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Phenology is a key biological trait that can determine an organism’s survival

and provides one of the clearest indicators of the effects of recent climatic

change. Long time-series observations of plant phenology collected at conti-

nental scales could clarify latitudinal and regional patterns of plant

responses and illuminate drivers of that variation, but few such datasets

exist. Here, we use the web tool CrowdCurio to crowdsource phenological

data from over 7000 herbarium specimens representing 30 diverse flowering

plant species distributed across the eastern United States. Our results, span-

ning 120 years and generated from over 2000 crowdsourcers, illustrate

numerous aspects of continental-scale plant reproductive phenology. First,

they support prior studies that found plant reproductive phenology signifi-

cantly advances in response to warming, especially for early-flowering

species. Second, they reveal that fruiting in populations from warmer,

lower latitudes is significantly more phenologically sensitive to temperature

than that for populations from colder, higher-latitude regions. Last, we

found that variation in phenological sensitivities to climate within species

between regions was of similar magnitude to variation between species.

Overall, our results suggest that phenological responses to anthropogenic cli-

mate change will be heterogeneous within communities and across regions,

with large amounts of regional variability driven by local adaptation, pheno-

typic plasticity and differences in species assemblages. As millions of

imaged herbarium specimens become available online, they will play an

increasingly critical role in revealing large-scale patterns within assemblages

and across continents that ultimately can improve forecasts of the impacts of

climatic change on the structure and function of ecosystems.

This article is part of the theme issue ‘Biological collections for

understanding biodiversity in the Anthropocene’.
1. Introduction
Ecosystems on every continent have been affected by local, regional and global

changes in climate, especially increases in temperature [1]. Changes in phenol-

ogy—the timing of life-history events—are among the most conspicuous and

well-documented species responses to climatic change, especially for plants

[2–7]. Phenological disruption has already impacted species’ local persistence

and community diversity [8–10], which may have widespread consequences

for critical ecosystem processes, including carbon sequestration [11–13],

ecosystem–atmosphere interactions [14] and trophic interactions [15–28].

Despite these trends, our knowledge of plant phenological responses to cli-

matic change remains inadequate. In particular, although phenological

responses may differ among species with different functional or life-history

traits and biogeographical origins [29–32], long-term observational datasets
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to assess such trends are limited in geographical, temporal

and taxonomic scope [33]. Many of these data track woody

plant species of the Northern Hemisphere (most commonly,

abundant tree species), and only for the last approximately

40 years (but see [34,35]). These biases limit our understand-

ing of variation in phenological responses across species and

biomes. Furthermore, although population-level variation in

phenology has been demonstrated for a few species [36–38],

there are very few studies that quantify both inter- and

intraspecific variation in phenological response [32,33].

Variability in species’ phenology is particularly relevant

because climatic change is not geographically uniform. For

example, high-latitude regions are warming faster than sub-

tropical and tropical ones [1,39]. Short growing seasons also

may cause high-latitude ecosystems to be especially sensitive

to temperature, leading to stronger selective pressures for

populations to initiate growth as soon as conditions become

favourable in early spring. Additionally, plants adapted to

highly variable climates may exhibit higher phenological

thresholds to temperature, as it provides a less reliable

signal [40]. Thus, the effects of climatic change on species’

phenology may differ across their ranges depending on vari-

ation in phenological sensitivity. Variability in phenological

responses to climatic change within species may also alter

patterns of gene flow, which could either promote or counter-

act adaptive evolution via the sharing of locally (mal)adapted

alleles [41–44]. Recent studies have shown that plant phenol-

ogy may be more responsive in more northern-ranging

populations where there are more variable and extreme cli-

mates, especially during the early part of the growing

season [44,45]. Although these studies are suggestive, they

are restricted in spatial scale and taxonomic scope, and

broad regional patterns of phenological response to climate

may differ from patterns at smaller, local scales.

Herbarium specimens represent snapshots of phenology

(i.e. flowering and fruiting) at a specific place and time, and

have shown tremendous promise to increase the spatial, tem-

poral and taxonomic resolution of phenological data [46–48].

They provide rich historical depth, wide geographical scope

and taxonomic diversity, all of which allow researchers to

track long-term changes of vast numbers of species and com-

munities through space and time [4,46–49]. Despite their

representation of phenological responses [48,50], herbarium

specimens have been used less frequently than other data

sources, such as field observations, to address phenological

change, in part because they have been inaccessible to

many researchers [46,51]. However, the widespread digitiz-

ation of herbarium collections [52] combined with new

approaches to collecting [46,53] and analysing [54,55] pheno-

logical data derived from herbarium specimens has the

power to transform our understanding of plant responses

to global climatic change.

