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The Medicago truncatula CLAVATA3-LIKE CLE12/13 signaling peptides regulate
nodule number depending on the CORYNE but not the COMPACT ROOT

ARCHITECTURE2 receptor

Stephen Nowak @, Elise Schnabel, and Julia Frugoli

Genetics & Biochemistry, Clemson University, Clemson, SC, USA

ABSTRACT

We previously showed that the rdn1 and sunn supernodulation mutants of Medicago truncatula respond
differentially to overexpression of the rhizobial CLAVAT3/EMBRYO SURROUNDING REGION (CLE) signal-
ing peptides MtCLE12p and MtCLE13p, allowing the order of action of the genes to be determined in
the autoregulation of nodulation (AON) signal transduction pathway. We tested the same gene con-
structs that lead to the production of proteolytically processed peptides (indicated by a p after the
name) in plants mutant for two other proteins that control nodule number (CRN and CRA2) and were
able to determine that CRN is involved in the same signaling pathway as MtCLE12p and MtCLE13p,
while regulation in CRA2 mutants responds normally to the peptides, suggesting CRA2 likely signals
separately from SUNN, RDN1, and CRN. Based on the analysis of the double mutant of cra2-2 and sunn-4,
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we also confirm recent findings that CRA2 acts independently of SUNN in nodule number regulation.

Introduction

CLE peptides are involved in many signal transduction pathways
affecting plant root growth and development (for review see'?).
A subset of CLE peptides in legumes have been shown to be
involved in the autoregulation of nodulation (AON). In soybean,
Lotus japonicus and Medicago truncatula, some CLE peptides
negatively regulate nodule development’” and evidence sup-
ports a model in which the peptides genes are upregulated in
the nodule meristem and peptides transported to receptors in
the shoot of the plant.*” A subsequent signal back to the root
results in a halt to further nodule development, and recent
findings implicate cytokinins® and a microRNA” in this signal.

We showed that overexpression of the M. truncatula
nodulation regulatory peptides MtCLE12p and MtCLE13p in
rdnl-2 hypernodulation mutants yielded genetic evidence that
the hydroxyproline O-arabinosyltransferase enzyme encoded by
RDN1 modifies MtCLE12p. Further, that modification was neces-
sary for regulatory signaling by MtCLE12p but not signaling by
MtCLE13p."® The receptor kinase SUNN, mutation of which also
cause hypernodulation,'' was shown genetically to be the receptor
for both MtCLE12p and MtCLE13p and sunn-4 plants were used
as a negative control unresponsive to the peptides.'’
In M. truncatula, SUNN has the highest homology to CLVI in
Arabidopsis."*

Two other molecules are predicted to associate with
SUNN. The pseudokinase CRN has been shown by bimole-
cular fluorescence complementation to associate with SUNN,
and mutations in CRN co-segregate with an increased nodule
phenotype."” Likewise, CLV2 associates with both SUNN and
CRN" and mutations in CLV2 cause an increased nodule
phenotype.'* Evidence from Arabidopsis also indicates that

CLV1, CLV2 and CRN associate with each other and signal
together in some pathways.'>™'®

In contrast, mutation of the CRA2 receptor kinase gene
in M. truncatula has the opposite effect of CRN gene muta-
tions, reducing nodule number in a systemic manner.'”
Genetic evidence suggests the CRA2 is the receptor for the
CEPI1 peptide.”® The CEP peptides are part of a signaling
system for nitrogen demand.?' Since high nitrate reduces or
eliminates nodulation, the authors of the work above postu-
lated that CRA2 might be involved in SUNN nodule regula-
tory signaling as well.”’

Based on this data, we hypothesized that constitutive
expression of MtCLE12 and MtCLE13 could require CRN
to regulate nodule number. If CRA2 is involved in SUNN
regulatory signaling, we postulated constitutive expression
of MtCLE12 and MtCLEI3 would affect systemic nodule
number signaling in CRA2 mutants as well. We performed
the same experiments in'® in a M. truncatula crn mutant
and the cra2-2 mutant identified in."” Before beginning, we
confirmed that we could rescue the hypernodulation phe-
notype of the crn mutant used in'’> with the CRN message,
proof that the Tnt!l insertion in the ¢rn mutant is the cause
of the phenotype. Testing both mutants allowed us to
determine that cross talk between the nodule regulatory
pathway and the nitrogen demand signaling pathway does
not involve the M. truncatula rhizobia-induced CLEs,
despite the fact that both sunmn and rdnl mutants have
altered phenotypic plasticity in response to nitrate in the
absence of rhizobia.”> Phenotypic analysis of the sunn-5;
cra2-2 double mutant further confirmation this finding of
independence.
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Figure 1. MtCLE12 and MtCLE13 are dependent on CRN but not CRA2 for AON signaling. (a) Expression of wild type CRN in crn plants rescues the mutant phenotype.
Nodule number in wild type R108 and the mutant ¢ line compared to progeny of each of two lines from independent transformations of crn mutants expressing wild type CRN
under the CaMV 35S promoter (21D and 19D). (n = 10-12 per genotype). * indicates significant difference from wild type as determined by Student's t-test, p < 0.001. (b and c)
MtCLE12 and MtCLE13 overexpression effects depend on CRN. Data are mean number of nodules 14 days post inoculation with S. medicae in transgenic hairy roots constitutively
expressing MtCLE12 or MtCLE13 under the CaMV 35S promoter. Grey and white bars indicate the results of two independent experiments. (b) Wildtype R108, n = 8-10 plants per
construct per experiment (c) crn n = 4-8 plants per construct per experiment (d) MtCLE12 and MtCLE13 overexpression effects do not depend on CRA2. cra2-2 n = 5-9 plants per
construct per experiment. Error bars indicate standard error of mean, * indicates significance of group from empty vector control, Student's t-test, p < 0.01. (e) The cra2-2;sunn-5
double mutant displays the cra2-2 phenotype. Photo left to right is of wild type, sunn-5, cra2-2 and sunn-5;cra2-2 double mutant plants. (f) Nodule phenotypes of F2 progeny of
cra2-2 crossed to sunn-5. Error bars indicate standard error of mean, * indicates significance of group from wild type as determined by Student's t-test, p < 0.001. (n = 10 (wt) 15
(sunn-5) 14 (cra2-2) and 16 (sunn-5;cra2-2). (g) Root length phenotypes of the same genotypes, uninoculated. (n = 10-16). Error bars indicate standard error of mean, * indicates
significance of group from wild type as determined by Student's t-test, p < 0.001.



