
Modelling and Simulation in Materials Science and Engineering

PAPER

Modified embedded-atom method interatomic potential for Mg–Y alloys
To cite this article: Rasool Ahmad et al 2018 Modelling Simul. Mater. Sci. Eng. 26 065010

 

View the article online for updates and enhancements.

This content was downloaded from IP address 140.254.235.143 on 29/07/2019 at 17:42

https://doi.org/10.1088/1361-651X/aacfd2
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/759632595/Middle/IOPP/IOPs-Mid-MSMSE-pdf/IOPs-Mid-MSMSE-pdf.jpg/1?


Modified embedded-atom method
interatomic potential for Mg–Y alloys

Rasool Ahmad1 , Sébastien Groh2,
Maryam Ghazisaeidi3 and William A Curtin1

1 Laboratory for Multiscale Mechanics Modeling, Institute of Mechanical Engineering,
EPFL, 1015 Lausanne, Switzerland
2Department of Biomedical Engineering, University of Basel, 4123 Allschwil,
Switzerland
3Department of Materials Science and Engineering, The Ohio State University,
Columbus, OH 43210, United States of America

E-mail: rasool.ahmad@epfl.ch

Received 4 May 2018, revised 22 June 2018
Accepted for publication 28 June 2018
Published 20 July 2018

Abstract
An interatomic potential for the Mg–Y binary system is developed within the
framework of the second-nearest-neighbor modified embedded-atom method
(MEAM) based on a very good MEAM potential for pure Mg. The Mg–Y
potential is fitted to a range of key physical properties, either experimental or
computed by first-principles methods, including the Y interaction energy with
basal and pyramidal stacking faults, and properties of the B2 Mg–Y inter-
metallic phase. Reasonable agreement is obtained—much better than existing
potentials in the literature—but differences remain for subtle but important
aspects of Y solutes in Mg. The predictions of the potential for Y misfit
volume in Mg, Y solute interactions with the pyramidal II c a+⟨ ⟩ edge
dislocation and 1012 1011{ ¯ }⟨ ¯ ⟩ tension-twin boundary are then compared
against recent density functional theory results, and reasonable accuracy is
obtained. In light of the spectrum of results presented here, the applicability
and limitations of this Mg–Y MEAM potential for investigating various
plasticity phenomena in Mg–Y solid solution alloys are carefully discussed.
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1. Introduction

Magnesium (Mg) is the lightest structural metal, having a density two thirds that of Al and
one quarter that of Fe, and has a high potential for applications in the automotive, aerospace
and biomedical industries [1–3], the latter due to the good biocompatability of Mg. However,
wide use of Mg is significantly inhibited by its low ductility and low fracture toughness at
room temperature. The hexagonally closed-packed (hcp) crystal structure leads to high
anisotropy in the stresses needed to move dislocations on different slip systems, e.g. the
critical resolved shear stress for pyramidal c a+⟨ ⟩ slip is almost two orders of magnitude
higher than that for a⟨ ⟩ slip on basal plane [4, 5]. This slip anisotropy is largely due to an
intrinsic thermally activated transformation of c a+⟨ ⟩ dislocations from easy-glide pyramidal
planes to basal plane [6–8] having a low-energy barrier (0.3 eV for pyramidal I mixed [9] and
0.5 eV for pyramidal II edge dislocation [10]). These features of the c a+⟨ ⟩ dislocations
render Mg unable to easily accommodate the c⟨ ⟩ axis deformation necessary to satisfy the von
Mises criterion for general plasticity [11].

