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1. Introduction

Let G be a graph. An edge-coloring is a proper edge-coloring if the set of edges incident to a vertex
is given distinct colors. If G is edge-colored, we say that H C G is rainbow if the colors assigned to
the edges of H are distinct.
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There has been extensive research on rainbow properties of properly edge-colored graphs. One
problem that has seen significant recent interest is to find many edge-disjoint rainbow spanning
trees, see Akbari & Alipour [1], Balogh, Liu & Montgomery [5], Pokrovskiy & Sudakov [14], Carraher,
Hartke & Horn [6], and Horn & Nelson [13]. A related old conjecture of Andersen [4] is the following,
which if true would be best possible.

Conjecture 1. Every properly edge-colored complete graph on n vertices contains a rainbow path on
n — 1 vertices.

In the same paper, Andersen proved the following result.

Theorem 2. Every properly edge-colored complete graph on n vertices contains a Hamiltonian cycle
in which at least n — +/2n distinct colors appear.

In this paper, we make the following improvement (for large n) to Theorem 2.

Theorem 3. There exists a constant C such that for every n the following holds. Every properly edge-
colored complete graph on n vertices contains a Hamiltonian cycle in which at least n—C(log n)? distinct
colors appear.

Note that our proof of Theorem 3 very closely follows the proof of Hatami & Shor’s [12] result
on the length of a partial traversal in a Latin square.

Chen & Li [8] consider a similar problem in edge-colored graphs which are not necessarily
proper, but in which every vertex is incident to edges of many different colors, and proposed a
generalization of Conjecture 1 in this setting.

Instead of asking for a Hamiltonian cycle that uses many colors, another way to approach
Conjecture 1, is to attempt to find a long rainbow cycle. This problem has received recent interest.
Akbari, Etesami, Mahini & Mahmoody [2] proved that a cycle of length n/2 — 1 exists in every
properly colored complete graph G on n vertices. Then Gyarfas & Mhalla [10] proved that a rainbow
path of length (2n + 1)/3 exists in G provided that, for every color @ used, the set of edges given
the color « forms a perfect matching in G. Not much later Gyarfas, Ruszinkd, Sarkézy, & Schelp [11]
showed that G contains a rainbow cycle of length (4/7 + o(1))n for every proper edge-coloring.
Then, independently, both Gebauer & Mousset [9] and Chen & Li [7] showed that a path of length
(3/4 — (1))n exists when G is properly colored. This was the best known lower bound until very
recently Alon, Pokrovskiy & Sudakov [3] established the following breakthrough result.

Theorem 4. For all sufficiently large n, every properly edge-colored complete graph on n vertices
contains a rainbow cycle on at least n — 24n>/4 vertices.

Heavily relying on the methods developed in [3], we make the following improvement to
Theorem 4.

Theorem 5. There exists a constant C such that the following holds. If G is a properly edge-colored
complete graph on n vertices for n sufficiently large, then there exists a rainbow cycle in G on at least
n — Clogn./n vertices.

To prove Theorem 5, we use the following theorem which is an extension of Theorem 1.3 in [3].
Our improvement, and one of the main observations that drives our proof, is that essentially the
same argument as the one given in [3] works when the sizes of the two sets are unbalanced, i.e.,
only one of the two sets needs to have order 2 ((log n/p)z), the other can be as small as £2 (logn/p).

Theorem 6. For every sufficiently small ¢ > 0 there exists a constant C such that the following holds.
Let G be a properly edge-colored graph on n vertices such that 5(G) > (1 — &)n for some & = &(n).
Let H be the spanning subgraph obtained by choosing every color class independently at random with
probability p. Then the following holds with high probability.
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(a) If (1 — &)n > C'B" then all vertices v have degree (1 + &)p - d¢(v) in H.
p
(b) For every pair A and B of disjoint vertex sets, if |A| > C'°8" and |B| > max{C('%")2, C&n}, then
p p
en(A, B) > (1 — )plA||BI.

1.1. Definitions and notation

Most of our notation is standard except possibly the following. Let G be a graph and let A and B
be disjoint vertex subsets. We let

Ec(A,B)={xy € E(G):x e Aand y € B},
and let eg(A, B) = |Eg(A, B)|. For a vertex subset U, we let

Ne(U) = [ No(w).

uel
ForapathP = vy, ..., v, we call v; and v, the endpoints of P and we call a path Q a subpath of P
ifQ =v,...,vjforsome1 <i<j<mForasetXand0 <y < |X|,welet(’y() ={YCX:|Y|=y)}

be the set of all subsets of X that have order exactly y. All logarithms are base 2 unless otherwise
specified.

