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Abstract

We investigate anomalous dispersion in steady-state two-phase flow though a random, arti-
ficial porous domain. A natural distribution of trapped wetting-phase fluid was obtained via
two-phase lattice Boltzmann drainage simulations. To avoid spurious velocities, accurate
inter-pore velocity fields were derived via additional one-phase lattice Boltzmann simula-
tions incorporating slip boundary conditions imposed at various interfaces. The nature of the
active dispersion at various timescales was subsequently studied via random walk particle
tracking. For our system, results show persistent anomalous dispersion that depends strongly
on the assumed molecular diffusivity and the initial positions of tracer particles. Imposing
slip versus no-slip boundary conditions on fluid—fluid interfaces made no observable differ-
ence to results, indicating that observed anomalous dispersion resulted primarily from the
complex flow network induced by the trapped fluid phase.

Keywords Multiphase flow - Anomalous transport

1 Introduction

Multiphase flows through porous media are of broad interest in many natural, engineered
and hybrid environments. Examples include geologic sequestration of carbon dioxide (Bachu
2000), hydrocarbon extraction (Lake 1989), irrigation and rainfall infiltration through soils
(Daly and Porporato 2005), artificial aquifer recharge (Bouwer 2002), nuclear waste reposito-
ries (Berglund et al. 2013), biochemical reactors (Fernandez-Arévalo et al. 2014), remediation
of contaminated soils (Mercer and Cohen 1990) and fuel cell technology (Berning and Dji-
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lali 2003) among many others. Flows across these systems can vary greatly, for example
spanning the full spectrum from viscous dominated laminar flows to inertially dominated
turbulent flows (e.g., Sund et al. 2015). However, all flows through porous media have the
common feature of the presence of a solid matrix whose boundaries exert no slip conditions
that are distributed throughout the entire domain, giving rise to a potentially broad distribu-
tion of velocity scales (Bijeljic et al. 2013b). These features already exist for single-phase
systems, but when two or more fluid phases are present, an additional level of complexity
arises. The presence of multiple fluid phases also fundamentally influences the way dissolved
substances move through the porous medium. For example, if one of the phases is trapped,
as is common, the flow path structure through the porous medium is altered. This in turn
impacts spreading and mixing (Dentz et al. 2011) dynamics, which are physical processes
that must be understood for example in the context of risk assessment (de Barros et al. 2011)
and remediation efforts (de Barros et al. 2013).

Anomalous transport, as typically quantified by the non-Fickian time-scaling of spreading
(62 ~ P, B # 1), is ubiquitous in porous media, having been observed all the way from the
smallest scales on the order of mm in pores (Bijeljic and Blunt 2006; Bijeljic et al. 2013b) to
larger scales on the order of 100s of meters and more in aquifers (Gémez-Herndndez et al.
2017). Such anomalous behavior is typically associated with long jumps that occur due to the
presence of persistent preferential flow paths (e.g., Zhang and Benson 2008) and/or persistent
long waiting times in immobile regions of a porous medium, that occur for example due to
the presence of dead end pores or very low conductivity flow regions (Berkowitz et al. 2006).
This is also typically reflected in the intermittent nature of particle transport, where particles
persistin regimes of fast or slow speeds and acceleration, which has been observed in synthetic
2D porous media (De Anna et al. 2013) as well as real complex 3D porous structures (Kang
et al. 2014). Depending on the scales of interest, these anomalous scalings can be a reflection
of pre-asymptotic behavior that eventually converges to Fickian once all relevant scales have
been sampled, typically via diffusion (Taylor 1953). The time scale for this to happen is on
the order of Tp = L2 /D, where L is a characteristic length associated with the medium of
interest and D is the diffusion coefficient. Such asymptotic behavior can be well predicted
by theories such as the method of moments (Brenner 2013) or volume averaging (Whitaker
2013), but this asymptotic timescale may be prohibitively large. Additionally pre-asymptotic
volume averaging models can predict components of the anomalous transport regime (e.g.,
Wood 2007; Bolster et al. 2011), but still typically need a known characteristic length scale
L with which to make assumptions required to close the problem. The resulting upscaled
effective equations tend to be nonlocal in time with tempering effects kicking in after the
characteristic diffusion time tp. When no clear length scale L exists, anomalous behavior
can persist indefinitely (Schumer et al. 2003). Depending on the problem at hand, accurately
capturing such pre-asymptotic/anomalous behavior is critical.

