged for the analysis of rs-fMRI data. A majority of these approaches
target connectomic feature extraction for single-subject level predictions.

In order to organize the work in this rapidly growing field, we sub-divide
the machine learning approaches into different classes by methods and appli-
cation focus. We first differentiate among unsupervised learning approaches
based on whether their main focus is to discover (a) the underlying spa-
tial organization that is reflected in coherent fluctuations, (b) the structure
in temporal dynamics of resting-state connectivity, or (c) population-level
structure for inter-subject comparisons. Next, we move on to discuss super-
vised learning. We organize this section by discussing the relevant rs-fMRI
features employed in these models, followed by commonly used training al-
gorithms, and finally the various application areas where rs-fMRI has shown
promise in performing predictions.

2. Unsupervised learning methods

The primary objective of unsupervised learning is to discover latent rep-
resentations and disentangle the explanatory factors for variation in rich,
unlabelled data. These learning methods do not receive any kind of supervi-
sion in the form of target outputs (or labels) to guide the learning process.
Instead, they focus on learning structure in the data in order to extract rel-
evant signal from noise. Below, we review some important unsupervised
learning methods that have advanced rs-fMRI analysis.

2.1. Clustering

Given data points {X1, .., Xn}, the goal of clustering is to partition the
data into K disjoint groups {C1, .., CK}. Different clustering algorithms differ
in terms of their clustering objective, which is to maximize some notion of
within-cluster similarity and/or between-cluster dissimilarity.
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Figure 3: A taxonomy of unsupervised learning methods used for rs-fMRI analysis

K-means. K-means clustering is thus far the most popular learning algorithm
for partitioning data. The algorithm aims at minimizing the within-cluster
variance. Formally, this corresponds to the following clustering objective,

min
K∑
j=1

∑
i∈Cj

∥∥∥∥∥∥Xi −
1

nj

∑
t∈Cj

Xt

∥∥∥∥∥∥
2

where nj denotes the cardinality of set Cj. This optimization problem
is solved using an iterative algorithm, known as the Lloyd’s algorithm. The
algorithm begins with initial estimates of cluster centroids and iteratively re-
fines them by (a) assigning each datum to its closest cluster, and (b) updating
cluster centroids based on these new assignments.

Gaussian mixture models. Mixture models are often used to represent proba-
bility densities of complex multimodal data with hidden components. These
models are constructed as mixtures of arbitrary unimodal distributions, each
representing a distinct cluster. In the case of Gaussian mixture models,
each Xi is assumed to be generated by a two-step process: (a) First, a
latent component zi ∈ {1, .., K} is sampled, zi ∼ Multinomial(φ) where
φk = P (zi = k); then (b) a random sample is drawn from one of K multi-
variate gaussians conditional on zi, i.e. Xi|zi = k ∼ N (µk,Σk) where µk and
Σk denote the mean and covariance of the k-th gaussian respectively. Each
gaussian distribution thus denotes a unique cluster. The model parameters
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{φ, µ,Σ} are obtained by maximizing the complete data likelihood,

{φopt, µopt,Σopt} = arg max
φ,µ,Σ

n∑
i=1

logP (Xi|φ, µ,Σ)

= arg max
φ,µ,Σ

n∑
i=1

logP (Xi|zi, µ,Σ)P (zi|φ)

Maximum likelihood estimates of GMMs are usually obtained using the
Expectation-Maximization (EM) algorithm.

Hierarchical clustering. Hierarchical clustering methods group the data into
a set of nested partitions. This multi-resolution structure is often represented
with a cluster tree, or dendrogram. Hierarchical clustering is divided into ag-
glomerative or divisive methods, based on whether the clusters are identified
in a bottom-up or top-down fashion respectively. Hierachical agglmomer-
ative clustering (HAC), the more dominant approach, initially treats each
data point as a singleton cluster and then successively merges them accord-
ing to pre-specific distance metric until a single cluster containing all obser-
vations is formed. Many distance metrics, referred to as linkage criterion,
have been proposed in literature that optimize different goals of hierarchi-
cal clustering. These include: (a) single-link, where distance between clus-
ters C1 and C2 is defined as the distance between their closest points, i.e.,
d(C1, C2) = min

xi∈C1,xj∈C2

d(xi, xj), (b) Complete linkage, where this distance

is measured between the farthest points, C(d1, d2) = max
xi∈C1,xj∈C2

d(xi, xj),

(c) Average linkage which measures the average distance between members
d(C1, C2) = 1

|C1||C2|
∑

xi∈C1

∑
xj∈C2

d(xi, xj) etc. Here, d represents dissimilarity

between observations. Alternate methods for merging have also been pro-
posed, the most popular being Ward’s criterion. Ward’s method measures
how much the within-cluster variance will increase when merging two parti-
tions and minimizes this merging cost. A major drawback is computational
complexity, which render HAC methods impractical in applications with large
observational data.

Graph-based clustering. Graph based clustering forms another class of similarity-
based partitioning methods for data that can be represented using a graph.

9
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Given a weighted undirected graphG = {V,E} with vertex set V and edge set
E, most graph-partitioning methods optimize a dissociation measure, such
as the normalized cut (Ncut). The edge weights w(i, j) represent a function
of similarity between vertices i and j. Ncut computes the total edge weights
connecting two partitions and normalizes this by their weighted connections
to all nodes within the graph. A two-way normalized-cut criteria divides
G into disjoint partitions A and B (A ∪ B = V,A ∩ B = φ) by simultane-
ously minimizing between-cluster similarity while maximizing within-cluster
similarity. This objective criterion is expressed as,

Ncut(A,B) =

∑
i∈A,j∈B w(i, j)∑
i∈A,j∈V w(i, j)

+

∑
i∈A,j∈B w(i, j)∑
i∈V,j∈B w(i, j)

However, minimizing this objective directly is an NP-hard problem. Spec-
tral clustering algorithms typically solve a relaxation of this problem. This
approach can be further extended to obtain a K-way partitioning of the
graph. Graph-based clustering approach is often more resilient to outliers,
compared to k-means or hierarchical clustering.

10

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

Figure 4: Illustrations of popular clustering algorithms: K-means clustering partitions
the data space into Voronoi cells, where each observation is assigned to the cluster with
the nearest centroid (marked red in the figure). GMMs assume that each cluster is sam-
pled from a multivariate Gaussian distribution and estimates these probability densities
to generate probabilistic assignment of observations to different clusters. Hierarchical (ag-
glomerative) clustering generates nested partitions, where partitions are merged iteratively
based on a linkage criteria. Graph-based clustering partitions the graph representation of
data so that, for example, number of edges connecting distinct clusters are minimal.

2.2. Latent variable models

2.2.1. Decomposition

Decomposition or factorization based approaches assume that the ob-
served data can be decomposed as a product of simpler matrices, often im-
posing a specific structure and/or sparsity on these individual matrices. For-
mally, given data points X = [x1, .., xn] with xi ∈ RD, linear decomposition
techniques seek a basis set W = [w1, .., wK ] such that the linear space spanned
by W closely reconstructs X.

xi =
K∑
k=1

wkzi(k)

Here, each data point xi is characterized by unique coefficients zi ∈ RK for
the basis set W . Typically, K < D so that decomposition amounts to a
dimensionality reduction. In matrix notation, the goal is to find W and Z
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such that X ≈ WZ, where Z = [z1, .., zn]. This ill-posed problem is generally
solved by constraining the structure of W and/or Z.

Principal component analysis (PCA). PCA is a linear projection based tech-
nique widely used for dimensionality reduction. The goal of PCA is to find an
orthonormal basis W that maximizes the variance captured by projected data
Z = W TX. This is equivalent to minimizing the reconstruction error of the
data points based on the low-dimensional representation Z. Mathematically,
this amounts to solving the following optimization problem,

Wopt = arg min
W

∥∥X −WW TX
∥∥2

F
subject to W ∈ OD×K

where F denotes the Frobenius norm and OD×K denotes the set of D × K
dimensional orthonormal matrices.

Independent component analysis (ICA). Independent Component Analysis
(ICA) is a popular method for decomposing data as a linear combination of
statistically independent components. In the ICA terminology, W is often
known as the mixing matrix whereas Z comprises the source signals. In the
above formalism, ICA assumes that the sources, i.e., the rows of Z, are statis-
tically independent. The source signals are recovered using a ”whitening” or
”unmixing” matrix U , where U = W−1. Since X = WZ, we obtain Z = UX
Popular algorithms thus recover the sources by estimating U such that the
components of UX are statistically independent. Common ICA algorithms
emulate independence by either minimizing the mutual information between
sources (InfoMax) or by maximizing their non-gaussianity (FastICA). ICA
usually employs a full-rank matrix factorization and is often preceded with
PCA for dimensionality reduction.

Sparse dictionary learning. Sparse dictionary learning is formulated as a lin-
ear decomposition problem, similar to ICA/PCA, but with sparsity con-
straints on the components Z. This results in a non-convex optimization
problem of the following form:

{Wopt, Zopt} = arg min
W,Z

‖X −WZ‖2
F + C ‖Z‖0

In most practical applications, this optimization problem is relaxed by re-
placing the L0-norm with L1-norm.

12

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

Non-negative matrix factorization (NMF). NMF is another dimensionality
reduction technique that seeks a low-rank decomposition of the data matrix
X with non-negativity constraints on the components W and Z. Typically,
this corresponds to solving the following optimization,

{Wopt, Zopt} = arg min
W,Z

‖X −WZ‖2
F subject to W ≥ 0, Z ≥ 0

2.2.2. Hidden Markov Models

Hidden Markov Models (HMMs) are a class of unsupervised learning
methods for sequential data. They are used to model a Markov process
where the sequence of observations {x1, .., xT} are assumed to be generated
from a sequence of underlying hidden states {s1, .., sT}, which can be dis-
crete. In a HMM with K states, it is assumed that si can take discrete
values in {1, .., K}. The parameters of the HMM are learned by maximizing
the complete data likelihood,

θopt = arg max
θ

P (x1, .., xT , s1, .., sT |θ)

= arg max
θ

T∏
t=1

P (st|st−1, θ)P (xt|st, θ)

Here, P (s1|s0) denotes the initial state distribution π. The state transi-
tion probabilities are defined by a transition matrix T with elements Ti,j =
P (st = j|st−1 = i). The conditionals P (xt|st = k, θ) are captured by an
emission probability table E[k, xt]. The parameters θ of this probabilistic
model are thus {π, T, E}. This maximum likelihood estimation problem is
efficiently solved using a special case of the Expectation-Maximization algo-
rithm, known as the Baum-Welch algorithm.