2. Proof of Theorem 6
We use the following form of the well-known Chernoff bound.

Lemma 7 (Chernoff Bound). Let X be a binomial random variable with parameters (n, p). Then for every
e € (0, 1) we have that

P(IX — pn| > epn) < 2773,

For an ¢ > 0, call a pair of disjoint vertex subsets A, B of a properly edge-colored graph G
(1 — &)-rainbow if there are (1 — ¢)|A||B| different colors that appear on the edges Eg(A, B).

The following is essentially equivalent to Lemma 2.2 in [3] and is a simple application of the
Chernoff bound (Lemma 7).

Lemma 8. For every ¢ > O, there exists a constant C such that the following holds. Let G be a
properly edge-colored graph on n vertices, and let H be the spanning subgraph of G obtained by choosing
every color class independently at random with probability p. Then, with high probability, for every
(1 — g)-rainbow pair S, T such that |S| = |T| > Cl"% we have that

en(S,T) = (1 —2¢)p|S|IT|.

The proof of the following lemma is very similar to Lemma 2.3 in [3]. The main differences are
that it can be applied to graphs that are not complete and that the sets A and B can be of different
sizes.

Lemma 9. For every sufficiently small ¢ > 0, there exists C such that when n is sufficiently large the
following holds. Let G be a properly edge-colored graph on n vertices and let A and B be two disjoint
vertex subsets of size a and b, respectively, with a < b. Suppose 5(G) > (1—&)n for some &€ = £(n) > 0.
If y divides both a and b; b > max{Cy?, C&n}; and y > C, then there exist a partition {A;} of A and a
partition {B;} of B with all parts having equal size y such that all but at most ¢ - ‘y’—ﬁ’ of the pairs A;, B;
are (1 — e)-rainbow.

Proof. Let ¢ > 0 be sufficiently small. We choose C > 2¢~2. We then have that

y—17% y* 1 ¢ &n 1 &2
v e a e 1
Ww-1 b -c-2 ™ b ~C- 2 M

o)
A
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Let
= {a : Je € E(A, B) such that e is colored with o}

be the set of colors used on the edges of E(A, B). Assume S and T are selected uniformly at random
from (3) and (5) respectively.

For every distinct e, e’ € E(S, T) that do not share an endpoint

2 20y — 17
Y and Bl cES.T)= YO -1 )
ab abla—1)b—1)

Let @ € £2 and E, = {e € E(A, B) : e is give color «}. Since the edge-coloring is proper, no two edges
in E, share an endpoint and |E,| < min{a, b} = a. Therefore, using the Bonferroni inequalities, (2)
and (1), we get the following lower bound on the probability that the color « is used on an edge in

E(S,T):

Ple € E(S,T)) =

P([E, NE(S,T)| = 1)> > Ple€E(S. T)— Y Ple.e €ES,T))
ecEy {e.e’}e(%’)

2

Y- Yy —1° (IEl
Tab " abla—1)(b-=1)\ 2

:(1_0’ 1(E, |_1)>L|E|
2a—1)b-1)

12\ 42 2\ .2
(1= Y=V s (12 S DL
2(b—1)/) ab 2 ) ab

Let Z be the number of different colors used on the edges of E(S, T). Since

D Bl = UeeEul = |E(A, B) = a- (b+8(G) —n) > ab — aén,

oaes
the linearity of expectation, ( ) and (1) together imply that

v e gn\ , 24,2
EZ)= ) (1-¢ /2)—|E |=(1-¢ /2) S(ab—agn) > (1 - - —)y > (1- &)
aef?

