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a b s t r a c t 

Classical deformable registration techniques achieve impressive results and offer a rigorous theoretical 

treatment, but are computationally intensive since they solve an optimization problem for each image 

pair. Recently, learning-based methods have facilitated fast registration by learning spatial deformation 

functions. However, these approaches use restricted deformation models, require supervised labels, or do 

not guarantee a diffeomorphic (topology-preserving) registration. Furthermore, learning-based registra- 

tion tools have not been derived from a probabilistic framework that can offer uncertainty estimates. 

In this paper, we build a connection between classical and learning-based methods. We present a prob- 

abilistic generative model and derive an unsupervised learning-based inference algorithm that uses in- 

sights from classical registration methods and makes use of recent developments in convolutional neu- 

ral networks (CNNs). We demonstrate our method on a 3D brain registration task for both images and 

anatomical surfaces, and provide extensive empirical analyses of the algorithm. Our principled approach 

results in state of the art accuracy and very fast runtimes, while providing diffeomorphic guarantees. Our 

implementation is available online at http://voxelmorph.csail.mit.edu . 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Deformable registration computes a dense correspondence be-

tween two images, and is fundamental to many medical image

analysis tasks. Classical registration techniques have been rigor-

ously developed and studied, but require computationally inten-

sive optimization for each image pair, often requiring tens of min-

utes to hours of compute time on a CPU. Recent, learning-based

registration methods achieve fast runtimes by building on machine

learning developments, but largely omit rigorous theoretical treat-

ment of deformations and topology-preserving guarantees. In this

work, we present an approach that builds on the strengths of both

paradigms, and overcomes these shortcomings. We provide a rig-

orous connection between probabilistic generative models for de-

formations and learning algorithms based on convolutional neural

networks (CNNs). We also demonstrate that the learning can be

done end-to-end in an unsupervised fashion for this model. The

resulting framework provides registration for a new image pair in
∗ Corresponding author at: Computer Science and Artificial Intelligence Lab, MIT, 

Cambridge, MA, USA. 
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nder a second on a GPU, while maintaining guarantees developed

or classical methods. 

Our formulation casts registration as variational inference on a

robabilistic generative model. This framework naturally results in

n algorithm that leverages a collection of images to learn a global

onvolutional neural network with an intuitive cost function. Im-

ortantly, we introduce diffeomorphic integration layers combined

ith a spatial transform layer to enable unsupervised end-to-end

earning for diffeomorphic registration. We demonstrate that our

lgorithm achieves state-of-the-art registration accuracy while pro-

iding diffeomorphic deformations and fast runtime, and can esti-

ate of registration uncertainty. In our experiments we focus on

he example of registering 3D MR brain scans, using a multi-study

ataset of over 3500 scans. However, the method is broadly appli-

able to many registration tasks. 

This paper extends a preliminary version of this work presented

t the Medical Image Computing and Computer Assisted Interven-

ion (MICCAI) 2018 conference ( Dalca et al., 2018a ). We build on

hat work by providing theoretical extensions, new results, analy-

is, and discussion. We first expand the model, including a natural

xtension to anatomical surfaces. In our experiments, we add base-

ines, new experiments on registration of both images and surfaces,

https://doi.org/10.1016/j.media.2019.07.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2019.07.006&domain=pdf
http://voxelmorph.csail.mit.edu
mailto:adalca@csail.mit.edu
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nd provide an analysis of the effect of our diffeomorphic im-

lementation on field regularity and runtime. We implement our

ethod as part of the registration framework called VoxelMorph,

hich is available at http://voxelmorph.csail.mit.edu . 

.1. Related works 

.1.1. Classical registration methods 

Classical methods solve an optimization over the space of

eformations ( Ashburner, 2007; Avants et al., 2008; Bajcsy and

ovacic, 1989; Beg et al., 2005; Dalca et al., 2016; Glocker

t al., 2008; Thirion, 1998; Yeo et al., 2010; Zhang et al., 2017 ).

ommon representations are displacement vector fields, includ-

ng elastic-type models ( Bajcsy and Kovacic, 1989; Davatzikos,

997; Shen and Davatzikos, 2002 ), free-form deformations with

-splines ( Rueckert et al., 1999 ), statistical parametric map-

ing ( Ashburner and Friston, 20 0 0 ), Demons ( Pennec et al., 1999;

hirion, 1998 ), and more recently discrete methods ( Dalca et al.,

016; Heinrich et al., 2013; Glocker et al., 2008 ). 

Constraining the allowable transformations to diffeomorphisms

nsures certain desirable properties, such as preservation of topol-

gy. Diffeomorphic transforms have seen extensive methodolog-

cal development, yielding state-of-the-art tools, such as Large

iffeomorphic Distance Metric Mapping (LDDMM) ( Beg et al.,

005; Cao et al., 2005; Ceritoglu et al., 2009; Hernandez et al.,

009; Joshi and Miller, 2000; Miller et al., 2005; Oishi et al.,

009; Zhang et al., 2017 ), DARTEL ( Ashburner, 2007 ), diffeomorphic

emons ( Vercauteren et al., 2009 ), and symmetric normalization

SyN) ( Avants et al., 2008 ). In general, these tools demand substan-

ial time and computational resources for a given image pair. 

Some recent GPU-based iterative algorithms use these frame-

orks to develop faster algorithms by requiring a GPU to be

vailable for each registration ( Modat et al., 2010; 2014a ). Re-

ent learning-based registration methods have demonstrated that

hey can provide good initializations to iterative GPU meth-

ds ( Balakrishnan et al., 2019 ) to further improve runtime. 

Probabilitic image registration methods specify priors on the

eformation between two images, and likelihood models that de-

cribe image intensities ( Simpson et al., 2012; Zhang et al., 2017;

einrich et al., 2016; Risholm et al., 2013; Amir-Khalili et al., 2017 ).

hese formulations also lead to iterative optimization methods,

ut can yield distributions of deformation fields. In this paper, we

uild on these models by presenting a general variational infer-

nce strategy to optimize a global neural network that efficiently

utputs distributions of deformations. 

.1.2. Learning-based registration 

Recent methods have proposed to train neural networks that

ap a pair of input images to an output deformation. Most ear-

ier approaches demonstrated the feasibility of deep learning based

egistration, and required ground truth registration fields ( Cao

t al., 2017; Krebs et al., 2017; Rohé et al., 2017; Sokooti et al.,

017; Yang et al., 2017 ). Such ground truth deformations are of-

en derived via more conventional registration tools or simulations,

ometimes limiting their applicability. 