Experiments show that solid solution alloying of Mg with yttrium (Y) and other rare
earth elements significantly enhances the room temperature ductility of the resulting Mg
alloys [12–14]. Enhanced ductility is accompanied by an increased activity of c a+⟨ ⟩ slip
systems [15, 16]. The ductility is in part connected to weaker basal textures, but the
mechanisms leading to weaker texture and enhanced c a+⟨ ⟩ activity have not yet been
definitively identified. One recent possible explanation involves the basal I1 stacking fault,
and its energy variations with solute type [17, 18]. However, recent density functional theory
(DFT) calculations [19] suggest no correlation between I1 stacking fault energy and observed
ductility across various solutes. The possibility of Y solute atoms stabilizing the pyramidal
c a+⟨ ⟩ edge dislocations has also been exhausted with no encouraging result [19, 20]. A new
mechanism explaining the origin of ductility in Mg alloys has been recently discovered by
Wu et al [16] which is based on the role of solutes in accelerating c a+⟨ ⟩ cross-slip. The
solutes are postulated to reduce the barrier for cross-slip from the low-energy pyramidal II
c a+⟨ ⟩ screw dislocation cross-slipping onto the higher energy pyramidal I planes. This
process, and the cross-slip back to the pyramidal II planes, is postulated to generate new
mobile dislocation content at a faster rate than the immobilizing pyramidal-to basal trans-
formation, enabling c a+⟨ ⟩ plasticity at the intrinsic stresses of easy-glide pyramidal slip.
This model explains how Y and other rare earth solutes can positively affect ductility and
weak texture formation at very low (<1 at%) concentrations. First-principles DFT studies
provide one avenue for accurate assessment of individual solute interaction energies with
dislocation and stacking fault. However, the collective behavior of solutes at finite solute
concentrations, and the study of complex dislocation processes and their energy barriers, is
not yet computationally feasible via DFT. A deeper understanding of proposed mechanisms
can be achieved, in part, through direct atomistic simulations of the mechanisms on realistic
representations of the alloys. Such simulations require, then, interatomic potentials for the
alloys that capture all the relevant energetics of the various processes. Since Y is perhaps the
most widely studied rare earth element found to lead to a ductile Mg alloy at low solute
concentrations, the development of accurate interatomic potentials for the binary Mg–Y
system is particularly valuable; this is thus the goal of the present paper.

Because of its importance, previous researchers have created Mg–Y potentials. Kim et al
[21] developed an Mg–Y alloy potential using the framework of the second-nearest-neighbor
modified embedded-atom method (MEAM). This potential, hereafter, referred to as the Kim
potential, describes the structural and elastic properties of stable Mg–Y intermetallic com-
pounds in reasonable agreement with experimental and first principal data. However, the
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predicted Y misfit volume is much smaller than experiments and DFT. The Kim potential also
predicts very weak effect of Y on the basal (I1 and I2) and pyramidal I (SF2) stable stacking
fault energies. Pei et al [22] proposed an EAM potential for Mg–Y alloys and conducted a
detailed study on the generalized stacking fault energy in different slip system for pure Mg
and Mg–Y alloy, but this potential has not been tested for the dislocation properties in pure
Mg. Since achieving stacking fault energies in agreement with DFT does not ensure good
predictions of dislocation properties [5, 23], this EAM potential warrants further validation
before its application in plasticity and dislocation related problems.

Here, we present a new MEAM interatomic potential for the Mg–Y binary system that is
fitted to a range of properties relevant to plasticity. The potential is based on the recent
MEAM potential for pure Mg [5], which yields excellent agreement with a wide range of
experimental and/or DFT-computed properties of pure Mg. The fitting leads to generally
good agreement for the Y misfit volume, interaction energies of Y atom with various stacking
faults (basal I1, basal I2, basal E, pyramidal I SF2, pyramidal I SF3 and pyramidal II SF) and
heat of formation of the Mg–Y B2 intermetallic. The potential is then compared with DFT for
Y interactions with the pyramidal II c a+⟨ ⟩ edge dislocation and with 1012 1011{ ¯ }⟨ ¯ ⟩ ten-
sion-twin boundary and for other intermetallic compounds, and reasonable agreement is
found. However, the potential is not perfect and deviates sufficiently for various subtle
properties so as to make it unsuitable for all possible applications, in particular for assessing
pyramidal II-I cross-slip. We thus discuss the problems for which this Mg–Y potential, which
may exhaust the capability of the second-nearest-neighbor MEAM framework, can be utilized
productively to test specific mechanisms and enable quantitative comparisons between theory
and simulations on the approximate Mg–Y system.

The remainder of this paper is arranged as follows. In section 2, we provide a brief
description of the MEAM potential and the optimized potential parameters for Mg–Y binary
alloys as determined here. In section 3, the heats of formation, lattice constants, and elastic
constants for different Mg–Y intermetallic compounds are presented. In section 4, the Y
misfit volume in Mg, Y solute–solute interaction energy and interaction energies of Y with
various stacking faults are shown, some of which were used in the fitting. Sections 5 and 6
present the interaction energy of Y with the pyramidal II c a+⟨ ⟩ edge dislocation and
1012 1011{ ¯ }⟨ ¯ ⟩ tension-twin boundary, respectively, which were not involved in the fitting
procedure. In section 7, we discuss the scope of applications where this Mg–Y MEAM
potential can be useful. All computations using the MEAM potential are performed using the
LAMMPS package [24] and visualizations created using the OVITO code [25].