Here, we applied a newly developed web-enabled crowd-

sourcing platform, CrowdCurio: Thoreau’s Field Notes (https://
www.crowdcurio.com/) [46], to examine more than 7000

specimens of 30 phylogenetically diverse flowering plant

species. The Thoreau’s Field Notes module facilitates the

rapid quantification of phenological traits via image annota-

tion and has been demonstrated to yield reliable data

regardless of the level of expertise among crowdsourcers

(i.e. expert versus non-expert scoring) [46]. We used these

crowdsourced data to infer the magnitude, direction, and

variability in reproductive phenological responses to spring
temperature across 238 of latitude in the eastern United

States. We examined both native and introduced plant

species from northern coniferous forests, eastern deciduous

forests, subtropical evergreen forests, grasslands, wetlands,

alpine meadows and aquatic plant communities. Environ-

mental conditions in this region vary considerably across

species’ ranges, and populations may exhibit substantial

variation in phenological response across this latitudinal

gradient. Our overall goals with this study were: (i) to

demonstrate the power of characterizing phenology from

herbarium data using an efficient and rapid workflow that

leverages a nearly fully mobilized online flora of the eastern

United States [56,57]; (ii) to greatly increase the taxonomic

and ecological diversity of species sampled for this purpose

(from woody perennials to herbaceous annuals across a

range of biomes); and (iii) to sample species with broad lati-

tudinal ranges to assess regional and inter- and intra-species

variation in phenological responses.
2. Methods
(a) Specimen data collection
We examined phenological responses of species using digitized

specimens from two of the most comprehensive digitized regional

floras in the world, the Consortium of Northeastern Herbaria

(CNH; http://portal.neherbaria.org/portal/) [56] and Southeast

Regional Network of Expertise and Collections (SERNEC;

http://sernecportal.org/portal/index.php) [57]. These two

online portals include more than six million digitized herbarium

records, including specimen images. Our criteria for selecting

angiosperm species for analysis were that specimens: (i) included

at least county-level location data; (ii) included at least 50 unique

collections across space and time; (iii) were of species with rela-

tively easily identifiable and quantifiable reproductive structures;

and (iv) were from species with broad latitudinal ranges sufficient

to enable quantification of population-level variation.

Applying these criteria yielded 30 species with varying life-

history traits, growth forms, native status and general reproduc-

tive seasonality (e.g. early- versus late-spring flowering). We

downloaded over 10 000 digital herbarium specimen images of

these species from CNH and SERNEC, removed duplicate, mis-

identified or sterile specimens, and those with notable insect

damage on reproductive structures, extensive physical damage

or poor preservation. We also removed all 30 specimens from

Florida, which were geographical and climatic outliers. Our

final dataset comprised 7722 specimens and spanned 120 years

across 512 United States counties (table 1). Species’ life-history

(annual versus perennial), growth form (woody versus herbac-

eous) and native status (native versus introduced) were

inferred from the United States Department of Agriculture

PLANTS Database (https://plants.usda.gov/). For individual

specimen metadata, see electronic supplementary material,

table S1.
(b) Crowdsourcing phenological data collection
The phenological state (phenophase) of a plant can be inferred

from the presence and quantity of relevant structures, such as

leaves, flowers or fruits [46,48]. Past researchers generally have

focused on the presence or the absence of a single structure or

trait (e.g. [58]) or applied majority estimates for scoring a

single phenophase (e.g. [49]). Here, we quantified data for two

reproductive phenophases, flowering and fruiting. Specimens

were scored as flowering if open flowers represented greater

than or equal to 50% of the total reproductive structure count

https://www.crowdcurio.com/
https://www.crowdcurio.com/
https://www.crowdcurio.com/
http://portal.neherbaria.org/portal/
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Table 1. The number of specimens and different categorical traits of examined species. FL and FR refer to the number of specimens classified as flowering and
fruiting, respectively.

family species
time span
(years) FL FR lifespan growth form status

Ranunculaceae Anemone canadensis L. 116 41 59 perennial herbaceous native

Ranunculaceae Anemone hepatica L. 95 40 60 perennial herbaceous native

Ranunculaceae Aquilegia canadensis L. 119 251 238 perennial herbaceous native

Asteraceae Bidens vulgata Greene 119 83 136 annual herbaceous native

Celastraceae Celastrus orbiculatus Thunb. 103 151 220 perennial herbaceous introduced

Asteraceae Centaurea stoebe Tausch 111 93 161 perennial herbaceous introduced

Asteraceae Cirsium arvense (L.) Scop. 118 186 171 perennial herbaceous introduced

Asteraceae Cirsium discolor (Muhl. ex Willd.)

Spreng.