Clearly, Z < |E(S,T)| < y? soy?> —Z > 0, and E(y? — Z) < ?y%. Markov’s inequality then implies
that P(y> —Z > y?) < ¢, 50

P (S, T is (1 — g)-rainbow) > 1 — ¢. (4)

Select an ordered partition {A;} of A and an ordered partition {B;} of B so that each part has equal
size y uniformly at random from all such ordered partitions. For every i € [a/y] and j € [b/y], by
symmetry and (4), the probability that A;, B; is (1—e)-rainbow is at least 1—e. This with the linearity
of expectation 1mp11es that the expected number of pairs of sets A; and B; that are (l — ¢g)-rainbow
is at least (1 —¢)- ¢ vy S0 there exists such a partition such that all but at most s palrs A;, B;j are
(1 — g)-rainbow. D

Proof of Theorem 6. Assume ¢ > 0 is sufficiently small and that C’ > ¢! is large enough so
that both Lemmas 8 and 9 simultaneous apply with C" and ¢ = ¢/5 playing the roles of C and e,
respectively. We will show that the conclusions of Theorem 6 hold with C = 3C’e~ 1.

To prove part (a) of the lemma, assume that §(G) > (1 — &)n > C'D%, S0

p-dg(v) = p(1—&)n > Clogn. (5)

For every v € V(G), the edges incident to v are rainbow, so the number of edges incident to v
that are in H is binomial distributed with parameters (d¢(v), p). The fact that C > 3C’s~! > 3g72
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and (5) imply that
n . 2e Pdce?/3 < op=1

so the Chernoff bound (Lemma 7) and the union bound imply that with high probability, for every
v € V(G), we have

du(v) = (1 €)p - dg(v).

This proves (a).
We will now prove (b). Fix y = [C'logn/p]|. By Lemma 8, with high probability,

en(S, T) > (1 — 2¢")y?, for every (1 — &')-rainbow pair S, T such that |S| = |Y| = y. (6)

We will now assume that (6) holds and show that this implies that (b) holds. Since (6) holds with
high probability, this will complete the proof of the lemma.

Let b be the smallest number larger than max{C’y?, C’£n} that is divisible by y. Let A’ and B’ be
vertex disjoint subsets of orders y and b, respectively. Lemma 9 implies that there exists a partition
{B;} of B' into parts of size y such that all but an &’ fraction of the pairs A", B; are (1 — &’)-rainbow,

ie, if we let] = {j: A, B; is (1 — &')-rainbow}, then |J| > (1 — &¢')yb/y?. Therefore, with (6),

(A B) = Y en(A'B) = (1—&)yb/y* - (1—2¢")y* = (1—3&)yb. (7)
jel
Finally, to complete the proof of (b), let A and B be disjoint vertex subsets such that |A|] >
Clogn/p and |B| > max{C(logn/p)?, C&n}. Recall that ¢’ = 3C’/C, so ¢'|A| > y and &|B| > b.
Therefore, there exists a collection of at least (1 — &’)|A|/y disjoint subsets of A each of size y and
a collection of at least (1 — ¢’)|B|/b disjoint subsets of B each of size b. With (7) and the fact that
& = 5¢’, we have that

en(A,B) > (1—¢")|Al/y - (1 —¢")B|/b-(1—3¢")yb > (1 —¢)IA||B]. O
3. Long rainbow cycles
This appears as Lemma 3.1 in [3].

Lemma 10. Forall y, £, nwith& > y and 3y& —y?/2 > n~! the following holds. Let G be a properly
edge-colored graph on n vertices such that §(G) > (1 — &)n. Then G contains a rainbow path forest P
with at most yn paths and |E(P)| > (1 — 4&)n.

For 0 < a < b, call a graph H an (a, b)-expander, if the following holds:

(E1) 6(H) = a;
(E2) if A C V(H) such that |A| > a, then |[Ny(A)| > n—a— b; and
(E3) if A and B are disjoint subsets of order a and b, respectively, then Eg(A, B) # @.

Note that (E3) implies (E2), because (E3) implies |V(G) \ (Ny(A') UA')| < b for every A’ € (%), but it
is more convenient to state (E2) separately.

Lemma 11. Let0 < a < b < n/4, r > 0, and let G, Hy, H,, and Hs be edge-disjoint spanning
subgraphs of the complete graph on n vertices whose edges are edge-colored by pairwise disjoint sets of
colors such that Hy, H, and Hs are each (a, b)-expanders. Suppose P = {P1, ..., P;} is a rainbow path
forest in G such that for U = V(G) \ V(P) we have |U| < b. If |P;| < n — a — |U|, then there exists
ej € E(H;) for j € [3], and i € [r], such that there are two disjoint paths P; and P; in the graph induced
in G by V(Py) U V(P;) U U with the additional edges {eq, e,, e3} where