While anomalous transport is commonly observed in single-phase flows, its signatures
can be even stronger in multiphase systems. Anomalous transport signatures are known to
become stronger as greater geometrical complexity, such as boundary roughness or secondary
porosity is resolved (Bijeljic et al. 2013a,b). The presence of a trapped phase has a similar
effect, altering the connectivity and complexity of available flow paths. Depending on how
the trapped phase distributes itself, this could lead to enhanced preferential flow paths or
a larger number of trapping regions, both of which would result in enhanced spreading.
Indeed several studies report enhanced dispersion in porous media as the saturation of the
medium decreases (e.g., Wildenschild and Jensen 1999; Niitzmann et al. 2002; Sato et al.
2003; Raoof and Hassanizadeh 2013) and stronger non-Fickian signatures have been reported
(e.g., Bromly and Hinz 2004; Guillon et al. 2013). For example, Guillon et al. (2013) report
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that they experimentally observe weak anomalous behavior (8 = 1.17) in a single-phase
experiment in a homogeneous column, but that the system becomes strongly anomalous f =
1.5 during a steady-state two-phase (oil-water) experiment in the exact same column. Such
effects haven been shown to have a profound effect on mixing and reaction processes in both
two- and three-phase systems Jiménez-Martinez et al. (2015, 2016), where rates of mixing
are significantly faster than in a single-phase counterpart system. However, such behaviors
may not be universal and observations have also been made that suggest the opposite—
that dispersion can increase as saturation increases and approaches the single-phase limit
(e.g., Vanderborght and Vereecken 2007). In these cases, the proposed mechanism is that
enhanced saturation is associated with enhanced flow rates, which in turn gives rise to a
broader distribution of velocity scales.

From the above discussion, it should be clear that multiphase flows in porous media and
the transport of any associated dissolved substances can display a very rich and interesting set
of dynamics and that many open questions still remain. For example, when the trapped phase
distributes itself and creates preferential flow paths and a greater number of trapping regions,
is the multiphase nature of the flow important? That is, does this trapped phase merely act in
a similar manner to having an increased amount of solid matrix? Or, is the fact that the inter-
face between the flowing and trapped phases is not a no-slip boundary important? Kazemifar
et al. (2016) experimentally showed the emergence of strong recirculation zones near such
interfaces, and recirculation zones have been speculated as contributors to anomalous disper-
sion (Le Borgne et al. 2011; Bolster et al. 2014). Another important question, given that the
trapped phase can create regions of greater trapping, is how the initial condition associated
with the dissolved substance impacts any anomalous behavior. For example, is it important
to account for whether one starts in a highly mobile or immobile region (Singha et al. 2007)?
This might have important consequences, as laboratory and field experiments might typically
inject tracers into the more mobile regions of a flow, while processes of interest might be
associated with regions of lower mobility (e.g., dissolution of trapped CO» into brine (Iglauer
2011)). Similarly, while enhanced non-Fickian dispersion might be expected in a multiphase
system, one should also ask if the transition time from pre-asymptotic to asymptotic dis-
persion is similar for a comparable single and multiphase system (O (L?/D))? A priori one
might anticipate them to be, as long as the characteristic length of the system is the same.

In this paper, through the use of numerical simulations, we explore the above questions
with the goal of providing further insights into transport processes in multiphase systems. In
Sect. 2, we describe the flow domain and methods by which we simulate flow and transportin it
as well as the observables that we measure to answer the above questions. In Sect. 3, we present
and discuss the results of the numerical simulations. We finish with conclusions in Sect. 4.