Building on the successful demonstration of these methods,

everal recent papers ( Balakrishnan et al., 2018; 2019; de Vos et al.,

017; 2019; Li and Fan, 2017 ) explore unsupervised, or end-to-end,

trategies. These methods employ a neural network that computes

patial transformation ( Jaderberg et al., 2015 ) to warp one image to

nother, enabling end-to-end training. A recent approach builds on

hese methods by learning a spatially-adaptive regularizer within

 registration model ( Niethammer et al., 2019 ) These approaches

se machine learning techniques to achieve efficient training and

ast runtimes, but build on classical registration development, such

s probabilistic models and diffeomorphic theory. In our work, we
ridge these two paradigms to offer classical guarantees within a

achine learning approach. We note the contemporaneous devel-

pment of a method that uses a conditional variational auto en-

oder (CVAE) to learn diffeomorphic representations ( Krebs et al.,

018; 2019 ). Similar to our method, this approach uses a varia-

ional strategy to learn a network to predict a stationary veloc-

ty field (SVF). However, the authors focus on representing the SVF

hrough the manifold of the CVAE, and focus on the anatomical

ariation captured through this encoding 

Recent methods proposed using segmentation-based cost func-

ions, such as Dice ( Dice, 1945 ), to replace the image-based sim-

larity term when segmentations are available during training for

ulti-modal registration, such as T2w MRI and 3D ultrasound,

ithin the same subject ( Hu et al., 2018b; 2018a ). We extend this

ine of work by showing that our generative probabilistic model

aturally describes the deformation of surfaces, therefore enabling

he use of segmentations during training within a single cohesive

ramework. The extended model results in a combination of seg-

entation (surface) and image-based training losses. 

.1.3. Surface-based registration 

In this paper, we also present an extension to our main contri-

ution which enables alignment of surfaces. In medical image reg-

stration, surface matching methods often use surface coordinates

r geometric features extracted from anatomical structures ( Aiger

t al., 2008; Durrleman, 2010; Miga et al., 2003; Postelnicu et al.,

008 ). Several methods treat surfaces as 3D point sets with

hape descriptors, and often use Iterated Closest Point based op-

imization methods to find the shape correspondences ( Besl and

cKay, 1992 ). Currents, defined as unconnected oriented points,

ave been used to register surfaces, for example using Match-

ng Pursuit algorithms ( Durrleman, 2010 ). Some methods combine

olume and surface registration, often using surface registrations

o initialize dense volumetric transforms ( Postelnicu et al., 2008 ).

imilar to volume registration, these classical surface matching

ethods use iterative optimization strategies, requiring significant

omputational resources. Building on these methods, we use a 3D

oint representation jointly with images to achieve fast registration

ith neural networks, enabled by a differentiable surface distance

unction. 

.2. Background: diffeomorphic registration 

Although the method presented in this paper applies to a mul-

itude of deformable representations, we choose to work with dif-

eomorphisms, and in particular with a stationary velocity field

epresentation ( Ashburner, 2007 ). Diffeomorphic deformations are

ifferentiable and invertible, and thus preserve topology. Let φ :

 
3 → R 

3 represent the deformation that maps the coordinates

rom one image to coordinates in another image. In our implemen-

ation, the deformation field is defined through the following ordi-

ary differential equation (ODE): 

∂ φ(t) 

∂t 
= v ( φ(t) 

) (1) 

here φ(0) = Id is the identity transformation and t is time. We

ntegrate the stationary velocity field v over t = [0 , 1] to obtain the

nal registration field φ(1) ( Moler and Van Loan, 2003 ). 

While we implement and evaluate several numerical integra-

ion techniques, we find scaling and squaring to be most efficient,

nd we briefly review the technique here ( Arsigny et al., 2006 ).

he integration of a stationary ODE represents a one-parameter

ubgroup of diffeomorphisms. In group theory, v is a member of

he Lie algebra and is exponentiated to produce φ(1) , which is a

ember of the Lie group: φ(1) = exp ( v ) . From the properties of

ne-parameter subgroups, for any scalars t and t ′ , exp ((t + t ′ ) v ) =

http://voxelmorph.csail.mit.edu
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exp (t v ) ◦ exp (t ′ v ) , where ◦ is a composition map associated with

the Lie group. Starting from φ(1 / 2 T ) = p + v ( p ) / 2 T where p is a

map of spatial locations, we use the recurrence φ(1 / 2 t−1 ) = φ(1 / 2 t ) ◦
φ(1 / 2 t ) 

to obtain φ(1) = φ(1 / 2) ◦ φ(1 / 2) 
. T is chosen so that v /2 T is

very small. 

2. Methods 

We let f and m be 3D images, such as MRI volumes, and let z be

a latent variable that parametrizes a transformation function φz :

R 
3 → R 

3 . We propose a generative model that describes the for-

mation of f by warping m via m ◦φz . We propose a variational

inference approach that leverages a convolutional neural network

with diffeomorphic integration and spatial transform layers. We

learn network parameters in an unsupervised fashion, without ac-

cess to ground truth registrations. We describe how the network

yields fast diffeomorphic registration of a new image pair ( f , m ), in

a probabilistic framework. We expand this treatment by including

anatomical surface alignment, which enables training the network

given (optional) anatomical segmentations. 

2.1. Generative model 

We model the prior probability of the parametrization z as: 

p( z ) = N ( z ;0 , �z ) , (2)

where N (·;μ, �) is the multivariate normal distribution with

mean μ and covariance �. Our work applies to a wide range of

representations z . For example, z could be a dense displacement

field, or a low-dimensional embedding of the displacement field.

In this paper, we let z be a stationary velocity field that speci-

fies a diffeomorphism through the ODE (1) . We let L = D − A be

the Laplacian of a neighborhood graph defined on the voxel grid,

where D is the graph degree matrix, and A is a voxel neighbour-

hood adjacency matrix. We encourage spatial smoothness of the ve-

locity field z by setting �−1 
z = �z = λL , where �z is a precision

matrix and λ denotes a parameter controlling the scale of the ve-

locity field z . 