(1) P} is a subpath of P; on less than |P;| /2 vertices (we allow P] to be the path without vertices here),
(2) 1P}l = |P1] + |Pi| — |P{], and
(3) P' =P — Py — P U{P;, P/} is a rainbow path forest.
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Proof. Assume |P;| < n—a— |U| and that the conclusions of the lemma do not hold. Let vy, ..., v,
be the vertices of Py in the order they appear on the path, let T be the set of vertices on the paths
Py, ..., P, and recall that U = V(G) \ V(P). We have that

ITl=n—|P| = Ul = a. (8)

Claim 11.1. Let o be a permutation of {1, 2, 3}. For every path P such that

o [P| > |Py,
e V(P)C V(P;)UU, and
e E(P) C E(P1) U {es(1), es(2)} Where e,(j) € E(Hy(j)) for j € [2],

there are no edges in E(H,(3)) incident to an endpoint of P and a vertex in T.

Proof. Suppose, for a contradiction, that v is an endpoint of such a path P and there exists
X € NHUG)(U) NT.Let P; € {P,, ..., P} be the path containing x. We can construct P; by combining
P with the longer of the two subpaths in P; that have x as an endpoint. By letting P/ be the subpath

of P; with the vertex set V(P;) \ V(P;) (recall that the statement of the theorem allows P; to be the
path without vertices), we have two paths P; and P/ that satisfy the conclusions of the lemma. O

Let P be the set of all paths that do not contain an edge from E(H3) and that satisfy the conditions
of Claim 11.1. Let

X = {x € V(G) : there exists P € P such that x is an endpoint of P}.

Claim 11.1 implies that Ey, (X, T) = @, so, with (8), we will contradict (E3) and prove the lemma if
we can show that |X| > b.
Claim 11.1 implies that, in Hy, v; does not have a neighbor in T, so if we let,

Y = (Ny,(v1) NU) U {v; : vj11 € Ny, (v1) NV(P)},
(E1) implies that |Y| = |[Ny,(v1)| > a. Therefore, by (E2) and the fact that a < b < n/4,

[Ny, (Y)| = n—a—b>2b. 9)
We also have that Y C X. To see this, observe that if y € Y N U, then y, vy, ..., vy, is in P, and if
yeY\U,thenyison Py, soy = v for some j € [m] and the path vj, ..., v1, vjg1, ..., vp is in P.

We will now describe a mapping from Ny, (Y) to X such that, for every x € X, at most two vertices
in Ny, (Y) are mapped to x. By (9), this will imply that [X| > b, which, as was previously mentioned,
will prove the claim. To this end, let z € Ny, (Y), and arbitrarily select some y € Ny,(v) NY. Recall
that there exists P, € P that has y as an endpoint and that does not contain edges from either H,
or Hs. First assume that z is not on P;. Then, by using yz € E(H,), we can append z to P, to create
an element of P with z as an endpoint. Therefore, z € X, so, in this case, we map z to itself (see
Figs. 1a and 1b). Now assume that, z = vy for some k € [m], and recall that Y does not intersect
T,soy € V(P;)UU.Ify € U, since yv; € E(Hy) and yv, € E(H;) we have that k # 1, so we can
map vy to vk_1, because vi_q...v1YVk... vy is in P (see Fig. 1c). If y € V(P;), then y = v; for some
2 < j < m — 1. Recall that by the definition of Y, vqvjy; is an edge in H;. Since vjvj1; and vjvj_;
are both in E(G) and vjvx € E(H,), we either have that k > j+2ork <j—2.1f k > j+ 2, the
path ve_1, ..., Vjy1, V1, ..., Vj, Vg, ..., Uy 1S iN P, SO wWe map vy to vx_q (see Fig. 1d). Similarly, if
k <j—2, the path vgy1, ..., v, Uk, ..., V1, Vjt1, ..., Uy 1S IN P, SO We map vy to v, (see Fig. 1e).
Note that we have now proved the lemma, because for every x € X, at most two vertices in Ny,(Y)
are mapped to x; if x € X N U, then the only vertex that can be mapped to x is x itself, and if x = vy
for some v, € X N V(Py) then v,_; and vq are the only vertices that can be mapped to x. O

Proof of Theorem 5. Assume ¢ > 0 is sufficiently small, and pick C large enough so that, provided
n is sufficiently large, Theorem 6 applies. Let p = Cl"in”, a=.nb=n/4,& =4p,and y = Cloglnﬁ'
Let G; be a properly edge-colored complete graph on n vertices.
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E“m . Evm o Um
z Y E
;y E /' ¥ A
U . U : 5 U : v
Z =V Y =
Yy=1;
Yy = U] Z = U
%
vy T v T LT v T u T
c)yelU,
(A) y,v €U, and |(B) y € V(P1), ( )ey V(P), and (D) y,z € V(P1), (B) y,v e V(P)
2z veU, and z+— 2z 2 vp_y i and z = vk and z — vgi1

Fig. 1. The cases considered at the end of the proof of Lemma 11.