117 46 93 perennial herbaceous native

Geraniaceae Geranium maculatum L. 119 489 513 perennial herbaceous native

Geraniaceae Geranium robertianum L. 119 48 307 perennial herbaceous native

Xanthorrhoeaceae Hemerocallis fulva (L.) L. 115 144 45 perennial herbaceous introduced

Malvaceae Hibiscus moscheutos L. 119 105 100 perennial herbaceous native

Balsaminaceae Impatiens capensis Meerb. 120 153 501 annual herbaceous native

Iridaceae Iris pseudacorus L. 117 90 66 perennial herbaceous introduced

Iridaceae Iris versicolor L. 119 344 185 perennial herbaceous native

Liliaceae Lilium canadense L. 117 139 27 perennial herbaceous native

Caprifoliaceae Lonicera�bella Zab. 107 37 62 perennial woody introduced

Caprifoliaceae Lonicera canadensis Bartram

ex Marshall

120 194 201 perennial woody native

Caprifoliaceae Lonicera japonica Thunb. 116 329 115 perennial woody introduced

Rosaceae Malus pumila Mill. 118 74 40 perennial woody introduced

Malvaceae Malva neglecta Wallr. 116 25 140 perennial herbaceous introduced

Onagraceae Oenothera perennis L. 120 194 214 perennial herbaceous native

Orobanchaceae Orobanche uniflora L. 118 213 105 annual herbaceous native

Rosaceae Rosa gallica L. 108 45 17 perennial woody introduced

Rosaceae Rubus odoratus L. 120 176 318 perennial woody native

Sarraceniaceae Sarracenia purpurea L. 119 234 75 perennial herbaceous native

Iridaceae Sisyrinchium mucronatum Michx. 117 86 157 perennial herbaceous native

Solanaceae Solanum rostratum Dunal 115 21 85 annual herbaceous native

Melanthiaceae Trillium grandiflorum (Michx.) Salisb. 119 129 40 perennial herbaceous native

Melanthiaceae Trillium undulatum Willd. 120 402 156 perennial herbaceous native
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and scored as fruiting if they had less than 50% flowers and buds

and at least one fruit present. We used the Thoreau’s Field Notes
instance of CrowdCurio to crowdsource phenological data from

digitized herbarium specimens [46]. Citizen scientists hired

through Amazon’s Mechanical Turk service (MTurk; https://

www.mturk.com/) counted the number of buds, flowers and

fruits observed for a set of 10 specimen images. Participants

first watched a short (1 min) instructional video on how to

score phenological traits using CrowdCurio and then were

provided with three tutorial images of each reproductive struc-

ture for every species. The 2364 anonymous participants were

compensated at a rate of $0.12 per image.

To provide an estimate of measurement error, each 10-image

set scored by a single crowdsourcer included nine unique images

and a single duplicate image randomly selected from the other

nine [55]. We estimated the reliability score for each participant

based on the data for each 10-image set by dividing the absolute
difference in organ counts for each phenophase by the total

count of that specimen across the two duplicate specimens and

subtracting this value from 1 (1 – (jcount1 – count2j/(count1 þ
count2)) [55]. Reliability scores range from zero (unreliable/

inconsistent) to one (reliable/consistent). Participants who

reported no organs on one sheet and a non-zero number of the

same organ on the duplicate sheet were assigned a reliability

score of zero for that organ (i.e. the lowest reliability score).

We conservatively selected the lowest reliability score among

the three calculated for each organ per participant and

assigned it to each participant as their final score. That is, if a

participant got a reliability score equal to zero on one organ,

they would be assigned a reliability score of zero for all

organs. Specimen observations scored by crowdsourcers with a

reliability score of zero were excluded from the analysis. We

also spot checked for suspicious outliers manually and removed

such data.
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(c) Historical climate data
We used estimates of historic (1895–2016) average monthly temp-

erature and precipitation data at 4 km resolution from PRISM

(productAN81 m; http://prism.oregonstate.edu/),whichprovide

high-resolution time-series estimates of climatic elements for the

contiguousUnited States.As accurate locality data are not available

for themajority of historic specimen records [59],weused countyas

our geographical unit of analysis. The vast majority (79%) of speci-

mens used in this study were collected before 1980, and while 72%

of the specimens used in this study had associated coordinate data,

at least 91% of those coordinates had been georeferenced post hoc
(e.g. assigned county or township centroid coordinates), and thus

may not represent precise sampling locales. For each county and

year, we estimated the mean monthly temperature, precipitation

and elevation, and assigned these values to each specimen [59].

