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a b s t r a c t

We prove two results regarding cycles in properly edge-colored
graphs. First, we make a small improvement to the recent break-
through work of Alon, Pokrovskiy and Sudakov who showed that
every properly edge-colored complete graph G on n vertices has
a rainbow cycle on at least n−O(n3/4) vertices, by showing that G
has a rainbow cycle on at least n − O(log n

√
n) vertices. Second,

by modifying the argument of Hatami and Shor which gives a
lower bound for the length of a partial transversal in a Latin
Square, we prove that every properly colored complete graph
has a Hamiltonian cycle in which at least n−O((log n)2) different
colors appear. For large n, this is an improvement of the previous
best known lower bound of n −

√
2n of Andersen.

© 2019 Published by Elsevier Ltd.

1. Introduction

Let G be a graph. An edge-coloring is a proper edge-coloring if the set of edges incident to a vertex
is given distinct colors. If G is edge-colored, we say that H ⊂ G is rainbow if the colors assigned to
the edges of H are distinct.
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There has been extensive research on rainbow properties of properly edge-colored graphs. One
problem that has seen significant recent interest is to find many edge-disjoint rainbow spanning
trees, see Akbari & Alipour [1], Balogh, Liu & Montgomery [5], Pokrovskiy & Sudakov [14], Carraher,
Hartke & Horn [6], and Horn & Nelson [13]. A related old conjecture of Andersen [4] is the following,
which if true would be best possible.

Conjecture 1. Every properly edge-colored complete graph on n vertices contains a rainbow path on

n − 1 vertices.

In the same paper, Andersen proved the following result.

Theorem 2. Every properly edge-colored complete graph on n vertices contains a Hamiltonian cycle

in which at least n −
√
2n distinct colors appear.

In this paper, we make the following improvement (for large n) to Theorem 2.

Theorem 3. There exists a constant C such that for every n the following holds. Every properly edge-

colored complete graph on n vertices contains a Hamiltonian cycle in which at least n−C(log n)2 distinct

colors appear.

Note that our proof of Theorem 3 very closely follows the proof of Hatami & Shor’s [12] result
on the length of a partial traversal in a Latin square.

Chen & Li [8] consider a similar problem in edge-colored graphs which are not necessarily
proper, but in which every vertex is incident to edges of many different colors, and proposed a
generalization of Conjecture 1 in this setting.

Instead of asking for a Hamiltonian cycle that uses many colors, another way to approach
Conjecture 1, is to attempt to find a long rainbow cycle. This problem has received recent interest.
Akbari, Etesami, Mahini & Mahmoody [2] proved that a cycle of length n/2 − 1 exists in every
properly colored complete graph G on n vertices. Then Gyárfás & Mhalla [10] proved that a rainbow
path of length (2n + 1)/3 exists in G provided that, for every color α used, the set of edges given
the color α forms a perfect matching in G. Not much later Gyárfás, Ruszinkó, Sárközy, & Schelp [11]
showed that G contains a rainbow cycle of length (4/7 + o(1))n for every proper edge-coloring.
Then, independently, both Gebauer & Mousset [9] and Chen & Li [7] showed that a path of length
(3/4 − (1))n exists when G is properly colored. This was the best known lower bound until very
recently Alon, Pokrovskiy & Sudakov [3] established the following breakthrough result.

Theorem 4. For all sufficiently large n, every properly edge-colored complete graph on n vertices

contains a rainbow cycle on at least n − 24n3/4 vertices.

Heavily relying on the methods developed in [3], we make the following improvement to
Theorem 4.

Theorem 5. There exists a constant C such that the following holds. If G is a properly edge-colored

complete graph on n vertices for n sufficiently large, then there exists a rainbow cycle in G on at least

n − C log n
√
n vertices.

To prove Theorem 5, we use the following theorem which is an extension of Theorem 1.3 in [3].
Our improvement, and one of the main observations that drives our proof, is that essentially the
same argument as the one given in [3] works when the sizes of the two sets are unbalanced, i.e.,
only one of the two sets needs to have order Ω

(

(log n/p)2
)

, the other can be as small as Ω (log n/p).

Theorem 6. For every sufficiently small ε > 0 there exists a constant C such that the following holds.

Let G be a properly edge-colored graph on n vertices such that δ(G) ≥ (1 − ξ )n for some ξ = ξ (n).
Let H be the spanning subgraph obtained by choosing every color class independently at random with

probability p. Then the following holds with high probability.
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(a) If (1 − ξ )n ≥ C
log n

p
, then all vertices v have degree (1 ± ε)p · dG(v) in H.

(b) For every pair A and B of disjoint vertex sets, if |A| ≥ C
log n

p
and |B| ≥ max{C( log n

p
)2, Cξn}, then

eH (A, B) ≥ (1 − ε)p|A||B|.

1.1. Definitions and notation

Most of our notation is standard except possibly the following. Let G be a graph and let A and B

be disjoint vertex subsets. We let

EG(A, B) = {xy ∈ E(G) : x ∈ A and y ∈ B},

and let eG(A, B) = |EG(A, B)|. For a vertex subset U , we let

NG(U) =
⋃

u∈U

NG(u).