2. MEAM potential for Mg–Y binary alloy

The MEAM interatomic potential framework was first proposed by Baskes [26, 27] as a
modification of the EAM potential method to account for the directionality of near-neighbor
atomic bonding. The MEAM was later modified to overcome some critical shortcomings of
the original formalism [28, 29], primarily by including second-nearest-neighbor interactions.
The framework for the MEAM interatomic potential is described in the appendix. To describe
a binary alloy within the MEAM formalism first requires interatomic potentials of the con-
stituent elements. For pure Mg, we use the MEAM potential of Wu et al [5], which accurately
describes many properties pertaining to plastic deformation and fracture such as various
stacking fault energies, dislocation core structures, and Peierls stresses. An MEAM potential
for pure Y was developed by Ko and Lee [30], which is also used in Kim potential, and
describes structural and mechanical properties in good agreement with experimental data.
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Table 1. MEAM potential parameters used here for pure Mg and Y. The units of Ec, re and B are eV, Å and 1012 dyne cm−2, respectively.

Ec re B A β(0) β(1) β(2) β(3) t(1) t(2) t(3) Cmin Cmax d

Mg 1.51 3.18 0.37 0.52 2.00 1.30 1.30 1.00 5.55 3.00 −7.40 0.49 2.80 0.00
Y 4.37 3.607 0.448 6 0.90 2.00 5.00 1.00 1.00 8.00 8.00 −8.50 0.36 2.80 0.00
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A full description of a pure element in the MEAM framework requires 14 parameters.
Four parameters (cohesive energy Ec, equilibrium nearest-neighbor distance re, bulk modulus
B, and an adjustable parameter d to fit ∂B/∂P) are obtained from the universal equation of
state [31]. Seven parameters (decay lengths (β(0), β(1), β(2), β(3) ) and weight factors (t(1), t(2),
t(3))) describe the electron density for embedding. One parameter A is used in the embedding
function, and two parameters (Cmin, Cmax ) account for many-body screening effects. We
retain all the literature values for these properties for both Mg and Y, with the exception of the
decay parameters β(1) and β(3) for Y, which are adjusted to better describe the interaction
energies of Y solutes with the various stacking faults of Mg. The fourteen parameters for both
Mg and Y are shown, following the notation of Kim et al [21], in table 1. Various properties
of pure Y as predicted by the MEAM potential are presented in table 2, and compared with
Kim potential and available DFT and experimental results.

To describe a binary alloy, 13 additional parameters are needed. Four parameters (Ec, re,
B, d) are related to the universal equation of state for a reference intermetallic compound.
Eight parameters related to screening (C) and one parameter related to the electron density
scaling ( 0

Mgr : 0
Yr ) are introduced. Potential parameters are fitted using structural and elastic

properties of reference B2-MgY structure, the heat of formation of B2-MgY, and the position-
dependent single-solute interaction energies with the stable stacking faults on the basal (I2),
pyramidal II and pyramidal I (SF2) planes. Following the notations of Kim et al [21], the

Table 2. Cohesive energy (Ec), lattice constants (a and c/a), elastic constants (C11, C12,
C13, C33, C44), structural energy difference ( Ehcp fccD  and Ehcp bccD  ), basal surface
energy, and relaxed vacancy formation energy (Ev

f ) of Y element as calculated from the
current MEAM potential and the Kim potential, along with existing experimental
and DFT values. Units of each property are mentioned in the parentheses in the
second column.

Properties MEAM Kim potential
DFT/
experimental

Cohesive energy Ec (eV/atom) −4.373 −4.374a −4.28a, −4.37b

Lattice constants a(Å) 3.641 3.645a 3.659a, 3.647c

c/a 1.598 1.580a 1.549a, 1.571c

Elastic constants C11 (GPa) 80.28 77.74a 80.40a, 83.40d

C12 (GPa) 20.91 30.00a 17.06a, 29.10d

C13 (GPa) 26.18 28.21a 15.85a, 19.00d

C33 (GPa) 79.41 75.32a 82.88a, 80.10d

C44 (GPa) 29.46 21.71a 26.81a, 26.90d

Structural energy difference Ehcp fccD 

(eV/atom)
0.0334 0.0385a 0.0260a

Ehcp bccD 

(eV/atom)
0.1328 0.129a 0.125a

Surface energy basal (0001)
(mJ m−2)

