2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

APPINITE: A Multi-Modal Interface for Specifying
Data Descriptions in Programming by Demonstration
Using Natural Language Instructions

Toby Jia-Jun Li', Igor Labutov?, Xiaohan Nancy Li’, Xiaoyi Zhang’, Wenze Shi*, Wanling Ding*, Tom M. Mitchell?, Brad A. Myers'

"HCI Institute, “Machine Learning Dept., *Computer Science Dept., ‘Information Systems Dept.
Carnegie Mellon University, Pittsburgh, PA, USA
{tobyli, ilabutov, tom.mitchell, bam} @cs.cmu.edu
nancylxhl4@gmail.com, {wenzes, wanlingd} @andrew.cmu.edu

oy

& Near Me Now

Please describe your intention for this

ion
[Table for 2 tomorrow at 6:30 PM ~ actio

Iwant to find a steakhouse in

Royal 35 Steakhouse midtown east

CANCEL

Steakhouse

Murray Hill

Eae a8 _ o Charlie Palmer Steak
-

Midtown East

=

b. APPINITE asks the user to

describe intentions for actions

Current query

the item that has text "Steakhouse" and
text "Midtown East’

Your query matches 2 items on

the screen. Please give additional
instructions on how to determine which
one to choose

choose the closest one

BACK

@ 3 people are viewing this restauran

c. Multi-turn conversations
help users refine
ambiguous descriptions

a. User demonstrates the action
directly on unmodified GUIs of
third party apps

*Computer Science &Engineering
University of Washington
Seattle, WA, USA
xiaoyiz@cs.washington.edu

Save Operation Confirmation

Are you sure you want to record the
operation; the item that has
text "Steakhouse" and text "Midtown
East” with the shortest distance

Charlie Palmer Stea | Promoted |
* ok ok ko

Steakhouse

MODIFY

888
804 ft

6:00 PH 6:30PM 6:45PM

((hasDistance

(AND (hasChild (hasText “Steakhouse”))
(hasChild (hasText “Midtown East”))
(hasClass android.widget.Linearlayout)
(hasPackage com.opentable))))

d. User can view the result for the
current query and the originally

e. APPINITE generates formal
executable data descrption queries

clicked Ul object to be used in automation scripts

Fig. 1. Specifying data description in programming by demonstration using APPINITE: (a, b) enables users to naturally express their intentions for
demonstrated actions verbally; (c) guides users to formulate data descriptions to uniquely identify target GUI objects; (d) shows users real-time
updated results of current queries on an interaction overlay; and (¢) formulates executable queries from natural language instructions.

Abstract— A key challenge for generalizing programming-by-
demonstration (PBD) scripts is the data description problem — when
a user demonstrates performing an action, the system needs to de-
termine features for describing this action and the target object in
a way that can reflect the user’s intention for the action. However,
prior approaches for creating data descriptions in PBD systems
have problems with usability, applicability, feasibility, transpar-
ency and/or user control. Our APPINITE system introduces a multi-
modal interface with which users can specify data descriptions
verbally using natural language instructions. APPINITE guides us-
ers to describe their intentions for the demonstrated actions
through mixed-initiative conversations. APPINITE constructs data
descriptions for these actions from the natural language instruc-
tions. Our evaluation showed that APPINITE is easy-to-use and ef-
fective in creating scripts for tasks that would otherwise be diffi-
cult to create with prior PBD systems, due to ambiguous data de-
scriptions in demonstrations on GUIs.

Keywords—programming by demonstration, end user develop-
ment, verbal instruction, multi-modal interaction, natural language
programming

This work was supported in part by Oath through the InMind project.

978-1-5386-4235-1/18/$31.00 ©2018 IEEE

I. INTRODUCTION

Enabling end users to program new tasks for intelligent
agents has become increasingly important due to the increasing
ubiquity of such agents residing in “smart” devices such as
phones, wearables, appliances and speakers. Although these
agents have a set of built-in functionalities, and most provide
expandability by allowing users to install third-party “skills”,
they still fall short in helping users with the “long-tail” of tasks
and suffer from the lack of customizability. Furthermore, many
of users’ tasks involve coordinating the use of multiple apps,
many of which do not even provide open APIs. Thus, it is
unrealistic to expect every task to have a “skill” professionally
made by service providers or third-party developers.

The lack of end-user programmability in intelligent agents
results in an inferior user experience. When a user gives an out-
of-domain command, the current conversational interface for
most agents would either respond with a generic error message
(e.g., “sorry, I don’t understand”) or perform a generic fallback
action (e.g., a web search using the input as the search string).
Often, neither response is helpful — a more natural and more
useful response would be to ask the user to instruct the agent

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

how to perform the new task [1]. Such end-user programma-
bility also enables users to automate their repetitive tasks,
reducing their redundant efforts.

Programming by demonstration (PBD) has been moderately
successful at empowering end user development (EUD) of
simple task automation scripts. Prior systems such as SUGILITE
[2], PLow [3] and CoScripter [4] allowed users to program task
automation scripts for agents by directly demonstrating tasks
using GUIs of third-party mobile apps or web pages. This
approach enables users to program naturally by using the same
environments in which they already know how to perform the
actions, unlike in other textual (e.g., [5], [6]) or visual
programming environments (e.g., [7]-[9]) where users need to
map the procedures to a different representation of actions.

The central challenge for PBD is generalization. A PBD
system should produce more than literal record-and-replay
macros (e.g., sequences of clicks and keystrokes), but learn the
task at a higher level of abstraction so it can perform similar
tasks in new contexts [10], [11]. A key issue in generalization is
the data description problem [10], [12]: when the user performs
an action on an item in the GUI, what does it mean? The action
and the item have many features. The system needs to choose a
subset of features to describe the action and the item, so that it
can correctly perform the right action on the right item in a
different context. For example, in Fig. la, the user’s action is
“Click”, and the target object can be described in many different
ways, such as Charlie Palmer Steak / the second item from the
list / the closest restaurant in Midtown East / the cheapest
steakhouse, etc. The system would need to choose a description
that reflects the user’s intention, so that the correct action can be
performed if the script is run with different search results.

To identify the correct data description, prior PBD systems
have varied widely in the division of labor, from making no
inference and requiring the user to manually specify the features,
to using sophisticated Al algorithms to automatically induce a
generalized program [13]. Some prior systems such as SmallStar
[12] and Topaz [14] used the “no inference” approach to give
users full control in manually choosing features to use.
However, this approach involves heavy user effort, and has a
steep learning curve, especially for end users with little
programming expertise. Others like SUGILITE [2], Peridot [15]
and CoScipter [4] went a step further and used heuristic rules for
generalization, which were still limited in applicability. This
approach can only handle simple scenarios (unlike Fig. 1), and
has the possibility of making incorrect assumptions.

