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ABSTRACT: Covalent organic framework (COF) represents an emerging class of porous materials that have exhibited great 
potential in various applications, particularly in catalysis. In this work, we report a newly designed 2D COF with incorpo-
rated Re complex, which exhibits intrinsic light absorption and charge separation (CS) properties. We show that this hybrid 
catalyst can efficiently reduce CO2 to form CO under visible light illumination with high electivity (98%) and better activity 
than its homogeneous Re counterpart. More importantly, using advanced transient optical and X-ray absorption spectros-
copy and in situ diffuse reflectance spectroscopy, we unraveled three key intermediates that are responsible for CS, the in-
duction period, and rate limiting step in catalysis. This work not only demonstrates the potential of COFs as next generation 
photocatalysts for solar fuel conversion but also provide unprecedented insight into the mechanistic origins for light-driven 
CO2 reduction. 

Efficiently capturing CO2 and simultaneously converting 
it to chemical fuels driven by solar energy is a promising 
approach to address energy crisis and climate issues.1-3 
The essential challenge in reaching this elusive goal is to 
formulate a rationally designed photocatalytic system that 
can effectively couple a given photosensitizer (PS) with an 
appropriate molecular catalyst (MC), thereby enabling 
efficient photosensitization of multi-electron reduction 
catalysis.4-6 While many molecular- or semiconductor-
based photocatalytic systems have been designed, they all 
suffer difficulties, such as poor CO2 adsorption, inappropri-
ate architecture of active sites, rapid charge recombination 
(CR) or low selectivity etc.1, 7-9 

As an emerging class of crystalline porous materials, co-
valent organic frameworks (COFs) represent a versatile 
platform offering new promise for photocatalytic CO2 re-
duction.10-20 COFs are built from periodic organic building 
blocks via covalent bond formation, providing an innova-
tive approach for the construction of robust photocatalytic 
materials with built-in PS (i.e. extended π-conjugation) and 
MC (e.g. incorporated via postsynthetic modification), 
thereby facilitating efficient charge separation (CS) and 
precise determination of the nature of the incorporated MC. 
Moreover, these structurally diverse materials, with large 
surface areas and readily tunable pore sizes are expected 
to provide an ideal scaffold for CO2 adsorption, diffusion, 
and activation. However, this undeniable potential has yet 
to be realized, with some recently studied initial systems 
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Scheme 1. a) The synthesis of COF and Re-COF. (b) 
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exhibiting moderate efficiencies.21-24 Given the inherent 
advantages of COFs as photocatalysts and their potential 
impact on the global energy crisis,25-29 no time should be 
wasted in undertaking a well-designed plan to further de-
velop useful devices.  

Addressing this pressing need, herein, we report a newly 
designed COF photocatalyst with a photoactive 2D triazine 
COF as PS and incorporated tricarbonylchloro(bipyridyl) 
Re complex (Re(bpy)(CO)3Cl) as CO2 reduction MC (denot-
ed Re-COF). We show that Re-COF can effectively reduce 
CO2 to CO with high selectivity (98%) and durability upon 
visible light illumination. More importantly, the combina-
tion of in situ and time-resolved absorption spectroscopy 
uncovered the key intermediate species that are responsi-
ble for CO2 reduction.  

 The triazine COF was synthesized from 2,2-bipyridyl-
5,5-dialdehyde (BPDA) and 4,4’,4’’-(1,3,5-triazine-2,4,6-
triyl) trianiline (TTA) by solvothermal reactions (Scheme 
1a and SI). The formation of imine linkages between alde-
hyde and TTA in COF was confirmed by FT-IR spectrum 
(Figure 1a), where we observed the formation of C=N 
stretching modes at 1626 cm-1 that is characteristic of 
imine in COF and the vanishing of amino band (3213-3435 
cm-1) and aldehyde band (1673-1692 cm-1) that were pre-
sent in TTA and BPDA.15-16, 30-32 The formation of the COF 
macrostructure was further supported by the additional 
absorption band (~ 440 nm) observed in its diffuse reflec-
tance UV-visible spectrum (Figure 1b), which arises from 
the delocalized intramolecular charge transfer (ICT) band 
due to π-conjugation of TTA and BPDA.33-35 Powder XRD 
patterns of COF show prominent diffraction peaks (Figure 
1c), indicating its crystalline nature. The lattice model was 
simulated using Material Studio 8.0,30 from which we ob-
tained the most probable structure of COF with AA stack-
ing mode (Scheme 1b and 1c). Pawley refinement of the 
simulated structure yields XRD patterns that agree well 
with the experimental data, as indicated by the negligible 

difference between the simulated and experimental data 
(middle panel of Figure 1c), suggesting the validity of com-
putational model.  