1269 1660a 1506e

Relaxed vacancy formation
energy

Ev
f (eV/atom) 1.391 1.890a 1.840a

a
Ko and Lee [30].

b Kittel [32].
c Spedding et al [33].
d Simmons and Wang [34].
e Vitos et al [35].
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fitted parameters for the binary Mg–Y system are shown in table 3. We use radial cutoff
distance rc of 5.875 Å and smoothing radius Δr of 1.875Å. The potential files of the MEAM
potential proposed here are provided in LAMMPS format as the supplementary data, avail-
able online at stacks.iop.org/MSMS/26/065010/mmedia. In the following sections we show
the specific values obtained in the fitting as compared to the target quantities and then analyze
further properties against available experimental and DFT data.

3. Mg–Y intermetallic compounds

The heat of formation for the compound MgnYm is calculated as

H E
nE mE

n m
, 1tot

Mg Y solid
Mg

solid
Y

n mD = -
+
+

( )

where Etot
Mg Yn m represents the total energy of the unit cell of the MgnYm compound, and Esolid

Mg

and Esolid
Y represent the energy per atom of Mg and Y in the pure elements.

While the heat of formation for B2-MgY is used to fit the potential, the heats of for-
mation for the C14-Mg2Y and A12-Mg24Y5 intermetallics are calculated to test the domain of
validity of the proposed MEAM potential. On one hand, Smith et al [36] performed exper-
imental work to quantify the heats of formation of B2-MgY, C14-Mg2Y and A12-Mg24Y5

intermetallics. These authors reported the C14-Mg2Y compound to be most stable. On the
other hand, Zhang et al [37] predicted the heats of formation of the same compounds
using first-principles calculations. Unlike Smith et al [36], Zhang et al [37] reported the
B2-MgY compound to be most stable. Among B2-MgY, C14-Mg2Y and A12-Mg24Y5,
the A12-Mg24Y5 compound was the least stable in both experiments and first-principle
predictions. Existing semi-empirical Mg–Y potentials predict either C14-Mg2Y [22] or B2-
MgY [21] to be the most stable. The heats of formation predicted with the current Mg–Y
potential are reported in table 4. The convex hull for the current MEAM potential predicts the
C14-Mg2Y compound to be on the convex hull while the A12-Mg24Y5 and B2-Mg2Y phases
are above the convex hull and thus metastable. Finally, the dilute heat of solution of Y
alloying element in hcp Mg is predicted to be −0.1 eV, which is overestimated by 50%
relative to data reported by Kim et al [21]. Therefore, thermodynamics studies with the
current potential should be pursued with caution.

The elastic constants of B2-MgY, C14-Mg2Y, and A12-Mg24Y5 are calculated using the
method proposed by Beckstein et al [44], with all atomic positions fully relaxed after
imposing the desired strain. Table 5 shows the lattice constants and elastic constants of the

Table 3. MEAM potential parameters developed here for binary Mg–Y alloy system.
The units of Ec, re and B are eV, Å and 1012 dyne cm−2, respectively.

Parameters Values Parameters Values

Reference B2-type Mg–Y Cmin(Mg, Y, Mg) 0.60
Ec 3.075 Cmin(Y, Mg, Y) 0.36
re 3.257 5 Cmin(Mg, Mg, Y) 0.00
B 0.409 Cmin(Mg, Y, Y) 1.20
d 0.00 Cmax(Mg, Y, Mg) 2.80
ρ0
Mg: 0

Yr 1:1.4 Cmax(Y, Mg, Y) 2.80

Cmax(Mg, Mg, Y) 1.63
Cmax(Mg, Y, Y) 2.80
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A12, C14 and B2 intermetallics as obtained from the current MEAM potential along with the
Kim potential and DFT/experimental values. For the B2-MgY compound, the potential
captures the DFT-computed ranking of elastic constants (C11>C44>C12) while the

Table 4. Heat of formation (kJ mol−1) of different Mg–Y compounds as calculated by
the current MEAM potential and the Kim potential, along with existing experimental
and DFT values.

Structure MEAM Kim potential DFT Experiment

Mg24Y5 (A12) −8.40 −5.57a −5.84b, −5.76c −7.53d

Mg2Y (C14) −19.60 −10.48a −9.17b, −11.99e −14.22d

MgY (B2)* −12.88 −12.52a −10.64b, −10.27f −12.55d

Note: the asterisk(∗) denotes the properties used in the parameterization of the MEAM potential.
a Kim et al [21].
b Zhang et al [37].
c Zheng et al [38].
d Smith et al [36].
e Chen and Zhang [39].
f Chen et al [40].

