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Abstract. In this paper, a fractional differential equation model is developed to describe the bike share station status based on
data analysis of historical data of bike share systems in Philadelphia and Atlanta. The analytic solution and a related control
problem are investigated as well.
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1. INTRODUCTION

Bike share systems have become more and more popular around the world. The reader is referred to
[1] and references therein for a brief review of bike share history. In the USA, the usage of bike share
systems has soared from 320,000 to 35M in 8 years [2, 3]; Fig. 1 shows a historical growth chart of
bike share systems in the USA. One major user complaint about bike share systems around the world
is the occurrence of a bike station being completely empty or full. This has been a big issue that has
impacted the usage of bike share systems. For instance, a big portion of bike share system users regularly
rely on them as their commute solution during rush hours (7-9 am and 4-7 pm) [3]. The shortage of
docks (full station) or bikes (empty station) may prolong their commute time and force them to seek
alternative commute solutions. This will potentially decrease the usage of bikes in the future. Therefore,
the rebalancing or redistribution of bikes among bike stations is needed to supplement the bikes or free
the docks, and has been studied by scholars from different perspectives; see for example [4, 5, 6, 7, 8, 9]
and the references therein.
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FIGURE 1. Growing ridership in USA [3]

As a classic modelling approach to study the dynamical evolutions of systems, differential equations
(DEs) have been employed to investigate the bike share problem. But most existing DE bike share models
are based on the mean-field method (see, for example, [1, 10, 11, 12]). Due to some technical reasons,
the DE models based on the mean-field method do not directly consider the station inventory, i.e., the
number of bikes at every station. Instead, they consider the proportions of stations with k bikes at time
t (see [1]). This limitation motivates us to explore new inventory models that directly leverage the real
data.

An exploratory data analysis (EDA) has been carried out on the Philadelphia Indego Bike Share Sys-
tem [13] in a preliminary project. Our analysis result reveals that the average waiting time of a bike at
a station, i.e., the time a bike stays at a station until it is rented by the next user, follows the power-law
tailed waiting time distributions, see Fig. 2. This pattern is further confirmed by the EDA on Atlanta
Relay Bike Share System [14], see Fig. 3. In the DE study, power-law tailed distributions often lead
to fractional terms. However, to the best of our knowledge, fractional order models have not been con-
sidered to investigate the bike share problems. Motivated by this finding, we will model the bike share
system by fractional DEs (FDEs). In particular, we will consider the equation involving the ¢-th left
Riemann-Liouville fractional derivative of u defined by

t
(DG, u)(1) = r(11—a)5z/0 (t — )" %u(s)ds, 0 < o < 1, (1.1)
provided the right-hand side exists, where I'(-) is the Gamma function.

Fractional calculus is a subject with a long history and has been employed to model phenomenons
from various areas. The resulting fractional order models have demonstrated superior performance in
describing the long term memory and/or long range interaction compared to integer order models based
on classical calculus. The reader is referred to [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] for the history
and development of fractional calculus as well as some applications of fractional calculus in biology,
image processing, mathematical finance, and physics.

Among the works cited above, many fractional models were obtained by replacing the integer order
derivative(s) in classic models with fractional derivatives. The resulting models by this strategy are often
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FIGURE 2. Average waiting time distribution of Indego System in Philadelphia based
on data from Apr. 2015 — Jun. 2018.
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FIGURE 3. Average waiting time distribution of Relay System in Atlanta based on data
from Sep. 2017 — Jul. 2018.

referred as the ad hoc fractional models [15, 16, 22]. As the authors of [22] point out, those ad hoc models
may be mathematically interesting and have superior performance by offering more degrees of freedom
to the models through the new fractional order(s), the modelling approach may not match the underlying
physical process and may be difficult to interpret. The lack of interpretability has become a major
obstacle of industrial applications of fractional models, especially in businesses with strict regulations
such as financial institutions and credit bureaus.
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One feasible approach to derive interpretable fractional models is to focus on the underlying physical
process and describe the long term memory or long range interactions by integral terms with appropriate
kernels. The fractional terms will then be derived by mathematical transforms under certain assumptions.
This approach has been used in [15, 16, 20, 22] to develop fractional compartment models. In this paper,
we will employ a strategy similar to [22] to develop an interpretable fractional model for bike share
systems.