We let f be a noisy observation of warped image m : 

p( f | z ;m ) = N ( f ;m ◦ φz , σ
2 
I I ) , (3)

where σ 2 
I 

captures the variance of additive image noise. 

We aim to estimate the posterior registration probability p ( z | f ;

m ). Using this, we can obtain the most likely registration field φz 

for a new image pair ( f , m ) via MAP estimation, along with an es-

timate of velocity field variance at each voxel. Fig. 1 provides a

graphical representation of our model. 
Fig. 1. A graphical representation of our generative model. Circles indicate ran- 

om variables and rounded squares represent parameters. Shaded quantities are 

bserved at test time , and the plates indicate replication. f and m are the input 

mages. The image intensities f are generated from a normal distribution centered 

t m ◦φz . The registration prior is defined by normal parameters μz , and �z . In blue 

dotted lines), the optional similar model structure is included for an anatomical 

urface, used purely for learning an improved posterior of registration. 
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.2. Learning 

Given our assumptions, computing the posterior probabil-

ty p ( z | f ; m ) is intractable. We use a variational approach,

nd introduce an approximate posterior probability q ψ 
( z | f ; m )

arametrized by ψ. We minimize the KL divergence 

min 
ψ 

KL 
[
q ψ 

( z | f ;m ) || p( z | f ;m ) 
]

= min 
ψ 

IE q 
[
log q ψ 

( z | f ;m ) − log p( z | f ;m ) 
]

= min 
ψ 

IE q 
[
log q ψ 

( z | f ;m ) − log p( z , f ;m ) 
]

+ log p( f ;m ) 

= min 
ψ 

KL 
[
q ψ 

( z | f ;m ) || p( z ) ] − IE q [ log p( f | z ;m ) ] + const , (4)

hich yields the negative of the variational lower bound of the

odel evidence ( Kingma and Welling, 2013 ). We model the ap-

roximate posterior q ψ 
( z | f ; m ) as a multivariate normal: 

 ψ 
( z | f ;m ) = N ( z ;μz| m, f , �z| m, f ) , (5)

here we let �z | m,f be diagonal. To understand the effects of this

ssumption, we explore a non-diagonal covariance in a later sec-

ion. The statistics μz | m,f and the diagonal of �z | m,f can be inter-

reted as the voxel-wise mean and variance, respectively. 

We estimate μz | m,f , and �z | m,f using a convolutional neural net-

ork def ψ 
( f , m ) parameterized by ψ, as described in the next sec-

ion. We learn parameters ψ by optimizing the variational lower

ound (4) using stochastic gradient methods. Specifically, for each

mage pair ( f , m ) and sample z k ∼ q ψ 
( z | f ; m ), we compute m ◦ φz k 

,

ith the resulting loss (detailed derivation in supplementary ma-

erial): 

 ( ψ ; f , m ) = −IE q [ log p( f | z ;m ) ] + KL 
[
q ψ 

( z | f ;m ) || p( z ) ]

= 

1 

2 σ 2 K 

∑ 

k 

|| f − m ◦ φz k 
|| 2 

+ 

1 

2 

[
tr (λD �z| x ;y − log �z| x ;y ) + μT 

z| m, f �z μz| m, f 

]

+ const , (6)

here K is the number of samples used to approximate the ex-

ectation. The first term encourages image f to be similar to

he warped image m ◦ φz k 
. The second term encourages the pos-

erior to be close to the prior p ( z ). Although the variational

ovariance �z | m,f is diagonal, the last term spatially smoothes

he mean, which can be seen by expanding μT 
z| m, f 

�z μz| m, f =
λ
2 

∑ ∑ 

j∈ N(I) ( μ[ i ] − μ[ j]) 2 , where N ( i ) are the neighbors of voxel i .

e treat σ 2 and λ as fixed hyper-parameters that we investigate

n our experiments, and use K = 1 . 

.3. Neural network framework 

We design the network def ψ 
( f , m ) that takes as input f and m

nd outputs μz | m,f and �z | m,f , based on a 3D UNet-style architec-

ure ( Ronneberger et al., 2015 ). The network includes a convolu-

ional layer with 32 filters, four downsampling layers with 64 con-

olutional filters and a stride of two, and three upsampling con-

olutional layers with 64 filters. We only upsample three times to

redict the velocity field (and following integration steps) at every

wo voxels, to enable these operations to fit in current GPU card

emory. 

To enable unsupervised learning of parameters ψ using (6) ,

e must form m ◦φz and compute the data term. We first im-

lement a layer that samples a new z k ∼ N ( μz| m, f , �z| m, f ) us-

ng the “re-parameterization trick” ( Kingma and Welling, 2013 ):

 k = μz| m, f + 

√ 

�z| m, f r , where r is a sample from the standard

ormal: r ∼ N (0 , I ) . 
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Fig. 2. Overview of end-to-end unsupervised architecture. The first part of the network, def ψ ( m , f ) takes the input images and outputs the approximate posterior probability 

parameters representing the velocity field mean, μz | m ; f , and variance, �z | m ; f . A velocity field z is sampled and transformed to a diffeomorphic deformation field φz using 

novel differentiable squaring and scaling integration layers. Finally, a spatial transform warps m to obtain m ◦φz . Figure 12 expands on this overview by including the optional 

surface-based loss. 
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Given z k , we need to compute φz k 
= exp ( z k ) as described in

he introduction. We propose vector integration layers using scal-

ng and squaring operations. Specifically, scaling and squaring opera-

ions involve compositions within the neural network architecture

sing a differentiable spatial transformation operation. Given two

D vector fields a and b , for each voxel p this operation computes

( a ◦ b )(p) = a ( b (p)) , a non-integer voxel location b ( p ) in a , us-

ng linear interpolation. Starting with φ(1 / 2 T ) = p + z k / 2 
T , we com-

ute φ(1 / 2 t−1 ) = φ(1 / 2 t ) ◦ φ(1 / 2 t ) 
recursively using these operations

 times, leading to φ(1) � φz k 
= exp ( z k ) . In our experiments, we

xtensively analyze the effect of the step size T on the runtime of

he network, the accuracy of the registration, and the regularity of

he deformation. We also implement vector integration layers us-

ng quadrature and ODE solvers, and in the experiments show that

hese are significantly slower and can require significant memory. 

Finally, we warp volume m according to the computed diffeo-

orphic field φz k 
using a spatial transform layer. 