At the other end of the spectrum, prior systems such as [16]—
[20] used more sophisticated Al-based programming synthesis
techniques to automatically infer the generalization, usually
from multiple example demonstrations of a task. However, this
approach has issues as well. It requires a large number of
examples, but users are unlikely to be willing to provide more
than a few examples, which limits the feasibility of this approach
[21]. Even if end users provide a sufficient number of examples,
prior studies [13], [22] have shown that untrained users are not
good at providing useful examples that are meaningfully
different from each other to help with inferring data descriptions.

! APPINITE is a type of rock, and stands for Automation Programming on
Phone Interfaces using Natural-language Instructions with Task Examples.

106

Furthermore, users have little control of the resulting programs
in these systems. The results are often represented in such a way
that is difficult for users to understand. Thus, users cannot verify
the correctness of the program, or make changes to the system
[21], resulting in a lack of trust, transparency and user control.

In this paper, we present a new multi-modal interface named
APPINITE', based on our prior PBD system SUGILITE [2], to en-
able end users to naturally express their intentions for data de-
scriptions when programming task automation scripts by using
a combination of demonstrations and natural language instruc-
tions on the GUIs of arbitrary third-party mobile apps. APPINITE
helps users address the data description problem by guiding
them to verbally reveal their intentions for demonstrated actions
through multi-turn conversations. APPINITE constructs data de-
scriptions of the demonstrated action from natural language ex-
planations. This interface is enabled by our novel method of
constructing a semantic relational knowledge graph (i.e., an
ontology) from a hierarchical GUI structure (e.g., a DOM tree).
We use an interaction proxy overlay in APPINITE to highlight
ambiguous references on the screen, and to support meta actions
for programming with interactive UI widgets in third-party apps.

APPINITE provides users with greater expressive power to
create flexible programming logic using the data descriptions,
while retaining a low learning barrier and high understandability
for users. Our evaluation showed that APPINITE is easy-to-use
and effective in tasks with ambiguous actions that are otherwise
difficult or impossible to express in prior PBD systems.

II. BACKGROUND AND RELATED WORK

A. Multi-Modal Interfaces

Multi-modal interfaces process two or more user input
modes in a coordinated manner to provide users with greater
expressive power, naturalness, flexibility and portability [23].
APPINITE combines speech and touch to enable a “speak and
point” interaction style, which has been studied since the early
multi-modal systems like Put-that-there [24]. In programming,
similar interaction styles have also been used for controlling
robots (e.g., [25], [26]). A key pattern in APPINITE ‘s multi-modal
interaction model is mutual disambiguation [27]. When the user
demonstrates an action on the GUI with a simultaneous verbal
instruction, our system can reliably detect what the user did and
on which Ul object the user performed the action. The
demonstration alone, however, does not explain why the user
performed the action, and any inferences on the user’s intent
would be fundamentally unreliable. Similarly, from verbal
instructions alone, the system may learn about the user’s intent,
but grounding it onto a specific action may be difficult due to
the inherent ambiguity in natural language. Our system utilizes
these complementary inputs to infer robust and generalizable
scripts that can accurately represent user intentions in PBD.

A unique challenge for APPINITE is to support multi-modal
PBD on arbitrary third-party GUIs. Some of such GUIs can be
highly complicated with hundreds of objects, each with many
different properties, semantic meanings and relationships with
other objects. Moreover, third-party apps only expose low-level
hierarchical representations of their GUIs at the presentation

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

layer, without information about internal program logic or se-
mantics. Prior systems such as CommandSpace [28], Speechify
[29] and PixelTone [30] investigated multi-modal interfaces that
can map coordinated natural language instructions and GUI
gestures to system commands and actions. But the use of these
systems are limited to specific first-party apps and task domains,
in contrast to APPINITE which aims to be general-purpose.

B. Generalization and Data Description Problems in PBD

Having accurate data descriptions to correctly reflect user
intentions in different contexts is crucial for ensuring the
generalizability in PBD. Prior PBD systems range from making
no inference at all to using sophisticated Al algorithms to infer
data descriptions for demonstrated actions [13].

The “no inference” approach (e.g., [12], [14]) shows dialogs
to ask users to make selections on feature(s) to use for data
descriptions when ambiguities arise, which gives users full
control but suffers in usability because end users may have
trouble understanding and choosing from the options, especially
when the tasks are complicated, or when their intentions are non-
trivial. The Al-based program synthesis approach (e.g., [16]-
[20]) requires a large number of examples to cover the space of
different contexts to synthesize from, which is not feasible in
many cases when end users are unwilling to provide sufficient
number of examples [21], or unable to provide high-quality
examples with good coverage [13], [22]. Users also have limited
control and understanding of the inference and synthesis
process, as Al-based algorithms used in these systems often
suffer in explainability and transparency [21].

APPINITE addresses these issues by providing a multi-modal
interface to specify data descriptions verbally through a multi-
initiative conversation. It provides users with control and
transparency of the process, retains usability by allowing users
to describe the data descriptions in natural language, provides
increased expressive power in parsing natural language
instructions, and eliminates redundancy by only requiring one
example of demonstration and instruction.

C. Learning Tasks from Natural Language Instructions

Natural language instruction is a common medium for
humans to teach each other new tasks. For an agent to learn from
such instructions, a major challenge is grounding — the agent
needs to extract semantic meanings from instructions, and
associate them with actions, perceptions and logic [31]. This
process is also related to the concept of natural language
programming [32]. Some prior work has tried translating natural
language directly to code (e.g., [33]-[35]), but these systems
required users to instruct using inflexible structures and
keywords that resemble those of the programming languages,
which made such systems unsuccessful for end user developers.

In specific task domains such as navigation [36], email [31],
robot control [37] or basic phone operations [38], the number of
relevant actions and concepts are small, which makes it feasible
to parse natural language into formal semantic representations
in a smaller space of pre-defined actions and concepts.

An effective way to constrain user natural language
instructions, but still support a wide variety of tasks, is to
leverage GUISs of existing apps or webpages. PLOW [3] is a web
automation agent that uses GUIs to ground natural language
instruction. It asks users to provide “play-by-play” natural

107

language instructions with task demonstrations, which is similar
to APPINITE. PLOW grounds the instructions by resolving noun
phrases to items on the screen through a heuristic search on the
DOM tree of the webpage. SUGILITE [2], on the other hand, uses
a single utterance describing the task from the user for each
script to perform parameterization by grounding phrases in the
initial utterance (e.g., order a cup of cappuccino) to a demon-
strated action (e.g., select cappuccino from a list menu).

Compared with prior systems, APPINITE specifically focuses
on helping users specify accurate data descriptions that reflect
their intentions using a combination of natural language
instructions and demonstrations. Our novel semantic relational
graph representation of the GUI allows users to use a wider
range of semantic (e.g. “cheapest restaurant”) and relational
(e.g., “score for Pittsburgh Steelers”) expressions without being
tied to the underlying GUI implementation. Users can also use
more flexible logic in their instructions thanks to our versatile
semantic parser. To ensure usability while giving the user full
control, our mixed-initiative system can engage in multi-turn
conversations with users to help them clarify and extend data
descriptions when ambiguities arise.