The paper is organized as follows: After this introduction, the model will be developed in Section
2. Section 3 focuses on the analytic solution of the model. In Section 4, the controllability of the
model is investigated. Numerical simulations are also given there. Section 5 contains the conclusion and
discussion.

2. FRACTIONAL BIKE SHARE MODEL

In this section, we use FDE to model the inventory changes at bike share stations by considering the
process to remove a bike from a station. Throughout this paper, the following assumptions are needed.

(H1) There are N stations in total. The number of docks (maximum capacity) at Station i is denoted
by U, i=1,2...,N.

(H2) Let u;(¢) be the number of bikes at the i-th station at time 7, t > 0, and i; = ;(0), i = 1,2,...,N.
(H3) The total arrival flux of Station i at time ¢ is ¢;(¢), i = 1,2,...,N. For any small increment of
time &¢, the total number of bikes returned to Station i between time ¢ and ¢ + 8¢ is g;(t)0t.

We assume that a bike in a station may be removed by either a Markovian removal process or a

non-Markovian process.

(a) For i =1,...,N, let w;(t) + 0(6t) be the probability a bike will be removed by a Markovian
removal process in the time interval [¢,7 + 0] at Station i. By an argument similar to the one used
in [26, Example 1.4], it is clear that the probability that no bike is removed by the Markovian
process from 1 to ¢, ©;(z,1), is defined by

t

O;(1,10) = exp (— a)l-(s)ds> . (2.1)

fo
It is easy to see that

d
E(ai(r,zo) = —w;(1)®(t,19), t > 19 >0,i=1,...,N. (2.2)

(b) Fori=1,...,N, let ¢ be the waiting time density function defined on [0,). So [j ¢;(6)d0 is
the probability that a bike is removed by a non-Markovian process by time ¢ and ®; defined by

(1 — 1) = 1—/0 7 0:(0)d6 2.3)

is the survival probability of a bike at Station i from 7 to ¢ due to the non-Markovian process. It
is easy to see that ®; satisfies

%@i(t—to):—(])i(t—to), t>1,i=1,2,...,N. 2.4)

Then we have the following assumption by combining these two processes.
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(H4) A bike remains in a station until it is removed. The survival probability of a bike between f

and ¢, i.e. the probability that a bike entered a station at time #y and is still not removed at time

t, is assumed to be a function of the time ¢ as well as the length of staying time ¢ —fy. We

further assume that a bike cannot be returned and removed at the same time. So the survival

probability is 1 when t =fy. Fori =1,2,... N, let the survival fuction of bikes at Station i be

0;(t,10)D;(t —tp) with ®; and D;(t —1p) defined by (2.1) and (2.3).

Remark 2.1. For i = 1,...,N, the survival function ®;(¢,#))®;(¢ — 19) represents the joint effort of a
Markovian process and a non-Markovian process. In other words, the survival probability relies on not

only the status at time ¢, but also the history between fy and 7. This assumption offers more degrees of

freedom to fit the distribution of waiting time based on real data.
From (H2)—(H4), fort > 0andi=1,2,...,N, we have
wit) =0 (1, 0);(1) + /0 011, 0)®i(t — 0)g:(0)d6.
Then by (2.2), (2.4), and (2.5),
uj(t) = — ;0;(1) ©;(1,0)P;(1) — 19, (¢,0) 9, (t)
+OL09 (1 —1)ail) — [ @11, 0)i(1 ~ 0)i(0)d0
- [ 0(1.0)0(t - 0)ai(0)a0
=—i;0;(¢,0)9;(¢) + qi(t) — i (t)u;(t)
- [[01.0)61(~ 0)a(0)a0,
and from (2.5), we have
/Ot 0;(1,0)D;(t — 0)qi(0)dO = u;(t) — 1;0;(,0)d; (7).