In summary, the network takes as input images f and m , com-

utes statistics μz | m,f and �z | m,f , samples a new velocity field z k ∼
 ( μk , �k ) , computes a diffeomorphic φz k 

and warps m . Since all

he steps are designed to be differentiable, we learn the network

arameters using stochastic gradient descent-based methods. This

etwork results in three outputs, μz | m,f , �z | m,f and m ◦ φz k 
, which

re used in the model loss (6) . The framework is summarized in

ig. 2 . 

.4. Registration 

Given learned parameters, we approximate registration of a

ew scan pair ( f , m ) using φ ˆ z k 
. We first obtain the most likely ve-

ocity field ˆ z k using 

ˆ  k = arg max 
z k 

p( z k | f ;m ) = μz| m ; f , (7) 

y evaluating the neural network def ψ 
( f , m ). We then compute φ ˆ z k 

sing the scaling and squaring based integration, altogether requir-

ng less than a second on a GPU. We highlight that at test time,

he diagonal covariance �z | m,f is not used, however it enables an

stimation of the deformation uncertainty. Analysis of uncertainty

s beyond the scope of this paper, and is an interesting avenue for

uture study. 

Using a stationary velocity field representation, computing the

nverse deformation field φ−1 
z can be achieved by integrating the

egative of the velocity field: φ−1 
z = φ−z , since φz ◦ φ−z = exp ( z ) ◦

xp (−z ) = exp ( z − z ) = Id ( Ashburner, 2007; Modat et al., 2014b ).

his enables the computation of both fields inside one efficient

etwork when desired. 
.5. Implementation 

We implement our method as part of the VoxelMorph

ackage ( Balakrishnan et al., 2018 ), available online at http://

oxelmorph.csail.mit.edu , using neuron ( Dalca et al., 2018b ) and

eras ( Chollet, 2015 ) with a Tensorflow ( Abadi et al., 2016 )

ackend. We use a learning rate of 1 e − 4 for the Adam opti-

izer ( Kingma and Ba, 2014 ), a batch size of 1 due to mem-

ry constraints, and Glorot uniform initialization for the con-

olution weights. We use a single sample ( K = 1 ), which has

een shown to lead to useful gradients for optimization while

aintaining the memory footprint and implementation complexity

ow ( Kingma and Welling, 2013 ). For large volumes, the number of

amples is often constrained by the available GPU memory. 

. Method extensions 

.1. Surface-based registration 

In various instances, anatomical segmentation maps for specific

tructures of interest may also be available with some of the train-

ng images. Recent papers have demonstrated that the use of seg-

entations can help in registration ( Balakrishnan et al., 2019; Hu

t al., 2018a ). Here, we show that our proposed model naturally

xtends to handle surfaces, enabling the use of segmentations dur-

ng training within the same principled framework. 

We focus on the case where one anatomical structure is seg-

ented in the image. Given a segmentation map where each voxel

s assigned the desired anatomical label or background, we extract

he anatomical surface and let s f represent the N surface coordi-

ates of the anatomical structure for image f , which can be stored

s an N ×3 matrix. Given the diffeomorphism φz in the previous

ection, we model each surface location s f [ n ], as formed by displac-

ng a matching surface location s m [ n ] according to φz , and adding

spatial) displacement noise: 

p( s f | z ; s m ) = N ( s f ; s m ◦ φz , σ
2 
s I ) , (8) 

here the composition s m ◦φz warps surface coordinates. 

Given both images and segmentation maps during training,

e extract surfaces of the desired structure and aim to estimate

he posterior probability p ( z | f , s f ; m , s m ). As before, we use a

ariational approximation. Since segmentation maps, and hence

urfaces, are usually derived from images, we assume that im-

ges are sufficient to approximate the posterior: q ( z | f , s f ;m , s m ) =
 ψ 
( z | f ;m ) . As before, we minimize the KL divergence between

he true and approximate posterior (derived in supplementary

http://voxelmorph.csail.mit.edu
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Fig. 3. Left: an illustration of the surface distance function sd( x ; s ). Right: asym- 

metric surface behavior requires that we compute the surface distance in both 

directions. For example, computing �v sd( a [ n ], b ) will be considerably smaller 

than �v sd ( b [ n ], a ) due to surface points on the hairpin of b (recall that surface 

points are not directly corresponding.). 
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material): 

min 
ψ 

KL 
[
q ψ 

( z | f ;m ) || p( z | f , s f ;m , s m ) 
]

= min 
ψ 

KL 
[
q ψ 

( z | f ;m ) || p( z ) ] − IE q [ log p( f | z ;m ) ] 

− IE q 
[
log p( s f | z ; s m ) 

]
, (9)

and arrive at the loss function: 

L ( ψ ; f , s f , m , s m ) = 

1 

2 

[
tr (λD �z| x ;y − log �z| x ;y ) + μT 

z| m, f �z μz| m, f 

]

+ 

1 

2 σ 2 
I 
K 

∑ 

k 

|| f − m ◦ φz k 
|| 2 

+ 

1 

2 σ 2 
s K 

∑ 

k 

|| s f − s m ◦ φz k 
|| 2 . (10)

Compared to the original model loss (6) , the additional third term

encourages the deformation φz k 
to warp the moving surface close

to the fixed surface s f . As described in the generative model (8) ,

this requires corresponding surface points in s f and s m . However,

these correspondences are not available in practice, as segmenta-

tions are provided independently for each image. Therefore, the

third term cannot be computed directly. 

We propose an approximation of the surface term using sur-

face distance transforms . Let sd( x , s ) be a surface distance func-

tion, which for location x returns the Euclidean distance to the

closest surface point in s ( Fig. 3 Left). 1 Noting that for two sur-

faces a and b , �n sd( a [ n ], b ) � = �n sd( b [ n ], a ) due to potential asym-

metries in the surfaces (see Fig. 3 Right), we approximate the dis-

tance ‖ s f − s m ◦ φz k 
‖ 2 by computing sd( · , · ) in both directions: 

‖ s f − s m ◦ φz k 
‖ 
2 

≈ 1 

2 

∑ 

n 

sd ( s f [ n ] ◦ φ−1 
z , s m ) + 

∑ 

n 

sd ( s m [ n ] ◦ φz , s f ) . (11)

We implement this function efficiently using distance transforms.