For a path P = v1, . . . , vm we call v1 and vm the endpoints of P and we call a path Q a subpath of P
if Q = vi, . . . , vj for some 1 ≤ i ≤ j ≤ m. For a set X and 0 ≤ y ≤ |X |, we let

(

X

y

)

= {Y ⊆ X : |Y | = y}
be the set of all subsets of X that have order exactly y. All logarithms are base 2 unless otherwise
specified.

2. Proof of Theorem 6

We use the following form of the well-known Chernoff bound.

Lemma 7 (Chernoff Bound). Let X be a binomial random variable with parameters (n, p). Then for every

ε ∈ (0, 1) we have that

P(|X − pn| ≥ εpn) ≤ 2e−pnε2/3.

For an ε > 0, call a pair of disjoint vertex subsets A, B of a properly edge-colored graph G

(1 − ε)-rainbow if there are (1 − ε)|A||B| different colors that appear on the edges EG(A, B).
The following is essentially equivalent to Lemma 2.2 in [3] and is a simple application of the

Chernoff bound (Lemma 7).

Lemma 8. For every ε > 0, there exists a constant C such that the following holds. Let G be a

properly edge-colored graph on n vertices, and let H be the spanning subgraph of G obtained by choosing

every color class independently at random with probability p. Then, with high probability, for every

(1 − ε)-rainbow pair S, T such that |S| = |T | ≥ C
log n

p
we have that

eH (S, T ) ≥ (1 − 2ε)p|S||T |.

The proof of the following lemma is very similar to Lemma 2.3 in [3]. The main differences are
that it can be applied to graphs that are not complete and that the sets A and B can be of different
sizes.

Lemma 9. For every sufficiently small ε > 0, there exists C such that when n is sufficiently large the

following holds. Let G be a properly edge-colored graph on n vertices and let A and B be two disjoint

vertex subsets of size a and b, respectively, with a ≤ b. Suppose δ(G) ≥ (1−ξ )n for some ξ = ξ (n) > 0.
If y divides both a and b; b ≥ max{Cy2, Cξn}; and y ≥ C, then there exist a partition {Ai} of A and a

partition {Bj} of B with all parts having equal size y such that all but at most ε · ab

y2
of the pairs Ai, Bj

are (1 − ε)-rainbow.

Proof. Let ε > 0 be sufficiently small. We choose C ≥ 2ε−2. We then have that

(y − 1)2

2(b − 1)
≤

y2

b
≤

1

C
≤

ε2

2
and

ξn

b
≤

1

C
≤

ε2

2
. (1)
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Let

Ω = {α : ∃e ∈ E(A, B) such that e is colored with α}

be the set of colors used on the edges of E(A, B). Assume S and T are selected uniformly at random
from

(

A

y

)

and
(

B

y

)

, respectively.

For every distinct e, e′ ∈ E(S, T ) that do not share an endpoint

P(e ∈ E(S, T )) =
y2

ab
and P(e, e′ ∈ E(S, T )) =

y2(y − 1)2

ab(a − 1)(b − 1)
. (2)

Let α ∈ Ω and Eα = {e ∈ E(A, B) : e is give color α}. Since the edge-coloring is proper, no two edges
in Eα share an endpoint and |Eα| ≤ min{a, b} = a. Therefore, using the Bonferroni inequalities, (2)
and (1), we get the following lower bound on the probability that the color α is used on an edge in
E(S, T ):

P(|Eα ∩ E(S, T )| ≥ 1) ≥
∑

e∈Eα

P(e ∈ E(S, T )) −
∑

{e,e′}∈(Eα2 )

P(e, e′ ∈ E(S, T ))

=
y2

ab
|Eα| −

y2(y − 1)2

ab(a − 1)(b − 1)

(

|Eα|
2

)

=
(

1 −
(y − 1)2(|Eα| − 1)

2(a − 1)(b − 1)

)

y2

ab
|Eα|

≥
(

1 −
(y − 1)2

2(b − 1)

)

y2

ab
|Eα| ≥

(

1 −
ε2

2

)

y2

ab
|Eα|.

(3)

Let Z be the number of different colors used on the edges of E(S, T ). Since
∑

α∈Ω

|Eα| = |∪α∈ΩEα| = |E(A, B)| ≥ a · (b + δ(G) − n) ≥ ab − aξn,

the linearity of expectation, (3) and (1) together imply that

E(Z) ≥
∑

α∈Ω

(1 − ε2/2)
y2

ab
|Eα| ≥ (1 − ε2/2)

y2

ab
(ab − aξn) ≥

(

1 −
ε2

2
−

ξn

b

)

y2 ≥ (1 − ε2)y2.