2 Model System
2.1 Solid Geometry

Our 2D solid geometry was artificially generated to produce a random range of pore configura-
tions and sizes, while respecting a minimum pore diameter deemed necessary for sufficiently
accurate fluid flow calculations. The resulting pore domain is fully periodic and also exhibits
a wide variety of grain sizes and shapes. The generation process involved randomly placing
solid phase circles of radius 10 onto a periodic region 1024 x 512 pixels in size. Each new
circle of solid phase was tested for compatibility with the existing pore structure, and if suc-
cessful, any void-space pixels within the test circle were converted to solid phase pixels. Any
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Fig.1 Large tiled and small flow domain geometry with phase distributions

circle that did not lie within 6 pixels of any existing solid space was immediately allowed.
For each new circle within 6 pixels of existing structure, we considered the shape of existing
solid phase within an outer concentric circle of radius 16. If this existing solid phase was (i)
simply connected and (ii) intersected an inner concentric circle of radius 9, with the intersec-
tion also being simply connected, the circle was allowed. Circles of solid phase were tested
and added until the porosity of the region reduced to 40%. In this manner, we were able to
adequately produce a random solid geometry and simply connected pore space compatible
with efficient flow calculations, as illustrated at the bottom of Fig. 1.

Before any consideration of multiphase flow, our porous domain contains 46292 edges
between solid and void cells and a total of 209700 void cells. Including a factor of (1 4
V/2)/(2+/2) to correct for diagonal pore walls, and comparing the edge to area ratio of straight,
uniform pores then suggests an average pore size of 10.61. The length of the periodic region
is approximately 100 times the average pore size, and the width approximately 50 times the
average pore size.

2.2 Flow

The flow state inside the porous medium is complex because of the heterogeneous medium
structure and the existence of multiphase fluids. We calculate both single-phase and multi-
phase flow behavior using direct simulation methods on the generated artificial porous media.
The complex flow is solved using the lattice Boltzmann method (LBM), which because of
its flexibility and ability to handle complex boundaries has many practical advantages in
the context of multiphase flows in porous media (e.g., Jiang and Tsuji 2017; Ramstad et al.
2012).

We first carried out a drainage simulation to obtain a realistic spatial distribution of trapped
phase. For this purpose, we adopted the improved Rothman-Keller (RK) multiphase lattice
Boltzmann model which is able to reduce the lattice pinning effect (Latva-Kokko and Roth-
man 2005; Leclaire et al. 2012). This RK model is briefly introduced as follows: In LBM,
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a discrete particle distribution function (PDF) f; is introduced to represent the fluid. Here,
i represents the ith lattice direction. For two-dimensional simulation, the two-dimensional
9 velocity lattice model (D2Q9) Qian et al. (1992) is employed in this work. For two-phase
systems, the PDF for fluid & is denoted by fi" (k =1, 2). The total PDF at (x, ) is

fix, ) =Y fx 0. o)
k

The lattice Boltzmann equation for fluid k is
x4 edt, 1+ 60 = fhex, 0) + 2Fx, 1), k=1,2, i=0,...,8 2)

where e; is the lattice velocity of the D2Q9 model and .Qlk (x, t) is the collision operator,
which is a result of the combination of three suboperators in the RK mode (T¢lke 2002;
Jiang and Tsuji 2017):
k k310 okyl k2
27 = (27)°1(827)" + (£2))7] 3)

where (.Qik )!is the usual single-phase collision operator, (.Qik )2 is the multiphase perturbation
operator responsible for the generation of interfacial tensions, and (.Ql.k )3 is the multiphase
collision operator for recoloring, which mimics the phase segregation. The detailed expres-
sions for these collision operators can be found in Jiang and Tsuji (2017). The macroscopic
variables (density p and velocity u) can be calculated from the PDF:

pe=Y [ pu=)"%"fle. “
i ik

As the LBM is a Cartesian-based method, each pixel of the generated geometry directly
corresponds to a mesh grid of the computational domain. To simulate the drainage process,
we injected non-wetting phase fluid to displace the in-situ saturated wetting phase. A larger
porous simulation region was created by tiling our periodic domain three times longitudinally.
As part of the drainage simulation, two buffer layers 10 pixels in width were added at the
inlet and outlet (longitudinal boundaries) of the tiled sample for injecting and withdrawing
fluid. Initially, only the inlet buffer layer was saturated with non-wetting phase, while other
spaces were saturated with wetting phase. A constant pressure gradient is applied to drive
the non-wetting phase into the pore space from the inlet buffer layer. For simplicity, both
the density and viscosity of the two fluids were set to be identical, and wetting properties of
the porous media were set such that the wetting phase perfectly wets the solid. The wetting
property is modeled by assigning the value of the order parameter of RK model on the solid
boundary nodes (Jiang et al. 2014). A no-slip bounceback boundary condition was applied
at fluid-solid interfaces (Chen and Doolen 1998), while periodic boundary conditions were
applied on external domain boundaries. The average capillary number Ca = % was around
107>, The dynamic viscosity x and surface tension o are set to 1/6 and 0.03, respectively, in
lattice units (lu). Lattice units are dimensionless units that incorporate a unit length measure
equal to the size of an LBM grid cell and a unit time measure equal to the simulation time
step. The average velocity U can be obtained from the simulation results. The simulation was
stopped once the average flux rate and phase saturation adequately converged to steady-state
values, meaning that capillary pressure had halted accumulation of non-wetting phase liquid
in the pore space. Fig. 2 illustrates this drainage simulation at different times.

The final stage of our multiphase flow simulation involved extracting the center tile as in
Fig. 1 and running an additional two-phase LBM simulation with fully periodic boundary
conditions (and all physical parameters maintained at the same values as for the drainage
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(a)

(b)

(c)

Fig.2 Simulation of the drainage process

process). In this manner, we generated a natural, fully periodic stable fluid phase distribution
exhibiting immobile wetting phase within a solid porous matrix.

For numerical studies of multiphase flow scenarios, the flow velocity field near interfaces
suffers severely from unphysical spurious velocities and while some methods are less sus-
ceptible than others, it is a problem inherent to all multiphase flow solvers (Connington and
Lee 2012). To avoid these spurious velocities affecting our particle tracking simulations, we
conducted additional one-phase flow simulations using the fixed phase distribution shown at
the bottom of Fig. 1, instead of directly using the velocity field obtained from multiphase
flow simulation. In this approach, the flow is solved only for the invading phase. Strictly
speaking, this means that we are not explicitly modeling transport in a multiphase flow, but
rather a single-phase flow where we treat the trapped phase as a component that modifies the
connectivity and interfacial slip of the mobile phase.

In two-phase flow, the trapped wetting phase induces an effective boundary slip length
which will vary along each fluid-fluid interface and depends on the complex local geometry.
The physical region occupied by each pocket of trapped phase is constant in time, but the
trapped phase itself still exhibits internal circulation due to contact with the mobile fluid phase.
Nonzero tangential velocities at fluid—fluid interfaces are equivalent to a varying boundary
slip length when focussing solely on the mobile one-phase flow. Note that the minimum pore
size in our artificial domain is approximately 6, and fluid—fluid interfaces typically occur
spanning small pore throats or as thin layers over rougher grain surfaces. Schonecker and
Hardt (2013) consider effective slip length estimation over rectangular cavities filled with
immiscible fluids and adopt the distance to the center of the first in-cavity vortex as an upper
bound on the maximum boundary slip length. For rectangular cavities, known one-phase
flow solutions (Pan and Acrivos 1967; Higdon 1985) suggest a maximum in-cavity vortex
distance of 0.25 times the width of the cavity. While the cavities containing trapped fluid are
not rectangular in the present study, we can adopt similar reasoning to anticipate effective slip
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lengths. Hence a slip length of 3 was estimated as an approximate upper bound for the variable
slip length that would be induced at the majority of fluid—fluid interfaces in our domain for
genuine two-phase flow. A constant slip length of 3 is imposed at all slip boundaries in our
one-phase flow simulations so as to conservatively exaggerate any slip-induced effects on
dispersion. We note that immiscible fluids can appear to exhibit slip at fluid-fluid boundaries
of the order of a few molecular lengths in genuine two-phase flow simulations (Galliero
2010; Hu et al. 2010). We assume that our system length scales are large enough so that these
effects do not invalidate the estimation above.