Re moiety was then incorporated into COF via reaction 
between bipyridine ligand and Re(CO)5Cl to form Re-COF 
(Scheme 1a and SI).36 This is confirmed by the additional 
peaks at 1887, 1916 and 2022 cm-1 in FT-IR spectrum of 
Re-COF, corresponding to -CO vibrational stretching of 
Re(bpy)(CO)3 (Figure 1a).36-38 The XRD patterns (Figure 1c) 
of Re-COF match well with the simulated data of COF, indi-
cating the preservation of its crystal parameters after Re 
incorporation. This is further supported by the 13C NMR 
spectrum (Figure S1) and SEM images (Inset of Figure 1c) 
of Re-COF and COF. In addition, the local coordination 
structure of Re in Re-COF measured using X-ray absorp-
tion spectroscopy retains that of Re(bpy)(CO)3Cl (Figure 
S2 and Table S1), suggesting that Re(bpy)(CO)3Cl is well 
preserved in Re-COF. However, it is notable that the UV-
visible spectrum of Re-COF are extended to broader region 
(Figure 1b). This can be attributed to either the vibronic 
broadening of COFs,39 or the increased delocalization due 
to the chelation of Re(bpy)(CO)3Cl. The permanent porosi-
ty of COF and Re-COF was confirmed by N2 sorption meas-
urements at 77 K (Figure S3). 

As light absorption and CS are the key initial step to de-
termine whether Re-COF can be used as photocatalyst for 
CO2 reduction, we first examined the CS dynamics in Re-
COF using transient absorption (TA) spectroscopy follow-
ing 530 nm excitation (where the TA spectra of 
Re(bpy)(CO)3Cl show negligible signal). The TA spectra of 
COF (Figure 2a) show a positive feature at 600 nm, which 
can be assigned to the absorption of excited ICT,41-42 and a 
negative band centered at 500 nm, which is likely due to 
stimulated emission (SE)40-41 (Figure S4) although the con-
tribution from ground state (GS) bleach cannot be com-
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Figure 1. FT-IR (a) and diffuse reflectance UV-visible 
spectra (b) of COF, Re-COF and their starting materials. 
(c) Powder XRD patterns of Re-COF and COF obtained 
experimentally (green), through Pawley refinement 
(red), and via simulation using AA stacking mode 
(blue). The purple plot in the middle panel is the differ-
ence pattern between experimental and simulated data. 
The insets are the pictures and SEM images of Re-COF 
and COF. 



 

pletely excluded. The formation (rising component) of the 
excited ICT (COF@ICT, Figure 2b) is ultrafast with ~200 fs 
time constant and the CR time is 19.4 ps (Table S2). Com-
pared to that of COF, the TA spectra of Re-COF show a simi-
lar SE band and the formation of the excited ICT state (Fig-
ure 2c). However, its excited ICT band is much broader 
than that in COF, which can be attributed to its broader GS 
spectrum. More interestingly, this excited ICT state of Re-
COF (Re-COF@ICT, Figure 2b) exhibits much longer life-
time ( = 171 ps) than that of COF, suggesting that the in-
corporation of Re(bpy)(CO)3Cl inhibits CR in Re-COF. 

To gain insight on the role of Re(bpy)(CO)3Cl play in 
elongating the excited ICT lifetime, we directly examined 
the electron density at the Re center in Re-COF using X-ray 
transient absorption (XTA) spectroscopy. Figure 2d shows 
the X-ray absorption near edge structure spectrum of Re-
COF collected at Re L3-edge, which is featured by a promi-

nent white line transition corresponding to dipole allowed 
2p3/2-5d transition.43-44 Also shown in Figure 2d is the dif-
ference spectrum obtained by subtracting the GS spectrum 
from the spectrum collected at 150 ps. The positive signal 
observed at 10.531 keV directly supports that Re edge 
shifts to lower energy, suggesting that photoexcitation of 
Re-COF leads to the reduction of Re center in Re-COF. This 
is further supported by the negative feature observed at 
10.538 keV: the reduction of Re decreased the number of 
empty d orbitals, prohibiting 2p3/2 -5d transition and thus 
decreasing its absorption intensity. These results, together 
with elongated ICT lifetime observed in TA studies, suggest 
that the electrons in the excited ICT state of Re-COF are 
partially located in Re(bpy)(CO)3Cl, i.e., electron transfer 
(ET) indeed occurs from COF to Re(bpy)(CO)3Cl, which 
explains the retarded CR in Re-COF. 

 
Figure 3. (a) Amount of CO produced as a function of time. The top left inset shows the zoomed in profile in the first 2 hours’ reac-
tion, and the lower right inset shows the recyclability of the system after three 3-hour experiments. The in situ diffuse reflectance 
UV-visible spectra of Re-COF under standard photocatalytic conditions within 15 min (b) and 3 h (c). The inset of c shows the in 
situ spectra collected from 5 h to 9 h. 