1II. FORMATIVE STUDY

We conducted a formative study to understand how end
users may verbally instruct the system simultaneously while
demonstrating using the GUIs of mobile apps, and whether these
instructions would be useful for addressing the data description
problem. We asked workers from Amazon Mechanical Turk
(mostly non-programmers [39]) to perform a sample set of tasks
using a simulated phone interface in the browser, and to describe
the intentions for their actions in natural language. We recruited
45 participants, and had them each perform 4 different tasks. We
randomly divided the participants into two groups. One group of
participants were simply told to narrate their demonstrations in
a way that would be helpful even if the exact data in the app
changed in the future. Another group were additionally given
detailed instructions and examples of how to write good
explanations to facilitate generalization from demonstrations.

After removing responses that were completely irrelevant, or
apparently due to laziness (32% of the total), the majority (88%)
of descriptions from the group that were not given detailed
instructions and all of descriptions (100%) from the group that
received detailed instructions explained intentions for the
demonstrations in ways that would facilitate generalization, e.g.,
by saying “Scroll through to find and select the highest rated
action film, which is Dunkirk” rather than just “select Dunkirk”
without explaining the characteristic feature behind their choice.

We also found that many of such instructions contain spatial
relations that are either explicit (e.g., “then you click the back
button on the bottom left”) or implicit (e.g., “the reserve button
for the hotel”, which can translate to “the button with the text
label ‘reserve” that is next fo the item representing the hotel”).
Furthermore, approximately 18% of all 1631 natural language
statements we collected from this formative study used some
generalizations (e.g., the highest rated film) in the data descrip-
tion instead of using constant values of string labels for referring
to the target GUI objects. These findings illustrate the need for
constructing an intermediate level representation of GUIs that

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

B 11:102 4:30p
oI oK

$603

JetBlue

Your description doesn't match what
you clicked on, please try again.

Intepretation for your description:
the item that has text "JFK" and text
"JetBlue" with the cheapest price

4:38p

1012p
e

$633

JetBlue

| want to book the cheapest U

JetBlue flight to JFK

CANCEL

a. Error handling popup when
the instruction and the
demonstration does not match

b. Overlay highlights the clicked
item (red) and the incorrectly
matched item (white)

Fig. 2. APPINITE’s error handling interfaces for handling situations
where the instruction and the demonstration do not match.

abstracts the semantics and relationships from the platform-spe-
cific implementation of GUIs and maps more naturally to the
semantics of likely natural language explanations.

IV. THE APPINITE INTERFACE

Informed by the results from the formative study, we have
designed and implemented APPINITE to enable users to provide
natural language instructions for specifying data descriptions in
PBD. It uses our open-source SUGILITE [2] framework for
detecting and replaying user demonstrations. APPINITE aims to
improve the process for specifying data descriptions in PBD
through its novel multi-modal interface, which provides end
users with greater expressive power to create flexible program-
ming logic while retaining a low learning barrier and high
understandability. In this section, we discuss the user experience
of APPINITE with an example walkthrough of specifying the data
description for programming a script for making a restaurant
reservation using the OpenTable app. Readers can also refer to
the supplemental video figure for a similar example task.

A. APPINITE User Experience

After the user starts a new demonstration recording, she
demonstrates clicking on the OpenTable icon on the home
screen, and chooses the “Near Me Now” option on the main
screen of OpenTable, which are exactly the same steps that she
would do normally to make a restaurant reservation. Neither of
these steps is ambiguous, because their data descriptions
(clicking on the icon / FrameLayout object with text labels
“OpenTable” / “Near Me Now”) can be inferred using heuristic
rules. Thus, the APPINITE disambiguation feature will not be
invoked. Instead, the user directly confirms the recording either
by speech or by tapping on a popup (Fig. 1e).

As the next action, the user chooses a restaurant from the
result list (Fig. 1a). This action is ambiguous because its target
Ul object has multiple reasonable properties for data description,
for which the heuristic-based approach cannot determine which

108

one would reflect the user’s intention. Therefore, APPINITE’S
interaction proxy overlay (details in Section V) prevents this tap
from invoking the OpenTable app action, and asks the user, both
vocally and visually through a popup dialog, to describe her
intention for the action. The user can then either speak or type in
natural language. Leveraging the Ul snapshot graph extraction
and natural language instruction parsing architecture (details in
Section V), APPINITE can understand flexible data descriptions
expressed in diverse natural language instructions. These de-
scriptions would otherwise be impractical for end users to
manually program. Below we list some example instructions
that APPINITE can support for the GUI shown in Fig. 1a.

I want to choose the second search result
Find the steakhouse with the earliest time available
Here I'm selecting the closest promoted restaurant

I will book a steakhouse in Midtown East

End users might not be able to provide complete data
descriptions to uniquely identify target Ul objects on their first
attempt. To address this issue, APPINITE uses a mixed-initiative
multi-turn dialog interface to initiate follow-up conversations to
help users refine data descriptions. For instance, as shown in Fig.
lc, the description parsed from the user’s instruction matches
two items in the list. APPINITE asks the user what additional
criteria can be used to choose between the GUI objects when the
initial query matches multiple ones. The user can preview the
result of executing the current query on a screen captured from
the underlying app’s GUI (Fig. 1d). In this preview interface, the
actually clicked object is marked in red, while the other matched
ones (false positives) are highlighted in white. The user can
iteratively refine the data description, add new requirements and
preview the real-time result of the current data description until
she has one that can both uniquely identify the action she has
demonstrated and accurately reflects her intention.

Lastly, APPINITE formulates an executable data description
query for the demonstrated action and adds it to the current
automation script (Fig. le). This data description is used by the
intelligent agent to choose the correct action to perform in future
executions of the script in different contexts. The interaction
proxy overlay then sends the previously held tap to the
underlying app GUI, so that the app can proceed to the next step
so the user can continue demonstrating the task.

In the above example, the user has interacted with the
APPINITE interface in the “demonstration-first” mode where she
first demonstrates the action, and only needs to provide natural
language instructions to clarify her intention for the action if
disambiguation is required. Alternatively, APPINITE’s multi-
modal interface also supports a “verbal-first” mode where she
can first describe the action in natural language, after which she
would only be asked to tap the correct UI object for grounding
the data description if her description is ambiguous and matches
multiple objects. All APPINITE interfaces used for recording are
also speech-enabled, where users can freely choose the most nat-
ural interaction modality for the context — either direct manipu-
lation, natural language instruction or a mix of both.