Clearly, Z ≤ |E(S, T )| ≤ y2, so y2 − Z ≥ 0, and E(y2 − Z) ≤ ε2y2. Markov’s inequality then implies
that P(y2 − Z ≥ εy2) ≤ ε, so

P (S, T is (1 − ε)-rainbow) ≥ 1 − ε. (4)

Select an ordered partition {Ai} of A and an ordered partition {Bj} of B so that each part has equal
size y uniformly at random from all such ordered partitions. For every i ∈ [a/y] and j ∈ [b/y], by
symmetry and (4), the probability that Ai, Bj is (1−ε)-rainbow is at least 1−ε. This with the linearity
of expectation implies that the expected number of pairs of sets Ai and Bj that are (1 − ε)-rainbow

is at least (1− ε) · a
y
· b
y
, so there exists such a partition such that all but at most ε ab

y2
pairs Ai, Bj are

(1 − ε)-rainbow. □

Proof of Theorem 6. Assume ε > 0 is sufficiently small and that C ′ ≥ ε−1 is large enough so
that both Lemmas 8 and 9 simultaneous apply with C ′ and ε′ = ε/5 playing the roles of C and ε,
respectively. We will show that the conclusions of Theorem 6 hold with C = 3C ′ε−1.

To prove part (a) of the lemma, assume that δ(G) ≥ (1 − ξ )n ≥ C
log n

p
, so

p · dG(v) ≥ p(1 − ξ )n ≥ C log n. (5)

For every v ∈ V (G), the edges incident to v are rainbow, so the number of edges incident to v

that are in H is binomial distributed with parameters (dG(v), p). The fact that C ≥ 3C ′ε−1 ≥ 3ε−2
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and (5) imply that

n · 2e−p·dG(v)ε2/3 ≤ 2n−1,

so the Chernoff bound (Lemma 7) and the union bound imply that with high probability, for every
v ∈ V (G), we have

dH (v) = (1 ± ε)p · dG(v).

This proves (a).
We will now prove (b). Fix y =

⌈

C ′ log n/p
⌉

. By Lemma 8, with high probability,

eH (S, T ) ≥ (1 − 2ε′)y2, for every (1 − ε′)-rainbow pair S, T such that |S| = |Y | = y. (6)

We will now assume that (6) holds and show that this implies that (b) holds. Since (6) holds with
high probability, this will complete the proof of the lemma.

Let b be the smallest number larger than max{C ′y2, C ′ξn} that is divisible by y. Let A′ and B′ be
vertex disjoint subsets of orders y and b, respectively. Lemma 9 implies that there exists a partition
{B′

j} of B′ into parts of size y such that all but an ε′ fraction of the pairs A′, B′
j are (1 − ε′)-rainbow,

i.e., if we let J = {j : A′, B′
j is (1 − ε′)-rainbow}, then |J| ≥ (1 − ε′)yb/y2. Therefore, with (6),

eH (A
′, B′) ≥

∑

j∈J

eH (A
′, B′

j) ≥ (1 − ε′)yb/y2 · (1 − 2ε′)y2 ≥ (1 − 3ε′)yb. (7)

Finally, to complete the proof of (b), let A and B be disjoint vertex subsets such that |A| ≥
C log n/p and |B| ≥ max{C(log n/p)2, Cξn}. Recall that ε′ = 3C ′/C , so ε′|A| ≥ y and ε′|B| ≥ b.
Therefore, there exists a collection of at least (1 − ε′)|A|/y disjoint subsets of A each of size y and
a collection of at least (1 − ε′)|B|/b disjoint subsets of B each of size b. With (7) and the fact that
ε = 5ε′, we have that

eH (A, B) ≥ (1 − ε′)|A|/y · (1 − ε′)|B|/b · (1 − 3ε′)yb ≥ (1 − ε)|A||B|. □

3. Long rainbow cycles

This appears as Lemma 3.1 in [3].

Lemma 10. For all γ , ξ, n with ξ ≥ γ and 3γ ξ −γ 2/2 > n−1 the following holds. Let G be a properly

edge-colored graph on n vertices such that δ(G) ≥ (1 − ξ )n. Then G contains a rainbow path forest P

with at most γ n paths and |E(P)| ≥ (1 − 4ξ )n.

For 0 < a ≤ b, call a graph H an (a, b)-expander, if the following holds:

(E1) δ(H) ≥ a;

(E2) if A ⊆ V (H) such that |A| ≥ a, then |NH (A)| ≥ n − a − b; and

(E3) if A and B are disjoint subsets of order a and b, respectively, then EH (A, B) ̸= ∅.

Note that (E3) implies (E2), because (E3) implies |V (G) \ (NH (A
′) ∪ A′)| ≤ b for every A′ ∈

(

A

a

)

, but it
is more convenient to state (E2) separately.