 

The demonstration of ET from COFs to Re(bpy)(CO)3Cl 
suggests the feasibility of Re-COF as photocatalysts for 
solar fuel conversion. Accordingly, we proceeded to exam-
ine its photocatalytic activity for CO2 reduction using TEOA 
as the sacrificial donor and Xe lamp (cut-off wavelength = 
420 nm) as light source. Under the optimized conditions 
(SI and Figure S5), The system can generate ~15 mmol 
CO/g of Re-COF steadily for >20 h after ⁓ 15 min induction 
period (Figure 3a), accounting for a TON of 48 and 22 
times better than its homogeneous counterpart (Figure S5). 
Since only 2% H2 was produced in the gas phase (Figure 
S5), this system has high selectivity for CO2 reduction to 
generate CO (98%). Isotopic experiment using 13CO2 was 
performed under the same catalytic conditions. The pro-
duced 13CO (m/z = 29) shown by gas chromatography 
mass spectrometry (Figure S6) confirms that the generat-
ed CO comes from CO2. The recycling experiments after 
every three hours of reaction show that the catalytic activi-
ty persists for at least 3 cycles (lower right inset of Figure 
3a).  

To gain more mechanistic insight, we collected the in situ 
diffuse reflectance UV-visible spectra of the catalytic sys-
tem under the catalytic conditions. Immediately following 
illumination, prominent absorption in 550-800 nm region 
that resembles the broad absorption of the ICT band in TA 
was observed (Figure 3b), and can thus be attributed to 
the formation of the excited ICT state. The intensity of this 

ICT band increases in the first 15 mins, accompanied by 
the depletion of absorption at 400-500 nm with an isos-
bestic point at 539 nm, suggesting that such spectral evo-
lution corresponds to the same process. While similar  
evolution was observed in the system without CO2, signifi-
cantly less evolution was observed in the absence of TEOA 
(Figure S7), suggesting that reduction quenching of Re-
COF by TEOA with the formation of a formal TEOA+-(COF-
Re)- CS state contributes to the evolution. The time win-
dow for this spectral evolution agrees with the induction 
period and can thus be attributed to the accumulation of 
TEOA+-(COF-Re)- CS state before catalysis initiates (Step I, 
Figure 3a). 

After the induction period, the absorption at 550-800 
nm decreases significantly within 3 h while the feature at < 
430 nm grows and a new isosbestic point is observed at 
430 nm (Step II, Figure 3c), which results in a distinct fea-
ture from Step I and suggests the formation of a new in-
termediate species. Note that negligible or very slight evo-
lution corresponding to Step II was observed in the system 
without CO2 or by replacing Re-COF by COF (Figure S8), 
suggesting that the intermediate species formed during 
Step II is associated with CO2 and Re-moiety. After Step II, 
the spectral evolution stops (Step III, Figure 3c), consistent 
with the time window for steady generation of CO, sug-
gesting that the system reaches an equilibrium state. 
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Taking together, these spectroscopic results point to a 
mechanistic pathway proposed in Scheme 1d. Upon illu-
mination, the catalytic cycle initiates with the formation of 
ICT state which is quickly reduced by TEOA, forming a 
TEOA+-(COF-Re)- CS state (Step I). This formal CS state 
with reduced Re-COF is then able to capture CO2 to form 
the next intermediate species (Step II). According to previ-
ous literature,6, 36-38, 45-46 this intermediate species is likely 
the CO2 adducts such as TEOA+-(COF-Re[CO2])- or/and 
TEOA+-(COF-Re[CO2H])-, which is formed after the dissoci-
ation of Cl– from Re-moiety. As the spectra persist during 
steady generation of CO (Step III), the consumption of the 
CO2 adducts to eventually form CO represents the rate lim-
iting step of the catalytic reaction.34-36, 43-44 

In conclusion, we report a newly designed COF hybrid 
catalyst by incorporating Re(bpy)(CO)3Cl into 2D triazine 
COF via postsynthetic modification. We show that this sys-
tem can efficiently reduce CO2 with better activity than its 
homogenous counterpart and high selectivity and stability. 
Using TA and XTA spectroscopy, we show that this system 
can undergo facile ICT through ET from photoexcited COF 
to Re moiety. Using in situ diffuse reflectance UV-visible 
spectroscopy, we unraveled three key intermediate spe-
cies that are responsible for CS, induction period, and rate 
limiting step in CO2 reduction. These results not only 
demonstrated the great potential of COFs as effective solar 
fuel photocatalysts but also provided unprecedented new 
insight into the catalytic mechanism for CO2 reduction.  
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