Specifically, to compute sd( s m [ n ] ◦φz , s f ), we first pre-compute dis-

tance transforms for the (fixed) given structure s f . We then sam-

ple 10 0,0 0 0 points along s m , which we find to be sufficient to esti-

mate accurate measures along the surface. We warp (move) them

according to the deformation φz , and compute the distance trans-

form of s f at these locations. We take advantage of our diffeo-

morphic representation that enables computing the inverse φ−1 
z 

efficiently within the network to similarly compute sd ( s f [ n ] ◦
φ−1 
z , s m ) . 

In summary, since to compute the posterior approxima-

tion q ψ 
( z | f ; m ) the neural network takes as input only the images f

and m , images alone are required at test time. Given a diffeomor-

phism φz k 
, at training time the network uses both a warped image

and a warped surface to evaluate the quality of the registration. 
1 Function sd( x , s ) is a generating function for a distance transform image for the 

urface s , by evaluating it at every grid point x. 

S  

A  

P  
This model can also be used to register two surfaces when the

mages themselves are not available. The only modelling change re-

uired is removing the image likelihood terms and using the vari-

tional approximation q ψ 
( z | S f ; S m ), which uses the segmentation

aps S m and S f as input. Surface-only registration is beyond the

cope of this paper, and we leave it for future work. However, reg-

stration with images and surfaces is described here as an example

f possible extensions of the model, and surface- only registration

s beyond the scope of this paper. 

The complete neural network framework, including the surface

oss, is illustrated in supplemental Fig. 12. 

.2. Non-diagonal covariance 

Approximating the velocity field covariance �z | m,f using a diago-

al matrix is a strong assumption that ignores spatial smoothness.

s seen in (6) , the spatially-smooth prior p ( z ) encourages a smooth

ean velocity field μz | m,f , but samples z k ∼ N ( μz| m, f , �z| m, f )

ight still be noisy. In this section, we investigate the effects of

his restriction, by providing a model expansion that computes a

ess restrictive covariance. In our experiments below, we analyze

he effects of these different approximations. 

To evaluate the effects of the diagonal covariance, we explore

 second approximation �z| m, f = C σc G G 
T C T σc 

where G is a diagonal

atrix returned by the neural network and C σc is a fixed smooth-

ng convolution matrix. Specifically, for each row of C σc we cre-

te a flattened Gaussian smoothing kernel centered at a particu-

ar voxel, such that C σc w is equivalent to 3D convolution of im-

ge w by a gaussian filter with variance σ 2 
c . We choose σ c such

hat the smoothing operation matches the scale of the prior p ( z )

etermined by λ: 1 √ 

2 πσ 3 / 2 
c 

= (λ ∗ 6) −1 . 

During training, sampling from the posterior is achieved using

he reparametrization trick : z k = μz| m, f + C σc D r , where r is a sam-

le from the standard normal. Intuitively, compared to the diag-

nal �z | m,f approximation, this sampling procedure smoothes the

erm Dr before adding the mean μz | m,f . 

In our experiments, we show that this approximation yields

moother velocity fields during training, and the effect diminishes

ith higher λ values. However, the resulting deformation fields are

iffeomorphic and accurate for both approximations, demonstrat-

ng that the diagonal covariance approximation is sufficient when

orking with diffeomorphisms. 

. Experiments 

We perform a series of experiments demonstrating that the

roposed probabilistic image registration framework achieves ac-

uracy and runtime comparable to state-of-the-art methods while

nabling diffeomorphic deformations. We also show the improve-

ents enabled by the extended surface model, and analyze the ef-

ect of the various integration layers during test time. 

We focus on atlas-based registration, a common task in popu-

ation analysis. Specifically, we register each scan to an atlas com-

uted using external data ( Fischl, 2012; Sridharan et al., 2013 ).

ecause we implement our algorithm as part of the VoxelMorph

ramework, we will refer to it as VoxelMorph-diff . 

.1. Experiment setup 

.1.1. Data and preprocessing 

We use a large-scale, multi-site dataset of 3731 T1-weighted

rain MRI scans from eight publicly available datasets: OA-

IS ( Marcus et al., 2007 ), ABIDE ( Di Martino et al., 2014 ),

DHD200 ( Milham et al., 2012 ), MCIC ( Gollub et al., 2013 ),

PMI ( Marek et al., 2011 ), HABS ( Dagley et al., 2015 ), and Harvard
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SP ( Holmes et al., 2015 ). Acquisition details, subject age ranges

nd health conditions are different for each dataset. We performed

tandard pre-processing steps on all scans, including resampling

o 1mm isotropic voxels, affine spatial normalization and brain

xtraction for each scan using FreeSurfer ( Fischl, 2012 ). We crop

he final images to 160 ×192 ×224. Segmentation maps including

9 anatomical structures, obtained using FreeSurfer for each scan,

re used in evaluating registration results. Each image contains

oughly ∼1.6 million brain voxels. We split the dataset into 3231,

50, and 250 volumes for train, validation, and test sets respec-

ively, although we underscore that the training is unsupervised. 

.1.2. Evaluation metrics 

To evaluate a registration algorithm, we register each subject to

n atlas, propagate the segmentation map using the resulting warp,

nd measure volume overlap using the Dice metric. For the surface

xperiments, we also employ the Euclidean surface distance, com-

uted using the strategy described in (11) . 

We also evaluate the diffeomorphic property, a focus of our

ork. Specifically, the Jacobian matrix J φ(p) = ∇ φ(p) ∈ R 
3 ×3 cap-

ures the local properties of φ around voxel p . The local deforma-

ion is diffeomorphic, both invertible and orientation-preserving,

nly at locations for which | J φ( p )| > 0, where | · | is the determi-

ant operator ( Ashburner, 2007 ). We count all other (folding) vox-

ls, where | J φ( p )| ≤0. 

.1.3. Baseline methods 

We compare our approach with the popular ANTs software

ackage using Symmetric Normalization (SyN) ( Avants et al., 2008 ),

 top-performing algorithm ( Klein et al., 2009 ). We found that

he default ANTs settings are sub-optimal for our task, and per-

ormed a wide parameter and similarity metric search across sev-

ral datasets. We used the default geodesic implementation of SyN,

hich is most faithful to theoretical diffeomorphic development.

ther versions, such as greedy SyN, would yield a slightly faster

untime, while giving less diffeomorphic deformations. We identi-

ed and use top performing parameter values for the Dice met-

ic using: the cross-correlation (CC) loss function, SyN step size of

.25, Gaussian smoothing of (9, 0.2) and three scales of 201 it-

rations. We also test the NiftyReg package, for which we use a

ulti-threaded CPU implementation as a GPU implementation is

ot currently available. 2 We experimented with different parame-

er settings for improved behavior, and used the following setting:

C cost function, grid spacing of 5, and 500 iterations. 