2.3. Non-linear embeddings
Locally linear embeddings. LLE projects data to a reduced dimensional space
while preserving local distances between data points and their neighborhood.
LLE algorithm proceeds in two steps. First, each input Xi, i ∈ {1, , ., n} is
approximated as a linear combination of its K closest neighbors. The linear
subspace W is obtaining by minimizing the reconstruction error,i.e.,

Wopt = arg min
W

∑
i

|Xi −
∑
j

WijXj|2

subject to
∑
j

Wij = 1

13
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Here, Wij = 0 if Xj is not one of the K-nearest neighbors of Xi. In the
second step, the low-dimensional embeddings Yi are obtained by minimizing
the embedding cost function,

Yopt = arg min
Y

|Yi −
∑
j

WijYj|2

In the latter optimization, W is kept fixed at Wopt, while Yi’s are optimized.

Autoencoders. The autoencoder is an unsupervised neural-network based ap-
proach for learning latent representations of high-dimensional data. It en-
codes the input X into a lower dimensional representation Z = fθ(X), known
as the bottleneck, which is then decoded to reconstruct the input X̂ = gφ(Z).
Both the encoder fθ and decoder gφ are neural networks. The autoencoder
is trained to minimize the reconstruction error on a set of examples, often

measured with an L2 loss, i.e.,
∥∥∥X − X̂∥∥∥2

. The autoencoder can thus be seen

as a non-linear extension of PCA since fθ and gφ are in general non-linear
functions.

3. Applications of unsupervised learning in rs-fMRI

Unsupervised machine learning methods have proven promising for the
analysis of high-dimensional data with complex structures, making it ever
more relevant to rs-fMRI. Many unsupervised learning approaches in rs-fMRI
aim to parcellate the brain into discrete functional sub-units, akin to atlases.
These segmentations are driven by functional data, unlike those approaches
that use cytoarchitecture as in the Broadmann atlas, or macroscopic anatom-
ical features, as in the Automated Anatomical Labelling (AAL) atlas [47]. A
second class of applications delve into the exploration of brain network dy-
namics. Unsupervised learning has recently been applied to interrogate the
dynamic functional connectome with promising results[43, 42, 44, 48, 49].
Finally, the third application of unsupervised learning focuses on learning
latent low-dimensional representations of RSFC to conduct analyses across
a population of subjects. We discuss the methods under each of these chal-
lenging application areas below.
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3.1. Discovering spatial patterns with coherent fluctuations

Mapping the boundaries of functionally distinct neuroanatomical struc-
tures, or identifying clusters of functionally coupled regions in the brain is
a major objective in neuroscience. Rs-fMRI and machine learning methods
provide a promising combination with which to achieve this lofty goal.

In the case of rs-fMRI, the typical approach is to decompose the 4D
fMRI data into a linear superposition of distinct spatial modes that show
coherent temporal dynamics using techniques like ICA. Clustering is an al-
ternative unsupervised learning approach for analysis of rs- fMRI data. Un-
like ICA or dictionary learning, clustering is used to partition the brain
surface (or volume) into disjoint functional networks. It is important to
draw a distinction at this stage between two slightly different applications
of clustering since they sometimes warrant different constraints; one direc-
tion is focused on identifying functional networks which are often spatially
distributed, whereas the other is used to parcellate brain regions. The latter
application aims to construct atlases that reflect local areas that constitute
the functional neuroanatomy, much like how standard atlases such as the Au-
tomated Anatomical Labelling (AAL) [47] delineate macroscopic anatomical
regions. One important design decision in the application of clustering is the
distance function used to measure dissimilarity between different voxels (or
vertices). In the case of rs-fMRI, this distance function is either computed
on raw time-series at voxels or between their connectivity profiles. While
these two distances are motivated by the same idea of functional coherence,
certain differences have been found in parcellations optimized using either
criteria [50].

An important requirement for almost all of these methods is the a priori
selection of the number of clusters/components. These are often determined
through cross-validation or through statistics that reflect the quality, stability
or reproducibility of decomposition/partitions at different scales.

3.1.1. ICA

ICA has been one of the earliest and most widely used analytic tools for
rs-fMRI, driving several pivotal neuroscientific insights into intrinsic brain
networks. When applied to rs-fMRI, brain activity is expressed as a linear
superposition of distinct spatial patterns or maps, with each map following
its own characteristic time course. These spatial maps can reflect a coherent
functional system or noise, and several criteria can be used to automatically
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Figure 5: Schematic of application 3.1: In decomposition, the original fMRI data is ex-
pressed as a linear combination of spatial patterns and their associated time series - in
ICA, the independence of spatial maps is optimized whereas in sparse dictionary learning,
the sparsity of maps is encouraged. In clustering, time series or connectivity fingerprints
of voxels are clustered to assign voxels to distinct functional networks.
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differentiate them. This capability to isolate noise sources makes ICA partic-
ularly attractive. In the early days of rs-fMRI, several studies demonstrated
marked resemblance between the ICA spatial maps and cortical functional
networks known from task-activation studies [2, 4]. While typical ICA mod-
els are noise-free and assume that the only stochasticity is in the sources
themselves, several variants of ICA have been proposed to model additive
noise in the observed signals. Beckmann et al. [2] introduced a probabilistic
ICA (PICA) model to extract the connectivity structure of rs-fMRI data.
PICA models a linear instantaneous mixing process under additive noise
corruption and statistical independence between sources. De Luca et al. [5]
showed that PICA can reliably distinguish RSNs from artifactual patterns.
Both these works showed high consistency in resting-state patterns across
multiple subjects. While there is no standard criteria for validating the ICA
patterns, or any clustering algorithm for that matter, reproducibility or reli-
ability is often used for quantitative assessment. More recently, Khorshidi et
al. proposed an automated denoising strategy for fMRI based on ICA, known
as FIX ”FMRIB’s ICA-based-X-noiseifier”. The authors trained a classifier
using manual annotations to label artefactual components based on distinct
spatial/ temporal features. These components could represent a variety of
structured noise sources and once identified, they can be either subtracted
or regressed out of the data to yield clean signals.

ICA can also be extended to make group inferences in population studies.
Group ICA is thus far the most widely used strategy, where multi-subject
fMRI data are concatenated along the temporal dimension before imple-
menting ICA [51]. Individual-level ICA maps can then be obtained from
this group decomposition by back-projecting the group mixing matrix [51],
or using a dual regression approach [52]. More recently, Du et al.[53] intro-
duced a group information guided ICA to preserve statistical independence
of individual ICs, where group ICs are used to constrain the corresponding
subject-level ICs. Varoquaux et al. [54] proposed a robust group-level ICA
model to facilitate between-group comparisons of ICs. They introduce a gen-
erative framework to model two levels of variance in the ICA patterns, at the
group level and at a subject-level, akin to a multivariate version of mixed-
effect models. The IC estimation procedure, termed Canonical ICA, employs
Canonical Correlation Analysis to identify a joint subspace of common IC
patterns across subjects and yields ICs that are well representative of the
group.

Alternatively, it is also possible to compute individual-specific ICA maps
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and then establish correspondences across them [53] for generating group in-
ferences; however, this approach has been limited because source separations
can be very different across subjects, for example, due to fragmentation.

While ICA and its extensions have been used broadly by the rs-fMRI
community, it is important to acknowledge its limitations. ICA models lin-
ear representations of non-Gaussian data. Whether a linear transformation
can adequately capture the relationship between independent latent sources
and the observed high-dimensional fMRI data is uncertain and likely unre-
alistic. Unlike the popular Principal Component Analysis (PCA), ICA does
not provide the ordering or the energies of its components, which makes it im-
possible to distinguish strong and weak sources. This also complicates repli-
cability analysis since known sources i.e., spatial maps could be expressed in
any arbitrary order. Extracting meaningful ICs also sometimes necessitates
manual selection procedures, which can be inefficient or subjective. In the
ideal scenario, each individual component represents either a physiologically
meaningful activation pattern or noise. However, this might be an unrealistic
assumption for rs-fMRI. Additionally, since ICA assumes non-Gaussianity of
sources, Gaussian physiological noise can contaminate the extracted compo-
nents. Further, due to the high-dimensionality of fMRI, analysis often pro-
ceeds with PCA based dimensionality reduction before application of ICA.
PCA computes uncorrelated linear transformations of highest variance (thus
explaining greatest variability within the data) from the top eigenvectors of
the data covariance matrix. While this step is useful to remove observation
noise, it could also result in loss of signal information that might be crucial for
subsequent analysis. Although ICA optimizes for independence, it does not
guarantee independence. Based on studies of functional integration within
the brain, assumptions of independence between functional units could them-
selves be questioned from a neuroscientific point of view. Several papers have
suggested that ICA is especially effective when spatial patterns are sparse,
with negligible or little overlap. This hints to the possibility that success of
ICA is driven by sparsity of the components rather than their independence.
Along these lines, Daubechies and colleagues claim that fMRI representa-
tions that optimize for sparsity in spatial patterns are more effective than
fMRI representations that optimize independence [55].