Table 5. Lattice constants (Å) and elastic constants (GPa) of different Mg–Y com-
pounds as calculated from the current MEAM potential and the Kim potential, with
existing experimental and DFT values also shown.

Structure Properties MEAM Kim potential DFT/experimental

Mg24Y5 (A12) Lattice constant a 11.24 11.20a 11.25b,11.26c,11.26d,11.27e

Elastic constants C11 75.4 70.0a 73.9d,73.5e

C12 21.7 25.0a 22.1d,19.8e

C44 17.2 14.6a 18.0d,14.8e

Mg2Y (C14) Lattice constant a 6.01 6.14a 6.04b,6.05c,6.06f,6.05g

c 9.75 9.78a 9.75b, 9.83g, 9.79f, 9.81g

Elastic constants C11 80.4 76.8f, 73.3g

C12 26.2 25.4f, 30.5g

C13 23.8 21.1f, 25.5g

C33 85.5 84.0f, 78.8g

C44 23.8 17.8f, 17.6g

MgY (B2)* Lattice constant a 3.76 3.78b, 3.80c, 3.80d, 3.80h

Elastic constants C11 59.3 64.6a 51.8d, 52.4h

C12 31.7 35.0a 35.8d, 34.8h

C44 34.9 29.1a 37.3d, 38.73h

Note: the asterisk(∗) denotes the properties used in the parameterization of the MEAM potential.
a Kim et al [21].
b Smith et al [36].
c Zhang et al [37].
d Ganeshan et al [41].
e Wang et al [42].
f Chen and Zhang [39].
g Zeng et al [43].
h Chen et al [40].

Modelling Simul. Mater. Sci. Eng. 26 (2018) 065010 R Ahmad et al

7



Kim potential [21] does not. Quantitatively, the current potential predicts elastic constants for
the three compounds within 15% of the first-principles data.

4. Y solute properties

4.1. Misfit strain and misfit volume

The first important property of a solute related to mechanical properties of alloys is the solute
misfit strain tensor and the associated solute misfit volume. Following [45–47], misfit strains
are calculated using the dipole tensor. In simulations, one Mg atom in the perfect hcp lattice is
replaced by one Y atom and all atomic positions are then relaxed keeping the periodic cell
vectors fixed using periodic boundary conditions. The relaxation leads to the development of
stress σij in the simulation box containing a solute. The dipole tensor Pij of the solute is related
to stress σij and total volume of the simulation box V as

P V . 2ij ijs= - ( )

The misfit strain of the solute ij
misfite is then computed from dipole tensor Pij using anisotropic

elasticity as

V
S P

1
, 3ij ijkl kl

misfit

0
e = ( )

where Sijkl is the anisotropic compliance tensor of Mg, and V0 is the volume of one Mg atom
in its hcp bulk. The misfit strains are calculated in the coordinate system where x1 is along

x2110 , 2[ ¯ ¯ ] along 0110[ ¯ ], and x3 is along [0001] direction. The misfit volume of the solute,
normalized by the atomic volume of Mg, ΔV/V0 is the trace of the misfit strain tensor,
i.e. V V tr0

misfiteD = ( ).
For the current MEAM potential, we obtain the non-zero misfit strain components

0.20511
misfit

22
misfite e= = and 0.18333

misfite = for Y in Mg. Wu et al [16] report the misfit strain
of Y in Mg, using DFT in the same coordinate system, as 0.22311

misfit
22
misfite e= = and

0.12033
misfite = . The DFT misfit strain tensor is thus slightly more anisotropic than that of the
MEAM. Previous works on Y usually report only the misfit volume. For the current MEAM
potential, the misfit volume is ΔV/ V0=0.593, in good agreement with DFT values of 0.567
[19], 0.580 [14], and 0.636 [48]. In contrast, the Kim potential yields a value of only 0.240,
less than one-half the DFT value. Since the misfit volume is related to the interaction energy
of a dislocation with the solute, it is necessary that the potential predicts this quantity
accurately for application to many problems in plasticity.