APPINITE also provides end-user-friendly error messages
when the user’s instruction does not match the demonstration

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

Ul Snapshot Graph

“Joe's Steakhouse™

68400

User clicks
button 1

TextViewl

containsTime

\Joe's Steakhouse | APPINITE
7:00PM' .
- “6:00PM" (C| 1e nt)
butten.l button.2 utton
Ul greunding #1
Query hypothesis
#1
. .
Query hypothesis
Wrong grounding #2
Ul grounding #2
)
Demonstrated Instruction
Ul object ® Parser
Correct grounding (server)
(contains the clicked button) Parser
Speech

e.g., “choose the earfiest available time
for Joe's Steakhouse

(

(hasClass Button)
(below (hasText “Joe’s Steakhouse™)))))

(

numeric_time (AND

Fig. 3. APPINITE's instruction parsing process illustrated on an ex-
ample Ul snapshot graph constructed from a simplified GUI snippet.

(Fig. 2), or when the parser fails to parse the user’s natural lan-
guage instructions into valid data description queries. If a user
has encountered the same error more than once, APPINITE
switches to more detailed spoken prompts that ask the user to
refer to contents and properties shown on the screen about the
target UI object of the demonstrated action when describing the
intention in natural language. Our user study showed that this
helped users give successful descriptions (see Section VI).

At the end of the demonstration, the resulting script will be
stored, and can later be invoked either using a GUI, from an
external web service, by an loT device or through an intelligent
agent using the script execution mechanisms provided by the
SUGILITE framework [2], [40]. The script can also be generalized
(e.g., using a script demonstrated for making a reservation at a
steakhouse to also make a reservation at a sushi restaurant) using
script generalization mechanisms provided in SUGILITE [2].

V. DESIGN AND IMPLEMENTATION

In this section, we discuss the design and implementation of
three core components of APPINITE: the UI snapshot graph
extractor, the natural language instruction parser, and the
interaction proxy overlay.

A. Ul Snapshot Knowledge Graph Extraction

We found in the formative study that end users often refer to
spatial and semantic-based generalizations when describing
their intentions for demonstrated actions on GUIs. Our goal is to
translate these natural language instructions into formal
executable queries of data descriptions that can be used to
perform these actions when the script is later executed. Such
queries should be able to generalize across different contexts and
small variations in the GUI to still correctly reflect the user’s
intentions. To achieve this goal, a prerequisite is a representation
of the GUI objects with their properties and relationships, so that
queries can be formulated based on this representation.

APPINITE extracts GUI elements using the Android Accessi-
bility Service, which provides the content of each window in the
current GUI through a static hierarchical tree representation [41]

109

Minnesota Timberwolves

47-35 (4th in Northwest)

@ Denver W‘IOG Final OT
#% Minnesota 112 4/11
(score (AND (isNumeric true)

(hasClass android.widget.TextView)
(rightTo (AND (hasText “Minnesota”)
(hasClass android.widget.TextView)))))

Fig. 4. A snippet of an example GUI where the alignment suggests
a semantic relationship — “This is the score for Minnesota” translates
into “‘Score’ is the TextView object with a numeric string that is to
the right of another TextView object ‘Minnesota.””

similar to the DOM tree used in HTML. Each node in the tree is
a view, representing a Ul object that is visible (e.g., buttons, text
views, images) or invisible (often created for layout purposes).
Each view also contains properties such as its Java class name,
app package name, coordinates for its on-screen bounding box,
accessibility label (if any), and raw text string (if any). Unlike a
DOM, our extracted hierarchical tree does not contain
specifications for the GUI layout other than absolute coordinates
at the time of extraction. It does not contain any programming
logic or meta-data for the text values in views, but only raw
strings from the presentation layer. This hierarchical model is
not adequate for our data description, as it is organized by
parent-child structures tied to the implementation details of the
GUI, which are invisible to end users of the PBD system. The
hierarchical model also does not capture geometric (e.g., next to,
above), shared property value (e.g., two views with the same
text), or semantic (e.g., the cheapest option) relations among
views, which are often used in users’ data descriptions.

To represent and to execute queries used in data descriptions,
APPINITE constructs relational knowledge graphs (i.e., ontol-
ogies) from hierarchical GUI structures as the medium-level
representations for GUIs. These Ul snapshot graphs abstract the
semantics (values and relations) of GUIs from their platform-
specific implementations, while being sufficiently aligned with
the semantics of users’ natural language instructions. Fig. 3
illustrates a simplified example of a Ul snapshot graph.

Formally, we define a UI snapshot graph as a collection of
subject-predicate-object triples denoted as (s, p, 0), where the
subject s and the object o are two entities, and the predicate p is
a directed edge representing a relation between the subject and
the object. In our graph, an entity can either represent a view in
the GUI, or a typed (e.g., string, integer, Boolean) constant value.
This denotation is highly flexible — it can support a wide range
of nested, aggregated, or composite queries. Furthermore, a
similar representation is used in general-purpose knowledge
bases such as DBpedia [42], Freebase [43], Wikidata [44] and
WikiBrain [45], which can enable us to easily plug our Ul
snapshot graph into these knowledge bases to support better
semantic understanding of app GUISs in the future.

The first step in constructing a Ul snapshot graph from the
hierarchical tree extracted from the Android Accessibility Ser-
vice is to flatten all views in the tree into a collection of view

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

entities. The hierarchical relations are still preserved in the graph,
but converted into hasChild and hasParent relationships
between the corresponding view entities. Properties (e.g., coor-
dinates, text labels, class names) are also converted into relations,
where the values of the properties are represented as entities.
Two or more constants with the same value (e.g., two views with
the same class name) are consolidated as a single constant entity
connected to multiple view entities, allowing easy querying for
views with shared properties values.

In GUI designs, horizontal or vertical alignments between
objects often suggest a semantic relationship [5]. Generally,
smaller geometric distance between two objects also correlates
with higher semantic relatedness between them [46]. Therefore,
it is important to support spatial relations in data descriptions.
APPINITE adds spatial relationships between view entities to Ul
snapshot graphs based on the absolute coordinates of their
bounding boxes, including above, below, rightTo,
leftTo, nextTo,and near relations. These relations capture
not only explicit spatial references in natural language (e.g., the
button next to something), but also implicit ones (see Fig. 4 for
an example). In APPINITE, thresholds in the heuristics for deter-
mining these spatial relations are relative to the dimension of the
screen, which supports generalization across phones with differ-
ent resolutions and screen sizes.

APPINITE also recognizes some semantic information from
the raw strings found in the GUI to support grounding the user’s
high-level linguistic inputs (e.g., “item with the lowest price”).
To achieve this, APPINITE applies a pipeline of data extractors
on each string entity in the graph to extract structured data (e.g.,
phone number, email address) and numerical measurements
(e.g., price, distance, time, duration), and saves them as new en-
tities in the graph. These new entities are connected to the orig-
inal string entities by “contains” relations (e.g., contain-
sPrice). Values in each category of measurements are normal-
ized to the same units so they can be directly compared, allowing
flexible computation, filtering and aggregation.