Claim 5.1. There exist edge-disjoint spanning subgraphs, G, Hi, H, and Hs, of Gy that are properly
edge-colored with pairwise disjoint sets of colors such that

(a) §(G) > (1 —&)n, and,
(b) for every m < /n and i € [3], if m color classes are removed from H;, then the resulting graph
is an (a, b)-expander.

Proof. We form H; by selecting the color classes of G; randomly and independently with probability
p. With high probability, the conclusions of Theorem 6 hold. We fix such a subgraph H;.

Note that every vertex has degree (14 ¢)p(n — 1) in Hy, so if we let G, be the graph formed by
removing the edges of H; from G;, we have that every vertex has degree (1 — p(1 £+ &))(n — 1) in
G,. Therefore, if we form H,, by selecting the color classes of G, randomly and independently with
probability p, the conclusions of Theorem 6 hold in H, with high probability. We fix such a graph
H, and note that every vertex has degree (1 + 1.1¢)p(n — 1) in H,. We then let G5 be the graph
formed by removing the edges of H, from G,. Every vertex has degree (1—2(p+1.1¢))(n— 1) in Gs,
so if we form Hs by selecting the color classes of G3 randomly and independently with probability
p, Hs satisfies the conclusions of Theorem 6 with high probability, so we can fix such an H;. We
now have that for every j € [3], and every vertex v,

dy;(v) = (14 1.2e)p(n — 1) > 24/n. (10)

Let G be the graph formed by removing the edges of H3 from G3, and note that, with (10), for every
vertex v we have that

dg(v) = (n—=1)= Y dy(v) = (0= 1) = 3(1+ 1.2e)np = (1 = &)n.
Jjel3]
2

Because a > Cl"%, b>~C ("’%) and b > Cé&n, the conclusions of Theorem 6, imply that,
for j € [3] and every pair of disjoint vertex sets A and B with sizes at least a and b, respectively,
ery(A, B) = (1= e)plAl[B.

For each j € [3], form Hj’ by removing an arbitrary set of m < /n color classes from H;.
By (10), and the fact that H; is properly edge-colored, we have that de/(v) > de(v) —m > aq,
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so (E1) holds. For every pair of disjoint sets A and B with orders at least a and b, respectively, since
pb = Cy/nlogn/3 > 2/n > 2m,
en/(A, B) = ex;(A, B) —mlA| = (1 — e)plA[|B| — m|A| = |A|((1 — )p|B| —m) > 0.

Hence, we have established that (E1) and (E3) from the definition of an (a, b)-expander hold in H..
As was mentioned in the definition of an (a, b)-expander, (E3) implies (E2), so this completes the
proof of the claim. O

Because y£ = 4/n and y? = o(1/n), we have that 3y —y?/2 >
to form a rainbow path forest » = {P4, ..., P;} such that |V(P)| >
We now apply the following algorithm to P.

1/n, so we can apply Lemma 11
(1—4&)nandr < yn.

e If [P;| > n — 4&n — a or one of Hy, Hy, or Hs is not an (a, b)-expander, then terminate.

e Otherwise, we let P’ and ey, e; and e3 be as in the statement of Lemma 11.

e For each j € [3], remove the color class corresponding to e; from H; and then repeat with
P="P.

Note that at most (r — 1)logn < +/n iterations of the algorithm will execute, since each of the
r—1 paths {P,, ..., P;} can be used to extend P; at most log n times. To see this, observe that every
time such a path P; is used to extend Py, at least half of the remaining vertices in P; are removed.
Therefore, by Claim 5.1, the algorithm must terminate with |P;| > n — 4én — a.