3.1.2. Learning sparse spatial maps

Sparse dictionary learning is another popular framework for construct-
ing succinct representations of observed data. Varoquaux et al. [56] adopt a
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dictionary learning framework for segmenting functional regions from resting-
state fMRI time series. Their approach accounts for inter-subject variability
in functional boundaries by allowing the subject-specific spatial maps to dif-
fer from the population-level atlas. Concretely, they optimize a loss function
comprising a residual term that measures the approximation error between
data and its factorization, a cost term penalizing large deviations of indi-
vidual subject spatial maps from group level latent maps, and a regulariza-
tion term promoting sparsity. In addition to sparsity, they also impose a
smoothness constraint so that the dominant patterns in each dictionary are
spatially contiguous to construct a well-defined parcellation. In order to pre-
vent blurred edges caused due to the smoothness constraint, Abraham et al.
[57] propose a total variation regularization within this multi-subject dictio-
nary learning framework. This approach is shown to yield more structured
parcellations that outperform competing methods like ICA and clustering in
explaining test data. Similarly, Lv et al. [58] propose a strategy to learn
sparse representations of whole-brain fMRI signals in individual subjects by
factorizing the time-series into a basis dictionary and its corresponding sparse
coefficients. Here, dictionaries represent the co-activation patterns of func-
tional networks and coefficients represent the associated spatial maps. Ex-
periments revealed a high degree of spatial overlap in the extracted functional
networks in contrast to ICA that is known to yield spatially non-overlapping
components in practice.

3.1.3. K-means clustering and mixture models

K-means clustering or mixture models are frequently used for spatial seg-
mentation of fMRI data [59, 37, 60, 61]. Similarity between voxels can be
defined by correlating their raw time-series [59] or connectivity profiles [61].
Euclidean distance metrics have also been used on spectral features of time
series [37].

K-means clustering has provided several novel insights into functional or-
ganization of the human brain. It has revealed the natural division of cortex
into two complementary systems, the internally-driven ”intrinsic” system and
the stimuli-driven ”extrinsic” system [59, 60]; provided evidence for a hierar-
chical organization of RSNs [60]; and exposed the anatomical contributions
to co-varying resting-state fluctuations [37].

Golland et al. [62] proposed a Gaussian mixture model for clustering
fMRI signals. Here, the signal at each voxel is modelled as a weighted sum
of N Gaussian densities, with N determining the number of hypothesized
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functional networks and weights reflecting the probability of assignment to
different networks. Large-scale systems were explored at several resolutions,
revealing an intrinsic hierarchy in functional organization. Yeo et al. [63]
used rs-fMRI measurements on 1000 subjects to estimate the organization
of large-scale distributed cortical networks. They employed a mixture model
to identify clusters of voxels with similar corticocortical connectivity profiles.
Number of clusters were chosen from stability analysis and parcellations at
both a coarse resolution of 7 networks and a finer scale of 17 networks were
identified. A high degree of replicability was attained across data samples,
suggesting that these networks can serve as reliable reference maps for func-
tional characterization.

3.1.4. Identifying hierarchical spatial organization

Several studies have provided evidence for a hierarchical organization of
functional networks in the brain[62, 60]. Hierachical agglmomerative clus-
tering (HAC) thus provides a natural tool to partition rs-fMRI data and
explore this latent hierarchical structure. Earliest applications of clustering
to rs-fMRI were based on HAC [64, 36]. This technique thus largely demon-
strated the feasibility of clustering for extracting RSNs from rs-fMRI data.
Recent applications of HAC have focused on defining whole-brain parcella-
tions for downstream analysis [65, 66, 67]. Spatial continuity can be enforced
in parcels, for example, by considering only local neighborhoods as potential
candidates for merging [65].

An advantage of hierarchical clustering is that unlike k-means clustering,
it does not require knowledge of the number of clusters and is completely
deterministic. However, once the cluster tree is formed, the dendrogram
must be split at a level that best characterizes the ”natural” clusters. This
can be determined based on a linkage inconsistency criterion [64], consistency
across subjects [36], or advance empirical knowledge [68].

While a promising approach for rs-fMRI analysis, hierarchical clustering
has some inherent limitations. It often relies on prior dimensionality reduc-
tion, for example by using an anatomical template [36], which can bias the
resulting parcellation. It is a greedy strategy and erroneous partitions at
an early stage cannot be rectified in subsequent iterations. Single-linkage
criterion may not work well in practice since it merges partitions based on
the nearest neighbor distance, and hence is not inherently robust to noisy
resting-state signals. Further, different metrics usually optimize divergent at-
tributes of clusters. For example, single-link clustering encourages extended
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clusters whereas complete-link clustering promotes compactness. This makes
the a priori choice of distance metric somewhat arbitrary.

3.1.5. Graph based clustering

Functional MRI data can be naturally represented in the form of graphs.
Here, nodes represent voxels and edges represent connection strength, typi-
cally measured by a correlation coefficient between voxel time series or be-
tween connectivity maps [50, 69]. Often, thresholding is applied on edges to
limit graph complexity. Graph segmentation approaches, such as those based
on Ncut criteria, have been widely used to derive whole-brain parcellations
[50, 70, 71]. Population-level parcellations are usually derived in a two stage
procedure: First, individual graphs are clustered to extract functionally-
linked regions, followed by a second stage where a group-level graph char-
acterizing the consistency of individual cluster maps is clustered [69, 50].
Spatial contiguity can be easily enforced by constraining the connectivity
graph to local neighborhoods [50], or through the use of shape priors [71].
Departing from this protocol, Shen et al. [70] propose a groupwise clustering
approach that jointly optimizes individual and group parcellations in a single
stage and yields spatially smooth group parcellations in the absence of any
explicit constraints.

A disadvantage of the Ncut criteria for fMRI is its bias towards creating
uniformly sized clusters, whereas in reality functional regions show large size
variations. Graph construction itself involves arbitrary decisions which can
affect clustering performance [72] e.g., selecting a threshold to limit graph
edges, or choosing the neighborhood to enforce spatial connectedness.
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Table 1: Key papers for application 3.1
Discovering spatial patterns with coherent resting-state fluctuations (RSNs)

Approach a: Decomposition

Investigations into resting-state connectivity using independent component analysis (Beckmann et al., 2005)[2]
Consistent resting-state networks across healthy subjects (Damoiseaux et al.,2006)[4]
Method: ICA, Contribution: Early works demonstrating the striking similarity between ICA spatial maps and
cortical functional networks

Group comparison of resting-state fMRI using multi-subject ICA and dual regression(Beckmann et al.,2009) [52]
A group model for stable multi-subject ICA on fMRI datasets (Varoquaux et al., 2010)[54]
Group information guided ICA for fMRI data analysis (Du et al., 2013) [53]
Method: ICA (group-level), Contribution: Influential works discussing analytical approaches for multi-subject ICA
in resting-state

Multi-subject dictionary learning to segment an atlas of brain spontaneous activity (Varoquaux et al., 2011) [56]
Method: Sparse dictionary learning, Contribution: A multi-subject dictionary learning framework for learning
sparse spatial maps

Approach b: Clustering

Hierarchical clustering to measure connectivity in fMRI resting-state data, (Cordes et al.,2002)[64]
Neurophysiological Architecture of Functional Magnetic Resonance Images of Human Brain (Salvador et
al.,2005)[36]
Method: Hierarchical clustering, Contribution: Earliest applications of clustering to rs-fMRI; highlighted hierar-
chical organization of functional networks

The organization of the human cerebral cortex estimated by intrinsic functional connectivity, (Yeo et al.,2011)[63]
Method: Mixture models, Contribution: Influential large-scale study investigating brain’s functional organization

A whole brain fMRI atlas generated via spatially constrained spectral clustering, (Craddock et al.,2012)[50]
Groupwise whole-brain parcellation from resting-state fMRI data for network node identification, (Shen et
al.,2013)[70]
Method: Graph based clustering, Contribution: Released consistent whole-brain functional atlas for fMRI at
varying spatial resolutions based on rs-fMRI data

3.1.6. Comments

I. A comment on alternate connectivity-based parcellations. Several papers
make a distinction between clustering / decomposition and boundary detec-
tion based approaches for network segmentation. In the rs-fMRI literature,
several non-learning based parcellations have been proposed, that exploit tra-
ditional image segmentation algorithms to identify functional areas based on
abrupt RSFC transitions [73, 74]. Clustering algorithms do not mandate spa-
tial contiguity, whereas boundary based methods implicitly do. In contrast,
boundary based approaches fail to represent long-range functional associa-
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tions, and may not yield parcels that are as connectionally homogeneous as
unsupervised learning approaches. A hybrid of these approaches can yield
better models of brain network organization. This direction was recently
explored by Schaefer et al. [75] with a Markov Random Field model. The
resulting parcels showed superior homogeneity compared with several alter-
nate gradient and learning-based schemes. Further, complementing RSFC
with other modalities can yield corroborative and perhaps complementary
information for delineating areal boundaries. Recently, Glasser et al. ap-
proached this problem by developing a multi-modal approach for generating
brain parcellations[74]. The authors propose a semi-automated approach
that combines supervised machine learning with manual annotations for par-
cellating regions based on their multi-modal fingerprints (architecture, func-
tion, connectivity and topography). Such an approach can be instrumental
towards the goal of precise human brain functional mapping.