Lemma 11. Let 0 < a ≤ b ≤ n/4, r > 0, and let G, H1, H2, and H3 be edge-disjoint spanning

subgraphs of the complete graph on n vertices whose edges are edge-colored by pairwise disjoint sets of

colors such that H1, H2 and H3 are each (a, b)-expanders. Suppose P = {P1, . . . , Pr} is a rainbow path

forest in G such that for U = V (G) \ V (P) we have |U | ≤ b. If |P1| ≤ n − a − |U |, then there exists

ej ∈ E(Hj) for j ∈ [3], and i ∈ [r], such that there are two disjoint paths P ′
1 and P ′

i in the graph induced

in G by V (P1) ∪ V (Pi) ∪ U with the additional edges {e1, e2, e3} where

(1) P ′
i is a subpath of Pi on less than |Pi|/2 vertices (we allow P ′

i to be the path without vertices here),

(2) |P ′
1| ≥ |P1| + |Pi| − |P ′

i |, and
(3) P

′ = P − P1 − Pi ∪ {P ′
1, P

′
i } is a rainbow path forest.
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Proof. Assume |P1| ≤ n−a−|U | and that the conclusions of the lemma do not hold. Let v1, . . . , vm

be the vertices of P1 in the order they appear on the path, let T be the set of vertices on the paths
P2, . . . , Pr , and recall that U = V (G) \ V (P). We have that

|T | = n − |P1| − |U | ≥ a. (8)

Claim 11.1. Let σ be a permutation of {1, 2, 3}. For every path P such that

• |P| ≥ |P1|,
• V (P) ⊆ V (P1) ∪ U, and

• E(P) ⊆ E(P1) ∪ {eσ (1), eσ (2)} where eσ (j) ∈ E(Hσ (j)) for j ∈ [2],

there are no edges in E(Hσ (3)) incident to an endpoint of P and a vertex in T .

Proof. Suppose, for a contradiction, that v is an endpoint of such a path P and there exists
x ∈ NHσ (3)

(v) ∩ T . Let Pi ∈ {P2, . . . , Pr} be the path containing x. We can construct P ′
1 by combining

P with the longer of the two subpaths in Pi that have x as an endpoint. By letting P ′
i be the subpath

of Pi with the vertex set V (Pi) \ V (P ′
1) (recall that the statement of the theorem allows P ′

i to be the
path without vertices), we have two paths P ′

1 and P ′
i that satisfy the conclusions of the lemma. □

Let P be the set of all paths that do not contain an edge from E(H3) and that satisfy the conditions
of Claim 11.1. Let

X = {x ∈ V (G) : there exists P ∈ P such that x is an endpoint of P}.

Claim 11.1 implies that EH3
(X, T ) = ∅, so, with (8), we will contradict (E3) and prove the lemma if

we can show that |X | ≥ b.
Claim 11.1 implies that, in H1, v1 does not have a neighbor in T , so if we let,

Y = (NH1
(v1) ∩ U) ∪ {vj : vj+1 ∈ NH1

(v1) ∩ V (P1)},

(E1) implies that |Y | = |NH1
(v1)| ≥ a. Therefore, by (E2) and the fact that a ≤ b ≤ n/4,

|NH2
(Y )| ≥ n − a − b ≥ 2b. (9)

We also have that Y ⊆ X . To see this, observe that if y ∈ Y ∩ U , then y, v1, . . . , vm is in P , and if
y ∈ Y \ U , then y is on P1, so y = vj for some j ∈ [m] and the path vj, . . . , v1, vj+1, . . . , vm is in P .

We will now describe a mapping from NH2
(Y ) to X such that, for every x ∈ X , at most two vertices

in NH2
(Y ) are mapped to x. By (9), this will imply that |X | ≥ b, which, as was previously mentioned,

will prove the claim. To this end, let z ∈ NH2
(Y ), and arbitrarily select some y ∈ NH2

(v) ∩ Y . Recall
that there exists Py ∈ P that has y as an endpoint and that does not contain edges from either H2

or H3. First assume that z is not on P1. Then, by using yz ∈ E(H2), we can append z to Py to create
an element of P with z as an endpoint. Therefore, z ∈ X , so, in this case, we map z to itself (see
Figs. 1a and 1b). Now assume that, z = vk for some k ∈ [m], and recall that Y does not intersect
T , so y ∈ V (P1) ∪ U . If y ∈ U , since yv1 ∈ E(H1) and yvk ∈ E(H2) we have that k ̸= 1, so we can
map vk to vk−1, because vk−1 . . . v1yvk . . . vm is in P (see Fig. 1c). If y ∈ V (P1), then y = vj for some
2 ≤ j ≤ m − 1. Recall that by the definition of Y , v1vj+1 is an edge in H1. Since vjvj+1 and vjvj−1

are both in E(G) and vjvk ∈ E(H2), we either have that k ≥ j + 2 or k ≤ j − 2. If k ≥ j + 2, the
path vk−1, . . . , vj+1, v1, . . . , vj, vk, . . . , vm is in P , so we map vk to vk−1 (see Fig. 1d). Similarly, if
k ≤ j − 2, the path vk+1, . . . , vj, vk, . . . , v1, vj+1, . . . , vm is in P , so we map vk to vk+1 (see Fig. 1e).
Note that we have now proved the lemma, because for every x ∈ X , at most two vertices in NH2

(Y )
are mapped to x; if x ∈ X ∩U , then the only vertex that can be mapped to x is x itself, and if x = vk

for some vk ∈ X ∩ V (P1) then vk−1 and vk+1 are the only vertices that can be mapped to x. □

Proof of Theorem 5. Assume ε > 0 is sufficiently small, and pick C large enough so that, provided
n is sufficiently large, Theorem 6 applies. Let p = C

log n√
n
, a =

√
n, b = n/4, ξ = 4p, and γ = 1

C log n
√
n
.