B. Instruction Parsing

After APPINITE constructs a Ul snapshot graph, the next step
is to parse the user’s natural language description into a formal
executable query to describe this action and its target UI object.
In APPINITE, we represent queries in a simple but flexible LISP-
like query language (S-expressions) that can represent joins,
conjunctions, superlatives and their compositions. Fig. le, Fig.
3 and Fig. 4 show some example queries.

Representing Ul elements as a knowledge graph offers a
convenient data abstraction model for formulating a query using
language that is closely aligned with the semantics of users’
instructions during a demonstration. For example, the utterance
“next to the button” expresses a natural join over a binary
relation near and a unary relation i sButton (a unary relation
is a mapping from all U object entities to truth values, and thus
represents a subset of Ul object entities.) An utterance “a
textbox next to the button” expresses a natural conjunction of
two unary relations, i.e., an intersection of a set of Ul object
entities. An utterance such as “the cheapest flight” is naturally
expressed as a superlative (a function that operates on a set of
UI object entities and returns a single entity, e.g., ARG_MIN or

ARG _MAX). Formally, we define a data description query in our

110

language as an S-expression that is composed of expressions that
can be of three types: joins, conjunctions and superlatives,
constructed by the following 7 grammar rules:

E—-e E—-S; S—> (joinrE); S—> (and S S)
T - (ARG_MAXr S);T » (ARG_MINrS); Q> S|T

where Q is the root non-terminal of the query expression, e is a
terminal that represents a Ul object entity, » is a terminal that
represents a relation, and the rest of the non-terminals are used
for intermediate derivations. Our language forms a subset of a
more general formalism known as Lambda Dependency-based
Compositional Semantics [47] a notationally simpler alternative
to lambda calculus which is particularly well-suited for
expressing queries over knowledge-graphs.

Our parser uses a Floating Parser architecture [48] and does
not require hand-engineering of lexicalized rules, e.g., as is
common with synchronous CFG or CCG based semantic
parsers. This allows users to express lexically and syntactically
diverse, but semantically equivalent statements such as “I am
going to choose the item that says coffee with the lowest price”
and “click on the cheapest coffee” without requiring the
developer to hand-engineer or tune the grammar for different
apps. Instead, the parser learns to associate lexical and syntactic
patterns (e.g., associating the word “cheapest” with predicates
ARG _MIN and containsPrice) with semantics during
training via rich features that encode co-occurrence of unigrams,
bigrams and skipgrams with predicates and argument structures
that appear in the logical form. We trained the parser used in the
preliminary usability study via a small number of example
utterances paired with annotated logical forms and knowledge-
graphs (840 examples), using 4 of the 8 apps used in the user
studies as a basis for training examples. We use the core Floating
Parser implementation within the SEMPRE framework [49].

C. Interaction Proxy Overlay

Prior mobile app GUI-based PBD systems such as SUGILITE
[2] instrument GUIs by passively listening for the user’s actions
through the Android accessibility service, and popping up a
disambiguation dialog affer an action if clarification of the data
description is needed. This approach allows PBD on unmodified
third-party apps without access to their internal data, which is
constrained by working with Android apps (unlike web pages,
where run-time interface modification is possible [5], [50], [51]).
However, at the time when the dialog shows up, the context of
the underlying app may have already changed as a result of the
action, making it difficult for users to refer back to the previous
context to specify the data description for the action. For exam-
ple, after the user taps on a restaurant, the screen changes to the
next step, and the choice of restaurant is no longer visible.

To address these issues, we implemented an interaction
proxy [52] to add an interactive overlay on top of third-party
GUIs. Our mechanism can run on any phone running Android
6.0 or above, without requiring root access. The full-screen over-
lay can intercept all touch events (including gestures) before de-
ciding whether, or when to send them to the underlying app, al-
lowing APPINITE to engage in the disambiguation process while
preventing the demonstrated action from switching the app away
from the current context. Users can refine data descriptions

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

through multi-turn conversations, try out different natural lan-
guage instructions, and review the state of the underlying app
when demonstrating an action without invoking the action.

The overlay is also used for conveying the state of APPINITE
in the mixed-initiative disambiguation to improve transparency.
An interactive visualization highlights the target UI object in the
demonstration, and matched Ul objects in the natural language
instruction when the user’s instruction matches multiple Ul ob-
jects (Fig. 1d), or the wrong object (Fig. 2a). This helps users to
focus on the differences between the highlighted objects of con-
fusion, assisting them to come up with additional differentiating
criteria in follow-up instructions to further refine data descrip-
tions. In the “verbal-first” mode where no demonstration
grounding is available, APPINITE also uses similar overlay high-
lighting to allow users to preview the matched object results for
the current data description query on the underlying app GUL

VI. USER STUDY

We conducted a preliminary lab usability study. Participants
were asked to use APPINITE to specify data descriptions in 20
example scenarios. The purpose of the study was to evaluate the
usability of APPINITE on combining natural language instruc-
tions and demonstrations.

A. Participants

We recruited 6 participants (1 woman and 5 men, average
age = 26.2) at Carnegie Mellon University. All but one of the
participants were graduate students in technical fields. All
participants were active smartphone users, but none had used
APPINITE prior to the study. Each participant was paid $15 for
an 1-hour user study session.

Although the programming literacy of our participants is not
representative of our target users, this was not a goal of this
study. The primary goal was to evaluate the usability of our in-
teraction design on combining natural language instructions and
demonstrations. The demonstration part of this usability study
was based on SUGILITE’s [2], which found no significant differ-
ence in PBD task performances among groups with different
programming expertise. Our formative study (Section III)
showed that non-programmers were able to provide adequate
natural language instructions from which APPINITE can
generate generalizable data descriptions.

B. Tasks

From the top free apps in Google Play, we picked 8 sample
apps (OpenTable, Kayak, Amtrak, Walmart, Hotel Tonight, Fly
Delta, Trulia and Airbnb) where we identified data description
challenges. Within these apps, we designed 20 scenarios. Each
scenario required the participant to demonstrate choosing an Ul
object from a collection of options. All the target Ul objects had
multiple possible and reasonable data descriptions where the
correct ones (that reflect user intentions) could not be inferred
from demonstrations alone, or using heuristic rules without
semantic understanding of the context. The tasks required
participants to specify data descriptions using APPINITE. For
each scenario, the intended feature for the data description was
communicated to the participant by pointing at the feature on the
screen. Spoken instructions from the experimenter were mini-
mized, and carefully chosen to avoid biasing what the partici-
pant would say. Four out of the 20 scenarios were set up in a

111

way that multi-turn conversations for disambiguation (e.g., Fig.
1c and Fig. 1d) were needed. The chosen sample scenarios used
a variety of different domains, GUI layouts, data description
features, and types of expressions in target queries (i.e. joins,
conjunctions and superlatives).