Although counties can vary in size and climate, counties in states

along the Atlantic coast of the United States are generally small in

size and geographically homogeneous. We estimated within-

county climatic heterogeneity as the standard deviation of

estimated monthly climatic values across each county and year

and included it in our initial analyses, but coefficients had Bayesian

credibility intervals thatwerenot crediblydifferent fromzero, sowe

dropped these terms from our final models.
(d) Statistical analyses
Phenological sensitivity to spring temperature—defined as the

mean of March, April and May temperatures [46]—was defined

as the slope of the linear relationship between the day of year

(DOY) of a phenophase and the spring temperature of the corre-

sponding location and year (shifts in days per degree Celsius

change: days/8C) [44,46]. These months have been used to

define spring across the east coast of the United States [46,60].

To calculate phenological sensitivity, we binned our specimen

data into both broad climatic zones [61,62] and finer-scale

National Ecological Observatory Network (NEON) domains.

Our data comprised two climatic zones (cold/very cold; mixed-

humid/hot-humid—hereafter referred to as cold and mixed-

warm) and five NEON ecoclimatic domains (NE, northeast;

MA, mid-Atlantic; AP, Appalachians & Cumberland Plateau;

OZ, Ozarks Complex; SE, southeast; electronic supplementary

material, table S2). We also estimated phenological sensitivity to

elevation as the slope of the linear relationship between the

DOY of a phenophase and metres above sea level (m a.s.l.).

We estimated the mean timing of flowering and fruiting phe-

nophases, and environmental influences on them, using Bayesian

hierarchical linear regression models [63]. In our models, species,

region, county and observer were considered random effects,

while spring temperature and county elevation were covariates.

The hierarchical nature of the model, in which the phenological

responses of individual species were assumed to be drawn

from statistical distributions instead of fixed estimates [64],

allowed us to better estimate their climatic sensitivities. These

models also more accurately quantified uncertainty in our esti-

mates and partitioned the variance in phenological timing and

phenological sensitivity within and between species and regions.

We fitted two models for each phenological phase. ‘Model 1’

estimated species-specific phenological sensitivities and parti-

tioned their variances. ‘Model 2’ provided a more powerful

comparison between phenological sensitivities found in the

warmer, lower latitudes of our study area and those in

the cooler, higher-latitude regions (figure 1).

In Model 1, the dependent variable was the DOY for which a

given phenological phase (flowering or fruiting) was recorded

for the ith specimen. DOY[i] was assumed to be normally

distributed, with mean m[i] and species-specific variance s[s].

DOY[i] � N(m[i],s[s]) : ð2:1Þ
The linear predictor m[i] was estimated as a function of covariates,

including mean spring (March–May) air temperatures

(SpringT[i]) and the average elevation of the county in which

the specimen was recorded (Elev[c]). Additional intercept terms

(a1–a5) were added for each species (s), region (r), species �
region combination (sr), county (c) and observer (o). The full

expression for estimating m[i] was

m[i] ¼a1[s] þ a2[r] þ a3[sr] þ a4[c] þ a5[o] þ b1[s] � SpringT[i]

þ b2[r] � SpringT[i] þ b3[sr] � SpringT[i] þ b4[s] �Elev[c]:
ð2:2Þ

Species-specific slope and intercept terms (a1[s], b1[s] and

b4[s] in equation (2.2)) were drawn from normal distribu-

tions, with species assemblage means ma1, mb1 and mb4, and

hypervariances sa1, sb1 and sb4.

a1[s] � N(ma1, sa1), ð2:3Þ
b1[s] � N(mb1, sb1) ð2:4Þ
and b4[s] � N(mb4, sb4): ð2:5Þ

Region and species � region slopes (b2[r], b3[sr]), and region,

species � region, county and observer intercepts (a2[r], a3[sr],

a4[c], a5[o]) in equation (2.2) were drawn from zero-centred

normal distributions with hypervariances sb2, sb3, sa2, sa3, sa4

and sa5, respectively. The species-specific sampling variation

(s[s]) terms in equation (2.1) were estimated independently to

account for differences in the duration of flowering and fruiting

phases between species.

The three different groups of slopes estimated for spring

temperature decomposed variation in phenological sensitivity

into components representing between-species variability (b1[s]),

between-region variability (b2[r]) and within-species variability

across regions (b3[sr]). The accompanying hypervariances (sb1,

sb2, sb3) directly represented these different sources of variability;

comparing their relative magnitudes quantified the contributions

of each source of variation to overall variation in phenological sen-

sitivity. This model structure also provided estimates of the

contributions of species turnover to differences in phenological

sensitivity between regions. We estimated these contributions

by analysing the output of Model 1, computing phenological sen-

sitivities for each observation for each iteration of our model. We

then used the mean and standard deviation of these estimates for

each region to create region-specific estimates of mean phenologi-

cal sensitivities and their variability. We assessed the contribution

of community turnover by comparing estimates that included all

three climate sensitivity terms (b1[s] þ b2[r] þ b3[sr]) with esti-

mates that included only the terms that represent species-level

variability in climate sensitivity (b1[s]). This strategy allowed us

to infer what the mean phenological sensitivities would be

across regions in the hypothetical case that they differed only in

species composition, and species responded identically to climate

across their ranges.