II. Subject versus population level parcellations. Significant effort in rs-fMRI
literature is dedicated to identifying population-average parcellations. The
underlying assumption is that functional connectivity graphs exhibit similar
patterns across subjects, and these global parcellations reflect common orga-
nizational principles. Yet, individual-level parcellations can potentially yield
more sensitive connectivity features for investigating networks in health and
disease. A central challenge in this effort is to match the individual-level
spatial maps to a population template in order to establish correspondences
across subjects. Common approaches to obtain subject-specific networks
with group correspondence often incorporate back-projection and dual re-
gression [52, 51], or hierarchical priors within unsupervised learning [56, 76].
While a number of studies have developed subject-specific parcellations, the
significance of this inter-subject variability for network analysis has only
recently been discussed. Kong et al. [76] developed high quality subject-
specific parcellations using a multi-session hierarchical Bayesian model, and
showed that subject-specific variability in functional topography can predict
behavioral measures. Recently, using a novel parcellation scheme based on
K-medoids clustering, Salehi et al. [77] showed that individual-level parcel-
lation alone can predict the sex of the individual. These studies suggest the
intriguing idea that subject-level network organization, i.e. voxel-to-network
assignments, can capture concepts intrinsic to individuals, just like connec-
tivity strength.
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III. Is there a universal ’gold-standard’ atlas? . When considering the fam-
ily of different methods, algorithms or modalities , there exist a plethora of
diverse brain parcellations at varying levels of granularity. Thus far, there
is no unified framework for reasoning about these brain parcellations. Sev-
eral taxonomic classifications can be used to describe the generation of these
parcellations, such as machine learning or boundary detection, decomposi-
tion or clustering, multi-modal or unimodal. Even within the large class
of clustering approaches, it is impossible to find a single algorithm that is
consistently superior for a collection of simple, desired properties of parti-
tioning [78]. Several evaluation criteria have emerged for comparing different
parcellations, exposing the inherent trade-offs at work. Arslan et al. [79] per-
formed an extensive comparison of several parcellations across diverse meth-
ods on resting-data from the Human Connectome Project (HCP). Through
independent evaluations, they concluded that no single parcellation is con-
sistently superior across all evaluation metrics. Recently, Salehi et al. [80]
showed that different functional conditions, such as task or rest, generate
reproducibly distinct parcellations thus questioning the very existence of an
optimal parcellation, even at an individual-level. These novel studies neces-
sitate rethinking about the final goals of brain mapping. Several studies have
reflected the view that there is no optimal functional division of the brain,
rather just an array of meaningful brain parcellations [65]. Perhaps, brain
mapping should not aim to identify functional sub-units in a universal sense,
like Broadmann areas. Rather, the goal of human brain mapping should
be reformulated as revealing consistent functional delineations that enable
reliable and meaningful investigations into brain networks.

IV. A comparison between decomposition and clustering. A high degree of
convergence has been observed in the functionally coherent patterns ex-
tracted using decomposition and clustering. Decomposition techniques al-
low soft partitioning of the data, and can thus yield spatially overlapping
networks. These models may be more natural representations of brain net-
works where, for example, highly integrated regions such as network ’hubs’
can simultaneously subserve multiple functional systems. Although it is pos-
sible to threshold and relabel the generated maps to produce spatially con-
tiguous brain parcellations, these techniques are not naturally designed to
generate disjoint partitions. In contrast, clustering techniques automatically
yield hard assignments of voxels to different brain networks. Spatial con-
straints can be easily incorporated within different clustering algorithms to
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yield contiguous parcels. Decomposition models can adapt to varying data
distributions, whereas clustering solutions allow much less flexibility owing to
rigid clustering objectives. For example, k-means clustering function looks to
capture spherical clusters. While a thorough comparison between these ap-
proaches is still lacking, some studies have identified the trade-offs between
choosing either technique for parcellation. Abraham et al. [57] compared
clustering approaches with group-ICA and dictionary learning on two evalu-
ation metrics: stability as reflected by reproducibility in voxel assignments on
independent data, and data fidelity captured by the explained variance on in-
dependent data. They observed a stability-fidelity trade-off: while clustering
models yield stable regions but do not explain test data as well, linear de-
composition models explain the test data reasonably well but at the expense
of reduced stability.

3.2. Discovering patterns of dynamic functional connectivity

Unsupervised learning has also been applied to study patterns of tempo-
ral organization or dynamic reconfigurations in resting-state networks. These
studies are often based on two alternate hypothesis that (a) dynamic (win-
dowed) functional connectivity cycles between discrete ”connectivity states”,
or (b) functional connectivity at any time can be expressed as a combina-
tion of latent ”connectivity states”. The first hypothesis is examined us-
ing clustering-based approaches or generative models like HMMs, while the
second is modelled using decomposition techniques. Once stable states are
determined across population, the former approach allows us to estimate the
fraction of time spent in each state by all subjects. This quantity, known as
dwell time or occupancy of the state, shows meaningful variation across indi-
viduals [43, 42, 81, 82]. It is important to note than in all these approaches,
the RSNs or the spatial patterns are assumed to be stationary over time and
it is the temporal coherence that changes with time.

3.2.1. Clustering

Several studies have discovered recurring dynamic functional connectivity
patterns, known as ”states”, through k-means clustering of windowed cor-
relation matrices [42, 81, 82, 83, 84]. FC associated with these repeating
states shows marked departure from static FC, suggesting that network dy-
namics provide novel signatures of the resting brain [42]. Notable differences
have been observed in the dwell times of multiple states between healthy
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Figure 6: Schematic of application 3.2. Three connectivity states are assumed in the data
for illustration purposes

controls and patient populations across schizophrenia, bipolar disorder and
psychotic-like experience domains [81, 82, 83].

Abrol et al. [84] performed a large-scale study to characterize the repli-
cability of brain states using standard k-means as well as a more flexible,
soft k-means algorithm for state estimation. Experiments indicated repro-
ducibility of most states, as well as their summary measures, such as mean
dwell times and transition probabilities etc. across independent population
samples. While these studies establish the existence of recurring FC states,
behavioral associations of these states is still unknown. In an interesting
piece of work, Wang et al. [85] identified two stable dynamic FC states using
k-means clustering that showed correspondence with internal states of high-
and low-arousal respectively. This suggests that RSFC fluctuations are be-
havioral state-dependent, and presents one explanation to account for the
heterogeneity and dynamic nature of RSFC.

3.2.2. Markov modelling of state transition dynamics

HMMs are another valuable tool to interrogate recurring functional con-
nectivity patterns [44, 43, 86]. The notion of states remains similar to the
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”FC states” described above for clustering; however, the characterization
and estimation is drastically different. Unlike clustering where sliding win-
dows are used to compute dynamic FC patterns, HMMs model the rs-fMRI
time-series directly. Hence, they offer a promising alternative to overcome
statistical limitations of sliding-windows in characterizing FC changes.

Several interesting results have emerged through the adoption of HMMs.
Vidaurre et al. [43] find that relative occupancy of different states is a
subject-specific measure linked with behavioral traits and heredity. Through
Markov modelling, transitions between states have been revealed to occur as a
non-random sequence [42, 43], that is itself hierarchically organized [43]. Re-
cently, network dynamics modelled using HMMs were shown to distinguish
MCI patients from controls [86], thereby indicating their utility in clinical
domains.

3.2.3. Finding latent connectivity patterns across time-points

Decomposition techniques for understanding RSFC dynamics have the
same flavor as the ones described in section 2.2.1: of explaining data through
latent factors; however, the variation of interest is across time in this case.
Adoption of matrix decomposition techniques exposes a basis set of FC pat-
terns from windowed correlation matrices. Dynamic FC has been charac-
terized using varied decomposition approaches, including PCA[48], Singular
Value Decomposition (SVD)[49], non-negative matrix factorization[87] and
sparse dictionary learning[88].

Decomposition approaches, here, diverge from clustering or HMMs as
they associate each dFC matrix with multiple latent factors instead of a
single component. To compare these alternate approaches, Leonardi et al.
[49] implemented a generalized matrix decomposition, termed k-SVD. This
factorization generalizes both k-means clustering and PCA subject to vari-
able constraints. Reproducibility analysis in this study indicated that dFC
is better characterized by multiple overlapping FC patterns.

Decomposition of dFC has revealed novel alterations in network dynamics
between healthy controls and patients suffering from PTSD [88] or multiple
sclerosis [48], as well as between childhood and young adulthood [87].
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Table 2: Key papers for application 3.2
Discovering reproducible patterns of dynamic functional connectivity

Approach a: Decomposition

Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest
(Leonardi et al.,2013)[48]
Method:PCA , Contribution: Early work characterizing dFC using latent connectivity patterns and suggesting
altered connectivity dynamics in disease

Approach b: Clustering

Tracking whole-brain connectivity dynamics in the resting state, (Allen et al.,2014)[42]
Method: K-means, Contribution: Provided evidence for recurring FC states and suggested marked departure of
dynamic connectivity patterns from static FC

Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia (Damaraju
2014)[81]
Method: K-means, Contribution: Revealed strong statistical differences in dwell times of multiple FC states
between controls and a disease group

Approach c: Markov models

Unsupervised learning of functional network dynamics in resting state fMRI (Eavani 2013)[44]
Method: HMM, Contribution: Earliest application of HMMs to study resting-state functional network dynamics

Brain network dynamics are hierarchically organized in time, (Vidaurre et al.,2017)[43]
Method: HMM, Contribution: Demonstrated that transitions between FC states occur in a non-random hier-
archically organized fashion and revealed that dwell times of FC states are linked with behavioral traits and
heredity.

3.3. Disentangling latent factors of inter-subject FC variation

Unsupervised learning can also disentangle latent explanatory factors for
FC variation across population. We find two applications here: (i) learning
low dimensional embeddings of FC matrices for subsequent supervised learn-
ing and (ii) learning population groupings to differentiate phenotypes based
solely on FC.

3.3.1. Dimensionality reduction

Rs-fMRI analysis is plagued by the curse of dimensionality, i.e., the phe-
nomenon of increasing data sparsity in higher dimensions. Commonly used
data features such as FC between pairs of regions, increase as O(n2) with the
number of parcellated regions. Further, sample size in typical fMRI studies
is typically of the order of tens or hundreds, making it harder to learn gen-
eralizable patterns from original high dimensional data. To overcome this,
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Figure 7: Schematic of application 3.3. Dimensionality reduction of high-dimensional
connectomes into 3 latent components is shown for illustration.

linear decomposition methods like PCA or sparse dictionary learning have
been widely used for dimensionality reduction of functional connectivity data
[89, 90, 91, 92].

Several non-linear embedding methods like Locally linear embedding (LLE)
or Autoencoders (AEs) have also garnered attention. LLE embeddings have
been employed in rs-fMRI studies, for example, to improve predictions in su-
pervised age regression [93], or for low-dimensional clustering to distinguish
Schizophrenia patients from controls [94]. AEs are a neural network based
alternative for generating reduced feature sets through nonlinear input trans-
formations. They have been used for feature reduction of RSFC in several
studies [86, 95]. AEs can also be used in a pre-training stage for supervised
neural network training, in order to direct the learning towards parameter
spaces that support generalization [96]. This technique was shown, for ex-
ample, to improve classification performance of Autism and Schizophrenia
using RSFC [97, 98].