Using (2.1), we have

Thus, we have

! qi(8) . wi(t)
/0 P -0) gl 5170 =g 0y )

Taking the Laplace transform on both sides of (2.7), we have

z{cp,-}g{g)"i} :g{g"i —ﬁicbi},
or

1922} -weto

(2.5)

(2.6)

2.7)
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Therefore,
Ly 40) o [ LAY
/qu(z oo 0% =7 {g{cpi}z{@i} u,z{m}
. 4 e ul(e) o
_/0 Kilt=0) g rg 40 ~ (1) 2.8)
where
_ 1 [ 2}
K(t) =2 {3{@}} (2.9)
Multiplying both sides of (2.8) by ©;(z,0), we have
t t i 6
[ 011,000~ 0)ai(0)a0 ~0,0.0) [ Ki1 - 0) g2 -a0
—I/_t,'®,'([,0)¢)i(l‘). (2.10)
Hence, from (2.6) and (2.10), forany ¢t > Oand i =1,2,...,N,
t ; 6
() =ai0) - @0 - 040.0) [ Ki(1~ 0) 174 . @11

Note that (2.11) holds for any K; defined by (2.9) with ®; and ¢; satisfying (2.3). Next, we will derive the
fractional model from (2.11) using an idea similar to that used in [15, 16, 22]. The following assumption
on waiting time distribution for the non-Markovian process is needed.

(H5) Fori=1,...,N, the survival function ®; : R™ — R is assumed to be

o
t 1
D;(1) = Eg, <— <> > , O<o; <1, (2.12)
ai
where g; > 0 is a time scale parameter and E, is the Mittag-Leffler function defined by
o tn
Eq(t) =) ——. 2.13
a(f) ,;oﬂnaﬂ) (2.13)

Remark 2.2. By [24], ®; defined by (2.12) has a power-law asymptotic decay as  — oo, i.e., ®;(t) ~ ¢~ %
as t — oo, Then by (2.4), ¢; ~ ¢~ =% as t — oo, This is consistent with our EDA results in Fig. 2 and 3.

Taking the Laplace transform of (2.12) gives

210 = e
By (2.3) and (2.4),
LA} =1-s2{P;}.
Hence by (2.9),
LK} =a; %s' 7%,

Therefore,

/OtKi(t o) @Ll_té(:}))de _ g {z{Ki}z{ . }}

Uj
o }} . (2.14)

©)

= ! {aiaislaff

——
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Note that
o [ Ui d 1 t 4 ui(0)
pipla (Ll ol L /t—e"“ ASORYT,
{ ot <®i dt \T'(o4) Jo (1=96) 0;(0,0)
1—o; ui 1 /[ a;—1 u;(6) )
=5 %L — - r—0)% do
o) (rar k0 "sie0%)),
-t o {M} 2.15)
where D(])jra" g)—’l> is the (1 — oy)-th left Riemann-Liouville fractional derivative of ('g—"’_ defined by (1.1).

Hence (2.14) and (2.15) imply
, ui(6) et til0)
Ki(t—0)——--d0 =a; *D, % — : 2.16
J, Kt =0)gg.550 = b (®i<z,0> 210
Therefore by (H1), (H2), (2.11), and (2.16), the FDE model of the status of the bike stations is given
by

;= qi(r) — o)~ Oi(r)a; “Dy, % (& )
u;(0)=u;, t>0,i=1,...,N,

2.17)

with
t
®i(t) = ©(1,0) = exp <— / a)(s)ds> . (2.18)
0
Remark 2.3. (a) It is easy to see that
—0ypyl—oy [ Ui
wi(t)u,‘(t) —+ @,‘(l)ai o D0+a (&)

is the outgoing flux of Station i, i =1,2,...,N.
(b) The arrival flux ¢;, i = 1,...,N, may be determined by fitting the historical data. We will assume
g; 1s known in Section 3.