Model 2 differed from Model 1 in treating the region term

(b2[r]) as a two-level fixed effect representing the climatic

region from which the specimen was drawn.

m[i] ¼a2[r] þ a3[sr] þ a4[c] þ a5[o] þ b2[r] � SpringT[i]

þ b3[sr] � SpringT[i] þ b4[s] �Elev[c]:
ð2:6Þ

Model 2 maximized statistical power to compare overall phe-

nological sensitivities of species between warmer, more southerly

parts of our study area and cooler, more northerly areas. Instead

of treating region-specific slopes and intercepts as normally dis-

tributed random grouping factors, we represented species �
region, county and observer terms as zero-centred and normally

distributed. This structure allowed more direct inference about

overall differences in phenological sensitivity between cool and

http://prism.oregonstate.edu/
http://prism.oregonstate.edu/
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mixed-warm climate regions (differences between estimates of

b2[r] for the two regions). Unlike Model 1, however, Model 2

lacks species-specific parameters (a1[s] and b1[s]) and did not

provide species-specific estimates of phenological sensitivity or

permit comparison of variability in phenological sensitivity

within and between species.

We estimated all parameters of the two models using

Hamiltonian Monte Carlo (HMC) [65] implemented in Stan

(v. 2.17.3) [66] called from the rstan interface [67] in R [68].

HMC is a form of Markov chain Monte Carlo (MCMC) that effi-

ciently estimates hierarchical Bayesian regression models for

larger datasets like ours [69]. We used relatively uninformative

prior distributions: zero-centred normal priors for slopes and

intercepts, and truncated normal distributions for variances

and hypervariances. To account for sampling behaviour and sim-

plify prior choices, we scaled and centred the response variable

DOY[i] and all continuous predictors by subtracting the mean

and dividing by the standard deviation of each variable. For

each model run for each phenophase, we estimated parameters

using four MCMC chains of 4000 iterations each and discarded

the first 2000 iterations of each chain (as burn-in). We assessed

convergence of each model both visually and with the

Gelman–Rubin statistic (̂r , 1:1 for all parameters). We also

assessed good model fit using visual posterior predictive

checks implemented in the bayesplot R package [70]. All

parameter estimates were based on at least 1000 effective pos-

terior samples. Estimates reported in the results were back-
transformed to the original data scale to facilitate illustration

and interpretation.

Code and data for reproducing these analyses are archived

by Harvard Forest [71].
3. Results
Our focal species spanned wide geographical and climatic

space (figure 1). They demonstrated diverse patterns of

phenology and significant variation in responses to climate

across species and geographies. Using Model 1, estimated

mean (non-leap-year) flower timing at 7.48C and 216 m a.s.l.

(mean collection conditions for the specimens) varied from

10 May (Day 130, Anemone hepatica) to 10 September (Day

253, Bidens vulgata) for flowering and 22 May (Day 142, A.
hepatica) to 14 September (Day 257, B. vulgata) for fruiting

(figure 2). The average lag time between flowering and fruit-

ing across all species was approximately 20 days. Most

species flowered and fruited earlier with warmer spring temp-

eratures (assemblage mean 22.56 days/8C, 95% CI 23.64 to

21.48, figure 2), and these responses were credibly different

from zero (posterior probability . 0.95) for 21 out of 30

species for flowering and 15 out of 30 species for fruiting

(electronic supplementary material, tables S3 and S4).
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For both flowering and fruiting, species with earlier

reproductive phenologies were substantially more sensitive

to spring temperature than species that flowered and fruited

later in the season. This sensitivity manifested in a strong

positive correlation between mean flowering and fruiting

date and spring temperature sensitivity, with a slope of

0.018 days/8C per day for flowering and 0.023 days/8C per

day for fruiting (figure 2a,b). These slopes were different

from zero with greater than 99% posterior probability. We

also found that, all other conditions being equal, flowering

and fruiting came earlier at higher elevations (community

means 21.71 to 20.11 days earlier per 100 m greater

elevation for flowering, and 22.07 to 0.14 days earlier for

fruiting, figure 2c,d). These effects were credibly different

from zero for 7 of 30 species for flowering and 8 of 30 species

for fruiting, but elevation influenced early-flowering and

late-flowering species approximately equally.