After the algorithm terminates, we have (a, b)-expanders Hq, H, and H3 and a rainbow path P;
on at least n — 4&n — a vertices such that the edges of Hy, H,, H; and P; are colored with disjoint
sets of colors. We can now use a procedure similar to the one in the proof of Lemma 11 to form a

rainbow cycle of length at least n — 4én — 3a and this will complete the proof. Let vy, ..., v, be
the vertices of Py in the order they appear on the path. Let A} = {vy, ..., vq} be the first a vertices
on P; and let Ay = {vm—(a—1), - .., Um} be the last a vertices on P;. Assume Ey, (A1, A;) = @, since

otherwise we have the desired cycle. Let
B = {vj : vj31 € Nu, (A1) N (V(P1) \ A1)},
and note that A, and B are disjoint, and, because H; is an (a, b)-expander,
IBl = [Ny, (A1)l = [V(C)\ V(P1)| — |A1] = (n—a—D)—(46n+a)—a=b.

Therefore, there exist v; € B and v, € A, such that vgv; € En, (A, B). Recall that there exists v; € A4
such that vjvj;1 € E(Hy) and note that i < j < k. Because v;, vjt1, ..., Uk, Vj, Vj—1, ..., V; iS a cycle
that contains all of the vertices vj, ..., vy, we have the desired cycle. O

4. Spanning rainbow path forest with few paths

In this section we prove Theorem 3. In fact, we prove the following more general result which
implies the theorem.

Theorem 12. There exists a constant C such that for every n and for all £ = £(n) > 0 the following
holds. If G is a properly edge-colored graph on n vertices and §(G) > (1 — &) n, then G contains a
spanning rainbow path forest with at most C(logn)? + 3&n paths.

We will need the following technical lemma. We defer its proof until after the proof of
Theorem 12.

Lemma 13. Suppose that 0 < ¢ < 1 and that nq, ..., ny is a sequence of strictly increasing positive
integers such that forallm <j < £ <k

ng —n;
nj—nj_q > %((1—%@“]—(21’1@—11@,1)). (11)
j

Then k < (log, ) + 2log, ny +m+ 1 wherer =1+4c¢/3.
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z «

Fig. 2. Because e = xy and e’ = uv are both given the color «, swapping e’ for e creates a different rainbow path forest.
The color « is associated with this swap.

Proof of Theorem 12. Let G be a properly edge-colored graph on n vertices such that §(G) > (1—&)n.
For a rainbow path forest F, let p(F) be the number of paths in F and let A(F) be the set of endpoints
of paths in F. For two rainbow path forests, F and F’, we say that F’ is obtained from F by a swap
if there exists an edge e in G that is incident to endpoints of distinct paths in F such that either
F' = F + e and there are no edges in E(F) given the same color as e, or F' = F + e — ¢ where
€' € E(F) such that ¢’ and e are given the same color (see Fig. 2). Note that when F’ is obtained from
F by a swap, there is a unique color, say «, that is used on the edges in E(F')AE(F). We call « the
color associated with the swap.

Let S(F) be the set of rainbow path forests F’ that can be obtained from F by a sequence of swaps,
i.e., F/ € S(F) if there exists a sequence of rainbow path forests F = Fy, F,, ..., F; = F’ such that,
for every i € [m — 1], F;1 is obtained from F; by a swap. Note that p(F) > p(F’) for all F" € S(F).
If, for all F’ € S(F), we have that p(F') = p(F) then we say that F is swap-maximal. (Spanning path
forests with fewer paths have more edges.) Let C(S(F)) contain the set of colors « such that « is
the color associated with a swap between two forests in S(F). For every collection of path forests
F, let A(F) = Uro» A(F) be the set of vertices x for which there exists at least one path forest in
F in which x is an endpoint of a path.

Let k be the minimum number of paths in a spanning rainbow path forest of G and fix Fy a
rainbow spanning path forest with k paths. Note that F; is swap-maximal. We use the following
iterative procedure to select swap-maximal forests F, 2 F,_; 2 --- 2 Fy. (Fe_1, ..., F1 will be
swap-maximal rainbow forest, but they will not span G.) Suppose that, for j > 2, F, Fi_1, ..., F,
have been selected so that for all j < £ < k, F, is swap-maximal and p(F,;) = £. To select the forest
Fi_1, we first define a forest Fj[] and path 13‘]-"71 for every x € A(S(Fj)). To this end, let x € A(S(F))),
and

(i) pick F € S(F;) such that x is an endpoint of a path P in F, and,
(ii) subject to (i), the path P in F containing x is as short as possible.