3.3.2. Clustering heterogeneous diseases

Clustering can expose sub-groups within a population that show similar
FC. Using unsupervised maximum margin clustering [99], Zeng et al. [100]
demonstrated that clusters can be associated with disease category (de-
pressed v/s control) to yield high classification accuracy. Recently, Drysdale
et al. [101] discovered novel neurophysiological subtypes of depression based
on RSFC. Using an agglomerative hierarchical procedure, they identified clus-
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tered patterns of dysfunctional connectivity, where clusters showed associa-
tions with distinct clinical symptom profiles despite no external supervision.
Several psychiatric disorders, like depression, schizophrenia, and autism spec-
trum disorder, are believed to be highly heterogeneous with widely varying
clinical presentations. Instead of labelling them as a unitary syndrome, differ-
ential characterization based on disease sub-types can build better diagnostic,
prognostic or therapy selection systems. Unsupervised clustering could aid
in the identification of these disease subtypes based on their rs-fMRI mani-
festations.

Table 3: Key papers for application 3.3
Disentangling latent factors of inter-subject RSFC variation

Approach a: Decomposition

Identifying Sparse Connectivity Patterns in the brain using resting-state fMRI (Eavani et al.,2015)[91]
Method: Sparse dictionary learning, Contribution: One of the early works explaining inter-subject RSFC variability
in terms of sparse connectivity patterns

Approach b: Non-linear embeddings

Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional
embedding of fMRI (Shen et al.,2010)[94]
Method: LLE, Contribution: Proposed an unsupervised learning approach for discriminating Schizophrenia pa-
tients from controls with impressive accuracy

Identification of autism spectrum disorder using deep learning and the ABIDE dataset (Heinsfeld et al.,2018)[97]
Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances clas-
sification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
(Kim et al., 2016)[98]
Method: Autoencoders, Contribution: More recent works demonstrating the advantages of autoencoder based
dimensionality reduction/pre-training for downstream classification

Approach c: Clustering

Unsupervised classification of major depression using functional connectivity MRI (Zeng et al., 2014)[100]
Resting-state connectivity biomarkers define neurophysiological subtypes of depression (Drysdale et al., 2017) [101]
Method: Maximum margin clustering/HAC, Contribution: Demonstrated the power of clustering approaches for
diagnosing depression and identifying its subtypes based on rs-fMRI manifestations

4. Supervised Learning

Supervised learning denotes the class of problems where the learning sys-
tem is provided input features of the data and corresponding target predic-
tions (or labels). The goal is to learn the mapping between input and label,

30

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

Figure 8: A common classification/regression pipeline for connectomes

so that the system can compute predictions for previously unseen input data
points. Prediction of autism from rs-fMRI correlations is an example prob-
lem. Since intrinsic FC reflects interactions between cognitively associated
functional networks, it is hypothesized that systematic alterations in resting-
state patterns can be associated with pathology or cognitive traits. Promising
diagnostic accuracy attained by supervised algorithms using rs-fMRI consti-
tute strong evidence for this hypothesis.

In this section, we separate the discussion of rs-fMRI feature extraction
from the classification algorithms and application domains.

4.1. Deriving connectomic features

To render supervised learning effective, the most critical factor is feature
extraction. Capturing relevant neurophenotypes from rs-fMRI depends on
various design choices. Almost all supervised prediction models use brain net-
works or ”connectomes” extracted from rs-fMRI time-series as input features
for the learning algorithm. The prototypical prediction pipeline is shown in
Figure 8. Here, we discuss critical aspects of common choices for brain net-
work representations in supervised learning.

The first step in the prototypical pipeline is region definition and corre-
sponding time-series extraction. Dense connectomes derived from voxel-level
correlations are rarely used in practice for supervised prediction due to their
high dimensionality. Both functional and anatomical atlases have been exten-
sively used for this dimensionality reduction. Atlases delineate ROIs within
the brain that are often used to study RSFC at a supervoxel scale. Each ROI
is represented with a distinct time-course, often computed as the average sig-
nal from all voxels within the ROI. Consequently, the data is represented as
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an N × T matrix, where N denotes the number of ROIs and T represents
the time-points in the signal. A drawback of using pre-defined atlases is that
they may not explain the rs-fMRI dataset very well since they are not opti-
mized for the data at hand. Several studies employ data-driven techniques to
define regions within the brain, using unsupervised models such as K-means
clustering, Ward clustering, ICA or dictionary learning etc [66, 102]. It is im-
portant to note that since we use pairs of ROIs to define whole-brain RSFC,
the features grow as O(N2) with the number of ROIs. Therefore, in most
studies, the network granularity is often limited to the range of 10-400 ROIs.

The second step in this pipeline involves defining connectivity strength
for extracting the connectome matrix. Functional connectivity between pairs
of ROIs is the most common feature representation of rs-fMRI in supervised
learning. In order to extract connectivity matrix, first the covariance ma-
trix needs to be estimated. Sample covariance matrices are subject to a
significant amount of estimation error due to the limited number of time-
points. This ill-posed problem can be partially resolved through the use
of shrinkage transformations [103]. Connectivity strength can then be esti-
mated from the covariance matrix in multiple ways. Pearson’s correlation
coefficient is a commonly used metric for estimating functional connectiv-
ity. Partial correlation is another metric that has been shown to yield bet-
ter estimates of network connections in simulated rs-fMRI data [104]. It
measures the normalized correlation between two time-series, after remov-
ing the effect of all other time-series in the data. Alternatively, one can
use a tangent-based reparametrization of the covariance matrix to obtain
functional connectivity matrices that respect the Riemannian manifold of
covariance matrices [105]. These connectivity coefficients can boost the sen-
sitivity for comparing diseased versus patient populations [66, 105]. It is also
possible to define frequency-specific connectivity strength by decomposing
the original time-series into multiple frequency sub-bands and correlating
signals separately within these sub-bands [106].

A few studies depart from this routine. In graph-theoretic analysis, it is
common to represent parcellated brain regions as graph nodes and functional
connectivity between nodes as edge weights. This graph based representa-
tion of functional connectivity, the human ”connectome”, has been used to
infer various topological characteristics of brain networks, such as modularity,
clustering, small-worldedness etc. Some discriminative models have exploited
these graph-based measures for individual-level predictions [107, 108, 13], al-
though they are more commonly used for comparing groups. While limited
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in number, a few studies have also explored rs-fMRI features beyond RSFC.
Amplitude of low-frequency fluctuations (ALFF) and local synchronization
of rs-fMRI signals or Regional Homeogeneity (ReHo) are two alternate mea-
sures for studying spontaneous brain activity that have shown discriminative
ability [109, 110]. More recently, several studies have also begun to explore
the predictive capacity of dynamic FC in supervised models [111, 112].

Figure 9: A summary of design choices for supervised learning with rs-fMRI

4.2. Feature selection

The goal of feature selection is to remove noisy, redundant or irrelevant
features from the data while minimizing the information loss. Feature selec-
tion can often be an advantageous pre-processing step for training supervised
learning algorithms, especially in the low sample size regime. In the absence
of adequate regularization, large number of features can result in a loss of
generalization power. Selecting a subset of features with highest relevance
can thus help in building better generalizable models while reducing compu-
tational complexity.

Feature selection can be performed in a supervised or unsupervised fash-
ion. Supervised or semi-supervised feature selection techniques choose a
subset of features based on their ability to distinguish samples from dif-
ferent classes. These methods thus rely on class labels and can be further
classified into filter, wrapper or embedded type models. Filter models first
rank features by their importance/relevance for the classification task based
on a statistical measure (e.g. t-test) and then select the top-ranked features.
Wrapper models select feature subsets based on their predictive accuracy and
thus need a pre-determined classification algorithm. Wrapper models thus
perform better as they take into account the prediction accuracy estimates
during feature selection. Due to the repeated learning and cross-validation,
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however, these models are computationally prohibitive. Embedded models
combine the advantages of the two by integrating feature selection into the
learning algorithm. Regression models such as LASSO belong to this cate-
gory as they implicitly select features by encouraging sparsity. These feature
selection methods are discussed in depth in a detailed review by Tang et al.
[113].

An alternative for feature selection is input dimensionality reduction.
Methods like PCA or LLE belong to the category of unsupervised feature
selection techniques and have been used to reduce the feature set to a man-
ageable size in several studies. However, as pointed out in [114], these are
not at all guaranteed to improve classification performance since they are
oblivious to class labels.

Further, whether or not feature selection is necessary also depends on the
downstream learning algorithm. Support vector machines, in general, deal
well with high-dimensional data because of an implicit regularization. In the
context of SVMs, Vapnik et al. [115] have shown that an upper bound on
generalization error is independent of the number of features. Regularized
models, in general, are capable of handling large feature sets. A drawback is
that these models necessitate cross-validation to tune hyper-parameters such
as the weight of the regularization penalty. This can reduce the effective
sample size available for training and/or independent testing.

In some situations, it might be beneficial to exploit domain knowledge to
guide feature selection. For example, if certain anatomical regions are known
to have altered functional connectivity in disease based on prior studies, it
might be advantageous to use this prior knowledge for constructing a focused
feature set.