Species in the warm and mixed-temperate climatic

regions showed greater mean sensitivities to spring tempera-

ture and also greater variability (standard deviation) in

climate sensitivity between species than in the cool-temperate

northeast and Appalachians (figure 3; electronic supplemen-

tary material, figures S1 and S2). Using Model 2, we

estimated that mean sensitivities in the mixed-warm region

(figure 1b) were 22.96 days/8C (95% CI 3.69 to 22.25) for

flowering and 23.37 days/8C (95% CI 24.12 to 22.60) for

fruiting, but were substantially closer to zero in the cool-

temperate region (22.51 days/8C, 95% CI 22.86 to 22.19

for flowering, and 22.09 days/8C, 95% CI 22.63 to 21.57

for fruiting, figure 3a). The mixed-warm climatic region also

had greater assemblage variability in phenological sensitivity
(figure 3b). All differences between cold and mixed-warm

climatic regions had a posterior probability greater than

0.95 except for mean differences in flowering, where differ-

ences had a posterior probability of 0.87. These qualitative

patterns were robust to an alternative spatial binning strategy

that used only latitude, and not climate, to differentiate more

northerly and southerly regions (electronic supplementary

material, figure S3).

Overall differences between cool, northern and warm,

southerly parts of the study area were accompanied by

large amounts of regional variation not explained by climate

or latitude (figure 4). For example, using Model 1 we esti-

mated that plants in the Ozark Complex and mid-Atlantic

NEON domains were substantially more phenologically

sensitive than those in the northeast and Appalachians

(figure 4a), while the northeast and Ozark Complex had

plant assemblages with greater variability in phenological

sensitivity (figure 4c). Differences in phenological sensitivity

between regions were not adequately explained by differ-

ences in species composition, as per-sample weighted

means computed using only species effects (b1[s] in equation

(2.2)), did not show strong regional differences (figure 4b,d ).
Our hierarchical approach allowed us to compare within-

species, between-species and between-region sources of

variability for both mean flowering time and sensitivity to

spring temperature (figure 5). This analysis shows that

between-species variation dominated variability in mean

flowering time (figure 5a), but there was a similar amount

of variation in phenological sensitivity within species

between regions to that seen between species for both

flowering and fruiting (figure 5b).
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4. Discussion
Our analyses revealed that (i) plant species from the eastern

United States exhibit advanced timing of flowering and fruit-

ing in response to warmer spring temperatures, (ii) the

magnitude of these responses varies significantly between

and within species across their latitudinal ranges and (iii)

that phenological sensitivity to temperature tends to be

higher in the warmer, more stable climates of lower-latitude

regions.
(a) Differential responses to spring warming
across species

Consistent with previous field observations of community

phenology, we found that reproductive phenology of flower-

ing plants accelerated with warming spring temperatures

(e.g. [46,72,73]; but see [63]). The average number of days of

phenological advancement per degree increase in temperature

(22.56 days/8C) that we observed also fell within previous

estimates [46,74,75]. All else being equal, flowering and fruit-

ing tended to occur earlier at higher elevations. Higher

elevations tend to be relatively colder and have shorter
growing seasons, which exert pressure for species to initiate

growth as soon as conditions become favourable [44,76–78].

Despite these general trends, we observed significant

variation among species in their responses to warming. In

general, early-flowering and early-fruiting species were

more sensitive to spring temperatures than late-flowering/

fruiting species (figure 2), a pattern also observed at smaller

scales [75,79]. Warming-induced leaf budburst advancement

has been suggested to be less prominent in late-flushing

species compared with early-flushing ones owing to their

greater chilling requirements [80]. Similar mechanisms may

affect flowering and fruiting, where advances in the flowering

date of late-flowering species caused by spring warming

would be smaller than those of early-flowering species,

which would manifest as weaker phenological responses to

temperature in late-flowering species. Further, as flowering

and fruiting events later in the year are more separated from

spring climatic conditions, there is an extended window of

time in which other factors could affect or modify reproduc-

tive timing. For instance, late-flowering species may be more

sensitive to photoperiod or precipitation.

A large amount of variability in phenological sensitivity

across species suggests that phenological responses to cli-

matic change will be heterogeneous within communities.

This could cause temporal reorganization of the structure

and composition of plant communities, potentially altering

direct and indirect interactions among plant species and

between plant and animal species, and ecosystem services

[24,34,81–83].

(b) Phenological sensitivity to spring temperature tends
to decrease with latitude

The consequences of phenological shifts can be further com-

plicated by intraspecific variation in phenological sensitivity

to environmental cues [33,38]. For instance, using 20 years

of observational data, Prevéy et al. [44] found that the pheno-

logical sensitivity to temperature of tundra plants at colder,

higher latitudes was greater than at warmer, lower latitudes.