C. Procedure

After obtaining consent, the experimenter first gave each
participant a 5S-minute tutorial on how to use APPINITE. During
the tutorial, the experimenter showed the supplemental video
figure as an example to explain APPINITE’s features.

Following the tutorial, each participant was shown the 8
sample apps in random order on a Nexus 5X phone. For each
scenario within each app, the experimenter navigated the app to
the designated state before handing the phone to the participant.
The experimenter pointed to the UI object which the participant
should demonstrate clicking on, and pointed to the on-screen
feature which the participant should use for verbally describing
the intention. For each scenario, the participant was asked to
demonstrate the action, provide the natural language description
of intention, and complete the disambiguation conversation if
prompted by APPINITE. The participant could retry if the speech
recognition was incorrect, and try a different instruction if the
parsing result was different from expected. APPINITE recorded
participants’ instructions as well as the corresponding Ul snap-
shot graphs, the demonstrations, and the parsing results.

After completing the tasks, each participant was asked to
complete a short survey, where they rated statements about their
experience with APPINITE on a 7-point Likert scale. The
experimenter also had a short informal interview with each par-
ticipant to solicit their comments and feedback.

D. Results

Overall, our participants had a good task completion rate.
Among all 120 scenario instances across the 6 participants, 106
(87%) were successful in producing the intended target data
description query on the first try. Note that we did not count
retries caused by speech recognition errors, as it was not a focus
of this study. Failed scenarios were all caused by incorrect or
failed parsing of natural language instructions, which can be
fixed by (1) having bigger training datasets with better coverage
for words and expressions users may use in instructions, and (2)
enabling better semantic understanding of GUIs (details in
Section VII). Participants successfully completed all initially
failed scenarios in retries by rewording their verbal instructions
after being prompted by APPINITE. Among all the 120 scenario
instances, 24 instances required participants to have multi-turn
conversations for disambiguation. 22 of these 24 (92%) were
successful on the first try, and the rest were fixed by rewording.

In our survey on a 7-point Likert scale from “strongly disa-
gree” to “strongly agree”, our 6 participants found APPINITE
“helpful in programming by demonstration” (mean=7),
“allowed them to express their intentions naturally” (mean=6.8,
6=0.4), and “easy to use” (mean=7). They also agreed that “the
multi-modal interface of APPINITE is helpful” (mean=6.8,
6=0.4), “the real-time visualization 1is helpful for
disambiguation” (mean=6.7, 6=0.5), and “the error messages
are helpful” (mean=6.8, 6=0.4).

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

VII. DISCUSSION AND FUTURE WORK

The study results suggested that APPINITE has good usability,
and also that it has adequate performance for generating correct
formal executable data description queries from demonstrations
and natural language instructions in the sample scenarios. As the
next step, we plan to run offline performance evaluations for the
Ul snapshot graph extractor and the natural language instruction
parser, and in-situ field studies to evaluate APPINITE’s usage and
performance for organic tasks in real-world settings.

Participants praised APPINITE’s usefulness and ease of use.
A participant reported that he found sample tasks very useful to
have done by an intelligent agent. Participants also noted that
without APPINITE, it would be almost impossible for end users
without programming expertise to create automation scripts for
these tasks, and it would also take considerable effort for experi-
enced programmers to do so.

Our results illustrate the effectiveness of combining two
input modalities, each with its own different of ambiguities, to
more accurately infer user’s intentions in EUD. A major
challenge in EUD is that end users are unable to precisely
specify their intended behaviors in formal language. Thus,
casier-to-use but ambiguous alternative programming
techniques like PBD and natural language programming are
adopted. Our results suggest that end users can effectively
clarify their intentions in a complementary technique with
adequate guidance from the system when the initial input was
ambiguous. Further research is needed on how users naturally
select modalities in multi-modal environments, and on how
interfaces can support more fluid transition between modalities.

Another insight is to leverage the GUI as a shared grounding
for EUD. By asking users to describe intentions in natural
language referring to GUI contents, our tool constrains the scope
of instructions to a limited space, making semantic parsing
feasible. Since users are already familiar with app GUIs, they do
not have to learn new symbols or mechanisms as in scripting or
visual languages. The knowledge graph extraction further
provides users with greater expressive power by abstracting
higher-level semantics from platform-specific implementations,
enabling users to talk about semantic relations for the items such
as “the cheapest restaurant” and “the score for Minnesota.”

While APPINITE has already offered some semantic-based
features to provide greater expressiveness than existing end user
PBD task automation tools, participants were hoping for more
powerful support to enable them to naturally express more com-
plicated logic in a more flexible way. To achieve this, we plan
to improve APPINITE in the following areas:

A. Learning Conceptual Knowledge

We plan to leverage recent advances in natural language
processing (e.g., [53]) to enable APPINITE to learn new concepts
from users through verbal instructions. More specifically, we
want to support users to add new relations into UI snapshot
graphs through conversations. For example, for the interface
shown in Fig. 1a, users can currently say, “the restaurant that is
804 feet away” (corresponds to the hasText relation) or “the
closest restaurant” (corresponds to the containsDistance
relation), but not “restaurants within walking distance” as
APPINITE does not yet know the concept of “walking distance.”
We plan to enable future versions of APPINITE to ask users to

112

explain unknown (and possibly personalized) concepts. For this
example, a user may say “Walking distance means less than half
a mile”, from which APPINITE can define a relation extractor for
the i sWalkingDistance modifier for existing objects with
the containsDistance relation, and subsequently allow
use of the new concept “walking distance” in future instructions.

B. Computation in Natural Language Instructions

Currently in APPINITE, users have a limited capability of
specifying computations and comparisons in natural language
instructions. For example, for the interface shown in Fig. 2b,
users cannot use expressions like “flights that are cheaper than
837007 or “if the flight is shorter than 4 hours” in specifying data
descriptions, although the UI snapshot graph already contains
the prices and the durations for all flights. Furthermore, users are
not able to create control structures (e.g., conditionals, iterations,
triggers) which would require computations and comparisons.
To address this issue, we plan to leverage prior work on natural
language programming [32], and more importantly, how non-
programmers can naturally describe computations, control
structures and logic in solutions to programming problems [54]
to extend our parser so that it can understand naturally expressed
computations and the corresponding control structures. How-
ever, even with advanced semantic parsing and natural language
processing techniques, GUI demonstrations will still remain
essential for grounding users’ natural language inputs and
resolving ambiguities in the natural language.

C. Better Semantic Understanding of GUIs

Future versions of APPINITE can benefit from having better
semantic understanding of GUIs. Some understanding can be
acquired from user instructions, while others can come from
existing resources. As discussed previously, the format of our
Ul snapshot graph allows easy integration with existing
knowledge bases, which enables APPINITE to understand the
semantics of entities (e.g., JetBlue, Delta and American are all
instances of airlines for the interface in Fig. 2b). This integration
can allow APPINITE to have more accurate instruction parsing,
and to ask more specific questions in follow-up conversations.