4.3. Methods

The majority of supervised learning methods applied to rs-fMRI are
discriminant-based, i.e., they discriminate between classes without any prior
assumptions about the generative process. The focus is on correctly estimat-
ing the boundaries between classes of interest. Learning algorithms for the
same discriminant function (e.g., linear) can be based on different objective
functions, giving rise to distinct models. We describe common models below.
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Figure 10: A taxonomy of supervised learning methods used for rs-fMRI analysis

4.3.1. Regularized linear models

A large class of supervised learning algorithms are based on regularized
linear models. The goal is to predict a target variable Y given input features
X. Without loss of generality and for notational convenience, let us assume
that the feature vector contains a single constant entry equal to 1, which
allows us to account for a bias term. These algorithms differ in the choice of
their likelihood model, P (Y |X,w) and/or prior P (w), where w denotes the
parameters of the model. These methods yield optimization problems that
are based on a conditional likelihood estimation or a maximum a posteriori
estimation (MAP) framework.

wopt = arg max
w

P (Y |X,w) : Conditional likelihood

wopt = arg max
w

P (w|X, Y ) : MAP

Ridge regression. Ridge regression is another widely used supervised learn-
ing algorithm belonging to the class of regularized linear models. The goal
is to predict a real-valued output Y given input features X. The conditional
likelihood in this algorithm is specified as a multivariate normal distribu-
tion where the mean parameter is modelled as a linear combination of input
features, i.e., Y |X ∼ N (wTx, σ2I). The prior on weight parameters is of-
ten modelled a zero-mean gaussian with a diagonal covariance matrix,i.e.,
w ∼ N (0, τ 2I). The optimal weight paramaters w are thus optimized within
a maximum a posteriori estimation (MAP) framework according to,

wopt = arg min
w

n∑
i=1

1

2σ2
(yi − wTxi)2 +

1

2τ 2
‖w‖2

2

The MAP estimation problem above is convex and admits an elegant ana-
lytical solution.
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Logistic Regression. Logistic regression employs a Bernoulli distribution to
model the conditional probability of an output class Y given the input fea-
tures X, i.e. Y |X ∼ Bernoulli(µ). The mean parameter, µ, is specified with
a logistic link function σ(·) using a linear combination of input features, i.e.,
µ = σ(wTx). Given data {(xi, yi), i = 1, .., n}, the model parameters w are
optimized within a conditional maximum likelihood framework by solving
the following convex optimization problem,

wopt = arg min
w

n∑
i=1

log(1 + exp(−yiwTxi))

The training objective is optimized using iterative methods such as gradient
descent or Newton’s method. Regularized variants of logistic regression in-
corporate priors on the weight parameters (e.g., multivariate gaussian) and
optimize the MAP estimates instead of the conditional likelihood estimates.

4.3.2. Support Vector Machines (SVMs)

The SVM is the most widely used classification/regression algorithm in
rs-fMRI studies. SVMs search for an optimal separating hyperplane between
classes that maximizes the margin, i.e., the distance from hyperplane to
points closest to it on either side. This results in a classifier of the form f(x) =
sign(wTx). The model parameters are obtained by solving the following
convex optimization problem:

wopt = arg min
w

C
n∑
i=1

max(0, 1− yi(wTxi)) + ‖w−b‖2 .

‖w−b‖2 is the L2 norm of the weight vector excluding the bias term. C
controls the capacity of the model and determines the margin of the clas-
sifier. Tuning C can control overfitting and reduce the generalization er-
ror of the model. The resulting classification model is determined by only
a subset of training instances that are closest to the boundary, known as
the support vectors. SVMs can be extended to seek non-linear separating
boundaries via adopting a so-called kernel function. The kernel function,
which quantifies the similarity between pairs of points, implicitly maps the
input data to higher dimensions. Conceptually, the use of kernel functions
allows incorporation of domain-specific measures of similarity. For example,
graph-based kernels, such as Weisfeiler-Lehman subtree kernel, can define
a distance metric on the graphical representation of functional connectivity
data for classification directly in the graph space.
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4.3.3. Decision trees and random forests

Decision trees predict the output Y based on a sequence of splits in the
input feature space X. The tree is a directed acyclic graph whose nodes
represent decision points and edges represent their outcomes. The traversal
of this tree in conjunction leads up to a target outcome prediction when a
node with no children (leaf node) has been reached. Decision trees are often
constructed in a top-down greedy fashion where nodes are split at each step
by optimizing a metric that quantifies the consistency between predictions
and ground truth. For example, in classification, an often-used information-
theoretic metric for quantifying this consistency is Information-Gain, i.e., the
reduction in entropy of Y after knowing X. Mathematically, this is expressed
as

IG(Y,X) = H(Y )−H(Y |X)

where H denotes the Shannon entropy. Based on this metric, the first
split will use the attribute of X that gives the maximum information gain.
Decision trees can offer interpretability, often at the cost of reduced accuracy.
Ensembles of decision trees, such as random forests or boosted trees, are
thus a more popular choice in most applications since they yield much better
prediction performance.

4.3.4. Deep neural networks

An ideal machine learning system should be highly automated, with lim-
ited hand-crafting in feature extraction as well as minimal assumptions about
the nature of mapping between data and labels. The system should be able
to mechanistically learn patterns useful for prediction from observed labelled
data. Neural networks are highly promising methods for automated learn-
ing. This stems from their capability to approximate arbitrarily complex
functions given sufficient labelled data [116].

Deep learning based models or neural networks define a mapping Y =
f(X; θ) and optimize for parameters θ that yield the best functional ap-
proximation. The function f(·) is typically composed as a concatenation of
simple nonlinear functions, often referred to as layers. A widely-used layer is
a fully-connected layer that linearly combines the input variables, and applies
a simple elementwise non-linear functions such as a sigmoid. The number
of layers determines the depth of the network and controls the complexity
of the model. The weights and biases of the layers are optimized via gradi-
ent descent based methods to minimize an objective function that quantifies
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the empirical risk. Traditionally, the use of neural network algorithms has
been limited since neuroimaging is a data-scarce domain, making it difficult
to learn a reliable mapping between input and prediction variables. How-
ever, with data sharing and open release of large-scale neuroimaging data
repositories, neural networks have recently gained adoption in the the rs-
fMRI community for supervised prediction tasks. Neural networks with fully
connected dense layers have been adopted to learn arbitrary mappings from
connectivity features to disease labels [97, 98]. Recently, more advanced
neural networks models with local receptive fields, like convolutional neu-
ral networks (CNNs), have shown promising classification accuracy using
rs-fMRI data [117]. CNNs replace the fully-connected operations by convo-
lutions with a set of learnable filters. Success of this approach stems from its
ability to exploit the full-resolution 3D spatial structure of rs-fMRI without
having to learn too many model parameters, thanks to the weight sharing in
CNNs.

4.3.5. Comments

I. Strengths/weaknesses of diverse approaches. All algorithms have their own
strengths and weaknesses and the choice of approach should be driven by
several factors such as the prediction task, sample size, and nature of the
input features. The training objective in common supervised learning algo-
rithms used for neuroimaging applications, such as regularized linear models
or SVMs, is often a combination of two terms: a data loss term that is a
measure of the empirical risk or training error and a regularization penalty
for the prior that helps combat over-fitting during learning (generalization
error). The penalty norm can be critical and is often constrained by our
prior knowledge about the data. L1 penalties encourage sparsity in weights
whereas L2 penalties can allow kernelization and thus enable non-linear de-
cision functions. L2 penalties lead to dense priors and are useful in learn-
ing problems where all features are expected to contribute to the predictive
model. L1 penalties are useful when prior belief suggests that only a subset of
features will contribute to predictions. Some regression models, e.g., Elastic-
Net, employ a linear combination of both these penalties at the expense of
an additional hyperparameter for tuning the trade-off between the two. The
algorithmic choice is also affected by the end-goal. Models like decision trees
or LASSO are often preferred when interpretability is desired over optimal
performance whereas high-complexity models like SVMs, Random Forests or
Neural Networks are imperative if the goal is to maximize performance.
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II. Comments on sample sizes. An important question arises: What is an
appropriate sample size for training supervised learning models? Unsurpris-
ingly, research has shown that the sample size needed for learning is depen-
dent on the complexity of the model. Powerful non-linear algorithms typi-
cally require more training examples to be effective. In general, one would
also expect that the more features in the data, the more training examples
would be required to characterize their distribution. Hence, the minimum
training size for training a ML algorithm is in general a complex function of
input dimensionality, complexity of the chosen model, quality of data, data
heterogeneity, separability of classes etc.

Given the significant impact of sample size on classification performance,
it is imperative to understand the nature of this relationship. There is sig-
nificant ongoing research in answering this question using learning curves.
These curves model the relationship between sample size and generaliza-
tion error and can be used to predict the sample size required to train a
particular classifier. Several studies have shown that learning curves can
be well-characterized with an inverse power-law functional form, with E(n)
αn−β, where E denotes the error and n denotes the sample size [118, 119].
Besides empirical justification, many studies have also provided theoretical
motivations for the inverse power-law model. The parameters of the learning
curve are fitted empirically for a given application domain based on prior
classification studies. For traditional algorithms, learning curves are known
to plateau, i.e., the performance gains are insignificant beyond a certain sam-
ple size. One significant advantage of deep learning methods is that given
sufficient capacity, they scale remarkably well with more data. Given the re-
cent surge of interest in single-subject predictions using rs-fMRI, estimating
the learning curve for classification of rs-fMRI data could be invaluable for
understanding sample size requirements in this domain.

Another critical issue relates to the robustness of the estimated prediction
scores. Empirical studies have shown that small sample sizes, typical in
neuroimaging studies, result in large error bars on the prediction accuracy.
For instance, with a sample size of 100, Varoquaux et al., ballpark the error
in estimated prediction accuracy of binary classification tasks to be close to
10%. With 1000 samples, this error reduces down to 3%. Large confidence
bounds can potentially invalidate the conclusions of studies based on a small
number of samples.

One possible strategy to overcome the limitations of insufficient sample
sizes is to exploit unlabelled data in a semi-supervised fashion in order to
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increase the effectiveness of supervised learning algorithms. Transfer learn-
ing techniques are another promising alternative for enhancing classification
performance in the low-data regime. These methods exploit neural networks
trained on large datasets or auxiliary tasks by fine-tuning them to a target
dataset or classification task. These are relatively unexplored directions in
the field of rs-fMRI analysis that hold significant potential to alleviate the
sample size limitations.