However, contrary to such studies, we found that plants in

warmer, lower-latitude regions tended to be more pheno-

logically sensitive to temperature, especially for fruiting

(figure 3). We hypothesize that this is due to the lower and

less predictable winter and spring climates of the north-

eastern United States. In such environments, dynamic

phenological tracking of spring temperatures (i.e. high phe-

nological sensitivity to temperature) presents high risks to

reproductive success, because warm periods may often be fol-

lowed by periods of dramatic chilling [40]. At lower latitudes,

the advent and progression of spring is less variable and

average temperatures are higher; thus phenological tracking

of temperature is less risky (electronic supplementary

material, figures S1 and S2). Indeed, species exhibited a

larger amount of variability in their responses to temperature

in the warmer, lower-latitudinal parts of their ranges.

Climate and phenology might play different roles in filter-

ing species assemblages in regions with longer growing

seasons than in regions where the growing season is short

and reproductive phenologies are strongly constrained by

shorter freeze-free periods [35]. Indeed, studies synthesizing

plot-level observational data have suggested phenological

sensitivity of plant communities to warming may be

positively correlated with mean annual temperature, but
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negatively correlated with seasonal temperature range (i.e.

variability) in Europe [84] and China [85]. Alternatively, it

is possible that plants in warmer climates exist closer to

their response thresholds in terms of phenology, and thus

react more dramatically to small changes in temperature.

However, Körner & Basler [86] noted that cherry cultivars

from regions with less variable spring temperatures flowered

earlier in common gardens, suggesting phenological sensi-

tivity does vary with climate. Plants in regions with high

spring temperature variability also tend to be less pheno-

logically sensitive in terms of leaf out and bud break to

temperature than those in less variable climates [40]. Our

results demonstrating that phenological sensitivity to temp-

erature is higher in areas with low standard deviation of

intra-annual temperature and inter-annual variation in

spring temperature and high mean annual temperature

support these findings.

(c) Consequences of variation in phenological responses
across species ranges

Our results imply that with equal warming, individuals in

lower-latitude populations will advance their reproductive

phenology more dramatically than those at higher latitudes.

This observed variation in phenological response may reflect

adaptation to local climatic conditions, especially in annual

species. We found a large amount of regional variation in
phenological sensitivity that was not clearly linked to climate

or latitude. These regional differences were not explained

by species turnover, but rather suggest the presence of

inter-population variation driven by local adaptation or

phenological plasticity (figure 4). Further, within-species

variation in phenological sensitivity between regions was of

similarmagnitude to differences in sensitivity between species

(figure 5). Other studies examining leaf out and senescence in

trees also have shown that individuals from geographically

and climatically separated populations differ in their

phenology even when grown in common gardens [40,87,88].

Because the eastern United States is experiencing geo-

graphically variable climatic change, the heterogeneity in

phenological responses to warming that we observed within

and among species may have important consequences for

plant communities in the near future. Colder, climatically

variable high-latitude regions are experiencing dispropor-

tionate warming and climatic homogenization (i.e. reduced

standard variation of intra-annual temperature), while

warmer, climatically less variable more southerly regions are

experiencing increases in intra-annual temperature variability

(electronic supplementary material, figure S1). These climatic

changes could alter patterns of overlap in reproductive timing

among species in a community and across their individual

ranges. Changes in phenological overlap across ranges could

have direct consequences for adaptive evolution and species

resilience to current and impending climatic changes, as
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gene flow may increase among previously (temporally) iso-

lated populations of some species and decrease among

others [41–43,89–91]. Decreased phenological overlap could

genetically isolate fringe populations, potentially leading to

local extirpation and species range contractions. Moreover,

phenologically sensitive plants at lower latitudes may

especially be at risk due to increasingly variable temperatures

and increased probabilities of phenological mismatch with

mutualists [92]. However, we cannot fully rule out the

possibility that individuals of long-lived perennial species

may also be able to acclimate their phenological sensitivity

to changing climatic conditions over longer periods of time.