GUI layouts can also be better leveraged to extract
semantics. So far, we have only used the inter-object binary
geometric relations such as above and nextTo to represent
possible semantic relations between individual UT objects, but
not the overall layout. Prior research suggests that app GUI
designs often follow common design patterns, where the layout
can suggest its functionality [55]. Also, for graphics in GUISs,
especially for those without developer-provided accessibility
labels, we can use runtime annotation techniques [56] to
annotate their meanings. Visual features in GUIs can also be
used in data descriptions, as discussed in [6], [57], [58].

VII. CONCLUSION

Natural language instruction is a natural and expressive
medium for users to specify their intentions and can provide
useful complementary information about user intentions when
used in conjunction with other EUD approaches, such as PBD.
APPINITE combines natural language instructions with demon-
strations to provide end users with greater expressive power to
create more generalized GUI automation scripts, while retaining
usability, transparency and understandability.

(1]

(2]

[3]

(4]

(5]

(6]

(7]
(8]

(9]
[10]

(1]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

REFERENCES

T.J.-J. Li, L. Labutov, B. A. Myers, A. Azaria, A. I. Rudnicky, and T.
M. Mitchell, “An End User Development Approach for Failure Han-
dling in Goal-oriented Conversational Agents,” in Studies in Conver-
sational UX Design, Springer, 2018.

T.J.-J. Li, A. Azaria, and B. A. Myers, “SUGILITE: Creating Multi-
modal Smartphone Automation by Demonstration,” in Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems,
New York, NY, USA, 2017, pp. 6038—6049.

J. Allen et al., “Plow: A collaborative task learning agent,” in Pro-
ceedings of the National Conference on Artificial Intelligence, 2007,
vol. 22, p. 1514.

G. Leshed, E. M. Haber, T. Matthews, and T. Lau, “CoScripter: Auto-
mating & Sharing How-to Knowledge in the Enterprise,” in Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, New York, NY, USA, 2008, pp. 1719-1728.

M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C. Miller, “Automa-
tion and customization of rendered web pages,” in Proceedings of the
18th annual ACM symposium on User interface sofiware and technol-
ogy, 2005, pp. 163-172.

T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: Using GUI Screen-
shots for Search and Automation,” in Proceedings of the 22Nd Annual
ACM Symposium on User Interface Sofiware and Technology, New
York, NY, USA, 2009, pp. 183-192.

“Automate: everyday automation for Android. LlamaLab.” [Online].
Available: http://llamalab.com/automate/. [Accessed: 11-Sep-2016].
S. K. Kuttal, A. Sarma, and G. Rothermel, “History repeats itself more
easily when you log it: Versioning for mashups,” in 2011 IEEE Sym-
posium on Visual Languages and Human-Centric Computing
(VL/HCC), 2011, pp. 69-72.

M. Pruett, Yahoo! Pipes, First. O’Reilly, 2007.

A. Cypher and D. C. Halbert, Watch what I do: programming by
demonstration. MIT press, 1993.

H. Lieberman, Your wish is my command: Programming by example.
Morgan Kaufmann, 2001.

D. C. Halbert, “SmallStar: programming by demonstration in the
desktop metaphor,” in Watch what I do, 1993, pp. 103—123.

B. A. Myers and R. McDaniel, “Sometimes you need a little intelli-
gence, sometimes you need a lot,” Your Wish My Command Program.
Ex. San Franc. CA Morgan Kaufimann Publ., pp. 45-60, 2001.

B. A. Myers, “Scripting graphical applications by demonstration,” in
Proceedings of the SIGCHI conference on Human factors in compu-
ting systems, 1998, pp. 534-541.

B. A. Myers, “Peridot: creating user interfaces by demonstration,” in
Watch what I do, 1993, pp. 125-153.

S. Gulwani, “Automating String Processing in Spreadsheets Using In-
put-output Examples,” in Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, New York, NY, USA, 2011, pp. 317-330.

T. Lau, S. A. Wolfman, P. Domingos, and D. S. Weld, “Programming
by Demonstration Using Version Space Algebra,” Mach Learn, vol.
53, no. 1-2, pp. 111-156, Oct. 2003.

T.J.-J. Li and O. Riva, “KITE: Building conversational bots from mo-
bile apps,” in Proceedings of the 16th ACM International Conference
on Mobile Systems, Applications, and Services (MobiSys 2018), 2018.
R. G. McDaniel and B. A. Myers, “Getting More out of Programming-
by-demonstration,” in Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, New York, NY, USA, 1999, pp.
442-449.

A. Menon, O. Tamuz, S. Gulwani, B. Lampson, and A. Kalai, “A Ma-
chine Learning Framework for Programming by Example,” presented
at the Proceedings of the 30th International Conference on Machine
Learning (ICML-13), 2013, pp. 187-195.

T. Lau, “Why Programming-By-Demonstration Systems Fail: Lessons
Learned for Usable Al,” A Mag., vol. 30, no. 4, pp. 65-67, Oct. 2009.
T.Y. Lee, C. Dugan, and B. B. Bederson, “Towards Understanding
Human Mistakes of Programming by Example: An Online User
Study,” in Proceedings of the 22Nd International Conference on Intel-
ligent User Interfaces, New York, NY, USA, 2017, pp. 257-261.

S. Oviatt, “Ten Myths of Multimodal Interaction,” Commun ACM,
vol. 42, no. 11, pp. 74-81, Nov. 1999.

113

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[33]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

R. A. Bolt, “‘Put-that-there’: Voice and Gesture at the Graphics Inter-
face,” in Proceedings of the 7th Annual Conference on Computer
Graphics and Interactive Techniques, New York, NY, USA, 1980, pp.
262-270.

R. Marin, P. J. Sanz, P. Nebot, and R. Wirz, “A multimodal interface
to control a robot arm via the web: a case study on remote program-
ming,” [EEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1506-1520,
Dec. 2005.

S. Iba, C. J. J. Paredis, and P. K. Khosla, “Interactive Multimodal Ro-
bot Programming,” Int. J. Robot. Res., vol. 24, no. 1, pp. 83—104, Jan.
2005.

S. Oviatt, “Mutual disambiguation of recognition errors in a multi-
model architecture,” in Proceedings of the SIGCHI conference on Hu-
man Factors in Computing Systems, 1999, pp. 576-583.

E. Adar, M. Dontcheva, and G. Laput, “CommandSpace: Modeling
the Relationships Between Tasks, Descriptions and Features,” in Pro-
ceedings of the 27th Annual ACM Symposium on User Interface Soft-
ware and Technology, New York, NY, USA, 2014, pp. 167-176.