Computationally, the irregular curved slip boundaries were implemented using an ad hoc
kinetic boundary condition (Singh et al. 2017) and the slip length was adjusted to equal 3
by artificially manipulating the Knudsen number [i.e., adjusting the relaxation time 7 (Singh
et al. 2017)] of single-phase simulation. To test this approximation and investigate whether
dispersive behavior results from slip effects or the induced highly complex flow network, we
tested three slip scenarios:

— No slip: imposing a non-slip boundary condition on all fluid—fluid interfaces (equivalent
to converting the trapped wetting phase to solid phase).

— Slip: introducing an exaggerated proxy for two-phase flow by imposing a slip length of 3
at fluid-fluid boundaries while retaining the non-slip condition on solid-fluid boundaries.

— Full slip: aslip length of 3 was adopted at all boundaries including the solid-fluid bound-
aries. This case was included for completeness. Physically, we expect realistic two-phase
flow behavior to lie somewhere between the No slip and Slip boundary conditions above.

Fully periodic one-phase LBM velocity fields were produced for each of the cases above.
As expected, we observed higher velocities and a greater permeability for Slip versus No
slip boundary conditions due to the increased boundary area (solid-fluid) with slip condition
as illustrated in Fig. 3. Measured in lattice units, the average velocity in the flow direction
was approximately 2.20 x 1073, 2.30 x 1073 and 3.54 x 103, respectively, for the No slip,
Slip and Full slip flow scenarios. The final one-phase velocity fields of the three scenarios
were used as inputs for particle tracking simulations investigating dispersion under various
conditions.

For further comparison, we also considered pure one-phase flow in our artificial porous
domain—that is, flow without any trapped wetting phase present, so that the non-wetting
phase occupies the entire pore space (40% of the total volume). For scenarios described
above where the trapped wetting phase is present, it occupies approximately 10% of the
total volume, so that the non-wetting phase occupies the remaining 30% of the total volume.
Without any trapped wetting phase present, we were able to consider one-phase No slip and
Full slip LBM velocity fields, depending on whether a slip length of 0 or 3, respectively, was
imposed on solid-fluid interfaces.

2.3 Particle Transport

To analyze transport of substances in solution, we implement a random walk (Risken 1996),
where the plume is discretized into N particles, whose positions change at each time step
according to both the local advective flow field and a constant applied diffusivity. For particle
tracking, the lattice unit length scale L is retained, but a new timescale adopted so that the
dimensionless average fluid velocity U is equal to one for all slip scenarios. Dimensionless
time is then consistently related to the average distance travelled within the pore matrix by
the mobile phase fluid. Much of the original void space is subsequently made inaccessible by
trapped wetting-phase fluid, and hence, we should reconsider the average pore size stated in
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Fig.3 Velocity fields inside pore spaces—comparison of different slip scenarios: a No slip b Slip ¢ Full slip.
Average horizontal velocity was approximately 2.20 x 1073, 2.30 x 1073 and 3.54 x 1073, respectively,
for the No slip, Slip and Full slip flow scenarios. Black and gray colors indicate the grains and trapped phase,

respectively,
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Sect. 2.1. Recalculating for the final area occupied by the mobile fluid gives a new average
pore size of 10.05, which is very similar to the original value of 10.61. In summary, rescaling
means that on average, the mobile fluid travels the average pore size in time ¢ ~ 10 and
traverses the entire domain in time ¢ ~ 103. As our domain and flow fields are fully periodic,
this poses no restriction, and results show maximum simulation times greaterthant = 2 x 10°;
with tracer particles typically traversing the domain length 2000 times.

The appropriate dimensionless value of the diffusivity coefficient D depends on tempera-
ture, pressure, pore size, capillary number and particle size; hence, we consider dimensionless
Pe = UL/D over four orders of magnitude from 0.1 to 100.

For a time step At, particle i moves as

Xi(t + At) =% (1) +u; At + &+/2At ] Pe
Yi(t + At) =i (1) +V; At + ni/2At/ Pe

where X; and y; are the horizontal and vertical position of particle i, respectively, #; and v;
are the horizontal and vertical components of the normalized local fluid velocity, and & and n
are independent identically distributed Gaussian variables with zero mean and unit variance.