III. Comments on model evaluation. Cross-validation is a model evaluation
technique used to estimate the generalization error of a predictive model.
A naive cross-validation strategy is holdout, wherein the data is randomly
split into a training and test set and the test score in this single-run is used
as an estimate of out-of-sample accuracy. Given the limited sample sizes in
most neuroimaging studies, K-fold is the dominant cross-validation choice as
it utilizes all data points for both training and validation through repeated
holdout, yielding error estimates with much less variance than classic holdout.
It first partitions the data into K non-overlapping subsets, D = {S1, .., SK}.
For each fold i in {1, .., K}, the model is trained on D Si and evaluated on
Si. The mean accuracy across all folds is then used to estimate the model
performance. While K can be anything, common choices include 5 or 10.
When K equals the number of samples in the training set, the resampling
procedure is known as leave one-out cross-validation. This can be used with
computationally inexpensive models when sample sizes are low, typically less
than a hundred.

4.4. Applications of supervised learning in rs-fMRI

Studies harnessing resting-state correlations for supervised prediction tasks
are evolving at an unprecedented scale. We describe some interesting appli-
cations of supervised machine learning in rs-fMRI below.

4.4.1. Brain development and aging

Machine learning methods have shown promise in investigating the de-
veloping connectome. In an early influential work, Dosenbach et al. [120]
demonstrated the feasibility of using RSFC to predict brain maturation as
measured by chronological age, in adolescents and young adults. Using SVM,
they developed a functional maturation index based on predicted brain ages.
Later studies showed that brain maturity can be reasonably predicted even
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in diverse cohorts distributed across the human lifespan [121, 122]. These
works posited rs-fMRI as a valuable tool to predict healthy neurodevelopment
and exposed novel age-related dynamics of RSFC, such as major changes in
FC of sensorimotor regions [122], or an increasingly distributed functional
architecture with age [120]. In addition to characterizing RSFC changes ac-
companying natural aging, machine learning has also been used to identify
atypical neurodevelopment [123].

4.4.2. Neurological and Psychiatric Disorders

Machine learning has been extensively deployed to investigate the diag-
nostic value of rs-fMRI data in various neurological and psychiatric condi-
tions. Neurodegenerative diseases like Alzheimer’s disease [24, 107, 124], its
prodromal state Mild cognitive impairment [125, 126, 127, 128], Parkinson’s
[129], and Amyotrophic Lateral Sclerosis (ALS) [130] have been classified
by ML models with promising accuracy using functional connectivity-based
biomarkers. Brain atrophy patterns in neurological disorders like Alzheimer’s
or Multiple Sclerosis appear well before before behavioral symptoms emerge.
Thus, neuroimaging-based biomarkers derived from structural or functional
abnormalities are favorable for early diagnosis and subsequent intervention
to slow down the degenerative process.

The biological basis of psychiatric disorders has been elusive and the di-
agnosis of these disorders is currently completely driven by behavioral assess-
ments. rs-fMRI has emerged as a powerful modality to derive imaging-based
biomarkers for making diagnostic predictions of psychiatric disorders. Su-
pervised learning algorithms using RSFC have shown promising results for
classifying or predicting symptom severity in a variety of psychiatric disor-
ders, including schizophrenia [131, 98, 132, 133], depression [23, 134, 108],
autism spectrum disorder [25, 111, 66, 117], attention-deficit hyperactivity
disorder [135, 136], social anxiety disorder [137], post-traumatic stress dis-
order [138] and obsessive compulsive disorder [139]. Several novel network
disruption hypotheses have emerged for these disorders as a consequence of
these studies. Most of these prediction models are based on standard kernel-
based SVMs, and rely on FC between ROI pairs as discriminative features.

4.4.3. Cognitive abilities and personality traits

Functional connectivity can also be used to predict individual differences
in cognition and behavior [140]. In comparison to task-fMRI studies which
capture a single cognitive dimension, the resting state encompasses a wide
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repertoire of cognitive states due to its uncontrolled nature. This makes it
a rich modality to capture inter-individual variability across multiple behav-
ioral domains. ML models have been shown to predict fluid intelligence [46],
sustained attention [141], memory performance [142, 143, 144], language
scores [142] from RSFC-based biomarkers in healthy and pathological pop-
ulations. Recently, the utility of these models was also shown to extend to
personality traits such as neuroticism, extraversion, agreeableness and open-
ness [145, 146].

Prediction of behavioral performance is useful in a clinical context to
understand how RSFC disruptions in pathology relate to impaired cognitive
functioning. Meskaldji et al. [143] used regression models to predict memory
impairment in MCI patients from different connectivity measures. Siegel et
al. [142] assessed the behavioral significance of network disruptions in stroke
patients by training ridge regression models to relate RSFC and structure
with performance in multiple domains (memory, language, attention, visual
and motor tasks). Among them, memory deficits were better predicted by
RSFC, whereas structure was more important for predicting visual and motor
impairments. This study highlights how rs-fMRI can complement structural
information in studying brain-behavior relationships.

4.4.4. Vigilance fluctuations and sleep studies

A handful of studies have employed machine learning to predict vigilance
levels during rs-fMRI scans. Since resting-state studies demand no task-
processing, subjects are prone to drifting between wakefulness and sleep.
Classification of vigilance states during rs-fMRI is important to remove vig-
ilance confounds and contamination. SVM classifiers trained on cortico-
cortical RSFC have been shown to reliably detect periods of sleep within
the sca [147, 148]. Tagliazucchi et al. [148] revealed loss of wakefulness in
one-third subjects of the experimental cohort, as early as 3 minutes into
the scanner. The findings are interesting: While resting state is assumed
to capture wakefulness, this may not be entirely true even for very short
scan durations. The utility of these studies should not remain limited to
classification alone. Through appropriate interpretation and visualization
techniques, machine learning can shed new light on the reconfiguration of
functional organization as people drift into sleep.

Predicting individual differences in cognitive response after different sleep
conditions (e.g. sleep deprivation) using machine learning analysis of rs-
fMRI is another interesting research direction. There is significant interest
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in examining RSFC alterations following sleep deprivation [149, 150]. While
statistical analysis has elucidated the functional reorganization characteristic
of sleep deprivation, much remains to be understood about the FC patterns
associated with inter-individual differences in vulnerability to sleep depriva-
tion. Yeo et al. [151] trained an SVM classifier on functional connectivity
data in the well-rested state to distinguish subjects vulnerable to vigilance
decline following sleep deprivation from more resilient subjects, and revealed
important network differences between the groups.

4.4.5. Heritability

Understanding the genetic influence on brain structure and function has
been a long-standing goal in neuroscience. In a recent study, Ge et al. em-
ployed a traditional statistical framework to quantify heritability of whole-
brain FC estimates [152]. Investigations into the genetic and environmental
underpinnings of RSFC were also pursued within a machine learning frame-
work. Miranda-Dominguez et al. [153] trained an SVM classifier on individual
FC signatures to distinguish sibling and twin pairs from unrelated subject
pairs. The study unveiled several interesting findings. The ability to suc-
cessfully predict familial relationships from resting-state fMRI indicates that
aspects of functional connectivity are shaped by genetic or unique environ-
mental factors. The fact that predictions remained accurate in young adult
pairs suggests that these influences are sustained through development. Fur-
ther, a higher accuracy of predicting twins compared to non-twin siblings
implied that genetics (rather than environment) is likely the stronger predic-
tive force.

4.4.6. Other neuroimaging modalities

Machine learning can also be used to interrogate the correspondence be-
tween rs-fMRI and other modalities. The most closely related modality is
task-fMRI. Tavor et al. [154] trained multiple regression models to show
that resting-state connectivity can predict task-evoked responses in the brain
across several behavioral domains. The ability of rs-fMRI, that is a task-free
regime, to predict the activation pattern evoked by multiple tasks suggests
that resting-state can capture the rich repertoire of cognitive states that is
reflected during task-based fMRI. The performance of these regression mod-
els was shown to generalize to pathological populations [155], suggesting the
clinical utility of this approach to map functional regions in populations in-
capable of performing certain tasks.
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Investigating how structural connections shape functional associations
between different brain regions has been the focus of a large number of stud-
ies [156]. While neuro-computational models have been promising to achieve
this goal, machine learning models are particularly well-equipped to cap-
ture inter-individual differences in the structure-function relationship. Deli-
gianni et al. [157] proposed a structured-output multivariate regression model
to predict resting-state functional connectivity from DWI-derived structural
connectivity, and demonstrated the efficiency of this technique through cross-
validation. Venkataraman et al. [158] introduced a novel probabilistic model
to examine the relationships between anatomical connectivity measured us-
ing DWI tractography and RSFC. Their formulation assumes that the two
modalities are generated from a common connectivity template. Estimated
latent connectivity estimates were shown to discriminate between control and
schizophrenic populations, thereby indicating that joint modelling can also
be useful in a clinical context.
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Table 4: Key papers for various supervised learning application domains

Brain development and aging

Prediction of individual brain maturity using fMRI (Dosenbach et al.,2010)[120]
Method: SVM, Target: Age, Contribution: Early influential work demonstrating the feasibility of using RSFC features for predicting
brain maturation.