3. ANALYTIC SOLUTIONS OF THE FDE MODEL

In this section, we will investigate the solutions of Eq. (2.17). The following lemma will be the
foundation of our conclusion.

Lemma 3.1. Assume h € C(R;,R). The initial value problem (IVP)

X'+aDy X = h(t), t >0,

X(0) =X,

3.1

has a unique solution given by
X(1) = /0 Eo(—alt — 5)*)h(s)ds + REq(—ar®). (3.2)
Proof. By taking the Laplace transform of (3.1), we have
sL{XY—X(0)+as' "2 {X} = 2 {h},

or
SO!—]

s*+a

21X} =

(Z {n}+X(0)).
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Note that
a-1

L{Eg(—at®)} = >

s%+a’
Then we have
t
X(t) = / Eq(—a(t — s)*)h(s)ds + X (0)Eq(—ar®), 1 > 0.
0
The uniqueness follows immediately.

Remark 3.2. By (3.1) and (3.2), it is easy to see that Eq(—ar®) is a solution of

X'+aDy “X =0,1>0,
X(0)=1.

We are now ready to study Eq. (2.17).

Theorem 3.3. Eq. (2.17) has a unique solution given by

zMﬂ—:[E@(—(t;s>%)®dh@%@ﬁ“+%®ihmEm(‘(;

t>0,i=1,...,N

Proof. Let

with ©; defined by (2.18). Then

v, = ai(t)exp < /0 t (0,~(s)ds> ui(t) +exp < /0 ’ a),-(s)ds> .

It is easy to verify that (2.17) is equivalent to

lfaiv

= Q=R

vi(0) = a@;,
with
Qi(t) =exp (/Ot co,-(s)ds) qi(t).

By Lemma 3.1, Eq. (3.5) has the unique solution

=[5 s (-2

Then (3.4) follows immediately.

(3.3)

(3.4)

(3.5)
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4. CONTROLLABILITY OF THE FDE MODEL

By Theorem 3.3, the solution of Eq. (2.17) replies on the arrival flux ¢;, i =1,...,N. This is consistent
with the intuitive understanding of the problem. Moreover, this result suggests that we investigate the
feasibility to control the inventory at each station by controlling the arrival flux.

In the sequel, we will view g; as a control and let

W (1), i=1,...,N,

1

denote the solution of Eq. (2.17) with initial conditions (i,...,#4y) € RY and control (qi,...,qy) €
C(R,,RY). The following definitions are taken from [27].

Definition 4.1. (a) We say that (q1,...,qy) transfers @ = (i1y, . ..,iy) € RN to 6 = (4y,...,idy) € RN at
T >0if

We then also say that i is reachable from @ at T. The set .7 (T;1i) C RY defined by
o/ (T;a) = {@ | There exists a control (g1,...,qy) that transfers @ to @ at T'}

is the reachable set at 7 from u.

(b) Eq. (2.17) is said to be controllable if for arbitrary (iy,...,ay), (i1,...,dy) € RV, there exist-
s a control (q1,...,qn) € C(Ry,RY) and some T > 0 such that (qi,...,qn) transfers (i,...,iy) to
(dy,...,0y) atT.

We have the following result on the controllability of Eq. (2.17).

Theorem 4.2. (a) For arbitrary (i, ..., iy), (i1,...,i4y) ERY and T > 0, let (§1,...,4n) be defined by

o ﬁi—ﬂiGi(T,O)Ea’_(_(aZi)ai) (T . |
gi(t) foT |:Eai<_<T(,;S>ai)®i(T,S)i|zdsEai< < @ ) )GL(T,I), “4.1)

i=1,....,N. Then (§1,...,4n) transfers (iy,...,iy) to (iy,...,dy) at T, and so Eq. (2.17) is control-
lable.
(b) Among all the controls (q1,...,qn) transferring (iy,. .. ,iay) to (41,...,dn) at T, (41,...,4n) min-

imizes the quantity

N
; /OT qiz (s)ds.