To compare with recent learning-based registration approaches,

e also test our recent CNN-based method, VoxelMorph, which

roduces state-of-the-art fast and accurate registration, but does

ot yield diffeomorphic results ( Balakrishnan et al., 2018; 2019 ).

e sweep the regularization parameter using our validation set,

nd use the optimal regularization parameter of 1 in our results. 

We also compute a supervised baseline by training a

oxelMorph-diff network using ground truth deformations. We

uild a ground truth dataset by registering over 650 atlas-MRI sub-

ect training pairs using NiftyReg with the described settings. We

hen train a neural network to predict the resulting deformation

elds using a mean squared error (MSE) loss. We explored several

ariants, and found that doubling the model capacity by doubling

he number of features at each layer, as well as penalizing the

eformations fields only within the proximity of the atlas brain,

ielded optimal results. To enable direct comparison, we used the

oxelMorph-diff architecture, but without sampling of the ve-

ocity field. 
2 We compiled the latest source code from March, 2018 (tree [4e4525]). 

m  

c  

w  
.2. Image registration 

Table 1 provides a summary of the results on the held-out test

et. Fig. 5 and supplementary material Fig. 13 show representative

esults. Fig. 4 illustrates Dice results on several anatomical struc-

ures. For better visualization, we combine the same structures

rom the two hemispheres, such as the left and right hippocam-

us. Our algorithm, VoxelMorph-diff , achieve state-of-the-art

ice results and runtimes, but produces diffeomorphic registration

elds (nearly no folding voxels per scan) in a probabilistic frame-

ork. 

All methods achieve comparable Dice results on each structure

nd overall, except the supervised method. Despite training the lat-

er on 650 subjects, we found that the supervised network leads to

ore diffeomorphic deformations than the training deformations,

ut results in a slight loss in Dice score. Learning-based methods

equire a fraction of the baseline runtimes to register two images:

ess than a second on a GPU, and less than a minute and a half on

 CPU. Runtimes were computed for an NVIDIA TitanX GPU and a

ntel Xeon (E5-2680) CPU, and exclude preprocessing common to

ll methods. 

Our method outputs positive Jacobians at nearly all vox-

ls, which we analyze in more detail in a later section. For

oxelMorph-diff , we find that for most scans, the deforma-

ion fields result in zero folding voxels. Very few volumes lead

o a few or tens of grouped folding voxels, leading to a popula-

ion average of less than a folding voxel per test scan. In contrast,

he deformation fields resulting from the baseline methods con-

ain a few thousand locations of non-positive Jacobians for each

can ( Table 1 ), usually grouped in clusters. This may be alleviated

ith increased spatial regularization or more optimization itera-

ions, but this in turn leads to a drop in performance on the Dice

etric or even longer runtimes. The table also shows that, at the

resented settings, all methods result in an average Jacobian de-

erminant close to 1, with VoxelMorph-diff yielding smooth-

ess statistics nearly identical to those given by NiftyReg, indicate

mooth deformations. 

.3. Image and surface registration 

In this section, we evaluate the generative surface model. We

emonstrate the use of anatomical segmentation alongside images

uring training, and refer to this model as VoxelMorph-Surf .

e focus on the setting where one structure of interest is avail-

ble during training, and learn separate networks for the left white

atter, gray matter, ventricle, thalamus and hippocampus. Our goal

s to analyze how the additional surface model terms affect the ac-

uracy and regularity of resulting deformations. 

Fig. 7 illustrates the behaviour of the model with respect to the

yper-parameter σ s on the validation set. For a range of σ s values,

e find a significant improvement in terms of Dice for the desired

tructure. For very small values of σ s , the training becomes un-

table leading to poor generalization. A very large σ s value leads

o the model ignoring the surface term. Since the Dice scores are

omparable in the range σ c ∈ [0.5, 2], for the rest of this section we

se σs = 2 , which exhibits slightly fewer folding voxels ( ≤5 com-

ared to ∼20 for σc = 1 ). 

Fig. 6 demonstrates the improvement on the test set in terms of

uclidean surface distance and Dice, compared to the image-only

egistration model VoxelMorph-diff . VoxelMorph-surf im-

roves significantly in all measures for most desired structures. Ad-

itionally, Table 2 illustrates that with increased accuracy in both

etrics, the number of folding voxels in the entire volume in-

reases only very slightly (to an average 3.5 voxels per volume),

hich remains orders of magnitude fewer than the baseline meth-
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Table 1 

Summary of results: mean Dice scores over all anatomical structures and subjects (higher is better), mean 

runtime; mean Jacobian determinant; and mean number of locations with a non-positive Jacobian determi- 

nants of each registration field (lower is better). All methods have comparable Dice scores, while our method 

and the other VoxelMorph variants are orders of magnitude faster than ANTs or NiftiReg. Only our presented 

method, VoxelMorph-diff, achieves both high accuracy and fast runtime while also having nearly zero non- 

negative Jacobian locations. All methods have mean Jacobian determinants close to 1, indicating smooth de- 

formations.Each aspect of these results is studied in more details in the rest of the experiments and figures. 

Method Avg. Dice GPU sec CPU sec mean | J 	| | J 	| ≤ 0 

Affine only 0.584 (0.157) 0 0 1 0 

ANTs (SyN) 0.749 (0.136) – 9059 (2023) 1.001 (0.036) 7,523 (4790) 

NiftyReg (CC) 0.755 (0.143) – 2347 (202) 1.072 (0.131) 33,838 (8307) 

VoxelMorph (CC) 0.753 (0.145) 0.45 (0.01) 57 (1.0) 1.032 (0.074) 19,715 (3540) 

Supervised-diff 0.730 (0.144) 0.35 (0.03) 82.6 (3.8) 1.088 (0.121) 0.05 (0.5) 

VoxelMorph-diff 0.754 (0.139) 0.47 (0.01) 84.2 (0.1) 1.075 (0.124) 0.2 (1.0) 

Fig. 4. Boxplots indicating Dice scores for anatomical structures for baselines ANTs, NiftiReg, VoxelMorph (CC), and finally our algorithm VoxelMorph-diff. Left and right 

hemisphere structures are merged for visualization, and ordered by average ANTs Dice score. In general, all four algorithms demonstrate comparable results, each performing 

slightly better in some structures and slightly worse in others. 