Let G1 be a properly edge-colored complete graph on n vertices.
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Fig. 1. The cases considered at the end of the proof of Lemma 11.

Claim 5.1. There exist edge-disjoint spanning subgraphs, G, H1, H2 and H3, of G1 that are properly
edge-colored with pairwise disjoint sets of colors such that

(a) δ(G) ≥ (1 − ξ )n, and,

(b) for every m ≤
√
n and i ∈ [3], if m color classes are removed from Hi, then the resulting graph

is an (a, b)-expander.

Proof. We form H1 by selecting the color classes of G1 randomly and independently with probability
p. With high probability, the conclusions of Theorem 6 hold. We fix such a subgraph H1.

Note that every vertex has degree (1 ± ε)p(n − 1) in H1, so if we let G2 be the graph formed by
removing the edges of H1 from G1, we have that every vertex has degree (1 − p(1 ± ε))(n − 1) in
G2. Therefore, if we form H2, by selecting the color classes of G2 randomly and independently with
probability p, the conclusions of Theorem 6 hold in H2 with high probability. We fix such a graph
H2 and note that every vertex has degree (1 ± 1.1ε)p(n − 1) in H2. We then let G3 be the graph
formed by removing the edges of H2 from G2. Every vertex has degree (1−2(p±1.1ε))(n−1) in G3,
so if we form H3 by selecting the color classes of G3 randomly and independently with probability
p, H3 satisfies the conclusions of Theorem 6 with high probability, so we can fix such an H3. We
now have that for every j ∈ [3], and every vertex v,

dHj
(v) ≥ (1 ± 1.2ε)p(n − 1) > 2

√
n. (10)

Let G be the graph formed by removing the edges of H3 from G3, and note that, with (10), for every
vertex v we have that

dG(v) = (n − 1) −
∑

j∈[3]

dHj
(v) ≥ (n − 1) − 3(1 + 1.2ε)np ≥ (1 − ξ )n.

Because a ≥ C
log n

p
, b ≥ C

(

log n

p

)2

and b ≥ Cξn, the conclusions of Theorem 6, imply that,

for j ∈ [3] and every pair of disjoint vertex sets A and B with sizes at least a and b, respectively,
eHj

(A, B) ≥ (1 − ε)p|A||B|.
For each j ∈ [3], form H ′

j by removing an arbitrary set of m ≤
√
n color classes from Hj.

By (10), and the fact that Hj is properly edge-colored, we have that dH ′
j
(v) ≥ dHj

(v) − m ≥ a,
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so (E1) holds. For every pair of disjoint sets A and B with orders at least a and b, respectively, since
pb = C

√
n log n/3 > 2

√
n ≥ 2m,

eH ′
j
(A, B) ≥ eHj

(A, B) − m|A| ≥ (1 − ε)p|A||B| − m|A| = |A|((1 − ε)p|B| − m) > 0.

Hence, we have established that (E1) and (E3) from the definition of an (a, b)-expander hold in H ′
j .

As was mentioned in the definition of an (a, b)-expander, (E3) implies (E2), so this completes the
proof of the claim. □

Because γ ξ = 4/n and γ 2 = o(1/n), we have that 3γ ξ −γ 2/2 ≥ 1/n, so we can apply Lemma 11
to form a rainbow path forest P = {P1, . . . , Pr} such that |V (P)| ≥ (1 − 4ξ )n and r ≤ γ n.

We now apply the following algorithm to P .

• If |P1| ≥ n − 4ξn − a or one of H1, H2, or H3 is not an (a, b)-expander, then terminate.

• Otherwise, we let P ′ and e1, e2 and e3 be as in the statement of Lemma 11.
• For each j ∈ [3], remove the color class corresponding to ej from Hj and then repeat with

P = P
′.

Note that at most (r − 1) log n <
√
n iterations of the algorithm will execute, since each of the

r −1 paths {P2, . . . , Pr} can be used to extend P1 at most log n times. To see this, observe that every
time such a path Pi is used to extend P1, at least half of the remaining vertices in Pi are removed.
Therefore, by Claim 5.1, the algorithm must terminate with |P1| ≥ n − 4ξn − a.

After the algorithm terminates, we have (a, b)-expanders H1, H2 and H3 and a rainbow path P1
on at least n − 4ξn − a vertices such that the edges of H1, H2, H3 and P1 are colored with disjoint
sets of colors. We can now use a procedure similar to the one in the proof of Lemma 11 to form a
rainbow cycle of length at least n − 4ξn − 3a and this will complete the proof. Let v1, . . . , vm be
the vertices of P1 in the order they appear on the path. Let A1 = {v1, . . . , va} be the first a vertices
on P1 and let A2 = {vm−(a−1), . . . , vm} be the last a vertices on P1. Assume EH1

(A1, A2) = ∅, since
otherwise we have the desired cycle. Let

B = {vj : vj+1 ∈ NH1
(A1) ∩ (V (P1) \ A1)},

and note that A2 and B are disjoint, and, because H1 is an (a, b)-expander,

|B| ≥ |NH1
(A1)| − |V (G) \ V (P1)| − |A1| ≥ (n − a − b) − (4ξn + a) − a ≥ b.