T. Kasturi et al., “The Cohort and Speechify Libraries for Rapid Con-
struction of Speech Enabled Applications for Android,” in Proceed-
ings of the 16th Annual Meeting of the Special Interest Group on Dis-
course and Dialogue, 2015, pp. 441-443.

G. P. Laput et al., “PixelTone: A Multimodal Interface for Image Ed-
iting,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, New York, NY, USA, 2013, pp. 2185-2194.
A. Azaria, J. Krishnamurthy, and T. M. Mitchell, “Instructable Intelli-
gent Personal Agent,” in Proc. The 30th AAAI Conference on Artifi-
cial Intelligence (AAAI), 2016, vol. 4.

A. W. Biermann, “Natural Language Programming,” in Computer
Program Synthesis Methodologies, Springer, Dordrecht, 1983, pp.
335-368.

D. Price, E. Rilofff, J. Zachary, and B. Harvey, “NaturalJava: A Natu-
ral Language Interface for Programming in Java,” in Proceedings of
the 5th International Conference on Intelligent User Interfaces, New
York, NY, USA, 2000, pp. 207-211.

A. Begel and S. L. Graham, “Spoken programs,” in 2005 IEEE Sym-
posium on Visual Languages and Human-Centric Computing
(VL/HCC 05), 2005, pp. 99-106.

H. Lieberman and H. Liu, “Feasibility studies for programming in nat-
ural language,” in End User Development, Springer, 2006, pp. 459—
473.

D. L. Chen and R. J. Mooney, “Learning to Interpret Natural Lan-
guage Navigation Instructions from Observations,” in Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelligence, San
Francisco, California, 2011, pp. 859—865.

J. Thomason, S. Zhang, R. Mooney, and P. Stone, “Learning to Inter-
pret Natural Language Commands Through Human-robot Dialog,” in
Proceedings of the 24th International Conference on Artificial Intelli-
gence, Buenos Aires, Argentina, 2015, pp. 1923-1929.

V. Le, S. Gulwani, and Z. Su, “SmartSynth: Synthesizing Smartphone
Automation Scripts from Natural Language,” in Proceeding of the
11th Annual International Conference on Mobile Systems, Applica-
tions, and Services, New York, NY, USA, 2013, pp. 193-206.

C. Huff and D. Tingley, ““Who are these people?’ Evaluating the de-
mographic characteristics and political preferences of MTurk survey
respondents,” Res. Polit., vol. 2, no. 3, p. 2053168015604648, 2015.
T.J.-J. Li, Y. Li, F. Chen, and B. A. Myers, “Programming IoT De-
vices by Demonstration Using Mobile Apps,” in End-User Develop-
ment, Cham, 2017, pp. 3—17.

Google, “AccessibilityWindowInfo | Android Developers.” [Online].
Available: https://developer.android.com/reference/android/view/ac-
cessibility/AccessibilityWindowlInfo.html. [Accessed: 23-Apr-2018].
S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z.
Ives, “Dbpedia: A nucleus for a web of open data,” Semantic Web, pp.
722-735, 2007.

K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Free-
base: a collaboratively created graph database for structuring human
knowledge,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, 2008, pp. 1247-1250.

D. Vrandeci¢ and M. Krotzsch, “Wikidata: a free collaborative
knowledgebase,” Commun. ACM, vol. 57, no. 10, pp. 78-85, 2014.

[45]

[46]

[47]

(48]

[49]

[50]

[51]

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

S. Sen, T. J.-J. Li, WikiBrain Team, and B. Hecht, “WikiBrain: De-
mocratizing computation on Wikipedia,” in Proceedings of the 10th
International Symposium on Open Collaboration (WikiSym + Open-
Sym 2014),2014.

T.J.-J. Li, S. Sen, and B. Hecht, “Leveraging Advances in Natural
Language Processing to Better Understand Tobler’s First Law of Ge-
ography,” in Proceedings of the 22Nd ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information Systems,
New York, NY, USA, 2014, pp. 513-516.

P. Liang, M. I. Jordan, and D. Klein, “Learning dependency-based
compositional semantics,” Comput. Linguist., vol. 39, no. 2, pp. 389—
446, 2013.

P. Pasupat and P. Liang, “Compositional Semantic Parsing on Semi-
Structured Tables,” in Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing, 2015.

J. Berant, A. Chou, R. Frostig, and P. Liang, “Semantic parsing on
freebase from question-answer pairs,” in Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing,
2013, pp. 1533-1544.

M. Toomim, S. M. Drucker, M. Dontcheva, A. Rahimi, B. Thomson,
and J. A. Landay, “Attaching UI Enhancements to Websites with End
Users,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, New York, NY, USA, 2009, pp. 1859-1868.
J. R. Eagan, M. Beaudouin-Lafon, and W. E. Mackay, “Cracking the
Cocoa Nut: User Interface Programming at Runtime,” in Proceedings
of the 24th Annual ACM Symposium on User Interface Sofiware and
Technology, New York, NY, USA, 2011, pp. 225-234.

114

[52]

[53]

[54]

[55]

[56]

[57]

[58]

X. Zhang, A. S. Ross, A. Caspi, J. Fogarty, and J. O. Wobbrock, “In-
teraction Proxies for Runtime Repair and Enhancement of Mobile Ap-
plication Accessibility,” in Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems, New York, NY, USA,
2017, pp. 6024—6037.

S. Srivastava, I. Labutov, and T. Mitchell, “Joint concept learning and
semantic parsing from natural language explanations,” in Proceedings
of the 2017 Conference on Empirical Methods in Natural Language
Processing, 2017, pp. 1527-1536.

J. F. Pane, B. A. Myers, and others, “Studying the language and struc-
ture in non-programmers’ solutions to programming problems,” /nt. J.
Hum.-Comput. Stud., vol. 54, no. 2, pp. 237-264, 2001.

B. Deka, Z. Huang, and R. Kumar, “ERICA: Interaction Mining Mo-
bile Apps,” in Proceedings of the 29th Annual Symposium on User In-
terface Software and Technology, New York, NY, USA, 2016, pp.
767-776.

X. Zhang, A. S. Ross, and J. Fogarty, “Robust Annotation of Mobile
Application Interfaces in Methods for Accessibility Repair and En-
hancement,” in Proceedings of the 31st Annual ACM Symposium on
User Interface Software and Technology, 2018.

T. Intharah, D. Turmukhambetov, and G. J. Brostow, “Help, It Looks
Confusing: GUI Task Automation Through Demonstration and Fol-
low-up Questions,” in Proceedings of the 22Nd International Confer-
ence on Intelligent User Interfaces, New York, NY, USA, 2017, pp.
233-243.

M. Dixon and J. Fogarty, “Prefab: Implementing Advanced Behaviors
Using Pixel-based Reverse Engineering of Interface Structure,” in
Proceedings of the SIGCHI Conference on Human Factors in Compu-
ting Systems, New York, NY, USA, 2010, pp. 1525-1534.