Fig. 5. Example MR slices of input moving image, atlas, and resulting warped im- 

age for our method and ANTs, with overlaid boundaries of ventricles, thalami and 

hippocampi. Our resulting registration field is shown as a warped grid and RGB 

image, with the channels representing the x , y and z dimensions. We omit Voxel- 

Morph (CC) and NiftyReg examples, which are visually similar to our results and 

ANTs. More examples are provided in the supplementary material Fig. 13. 

 

 

 

 

 

 

 

 

Table 2 

Regularity measures for image and surface models on the test set. Leveraging 

diffeomorphic aspect of our joint image and surface model, VoxelMorph-surf 

preserved very low numbers of folding voxels even when training with exam- 

ple surfaces. 

Method | J | ≤0 % of | J | ≤0 

ANTs SyN (CC) 9060 (4445) 0.545 (0.267) 

NiftyReg (CC) 40425 (9901) 2.431 (0.595) 

VoxelMorph (CC) 19077 (5928) 1.147 (0.360) 

VoxelMorph-diff 0.1 (1.2) 6.1e −6 (7.6e −5) 

VoxelMorph-surf (cerebral w.m.) 3.0 (6.2) 1.8e −4 (3.8e −4) 

VoxelMorph-surf (cerebral cortex) 3.4 (6.4) 2.0e −4 (3.9e −4) 

VoxelMorph-surf (lateral ventricle) 4.0 (8.0) 2.3e −4 (4.8e −4) 

VoxelMorph-surf (thalamus) 4.3 (8.2) 2.6e −4 (4.9e −4) 

VoxelMorph-surf (hippocampus) 2.7 (5.8) 1.6e −4 (3.5e −4) 
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4

 

i  

H  

t  

0  

s  

v  
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ods ( Table 1 ). Fig. 14 in the supplementary material illustrates ex-

ample results. 

In summary, the principled joint diffeomorphic model enables

the use of surfaces during training which dramatically improves

registration near a given structure while preserving desired de-

formation properties. For example, given hippocampus surfaces

at training, registration using VoxelMorph-Surf improves Dice

by ∼9 points over VoxelMorph-diff , improves maximum sur-

face distance by more than three voxels, and preserving diffeomor-

phisms (less than three folding voxels per scan). 
.4. Analysis 

.4.1. Parameter analysis 

The two main hyper-parameters, smoothing precision λ and

mage noise σ 2 
I 
, have physical meaning in our generative model.

owever, they share a single degree of freedom in the loss func-

ion. We set σ 2 
I = 0 . 02 , and vary the precision scale λ between

.5 and 100. Fig. 9 shows average Dice scores for 50 validation

et scans for different parameter values, showing that the results

ary smoothly over a large range, with reasonable behavior even

ear λ∼0. We use λ = 20 in our experiments above. 
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Fig. 6. Surface results for the proposed VoxelMorph models. Left: maximum Euclidean surface distance (lower is better). Middle: median Euclidean surface distance (lower 

is better). Right: mean Dice (higher is better). VoxelMorph-surf trained with surfaces of the desired structures achieves significantly smaller surface distances and larger Dice 

scores on each structure. We use left hemisphere white matter (WM), gray matter (GM), lateral ventricle (LV), Thalamus (T), and hippocampus (H). 

Fig. 7. Average Dice score for VoxelMorph-surf models on the validation set. We 

test various values of the spatial noise parameter σ s , for both the desired struc- 

tures observed during training (obs) and all structures (all). For a range of values 

of σ s ∈ [0.5, 2.0], we find significant increases for observed surfaces when using the 

generative surface model. 
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.4.2. C-shape registration 

We also perform analysis on controlled experiments with C-

hape synthetic images with intensities in [0,1]. Specifically, we

rain a VoxelMorph-diff network to learn to register a disk

ith a radius ranging from one third to one fifth of the image,

o a C-shape with variable radius and thickness. The outer radius

f the C shape is sampled uniformly in the range [1/3.5, 1/2.5] of

he image size, whereas the inner radius is in the range [1/6.5,

/5.5]. We increase hyper-parameter σs = 0 . 06 to account for the

ncrease in maximum intensity. Fig. 8 illustrates representative im-

ges and deformation fields. To obtain the fields at intermediate

ime points between 0 and 1, we employ Tensorflow ODE solver.

e find that all the deformation fields lead to accurate registra-

ion between disks and C shapes, and have no folding voxels. We

lso find that the deformation fields are invertible, bringing the

rid back to identity when the transforms are composed. 

.4.3. Integration steps 

During training, we hold the number of scaling and squaring

teps fixed. However, this number can be varied at test time, af-

ecting aspects of the resulting deformation field. In this section,

e analyze the effects of the number of steps on accuracy, run-

ime, field regularity and invertability. We perform this experiment

sing 50 validation subjects and the image registration network

oxelMorph-diff trained with T = 7 integration steps and regular-

zation parameter λ = 20 . The velocity field is computed every two

oxels, but all of the conclusions in this section are likely to apply

o many reasonable field spacings. 

Fig. 10 summarizes the analysis results. The runtime increases

odestly with the number of steps, and is overall significantly

maller than the cost of the rest of the network (i.e. the defor-

ation network computation of the velocity field, and the spa-

ial transform of the full moving image). After four scaling and

quaring steps, the method achieved maximum Dice score. We ob-
erve a steep decline in the number of folding voxels (note the

og-scale vertical axis), reaching less than five voxels after five

caling and squaring steps, compared to classical methods which

an include thousands of such voxels ( Table 1 ). Finally, we mea-

ure the average displacement error after inverting the deforma-

ion fields: 
u = | Id − φ ◦ φ−1 | . We find that after five scaling and

quaring steps, even the worst error is under a half voxel, indicat-

ng that five steps are sufficient to ensure invertible deformations. 