Therefore, there exist vj ∈ B and vk ∈ A2 such that vkvj ∈ EH2
(A2, B). Recall that there exists vi ∈ A1

such that vivj+1 ∈ E(H1) and note that i < j < k. Because vi, vj+1, . . . , vk, vj, vj−1, . . . , vi is a cycle
that contains all of the vertices vi, . . . , vk, we have the desired cycle. □

4. Spanning rainbow path forest with few paths

In this section we prove Theorem 3. In fact, we prove the following more general result which
implies the theorem.

Theorem 12. There exists a constant C such that for every n and for all ξ = ξ (n) > 0 the following

holds. If G is a properly edge-colored graph on n vertices and δ(G) ≥ (1 − ξ) n, then G contains a

spanning rainbow path forest with at most C(log n)2 + 3ξn paths.

We will need the following technical lemma. We defer its proof until after the proof of
Theorem 12.

Lemma 13. Suppose that 0 < c ≤ 1 and that n1, . . . , nk is a sequence of strictly increasing positive

integers such that for all m ≤ j < ℓ ≤ k

nj − nj−1 ≥
nℓ − nj

nj

(

(1 + c) nj − (2nℓ − nℓ−1)
)

. (11)

Then k ≤ (logr nk)
2 + 2 logr nk + m + 1 where r = 1 + c/3.
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Fig. 2. Because e = xy and e′ = uv are both given the color α, swapping e′ for e creates a different rainbow path forest.

The color α is associated with this swap.

Proof of Theorem 12. Let G be a properly edge-colored graph on n vertices such that δ(G) ≥ (1−ξ )n.
For a rainbow path forest F , let p(F ) be the number of paths in F and let A(F ) be the set of endpoints
of paths in F . For two rainbow path forests, F and F ′, we say that F ′ is obtained from F by a swap

if there exists an edge e in G that is incident to endpoints of distinct paths in F such that either
F ′ = F + e and there are no edges in E(F ) given the same color as e, or F ′ = F + e − e′ where
e′ ∈ E(F ) such that e′ and e are given the same color (see Fig. 2). Note that when F ′ is obtained from
F by a swap, there is a unique color, say α, that is used on the edges in E(F ′)△E(F ). We call α the
color associated with the swap.

Let S(F ) be the set of rainbow path forests F ′ that can be obtained from F by a sequence of swaps,
i.e., F ′ ∈ S(F ) if there exists a sequence of rainbow path forests F = F1, F2, . . . , Fm = F ′ such that,
for every i ∈ [m − 1], Fi+1 is obtained from Fi by a swap. Note that p(F ) ≥ p(F ′) for all F ′ ∈ S(F ).
If, for all F ′ ∈ S(F ), we have that p(F ′) = p(F ) then we say that F is swap-maximal. (Spanning path
forests with fewer paths have more edges.) Let C(S(F )) contain the set of colors α such that α is
the color associated with a swap between two forests in S(F ). For every collection of path forests
F , let A(F) =

⋃

F∈F A(F ) be the set of vertices x for which there exists at least one path forest in
F in which x is an endpoint of a path.

Let k be the minimum number of paths in a spanning rainbow path forest of G and fix Fk a
rainbow spanning path forest with k paths. Note that Fk is swap-maximal. We use the following
iterative procedure to select swap-maximal forests Fk ⊇ Fk−1 ⊇ · · · ⊇ F1. (Fk−1, . . . , F1 will be
swap-maximal rainbow forest, but they will not span G.) Suppose that, for j ≥ 2, Fk, Fk−1, . . . , Fj,
have been selected so that for all j ≤ ℓ ≤ k, Fℓ is swap-maximal and p(Fℓ) = ℓ. To select the forest
Fj−1, we first define a forest F x

j−1 and path Px
j−1 for every x ∈ A(S(Fj)). To this end, let x ∈ A(S(Fj)),

and

(i) pick F ∈ S(Fj) such that x is an endpoint of a path P in F , and,

(ii) subject to (i), the path P in F containing x is as short as possible.

Note that for every P and F selected in this way, F − P is swap-maximal. To see this, first note
that (ii) implies that the colors in C(S(F − P)) are not used on the edges of P . But then, for every
F ′ ∈ S(F − P), the forest P + F ′ is rainbow, so P + F ′ ∈ S(F ). This implies that p(P + F ′) = p(F ) = j,
so p(F ′) = p(F − P) = j − 1, which further implies that F − P is swap-maximal. Define Px

j−1 = P

and F x
j−1 = F − Px

j−1. To complete the procedure for constructing Fj−1, pick x ∈ A(S(Fj)) so that

|A(S(F x
j−1))| is as small as possible, and then let Fj−1 = F x

j−1.