Proof. Part (a) may be verified by direct computation. We omit the details.
Part (b). By (3.4), for any control (q1,...,qy) transferring (iy,...,iy) to (dy,...,dy) at T,

T, T T—s
= 104 (T.0) e (~(7)%) = [ Eaa (—

a;

)ai)G)i(Tvs)‘Ii(s)ds7 (4-2)
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i=1,...,N. Note that by (4.1) and (4.2),

ﬁi—l/_ti i\4, a__Lai T (s 0c._Tf.s o (T, 5)ds
[ a6yt =TTl G OBl (DOAT s
: i [Eal—(=2))04T.)] as
i; — i1;09;(T, o (— Z a;\12 T
_ (T,0)Eq,(—() 2] _ /0 (31(s)2ds. )
fOT [Etx,(*(T[;s)a")@i(T, s)} ds
Therefore,

by (4.3). Hence, (g, ...,4y) minimizes the integral

N T
Z/ q,-z(s)ds.
i=170
O

Remark 4.3. (a) In practice, the arrival flux will always be nonnegative. Therefore, by (3.4), for any

T>0andi=1,...,N,
T\%
u,(T) Zﬁ[@[(T,O)Eai <— <) > . (45)

i
In addition, by (H1), the maximum capacity at Station i is U;. So a reasonably reachable set at 7 of (2.17)
is
T\%
o (T;0) = ITY, [7;9;(T,0) Eq, < <a) > ,Ui).

(b) Theorem 4.2 shows that it is feasible to reach the expected inventory at a bike station at time 7' by
controlling the arrival flux. This result may contribute to the development of new inventory rebalancing
strategies.

Next, we use numerical simulations to demonstrate the applicability of Theorem 4.2. The values of the
parameters in (2.17) and the initial/terminal values in the following example are chosen for illustrative
purposes and are not from actual data.

Example 4.4. Consider a bike share system with two stations, i.e., N = 2. Assume that o = 0.3,
o =0.5,a; =04, ap = 0.3, T = 30 minutes, the initial values are i#; = 6 and @, = 2, and the terminal
values are @i = 10 and @i, = 15. The removal probabilities @; and @, are taken to be two polynomials of
degree 5 with the coefficients given in Table 1 and graphs given in Fig. 4.

By Theorem 4.2, the controls §; and g, defined by (4.1) will transfer (i;,i,) to (d;,i,) at T. The
graphs of §;, i = 1,2, are given in Fig. 5. The solution of Eq. (2.17) is then computed by (3.4). The
graphs and the phase portrait of the solution are given in Fig. 6 and 7 respectively. It is clear that the
simulation results are consistent with our conclusions.
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TABLE 1. The parameters for Eq. (2.17).

function as as as
) 0 0.000000000000877 -0.000000002713261
[0)) 0.000000000000006  -0.000000000021770 0.000000027091416
function ar a; ap
o) 0.000003846127552 -0.001178086841168 0.138020635158977
) -0.000012680449458 0.002087155685997 -0.044611654946751

35

FIGURE 4. Graphs of @, and w;.
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FIGURE 6. Solutions of Eq. (2.17) under the controls §; and §,.

FIGURE 7. Trajectory of Eq. (2.17) under the controls §; and §.

5. CONCLUSION AND DISCUSSION

In this paper, we develop a linear fractional differential equation model to describe the inventory of
bike share stations. Instead of the ad hoc approach, we derive the fractional term by investigating the
underlying removal processes of a bike at a station. A closed form solution of the model is then obtained.
We further consider a control problem based on our FDE model. Numerical simulation is used to verify
our results. Comparing with traditional integer order DE models, our model offers more degrees of
freedom without complicating the model. Our results show that it is feasible to control the inventory at
each bike station by adjusting the arrival flux. This finding has potential applications in the development
of new inventory rebalancing strategy.
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