The detailed advective flow field and domain for particle migration were derived from the
LBM described above. Implementation of one approach is illustrated in Fig. 4. We calculated
a 2048 x 1024 array of velocities by adding supplementary nodes (illustrated as crosses) to
the original LBM nodes (illustrated as circles). All supplementary nodes adjacent to original
solid phase nodes were defined to be of zero velocity. Velocities at all other supplementary
nodes were determined according to the mean velocity of the two or four immediately adja-
cent original nodes. Migrating particles were elastically reflected from the derived region of
identically zero flow (shaded in Fig. 4). The local velocity at all points not in the zero-flow
region was determined via linear interpolation from the four immediately adjacent original
or supplementary nodes.

Random walk particle tracking results were also obtained via independently authored
code that incorporated diffusion via a single jump of fixed size at each time step, rather
than Gaussian jumps. Velocities were alternatively obtained solely via linear interpolation

@ X
X X

i=1,...N, (5)

K X @ X
HKAXAKXAKXAKXAKXAKXAKXXX
OPSONNODNORNORNONS
HHXHXAHKAHKXAHKXAKXAKXKXXX

Fig. 4 Advective flow region for random walk particle migration. Circles represent LBM simulation nodes
with associated phases solid (S), trapped (T), and mobile (M). Crosses show supplementary nodes. Particles
reflect off the shaded zero-flow region
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between the 1024 x 512 original nodes, avoiding the computational expense associated with
the supplementary nodes of Fig. 4. The results for alternative particle tracking codes were
found to be indistinguishable, and hence, final results were derived using the faster codebase.

Macroscopic dispersive behavior is affected over extended time periods by initial particle
positions, especially when the flow network complexity incorporates stagnant fingers of fluid
that act to trap tracer particles. We adopt two contrasting initial particle arrangements:

— Fast volumetric: initial positions chosen at random, with initial speed greater than 0.1
times the scaled average speed using the No slip flow field

— Slow volumetric: initial positions chosen at random, with initial speed less than 0.1 times
the scaled average speed using the Full slip flow field

Particles can also be released after being randomly arranged on a line perpendicular to the
flow direction. Results for such initial conditions are basically compatible with the volumetric
initial conditions described above, and depend on whether the line of release incorporates
fast flow regions or stagnant fingers of fluid.

2.4 Measure of Anomalous Transport - Second Centered Moment

The primary observable, which we calculate in our numerical simulations, is the temporal
evolution of the second centered moment of the particle plume «11(¢), pinned to the longi-
tudinal starting positions of the particles. Deviation from a diffusive scaling of this second
centered moment (i.e., k11 ~ 1P, B # 1) is widely regarded as the signature of anomalous
transport. To calculate it, we calculate the first and second moments according to

N N 2
b

mit) =y <xl~ (1) — x; (0)), ma(t) =y (xi (1) — x; <0))

i=1 i=1

(©)

which are combined as follows to calculate the second centered moment
k11 (1) = ma(t) — [mi (1)) ©)

Choosing the total number N of particles to be tracked was a balance between obtaining
sufficiently smooth and reproducible «1(#) curves, and managing the significant computa-
tional expense associated with particle tracking. Curves in the results section were obtained
using 1000 particles.

Using all of the above, we consider the evolution of 11 (¢) for particle transport subject to
four different diffusivities, two contrasting particle starting positions, and five different advec-
tive flow fields obtained by varying slip boundary conditions and the presence of trapped,
wetting-phase fluid.

3 Results
3.1 The Role of Interface Boundary Condition

We firstly seek to investigate whether anomalous dispersion in the presence of trapped wetting
phase is influenced by the induced slip boundary condition on fluid—fluid interfaces, or
whether such dispersion is primarily the result of the induced complex flow geometry.
Figures 5 and 6 compare the evolution of k11 (¢) under different slip boundary conditions
on a log—log scale. When the «1(¢) curve is parallel to the 8 = 1 curves, we have standard
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Fig.5 Fast volumetric dispersive behavior with differing slip scenarios at various Peclet numbers
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Fig.6 Slow volumetric dispersive behavior with differing slip scenarios at various Peclet numbers
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Fickian dispersion. Conversely, if the illustrated «11(¢) curve is parallel to the § = 2 curves,
our observed dispersion is extremely superdiffusive. Eight different subplots are shown for
fast and slow volumetric starting positions and varying Pe values. In all cases, there appears
to be no observable difference between the No slip and standard Slip flow fields in the presence
of trapped wetting phase fluid, suggesting that indeed the trapped phase acts in such a way
as to restrict the flow paths in the same manner as the solid matrix.