For every j ∈ [k], define Aj = A(S(Fj)), nj = |Aj|, Cj = C(S(Fj)) and Gj to be the graph with vertex
set V (G) that contains only the edges of G that are assigned a color from Cj. Define dj(x) = dGj (x)
for x ∈ V (G), and, for U ⊆ V (G), let dj(x,U) = |NGj (x) ∩ U |. Similarly, for disjoint vertex subsets A

and B, we let Ej(A, B) = EGj (A, B) and ej(A, B) = eGj (A, B).
The following claim summarizes some of the important facts implied by this construction.

Claim 12.1. For every 1 ≤ j ≤ k, we have that Fj is swap-maximal. For every 2 ≤ j ≤ k, every x ∈ Aj

and every F ∈ S(F x
j−1), we have that Px

j−1 + F ∈ S(Fj), so A(S(F x
j−1)) is proper subset of Aj. This and the

selection of Fj imply that nj > |A(S(F x
j−1))| ≥ nj−1.
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Claim 12.2. For every 1 ≤ j ≤ k, we have that 1
2
nj − j ≤ |Cj| ≤ nj − j.

Proof. Let H be the subforest of Fj created by first removing from Fj all edges that were not assigned

a color from Cj and then removing all isolated vertices that are not an endpoint of a path in Fj. Recall

that for v ∈ V (Fj), we have that v ∈ Aj if and only if there exists a path forest in S(Fj) in which v is

an endpoint of a path. Therefore, Aj contains all of the endpoints of paths in Fj and these endpoints

are also in V (H). Now consider a vertex v in V (Fj) that is not the endpoint of a path in Fj. Then

v ∈ Aj if and only if at least one of the two edges incident to v in Fj is colored with a color from Cj.

Note that we have established that Aj = V (H).

Since H is rainbow and Cj is exactly the set of colors used on the edges of H , |E(H)| = |Cj|.
Because H is a path forest and |V (H)| = |Aj| = nj, we have that |Cj| = |E(H)| = nj −p(H). Therefore,

to complete the proof, we only need to show that the number of paths in H , p(H), is between j and
1
2
nj + j. The lower bound on p(H) follows because H contains the endpoints of the p(Fj) = j paths in

Fj, and H ⊆ Fj. The upper bound on p(H) comes from the fact that the isolated vertices in H must be

endpoints of paths in Fj. Therefore, there are at most 2j isolated vertices in H . Since all of the paths

in H that are not isolated vertices must contain at least 2 vertices, p(H) ≤ 1
2
(nj−2j)+2j = 1

2
nj+j. □

Claim 12.3. For every j ∈ [k] and x ∈ Aj, we have that dj(x) ≤ |Cj| and dj(x, Aj) ≥ nj−1 − ξn.

Proof. The first inequality, dj(x) ≤ |Cj|, follows from the fact that Gj is properly edge-colored and

only uses colors from Cj. To establish the second inequality, dj(x, Aj) ≥ nj−1 − ξn, we first note that,

by Claim 12.1, A(S(F x
j−1)) is a subset of Aj, and that |A(S(F x

j−1))| ≥ nj−1. Therefore, since δ(G) ≥ n−ξn,

we will prove the second inequality by showing that if y ∈ A(S(F x
j−1)) such that xy ∈ E(G), then the

edge xy is assigned a color from Cj.

To this end, let y ∈ A(S(F x
j−1)) ∩ NG(x) and let α be the color assigned to xy. Recall that x is one

of the endpoints of Px
j−1 and that, by the definition of A(S(F x

j−1)), there exists F ∈ S(F x
j−1) in which

y is the endpoint of a path. By Claim 12.1, if F ′ = Px
j−1 + F , then F ′ ∈ S(Fj). Furthermore, because Fj

is swap-maximal, there exists e ∈ E(F ′) such that e is assigned the color α. Therefore, α is the color

associated with the swap in which F ′+xy−e is obtained from F ′. This implies that F ′+xy−e ∈ S(Fj)

and α ∈ Cj. This proves the claim. □

Claim 12.4. For every 2 ≤ j < ℓ ≤ k,

(nℓ − nj)

(

3

2
nj − 2nℓ + nℓ−1 − ξn

)

≤ ej(Aℓ \ Aj, Aj) ≤ nj(nj − nj−1 − j + ξn).

Proof. Let x ∈ Aℓ \Aj. First note that dj(x, Aj) ≥ dℓ(x, Aj)−|Cℓ \ Cj| because the edges of G and hence

Gℓ are properly colored. Because Claim 12.2 implies that

|Cℓ \ Cj| ≤ (nℓ − ℓ) −
(

1

2
nj − j

)

,

we have that

dj(x, Aj) ≥ dℓ(x, Aℓ) − |Cℓ \ Cj| ≥ dℓ(x, Aj) − (nℓ − ℓ) +
(

1

2
nj − j

)

. (12)

We also have that,

dℓ(x, Aj) ≥ dℓ(x, Aℓ) − |Aℓ \ Aj| = dℓ(x, Aℓ) − (nℓ − nj),

and, by Claim 12.3,

dℓ(x, Aℓ) ≥ nℓ−1 − ξn,
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together with (12) we have

dj(x, Aj) ≥
(

(nℓ−1 − ξn) − (nℓ − nj)
)

− (nℓ − ℓ) +
(

1

2
nj − j

)

=
3

2
nj + nℓ−1 − 2nℓ + ℓ − j − ξn ≥

3

2
nj − 2nℓ + nℓ−1 − ξn.

