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ABSTRACT 
Hyperspectral imaging has numerous applications in a range of fields for target detection. While its original 
applications were in remote sensing, new uses include analyzing food quality, agriculture and medicine, 
Hyperspectral imaging has shown utility in fluorescence microscopy for detecting signatures from many 
fluorescent molecules, but acquisition speeds have been slow due to the need to acquire many spectral 
bands and the light losses associated with spectral filtering. Therefore, a novel confocal microscope, the 5- 
Dimensional Rapid Hyperspectral Imaging Platform (RHIP-5D) was designed and is undergoing testing to 
overcome acquisition speed and sensitivity limitations. The current design utilizes light-emitting diodes 
(LEDs) and a multifaceted mirror array to combine light sources into a liquid light guide. Initial tests 
demonstrated feasibility and we are now working on determining the ideal location of the liquid light guide, 
LEDs, lenses and mirror array to optimize optical transmission. A computational model was constructed 
using Monte Carlo optical ray tracing in TracePro software (Lambda Research Corp.). LED sources were 
simulated by importing irradiance properties from the manufacturers’ specifications. Optical properties of 
lenses were modeled using lens files available from the manufacturer. Analysis of the model includes 
geometry and parametric optimization, assessing lens power, mirror angles and location of optical 
elements. Initial results show an increase of transmission is possible by up to 20%. Future work will 
involve evaluating the position of the liquid light guide as well as analyzing lens configurations to further 
increase optical transmission. 
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1. INTRODUCTION 
Hyperspectral imaging technology has been applied to numerous fields from its beginning stages to today’s 
applications, specifically in the medical field1. The use and need for HSI has grown greatly over the past 
decade. HSI has proven to be an effective tool for a range of fields to detect specific materials and 
targets.  Many technologies were developed for the application of hyperspectral imaging, such as NASA’s 
Landsat mission, launching the first Earth Resources Technology Satellite, which was devoted to 
monitoring and managing of earth’s resources2,3. The remote imagery acquired from Landsat allowed for 
land classification, assessment of sea ice conditions, coastal water quality and water pollution monitoring, 
measuring snow line elevation and melting rate, as well as crop and soil classification. The data acquired 
with the multispectral scanner (MSS) allowed estimation of mineral content and vegetation mapping. While 
its original applications were in the field of earth remote sensing4,5, HSI methods have been applied in a 
range of fields including food quality6, agriculture7, and historical documents authentication8. 
Hyperspectral imaging has shown great utility in fluorescence microscopy applications for separating 
signatures from many fluorescent molecules, but has unfortunately been slow due to the need to acquire 
signal in many spectral bands and the light losses associated with spectral filtering9–13. A primary goal in 
HSI medical applications is detection of cancerous cells and effectively identifying distinctive parts of 
tissue14,15.  

The purpose of this work is to investigate the feasibility of increasing speed and sensitivity of hyperspectral 
imaging microscopy applications through system design of excitation scanning. As hardware and 
technologies continue to advance, medical hyperspectral imaging and analysis methods will improve the 
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accuracy of disease diagnosis. Addressing speed and sensitivity limitations allows for necessary 
advancement in improving the accuracy of identifying cancerous cells. Here, we report on a new HSI 
system for high-speed microscopy called RHIP-5D. The system has been designed to detect the entire 
fluorescence emission in a single channel, while simultaneously providing spectral discrimination by 
quickly scanning through a range of excitation wavelength bands. The system is expected to increase 
sensitivity by 25-100X, compared to currently available emission-filtering based systems16. 

2. METHODS AND RESULTS 
The RHIP-5D system is currently being designed to utilize light-emitting diodes, a multifaceted mirror 
array, and lenses to focus all light sources into a liquid light guide. A computational model was constructed 
using Monte Carlo optical ray tracing in TracePro software (Lambda Research Corp.). Importing irradiance 
properties from the manufacturers’ specifications simulated LED sources, while optical properties of lenses 
were modeled using lens files available from the manufacturer. A TracePro macro language was created to 
analyze transmission collected at a range of possible locations of the LED, liquid light guide (LLG), and 
lens with a fixed mirror angle and position. Figure 1 shows an example of the geometric model created in 
TracePro, while Figure 2 shows an example of ray trace analysis from LED to LLG. The design evaluated 
the effect of all possible combinations of LED, lens, and LLG parametric locations on the amount of 
transmission collected.  Several lenses were considered to determine the optimal focal length (FL) for the 
system design. Each geometric element in the software model design was characterized based on its optical 
characteristics. Specific optical properties of the LED, lens, multifaceted mirror, and LLG geometry were 
specified in the software to match their experimental characteristics. For example, a surface on the LED 
was characterized as the ‘source generator’, which defined the starting location, power, and angular 
dispersion for all rays traced. Similarly, surfaces on the rest of the geometric elements in the design were 
specified to properly refract, reflect, or absorb light during the ray trace.  
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Figure 1: Geometric model created for light path and transmission collection analysis in TracePro. The 
angled mirror represents one face of the multifaceted mirror array for the system. It was set at a fixed ZX 
location of (23, 0) mm ensuring that it was centered to reflect light to the LLG entrance aperture. LED-to-
lens minimum distance was determined based on the focal length of the lens used, which was 31.8 mm. 
Various lenses with different FL were considered to determine the most optimal lens. A range of possible 
combinations of LLG, LED, and Lens positions were analyzed to determine the best geometric locations 
for transmission collection. The surface of the LED facing the lens was set as a surface source, allowing the 
software to apply the imported irradiance properties of the LED to this surface. Similar methods were used 
to define lens and mirror surface properties. Finally, the LLG surface facing the mirror was defined as an 
interrogation plane, allowing for transmission collection analysis at the LLG entrance aperture. 
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