In addition, we implemented the integration of the velocity

eld using Tensorflow ODE solvers and using standard quadrature,

ut found that these required significantly more runtime com-

ared to the scaling and squaring strategy, consistent with lit-

rature findings ( Arsigny et al., 2006; Ashburner, 2007; Modat

t al., 2014a ). Specifically, while five scaling and squaring opera-

ions required 0.06 ±0.01 s, equivalent quadrature integration re-

uired 64 operations (occupying prohibitive amounts of memory)

nd 0.53 ±0.01 s, and ODE-solver based integration with default

arameter required a single layer and 2.9 ±0.1 s. At comparable in-

egration settings such as these, all three methods achieve similar

ice scores of 0.75 ±0.01. While these alternative methods require

ignificant resources, all three implementations are available in our

ource code for experimentation. 

This analysis indicates that the proposed scaling and squaring

etwork integration layer is efficient and accurate. Increasing the

umber of scaling and squaring layers incurs a negligible runtime

ost while improving deformation field properties. We use T = 7

quaring steps in the test experiments above. 

.4.4. Velocity sampling and uncertainty 

We also evaluate the modeling assumptions of the variational

ovariance �z | m,f . Fig. 11 illustrates example samples of the veloc-

ty field z k and voxel-wise empirical variance for the two �z | m,f ap-

roximations: diagonal covariance and the extended approximation

n Section 3.2 that smooths samples z k . For under-regularized net-

orks (very low values for hyper-parameter λ), the latter approx-
mation yields smoother velocity fields. However, given a higher

yper-parameter λ value, such as the one used in our experiments,

he network learns smaller values for the diagonal �z | m,f approxi-

ation, and yields smooth samples z k with either method. Futher-

ore, despite the difference in smoothness of the velocity field

amples z k , the integration operation leads to equally regular and

ccurate deformations φz k 
for a given λ ( Table 3 ). 

Therefore, although the diagonal covariance has the potential

o add noise to velocity field samples, the loss function coupled

ith the integration operation lead to smooth and accurate defor-

ation fields φz at reasonable λ values. Therefore, in the current

etting, the diagonal and non-diagonal covariances give similar re-

ults. Nonetheless, in other applications the non-diagonal covari-

nce might be important. For example, diagonal covariances would

ikely have negative effects in a different deformation model, for

nstance if z was modelled as the displacement field itself. 
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Fig. 8. C-shape controlled experiments. We learn to warp disks to Cs of different radii, and illustrate the registration results for one example. The top row illustrates the 

integration of the velocity field at different time points, and the second row shows the resulting warp of the circle or C. Finally, on the bottom row, we illustrate deforming 

the grid with a composition of the forward warp and the inverse warp, demonstrating a return to identity. 

Fig. 9. Dice score (computed using 50 validation scans) for VoxelMorph-diff with 

various values of the precision parameter λ. 

Fig. 10. The effect of different number of scaling and squaring steps on the regis- 

tration accuracy, runtime, deformation regularity and invertability. We find that af- 

ter five scaling and squaring steps, our model, VoxelMorph-diff, is able to produce 

state-of-the-art accuracy while having essentially no folding (note the log-scale ver- 

tical axis in the top-right graph). Similarly, it is able to produce invertible defor- 

mations, as seen by the measure of the displacement error 
u = | I − φ ◦ φ−1 | . The 
total runtime cost of the scaling and squaring operations is below the runtime of 

the rest of the networks, indicating that increasing the number of steps improves 

deformation properties for trivial runtime cost. 

Fig. 11. Illustration of voxel independence assumption in variational approxima- 

tions for two prior parameters λ = 1 (top) and λ = 20 (bottom). Each row contains 

an example sample velocity field z k , and the voxel-wise standard deviation over 500 

samples for that subject. 

Table 3 

Accuracy and deformation regularity for the different variational ap- 

proximations and two dramatically different values for smoothing pa- 

rameter λ. We find that for a given parameter value, the approxima- 

tions lead to comparable accuracy and number of folding voxels. 

Dice | J | ≤0 

λ Diagonal Extension Diagonal Extension 

1 0.74 (0.01) 0.74 (0.01) 2934 (2007) 2720 (1593) 

20 0.75 (0.01) 0.75 (0.01) 0.32 (0.96) 0.16 (0.57) 

5
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. Discussion and conclusion 

In this work, we build a principled connection between classi-

al registration methods and recent learning-based approaches. We

ropose a probabilistic model for diffeomorphic image registration

nd derive a learning algorithm that leverages a convolutional neu-

al network and unsupervised, end-to-end learning for fast run-

ime. To achieve diffeomorphic transforms, we integrate station-

ry velocity fields through novel scaling and squaring differentiable

etwork operations, and provide implementation and analysis for

ther integration layers. 
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Although the simplifying diagonal approximation to the velocity

ovariance �z | m,f adds voxel-independent noise to every velocity

eld sample z k , the resulting deformation fields are well behaved

ecause of our smoothing prior and diffeomorphic representation. 

We also provide an anatomical surface deformation model.

f image segmentations are available for a particular anatomical

tructure, the generative model incorporates them naturally in the

ame joint framework during training, while not requiring the sur-

aces at test time. 

Our algorithm can infer the registration of new image pairs in

nder a second. Compared to traditional methods, our approach is

ignificantly faster, and compared to recent learning based meth-

ds, our method offers diffeomorphic guarantees. We demonstrate

hat the surface extension to our model can help improve registra-

ion while preserving properties such as low runtime and diffeo-

orphisms. 

Furthermore, several conclusions shown in recent papers ap-

ly to our method. For example, when only given very limited

raining data, deformation from VoxelMorph can still be used as

nitialization to a classical method, enabling faster convergence

 Balakrishnan et al., 2019 ) 

Our focus in this framework has been to present the technical

onnection between classical and learning paradigms, and show

hat diffeomorphisms are attainable in a very low runtime. Im-

ediate extensions can enable other models and applications. For

xample, our derivation is generalizable to other formulations: z

an be a low dimensional embedding representation of a defor-

ation field, or the displacement field itself. Similarly, the varia-

ional covariance �z | m,f enables an estimation of the uncertainty of

he deformation field at each voxel, which can be informative in

ownstream tasks such as biomedical segmentation or population

nalysis. The model is also widely applicable to other applications,

uch as subject-to-subject registration, segmentation-only registra-

ion, or using multiple surfaces to improve image-based registra-

ion. 
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