Summing over all vertices in Aℓ \ Aj gives the lower bound.
For every x ∈ Aj, by Claim 12.2, dj(x, Aℓ) ≤ dj(x) ≤ |Cj| ≤ nj − j. By Claim 12.3, we also have that

dj(x, Aj) ≥ nj−1 − ξn. Therefore,

dj(x, Aℓ \ Aj) = dj(x, Aℓ) − dj(x, Aj) ≤ (nj − j) − (nj−1 − ξn).

Summing over all vertices in Aj gives the upper bound. □

Let m = ⌈3ξn⌉. Note that we can assume that k > m, as otherwise Fk has at most ⌈3ξn⌉ paths,
and Fk would satisfy the conclusion of the theorem. For every j such that m ≤ j ≤ k, using only the
fact that nj ≥ j ≥ m ≥ 3ξn, we can deduce that

3

2
nj − 2nℓ + nℓ−1 − ξn ≥

7

6
nj − (2nℓ − nℓ−1)

and

nj − nj−1 − j + ξn ≤ nj − nj−1.

Therefore, Claim 12.4 implies that, for every m ≤ j < ℓ ≤ k,

nj − nj−1 ≥ nj − nj−1 − j + ξn ≥
nℓ − nj

nj

(

3

2
nj − 2nℓ + nℓ−1 − ξn

)

≥
nℓ − nj

nj

((

1 +
1

6

)

nj − (2nℓ − nℓ−1)

)

.

We can then apply Lemma 13 to n1, . . . , nk to deduce that, with r = 19/18, we have k ≤
(logr nk)

2 + 2 logr nk + m + 1. We can assume that logr nk ≥ 1, so if we let C = 5(logr 2)
2, then

C (log nk)
2 = 5 (logr nk)

2 ≥ (logr nk)
2 + 2 logr nk + 2.

Therefore, since m < 3ξn + 1, we have that Fk is a spanning rainbow forest with

k ≤ (logr nk)
2 + 2 logr nk + m + 1 ≤ C (log nk)

2 + 3ξn,

paths. This completes the proof of Theorem 12. □

Proof of Lemma 13.

Claim 13.1. For all m ≤ j < ℓ ≤ k, if nℓ ≤ rnj, then nℓ − nj ≤ r−1(nℓ − nj−1).

Proof. We have that

2nℓ − nℓ−1 ≤ 2nℓ − nj ≤ (2r − 1)nj.

With the fact that c = 3r − 3, this implies that

(1 + c)nj − (2nℓ − nℓ−1) ≥ (1 + c − (2r − 1))nj = (r − 1)nj.

Combining this with (11) gives us that (r − 1)(nℓ − nj) ≤ nj − nj−1, so

r(nℓ − nj) = nℓ − nj + (r − 1)(nℓ − nj) ≤ nℓ − nj + nj − nj−1 = nℓ − nj−1,

which proves the claim. □

Claim 13.2. For all m ≤ j < ℓ ≤ k, if nℓ ≤ rnj, then ℓ − j < logr nj.
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Proof. Note that if nℓ ≤ rnj and j ≤ ℓ − 1, then for every i such that j ≤ i ≤ ℓ − 1, we have that
nℓ ≤ rnj ≤ rni. Therefore, Claim 13.1 implies nℓ − ni ≤ r−1(nℓ − ni−1), which further implies that

1 ≤ nℓ − nℓ−1 ≤ r−(ℓ−(j+1))(nℓ − nj),

and ℓ − (j + 1) ≤ logr (nℓ − nj). Using this and the fact that our assumption nℓ ≤ rnj implies that
nℓ − nj ≤ (r − 1)nj we have that

ℓ − (j + 1) ≤ logr (nℓ − nj) ≤ logr ((r − 1)nj).

Therefore, because 1 < r ≤ 4/3 implies that r − 1 < r−1, i.e., logr (r − 1) < −1, we have

logr nj ≥ ℓ − j − 1 − logr (r − 1) > ℓ − j,

and the claim holds. □

Let t = ⌈logr nk⌉ and s =
⌊

k−m
t

⌋

. Note that, for every 1 ≤ i ≤ s,

(it + m) − ((i − 1)t + m) = t ≥ logr nk,

and, therefore, Claim 13.2 implies that

nit+m ≥ rn(i−1)t+m,

so nit+m ≥ r inm, and

nk ≥ nst+m ≥ r snm ≥ r s.

Therefore,

logr nk ≥ s ≥
k − m

t
− 1 ≥

k − m

(logr nk) + 1
− 1,

which implies

k ≤ (logr nk)
2 + 2 logr nk + m + 1. □
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