Results for the Full slip flow field with trapped wetting phase are also shown and clearly
affect k11 (¢) for larger times compared to the other two slip scenarios. Although research has
demonstrated that slip conditions are possible under certain circumstances (e.g., highly pol-
ished surfaces, very dilute gas flow), from most practical perspectives the Full slip flow field
is essentially unphysical, but nonetheless is interesting and demonstrates that extreme slip
boundary conditions can affect macroscopic dispersion. In particular, at late time the disper-
sion is reduced relative to the other two cases, presumably reflecting a narrower distribution
of velocities to be sampled.

The fast and slow volumetric starting positions lose much of their intended distinctiveness
for particle migration simulations using flow fields that lack trapped wetting phase. Nonethe-
less, results are shown for the Pe = 10 case. For both starting positions, the transition to
post-asymptotic Fickian dispersion appears to happen quickly at approximately ¢ = 102 to
t = 103, corresponding to a typical longitudinal particle migration of about one domain
length. Notably, such a transition appears to happen two to three orders of magnitude in time
later for the flows with trapped phase present, despite the fact that the flow domain is still
of the same size. Thus, the presence of the trapped phase significantly enhances the time
and distance over which the system loses the memory of its initial condition and attains an
asymptotic Taylor dispersion regime, as one would expect of any periodic flow domain.

3.2 The Role of Microscale Diffusion Coefficient

It is clear that the assumed Peclet number Pe greatly influences the severity and dura-
tion of anomalous dispersion shown by the plots of k1 (¢) already introduced. At very low
molecular diffusivity, particles essentially follow advective flow streamlines and can hence
experience extended times stalled in stagnant flow regions, or alternatively can be carried
forward large distances over relatively small times when positioned in fast flow regions. This
slows the homogenization necessary for the transition to asymptotic Fickian dispersion, and
may increase the severity of anomalous dispersion observed in the pre-asymptotic regime.
High molecular diffusivities cause particles to frequently migrate between flow streamlines:
Particles in stagnant regions of the advective flow can more easily escape due to diffusive
motion, and particles in high flow streamlines are less likely to remain there for long enough
to cover large distances.

The influence of Pe is more clearly observed in our results by fixing both the background
advective flow field and particle starting positions while varying only the assumed molecular
diffusivity. Fig. 7 shows this variation with Pe for four scenarios involving either Slip or Full
slip velocity fields in the presence of trapped wetting phase, and either fast or slow volumetric
starting positions. As observed above, our obtained evolution of 11 (¢) for No slip advective
flow is essentially equivalent to results for Slip advective flow, and hence, the two left panels
of Fig. 7 also indicate the effect of Pe in our No slip advective flow field. Subplots of
Fig. 7 with fast volumetric starting positions show that larger values of Pe delay the onset
of superdiffusive behavior: It takes longer for the effects of the advective background flow
to become apparent. This is not as evident for slow volumetric starting positions as many
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Fig.7 Fast volumetric dispersive behavior with differing slip scenarios at various Peclet numbers

particles begin their migration in stagnant fingers of fluid where the background fluid velocity
is largely absent. For Pe = 1, and 10, the large-time approach to Fickian diffusive spreading
is apparent. The convergence to Fickian behavior is delayed as D decreases, and not observed
at all in our results for Pe = 100.

While not clearly apparent from the fast volumetric subplots, the severity of the anomalous
dispersion observed also increases with decreasing molecular diffusivity. The slow volumetric
starting positions exhibit periods of extreme superdiffusion with 8 > 2, as well as brief
periods of apparent subdiffusive flow where B < 1. These striking effects arise because of
many particles beginning their migration from something comparable to a trapped state. This
causes an artificially long-tailed distribution of tracer particles at intermediate times.