Neurological and Psychiatric Disorders

Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based
on resting-state functional MR imaging. (Chen et al.,2011)[24]
Method: Fisher LDA, Target: Alzheimer/MCI/controls, Contribution: Early work highlighting the potential of RSFC to diagnose
neurological disorders

Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example(Abraham et al.,2017)[66]
Method: Multiple, Target: ASD/controls, Contribution: Extensively evaluated the impact of ROI choice, connectivity metric and
classifier on prediction performance in intra-site and inter-site settings

Altered resting state complexity in schizophrenia (Bassett et al.,2012)[132]
Method: SVM, Target: Schizophrenia/controls, Contribution: Demonstrated the utility of resting-state network complexity measures
in distinguishing patients with schizophrenia

Cognitive abilities and personality traits

Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity (Finn et al.,2015)[46]
Method: Linear regression, Target: Fluid intelligence, Contribution: Demonstrated that RSFC can uniquely identify individuals and
reliably predict fluid intelligence

Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke (Siegel et al., 2016) [142]
Method: Ridge regression, Target: Multiple cognitive measures , Contribution: Demonstrated the ability of ML coupled with RSFC
to predict cognitive deficits in clinical populations

Vigilance fluctuations and sleep studies

Automatic sleep staging using fMRI functional connectivity data (Tagliazucchi et al.,2012) [147]
Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep (Tagliazucchi
et al.,2014) [148]
Method: SVM, Target: NREM sleep stages/wakefulness, Contribution: Demonstrated the ability of ML to detect sleep stages in
resting-state

Heritability

Heritability of the human connectome: A connectotyping study (Miranda-Dominguez et al.,2018) [153]
Method: SVM, Target: Twins/sibling/unrelated, Contribution: Provided evidence for relationship between genetics and RSFC
through predictive modelling

Other neuroimaging modalities

Task-free MRI predicts individual differences in brain activity during task performance (Tavor et al.,2016) [154]
Method: Multiple regression models, Target: Task-activation map, Contribution: Demonstrated that resting-state can capture the
rich repertoire of cognitive states expressed during different behavioral tasks
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5. Discussion

5.1. Practical advice for machine learning practitioners

Any machine learning application requires the following: (a) a model that
reflects assumed relationships between measurements and other inductive bi-
ases, (b) a cost function to quantify how well the model captures our data
and finally, (c) an appropriate optimization algorithm to minimize the cost.
Successful application of machine learning to rs-fMRI requires a holistic per-
spective of how these algorithms work, what it means when they fail and
most importantly, how to choose an algorithm for a given task or hypothesis.
There are are three crucial factors that could dictate this choice:

1. What is the research question? What is our prior belief? Unsupervised
learning tackles questions about the data-generating process. For example,
clustering and decomposition approaches have both been widely used for
disentangling the underlying causal sources of rs-fMRI data. However, they
represent different prior beliefs and often answer distinct research questions.
For example, in the context of discovering RSNs, ICA assumes that the
latent components are independent and seeks to recover spatial loci of sources
of activation. This decomposition further enables separation of functional
activity from noise sources. On the other hand, clustering generally assumes
that the activation of each spatial location/region can be explained by exactly
one underlying component from a set of clusters. Because this approach
results in disjoint functional networks, clustering is the dominant approach
for learning spatially contiguous whole-brain parcellations.

When the goal is to make predictions, supervised learning algorithms are
the usual choice. The choice of a supervised model again depends on the
research question: Is the goal to understand the relationship between labels
and features or to build a diagnostic tool? Interpretability is key for the for-
mer application whereas highest accuracy can be construed as the primary
goal for the latter. Model complexity must thus be chosen in accordance
with this end-goal. We recommend that these goals be well-defined before
model development.

2. How much data is needed? It is important to assess the quantity of
data and whether or not it is feasible to acquire more data. Sample sizes can
constrain model complexity. More training examples are required to capture
a non-linear relationship between features and labels, than a linear relation-
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ship. Data fidelity and regularization must also be weighed in accordance
with the sample size. With small sample sizes, regularization becomes even
more critical as the model is more likely to overfit on training samples.

3. What is the computational budget? Sometimes, the computational
budget can be restrictive. For example, certain algorithms like deep neural
networks, have a high computational demand that may not be sustained by
available resources. Further, if the number of features is very large, training
even low-complexity models can be time consuming. In such cases, models
with lower run-timing complexity can take precedence, especially for early
investigations. Time, computational budget or space constraints thus must
be identified while choosing an appropriate model.

5.2. Limitations and opportunities

Many state-of-the-art techniques for rs-fMRI analysis are rooted in ma-
chine learning. Both unsupervised and supervised learning methods have
substantially expanded the application domains of rs-fMRI. With large-scale
compilation of neuroimaging data and progresses in learning algorithms, an
even greater influence is expected in future. Despite the practical successes of
machine learning, it is important to understand the challenges encountered
in its current application to rs-fMRI. We outline some important limitations
and unexplored opportunities below.

One of the biggest challenges associated with unsupervised learning meth-
ods is that there is no ground truth for evaluation. There is no a priori uni-
versal functional map of the brain to base comparisons between parcellation
schemes. Further, whole-brain parcellations are often defined at different
scales of functional organization, ranging from a few large-scale parcels to
several hundreds of regions, making comparisons even more challenging. Al-
though several evaluation criteria have been developed that account for this
variability, no single learning algorithm has emerged to be consistently su-
perior in all. Due to the trade-offs among diverse approaches, the choice
of which parcellation to use as reference for network analysis is thus largely
subjective.

Unsupervised learning approaches for exploring network dynamics are
similarly prone to subjectivity. Characterizing dynamic functional connec-
tivity through discrete mental states is difficult, primarily because the reper-
toire of mental states is possibly infinite. While dFC states are thought to
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reflect different cognitive processes, it is challenging to obtain a behavioral
correspondence for distinct states since resting-state is not externally probed.
This again makes interpretations hard and prone to subjective bias. Machine
learning approaches in this direction have thus far relied on cluster statistics
to fix the number of FC states. Non-parametric models (e.g. infinite HMMs)
provide an unexplored, attractive framework as they adaptively determine
the number of states based on the underlying data complexity.

A significant challenge in single-subject prediction using rs-fMRI is posed
by the fact that rs-fMRI features can be described in multiple ways. There
is no recognized gold-standard atlas for time-series extraction, nor is there a
consensus on the optimal connectivity metric. Further, even the fMRI pre-
processing strategies can vary considerably. Exploration across this space
is cumbersome, especially for advanced machine learning models like neu-
ral networks that are slow to train. An ideal system should be invariant
to these choices. However, this is hardly the case for rs-fMRI where large
deviations have been reported in prediction performance in relationship to
these factors [66].

Another challenge in training robust prediction systems on large popula-
tions stems from the heterogeneity of multi-site rs-fMRI data. Resting-state
is easier to standardize across sites compared to task-based protocols since it
does not rely on external stimuli. However, differences in acquisition proto-
cols and scanner characteristics across sites still constitute a significant source
of heterogeneity. Multi-site studies have shown little to no improvement in
prediction accuracy compared to single-site studies, despite the larger sample
sizes [25, 159]. While it is possible to normalize out site effects from data,
more advanced tools are needed in practice to mitigate this bias.

High diagnostic accuracies achieved by supervised learning methods should
be interpreted with caution. Several confounding variables can induce sys-
tematic biases in estimates of functional connectivity. For example, head
motion is known to affect connectivity patterns in the default mode network
and frontoparietal control network [160]. Further, motion profiles also vary
systematically between subgroups of interest, e.g., diseased patients often
move more than healthy controls. Apart from generating spurious associa-
tions, this could affect the interpretability of supervised prediction studies.
Independent statistical analysis is critical to rule out the effect of confound-
ing variables on predictions, especially when these variables differ across the
groups being explored.

Methodological innovations are needed to improve prediction accuracy
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to levels suitable for clinical translation. Several factors make comparison
of methods across studies tedious. Cross-validation is the most commonly
employed strategy for reporting performance of ML models. However, small
sizes (common in rs-fMRI studies) are shown to yield large error bars [161],
indicating that data-splits can significantly impact performance. General-
izability and interpretability should remain the key focus while developing
predictive models on rs-fMRI data. These are critical attributes to achieve
clinical translation of machine learning models. Uncertainty estimation is
another challenge in any application of supervised learning; ideally, class
assignments by any classification algorithm should be accompanied by an
additional measure that reflects the uncertainty in predictions. This is es-
pecially important for clinical diagnosis, where it is important to know a
reliability measure for individual predictions.

Most existing studies focus on classifying a single disease versus controls.
The ability of a diagnostic system to discriminate between multiple psychi-
atric disorders is much more useful in a clinical setting [162]. Hence, there
is a need to assess the efficacy of ML models for differential diagnosis. Inte-
grating rs-fMRI with complementary modalities like diffusion-weighted MRI
can possibly yield even better neurophenotypes of disease, and is another
challenging yet promising research proposition.

6. Conclusions

We have presented a comprehensive overview of the current state-of-the-
art of machine learning in rs-fMRI analysis. We have organized the vast
literature on this topic based upon applications and techniques separately to
enable researchers from both neuroimaging and machine learning communi-
ties to identify gaps in current practice.
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Table 5: Key related review papers in the field

Multi-subject Independent Component Analysis of fMRI: A Decade of Intrinsic Networks, Default Mode, and
Neurodiagnostic Discovery (Calhoun et al. 2009)[163]
A focused review of group ICA discussing methodologies, discovery of RSNs and their diagnostic potential

Imaging-based parcellations of the human brain (Eickhoff et al.,2018)[164]
A detailed exploration into approaches for deriving imaging based parcellations and lurking challenges in the field

Dynamic functional connectivity: Promise, issues, and interpretations (Hutchison et al.,2013)[165]
An early review on findings, methods and interpretations of dynamical fuctional connectivity

The Chronnectome: Time-Varying Connectivity Networks as the Next Frontier in fMRI Data Discovery (Calhoun
et al.,2014) [166]
A detailed review of methods for dynamic functional connectivity analysis with a focus on decomposition techniques

The dynamic functional connectome: State-of-the-art and perspectives (Preti et al.,2017)[167]
A comprehensive review of analytical approaches for dynamic functional connectivity analysis and future perspec-
tives

On the nature of resting fMRI and time-varying functional connectivity (Lurie et al.,2018)[168]
A discussion of diverse perspectives on time-varying connectivity in rs-fMRI

Clinical Applications of Resting State Functional Connectivity (Fox et al.,2010)[169]
An early short review focused on clinical applications of rs-fMRI

Single Subject Prediction of Brain Disorders in Neuroimaging: Promises and Pitfalls (Arbabshirani et al.
2017)[170]
Extensive survey of studies on single subject prediction of brain disorders, including opinions on
promises/limitations
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