Results
The CRN coding sequence rescues the CRN mutation

The CRN coding sequence used in'? was cloned and transformed
by tissue culture into the crn mutant as described in*> and
multiple TO whole plant transgenics carrying the construct
were obtained. Two independent transgenic lines carrying the
construct (T'1) were selected for analysis because they segregated
only plants carrying the construct. T2 plants from these lines
were grown in an aeroponic chamber in nodulation medium and
inoculated as in.'” The crn mutant plants carrying the CRN
construct displayed wild type nodule numbers when compared
to the R108 wild type (no statistical difference, Student’s t-test)
and different from the parental crn mutant used for transforma-
tion (Student's t-test, p > 0.001, Figure 1(a)). The results confirm
the suggestion in'” that the lesion in the CRN gene is responsible
for the hypernodulation phenotype of crn mutants.

CRN is part of the SUNN/CLE signaling pathway, but CRA2
is not

The MtCLEI2 and MtCLE13 peptide genes as well as an
empty vector control were constitutively expressed in compo-
site hairy roots of R108 ecotype wild type plants as in.'” The
construct carries a DS-Red marker which allows identification
of transformed roots by microscopy and only these roots were
used in the analysis. Inoculation with rhizobia resulted in
a normal number of nodules in the empty vector control.
Significantly reduced nodulation was observed in plants con-
stitutively expressing either the MtCLE12 or the MtCLEI3
gene (Figure 1(b) p < 0.001, Student's t-test), in agreement
with previous findings for this experiment performed in wild
type plants of the Al17 ecotype.*'° However, expression of
both the empty vector control and either the MtCLEI12 or the
MtCLE13 gene in composite hairy roots had no effect on the
increased nodule number observed in c¢rn mutant plants
(Figure 1(c)). This is the same result we and other observed
for the experiment done in a sunn mutant background®'° and
indicates that both CLE peptides signal through a pathway
that involves the CRN pseudokinase. While it is possible CRN
is a receptor for the CLEs, it is more likely based on experi-
ments on the interactions of CRN with other molecules in
Arabidopsis and M. truncatula that this is evidence of
a downstream effect. Since CRN and SUNN have been
shown to physically interact'? it may be that CRN responds
to the binding of the CLEs to the SUNN kinase with which it
associates, and this response does not occur in a crn mutant.

In contrast, when the MtCLE12 and MtCLEI13 peptide genes
were constitutively expressed in cra2-2 mutant plants in the
R108 background, the low nodule phenotype of these plants
was significantly lower than mutants expressing the empty vector
(Figure 1(d), p < 0.01, Student's t-test), similar to the effect of
expression of these genes in wild type plants. From this, we
conclude that MtCLE12p and MtCLE13p are not involved in
the CRA2 nodule regulatory pathway. Further evidence of inde-
pendence is the phenotype of plants carrying mutations in both
sunn-5" and cra2-2 *° The sunn-5 allele in the R108 background
contains a Tntl transposon insertion in an exon near the end of
the extracellular domain of the receptor, resulting in a three-fold
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increase in nodule number over the corresponding wild type
(Figure 1(f)). The sunn-5;cra2-2 double mutant, identified by
PCR among F2 plants from a cra2-2 cross to sunn-5, was
analyzed as in Figure 1(a) for nodule number and the compact
root architecture phenotype of cra2-2. Plants homozygous for
both mutations displayed the cra2-2 compact root with many
laterals and low nodule number phenotypes (Figure 1(e-g)). The
presence of the cra2-2 allele drastically reduced the nodule
number in plants carrying the sunn-5 allele (Student's t-test,
p < .001), however, there was no statistical difference in nodule
number between the double mutant and plants containing only
the cra2-2 allele. Recent work with an allelic series of cra2
mutants in the A17 background revealed an intermediate nodule
phenotype close to wild type nodulation in their sunn;cra2
double mutants, 2* but the less severe reduction in nodulation
is likely due to the alleles and ecotype used to create the double
mutant. The cra2-2 allele in the R108 genotype has a severe
reduction in nodule number (many plants don‘t make a nodule
at 14 days post inoculation) in our aeroponic system compared
the cra2 alleles in the A17 genotype in their pouch system (3-5
nodules per plant at 14 days post inoculation) and the sunn-5
allele in R108 is not as strong (3x increase) as the sunn-4 allele in
A17 (10x increase) in our system. However, our results support
their conclusion that the CEP/CRA2 and CLE/SUNN systemic
pathways act independently from the shoots to regulate nodule
number, ** and implicate CRN in the CLE/SUNN/CRN systemic
pathway.
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