3.3 The Role of Initial Condition of Particles

We can better observe the effects of varying tracer particle starting positions by producing
plots with the velocity field and Pe held constant, as in Fig. 8. Again, only Slip and Full slip
velocity fields with trapped phase present are considered.

For sufficiently small values of Pe (0.1 and 1), we confirm that the properties of our
starting positions do not matter for sufficiently large times and that all signatures of the initial
condition are washed out. However, the initial conditions do affect the temporal evolution
of «11(¢) when anomalous dispersion is present at intermediate times. For large values of
Pe (10 and 100), the effects of our initial particle positions are evident even at the largest
simulation times considered:  ~ 2 x 10°. As already described, having many particles
start in stagnant fluid regions for the slow volumetric starting positions results in extreme
superdiffusive behavior at various times, even faster than ballistic. This reflects the fact that
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Fig.8 Fast volumetric dispersive behavior with differing slip scenarios at various Peclet numbers

the velocity distribution sampled by the particles has not converged to its ultimate equilibrium
(e.g., Dentz et al. 2016)

4 Conclusions

We have sought to increase our fundamental understanding of anomalous dispersion in two-
phase porous media flow. In addition to demonstrating the surprising persistence of pre-
asymptotic dispersion even for our relatively small periodic domain, our results directly
illustrate the influence of the molecular diffusivity, tracer particle initial positions and slip at
fluid—fluid interfaces.

Vast differences in the persistence and severity of upscaled anomalous dispersion result
from assuming different values of the Peclet number Pe. Despite our simulated domain
necessarily being periodic in nature, for large Pe we did not observe the final transition to
Fickian behavior even after simulating particle migration for approximately 2000 domain
lengths. Volume averaging and associate theories show that the time scale for this to happen
is typically on the order of tp = L?/D. The fact that this behavior persists for much
longer in the presence of the trapped phase suggests that the role of the trapped phase is to
significantly increase this time scale, or seen otherwise increase the characteristic length scale
of the medium by creating a more complex flow network with greater dead end channels and
trapping structures. As our results show, it is not sensible to characterize the dispersive nature
of flow in a porous system without specifying the molecular diffusivity. Researchers should
be conscious of this when using particle-based methods; whereby, fluid particles are in fact
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diffusing throughout the course of the simulation, possibly without the effective molecular
diffusivity being explicitly acknowledged or quantified.

Especially in the presence of stagnant fluid regions where particles may be effectively
trapped for significant periods of time, the initial positions of molecules transported via porous
media flow have a significant effect on the nature of observed anomalous pre-asymptotic
dispersion. Eventually, all dependence on initial conditions must fade away, but our simulation
times were not sufficient to observe this for larger values of Pe. To ensure accurate results,
researchers should be careful to choose physically appropriate initial conditions for pre-
asymptotic model systems.

To avoid the currently unsolved issue of spurious velocities, we have utilized velocity
fields derived from one-phase lattice Boltzmann simulations in the presence of a natural,
fixed distribution of trapped wetting phase. These one-phase LBM simulations incorporate
a constant slip length imposed at fluid—fluid interfaces, and no slip boundary conditions at
solid-fluid interfaces. We expect that an accurate flow field for explicit two-phase flow would
exhibit variable slip boundary conditions that correspond to an intermediary state between
the No slip and Slip velocity fields that we have used. Our No slip and Slip velocity fields
produce essentially the same macroscopic dispersion at all times considered, hence implying
that induced slip at fluid—fluid interfaces does not affect anomalous dispersion in our system.
Of course, numerical errors, even when small, can amplify and lead to discrepancies with
reality, particularly given that the present numerical experiments span 7 orders of magnitude
in time. However, the fact that we used two independently written and implemented random
walk models to obtain virtually identical results gives some degree of confidence in the
findings.

The implications for modeling of similar multiphase flows in porous media are that the
important effects of persistent anomalous dispersion might be solely predicted from the
induced flow geometry. Neglecting what previously would have been assumed to be an
important physical boundary condition simplifies general analysis, and implies that better-
developed tools for one-phase flows may at times be utilized.
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