Some of the variation we observe in phenological sensi-

tivity to temperature across and within species may be due

to differences in microclimate. However, the lack of accurate

location data for most historic specimens limited our ability

to infer fine-scale climate, necessitating coarser, county-level

analyses. Also, we cannot ignore the possibility that the phe-

nological trends we observed are unique to the species that

we studied and/or reflect biases in herbarium collections

[93]. To minimize effects of spatial bias and uncertainty, we

studied common, well-collected species and accounted for

climatic heterogeneity present in each sampling locale in

our models. However, these taxa are not necessarily represen-

tative of species assemblages across regions, and our analyses

do not account explicitly for spatial and temporal sampling
biases; some regional differences could be due to differing

patterns of collection across space and time. Including

county-level random effects as we have done here minimizes

the impacts of these biases but does not eliminate them

altogether. It is possible that different patterns of pheno-

logical sensitivity may be observed across species ranges

depending on how climatic and/or geographical regions

are delimited, though testing an alternative threshold yielded

similar results, suggesting that the patterns we observe are

robust to spatial binning choices. Additionally, we addressed

crowdsourcing bias by including crowdsourcer random

effects and removing observations for crowdsourcers with

low reliability scores even though phenological data

collected by citizen scientists do not differ significantly in

quality from those collected by experts [46,55]. Lastly,

although spring temperature is a critical driver of flowering

phenology in temperate climates, we cannot fully exclude

the possibility that other variables correlated with latitude

or mean spring temperature may determine observed

variance in phenological sensitivity [46,73,75,94–97]. For

example, spring temperature tends to be highly correlated

with mean annual and mean monthly temperatures in east-

ern North America (electronic supplementary material,

figure S4). Photoperiod or snow melt may further influence

and alter species phenological responses [98–103]. Future

research into how these environmental cues interact to trigger

phenological events is necessary and will greatly improve our

understanding of plant phenology.
5. Conclusion
Building on previous phenological research by scoring mul-

tiple phenological traits across over 8000 herbarium

specimens spanning 120 years, we have demonstrated that

phenological sensitivity can vary greatly across species’

ranges. This variance may be attributed to adaptation or

acclimation to local climates. The large amount of within-

species variation in phenological sensitivity that we observed

underlines the complex and contingent nature of phenological

sensitivities. Phenological responses of individual species to

climate are not stable phenotypic traits, but instead emerge

from amultitude of potentially reciprocal interactions between

organisms and their environment. Populations in different

regions could have differences in frequencies of genes that

control how climate affects the timing of development or

differences in microhabitat distributions between regions that

alter how populations experience local climate. The regions

themselves may have differences in unmeasured environ-

mental factors that interact with responses to temperature or

differences in species interactions that may alter phenological

signalling. The circumstances and extent to which these or

other factors explain regional variation in species responses

to climate is currently unknown. To untangle the roles of

ecological and evolutionary processes governing the hetero-

geneous phenological responses of plant species to warming,

researchers will have to take advantage of new techniques

and datasets. In addition to continued field observations and

laboratory analysis of mechanisms responsible for flowering

and fruiting, herbarium specimens can provide a comprehen-

sive, nuanced picture of phenological responses to ongoing

climatic change across many species. Our study further

demonstrates that we can now harness the treasure trove of
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information in herbaria across theworld to examine hundreds,

if not thousands of species across myriad plant lineages, habi-

tats and regions. Such efforts will be critical to enhance our

ability to forecast future changes in plant assemblages across

space and time in an era of accelerating climate change

[104,105].
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and local adaptation in trees. Annu. Rev. Ecol. Evol.
Syst. 38, 595–619. (doi:10.1146/annurev.ecolsys.
38.091206.095646)

90. Nagy ES, Rice KJ. 1997 Local adaptation in two
subspecies of an annual plant: implications for
migration and gene flow. Evolution 51,
1079–1089. (doi:10.1111/j.1558-5646.1997.
tb03955.x)

91. Fox GA. 2003 Assortative mating and plant
phenology: evolutionary and practical consequences.
Evol. Ecol. Res. 5, 1–18.

92. Thomson JD. 2010 Flowering phenology, fruiting
success and progressive deterioration of pollination
in an early-flowering geophyte. Phil. Trans. R. Soc. B
365, 3187–3199. (doi:10.1098/rstb.2010.0115)

93. Daru BH et al. 2018 Widespread sampling biases
in herbaria revealed from large-scale digitization.
New Phytol. 217, 939–955. (doi:10.1111/nph.
14855)

94. Richardson AD, Bailey AS, Denny EG, Martin CW,
O’Keefe J. 2006 Phenology of a northern hardwood
forest canopy. Glob. Change Biol. 12, 1174–1188.
(doi:10.1111/j.1365-2486.2006.01164.x)

95. Ellwood ER, Temple SA, Primack RB, Bradley NL,
Davis CC. 2013 Record-breaking early flowering in
the eastern United States. PLoS ONE 8, 1–9.
(doi:10.1371/journal.pone.0053788)

96. Augspurger CK. 2013 Reconstructing patterns of
temperature, phenology, and frost damage over 124
years: spring damage risk is increasing. Ecology 94,
41–50. (doi:10.1890/12-0200.1)
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