Note that for every P and F selected in this way, F — P is swap-maximal. To see this, first note
that (ii) implies that the colors in C(S(F — P)) are not used on the edges of P. But then, for every
F’ € S(F — P), the forest P + F’ is rainbow, so P + F’ € S(F). This implies that p(P + F') = p(F) = j,
so p(F') = p(F — P) = j — 1, which further implies that F — P is swap-maximal. Define Pj’L1 =P
and Fj"_ ;1 =F— Pj"_ ;- To complete the procedure for constructing F_q, pick x € A(S(F;)) so that
|A(S(FJ?‘_1))| is as small as possible, and then let Fj_; = F]?‘_l.

For every j € [k], define A; = A(S(F;)), nj = |A;j|, GG = C(S(F;)) and G; to be the graph with vertex
set V(G) that contains only the edges of G that are assigned a color from (. Define d;(x) = dcj(x)
for x € V(G), and, for U C V(G), let dj(x, U) = |Ng;(x) N U|. Similarly, for disjoint vertex subsets A
and B, we let Ej(A, B) = EGj(A, B) and ej(A, B) = eg; A, B).

The following claim summarizes some of the important facts implied by this construction.

Claim 12.1. For every 1 <j <k, we have that F; is swap-maximal. For every 2 < j <k, every x € A;
and every F € S(Fj?‘_1), we have that Pj"_l +F € S(F), so A(S(Fj"_l)) is proper subset of A;. This and the
selection of F; imply that n; > |A(S(Fj"_1))| > nj_1.
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Claim 12.2. For every 1 <j < k, we have that %nj —ji<IGl <nj—j.

Proof. Let H be the subforest of F; created by first removing from F; all edges that were not assigned
a color from G and then removing all isolated vertices that are not an endpoint of a path in F;. Recall
that for v € V(F;), we have that v € A; if and only if there exists a path forest in S(F;) in which v is
an endpoint of a path. Therefore, A; contains all of the endpoints of paths in F; and these endpoints
are also in V(H). Now consider a vertex v in V(F;) that is not the endpoint of a path in F;. Then
v € A; if and only if at least one of the two edges 1nc1dent to v in F; is colored with a color from G.
Note that we have established that A; = V(H).

Since H is rainbow and G is exactly the set of colors used on the edges of H, |[E(H)| = |G|
Because H is a path forest and |V(H)| = |A;j| = n;, we have that |G| = |[E(H)| = n; — p(H). Therefore,
to complete the proof, we only need to show that the number of paths in H, p(H), is between j and

+j. The lower bound on p(H) follows because H contains the endpoints of the p(F;) = j paths in
Fj, and H C F;. The upper bound on p(H) comes from the fact that the isolated vertices in H must be
endpoints of paths in F;. Therefore, there are at most 2j isolated vertices in H. Since all of the paths
in H that are not isolated vertices must contain at least 2 vertices, p(H) < ( —2j)+2j = nj +j. O

Claim 12.3. For every j € [k] and x € A;, we have that dj(x) < |G| and dj(x, A;)) > nj_; — &n.

Proof. The first inequality, dj(x) < |G|, follows from the fact that G; is properly edge-colored and
only uses colors from C;. To establish the second inequality, dj(x, Aj) = nj_1 — &n, we first note that,
by Claim 12.1, A(S (F" 1)) is a subset of A;, and that |A( S( = n] 1. Therefore, since §(G) > n—én,
we will prove the second inequality by showing that 1fy e A(S ( * 1)) such that xy € E(G), then the
edge xy is assigned a color from G;.

To this end, let y e A(S (F" )) N Ng(x) and let « be the color assigned to xy. Recall that x is one
of the endpoints of . and that by the definition of A(S ( 1)), there exists F S(F" ) in which
y is the endpoint of a path. By Claim 12.1, if F/ = PJ"_ +F, then F' € S(F). Furthermore because F;
is swap-maximal, there exists e € E(F’) such that e is assigned the color «. Therefore, « is the color
associated with the swap in which F’+xy —e is obtained from F’. This implies that F' +xy—e € S(F;)
and a € G. This proves the claim. O

Claim 124. Forevery2 <j < { <k,
3 .
(ng — my) (Enj —2n;+ng_q — §ﬂ> < ej(Ac\ Aj, Aj) < ny(nj — nj_q —j+é&n).

Proof. Let x € A, \A;. First note that dj(x, A;) > d,(x, Aj)—|C, \ Cj| because the edges of G and hence
G, are properly colored. Because Claim 12.2 implies that

GG = (ne — 0) - (%n,- —j),
we have that

Gix,A) = di(x. A) — 1C\ Gl = dulix. A) — (e — 0) + (%n; —j) . (12)
We also have that,

do(x, Aj) > de(x, Ae) — 1A \ Ajl = de(x, Ag) — (ne — my),
and, by Claim 12.3,

de(x,Ag) = ng—1 — &n,
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together with (12) we have
1
di(x, A7) = ((e—1 — &n) — (g — my)) — (ng — €) + (5”}' _j>

3 . 3
:Enj+ng,1—2ng+é—]—$nzEnj—an+ng,1—§n.

Summing over all vertices in A, \ A; gives the lower bound.
For every x € A;, by Claim 12.2, dj(x, A¢) < dj(x) < |G| < nj —j. By Claim 12.3, we also have that
di(x, Aj) = nj_1 — &n. Therefore,

di(x, Ag \ Aj) = dj(x, Ap) — di(x, Aj) < (nj —j) — (nj—q — &n).
Summing over all vertices in A; gives the upper bound. O

Let m = [3&n]. Note that we can assume that k > m, as otherwise F;, has at most [3£n] paths,
and F; would satisfy the conclusion of the theorem. For every j such that m < j < k, using only the
fact that n; > j > m > 3&n, we can deduce that

;nj —2ng+ng_y—én> é”j —(2n; —ne_q)
and
nj—nj_1—j+&n <n—nj_.
Therefore, Claim 12.4 implies that, for every m <j < £ <k,

nj—nig>n—n—j+én>

ng—n; (3 ng — n; 1
¢ J (fnj — 2Ny +ny_q — “;‘n> > M| ((l + 7> n; —(2n, — ng_1)) .
le 2 le 6

We can then apply Lemma 13 to ny,...,n, to deduce that, with r = 19/18, we have k <
(log, n)? + 2 log, ny + m + 1. We can assume that log, n; > 1, so if we let C = 5(log, 2)?, then

C (logmp)? = 5 (log, m)? > (log, m)? + 2 log, n + 2.

Therefore, since m < 3&én + 1, we have that F; is a spanning rainbow forest with
k < (log, ny)? + 2log, n + m+ 1 < C (logny)? + 3&n,

paths. This completes the proof of Theorem 12. O

Proof of Lemma 13.
Claim 13.1. Forallm <j <€ <k ifn, <mnj, then n; — n; < r~(n, — nj_1).

Proof. We have that
2ny —ng—q <2np —nj < (2r — 1)n;.
With the fact that ¢ = 3r — 3, this implies that
(T+cnj—2ng —ng_q) = (14+¢c—Q2r =1y =(r — n;.
Combining this with (11) gives us that (r — 1)(n, — n;) < nj — nj_4, so
r(ng —m)=mng —nj+( — (e —m) <ng —nj+nj —nj_qg =ng — njq,

which proves the claim. O

Claim 13.2. Forallm <j < £ <k, ifn, < rnj, then £ —j < log, n,.
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Proof. Note that if n, < rnj and j < £ — 1, then for every i such that j <i < £ — 1, we have that
ng < rn; < ;. Therefore, Claim 13.1 implies n, — n; < r~1(n; — ni_1), which further implies that
1<ng—ney < r 0, —ny),

and £ — (j + 1) < log,(n; — n;). Using this and the fact that our assumption n, < rn; implies that
ng —n; < (r — 1)n; we have that

£—(+1) < log.(n, — ny) < log,((r — )m).

Therefore, because 1 < r < 4/3 implies thatr — 1 < r~!

,i.e, log.(r — 1) < —1, we have
log,nj>¢—j—1—log(r—1)>¢€—]j,

and the claim holds. O

Let t = [log, n] and s = | & |. Note that, for every 1 <i <s,

(it+m)—((i— 1t +m)=t > log, n,

and, therefore, Claim 13.2 implies that
Nit4m = Mi—1)t+m>

SO Njt4m > I'Npy, and
Nk > Ngeym = Ny > 175,

Therefore,

k—m k—m

log. ng > s 1>— -
Br The = t ~ (log, ) + 1

%

which implies
k < (log, ) + 2 log. iy +m+1. O
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