4.2. Solute–solute interaction energy

In the regime of relatively high concentration, the interaction between solute pairs becomes
important. Even in dilute alloys, the properties of occasional solute pairs may play some role.
In addition, solute–solute interactions drive short-range-order (SRO) by solute–solute
repulsion, attraction, or both. The existence of SRO can then affect strengthening of
dislocation slip.

Here, we compute the solute–solute interaction energy of Y in Mg for Y solutes
on neighboring basal planes. We use a cuboidal simulation box of size 10 2110 ´[ ¯ ¯ ]
10 0110 5 0001´[ ¯ ] [ ], periodic in all direction. After substituting two Mg atoms with Y atoms,
atomic positions are relaxed keeping the repeat vector of simulation box fixed (relaxation of
stresses causes no appreciable difference). To compute the interaction energy, we use the
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energy of the structure having two solutes at 16th neighbor distance as a reference energy.
The solute–solute interaction energy is then the energy of the structure containing the solute-
pair minus the energy of the reference structure. Figure 1 shows the results of the solute–
solute interaction energy obtained from the MEAM potential and DFT (for DFT details, see
[16, 19]). Both DFT and the MEAM potential predict the first neighbor Y solutes to be
repulsive with nearly same energy. However, DFT predicts the second neighbor solutes to be
strongly attractive (energy lower by ≈−0.168 eV) while the MEAM potential predicts
second neighbor solutes to be moderately repulsive. The MEAM also predicts the third
neighbor pairs to be moderately attractive (≈−0.051 eV) while DFT predicts a smaller value
(≈−0.011 eV). Fourth neighbors are predicted to be attractive, but the DFT value is nearly
twice that of the MEAM (≈−0.067 eV versus ≈−0.031 eV). Thus, solute–solute interac-
tions are not predicted sufficiently well to accurately capture any SRO effects that might arise
in Mg–Y. The potential should thus be used for the study of dilute alloys.

Since the DFT interaction is strong, dilute Mg–Y alloys annealed at moderate tem-
peratures could develop the short-range order and exhibit consequent strengthening of basal
slip. The slip of a dislocation in the presence of SRO involves the breaking of bonds between
energetically favorable solute pairs and the formation of bonds between energetically unfa-
vorable solute pairs across the glide plane. This can lead to a strengthening effect. We will
examine this issue in the future.

4.3. Y interaction with stacking faults

4.3.1. Simulation method. To compute solute/stacking fault interaction energies, we adopt
the simulation box geometry and methodology used in recent DFT studies of the same
problem by Yin et al [19]. For each slip system, a primitive cell is defined by a set of three
vectors (a a a, ,1 2 3) as shown in figure 2 with (a a,1 2) defining the stacking fault plane and
a a,1 2 and a3 usually not mutually orthogonal. A periodic simulation cell of pure Mg is built
by replicating the primitive cell Ni times in the a i 1, 2, 3i =( ) directions to obtain a
parallelopiped simulation cell with periodic repeat vectors ( a a aN N N, ,1 1 2 2 3 3). The Nis are

Figure 1.Variation of solute–solute interaction energy of Y in Mg with pair distance, as
calculated using (a)MEAM potential and (b) DFT. One solute of each pair is located in
one basal plane and other in the neighboring basal plane. Labels on the vertical dotted
line denote the order of the neighbor.

Modelling Simul. Mater. Sci. Eng. 26 (2018) 065010 R Ahmad et al
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chosen large enough such that periodic solute–solute interactions are negligible in order to
remain in the limit of dilute concentrations.

We consider the intrinsic basal I1 and the extrinsic E stacking faults neither of which can
be generated by slip processes, and the intrinsic basal I2, pyramidal I, and pyramidal II faults
that are formed by slip processes. Simulation cells for the basal I1 and E stacking faults are
constructed by arranging close-packed basal planes as (AB)N 23 -(AC)N 23 and (AB)N 23 -C-
(AB) N 2 23-( ) -C, respectively, where A, B and C are the stacking sequence of close-packed
(111) planes in fcc crystals (ABCABC...) and basal planes (0001) in hcp crystals (ABAB...).
As shown in figure 3(a), two such stacking faults are generated in each simulation box
because of the periodic boundary condition used. The relaxed structures of these stacking
faults are obtained by relaxing the simulation cell only in direction x3 normal to the fault
plane. The slip stacking faults are generated using the tilted-box method [49] in which the
simulation cell vector aN3 3 is shifted laterally by the stacking fault vector t , as depicted in
figure 3(b). Relaxation of the simulation cell is subject to σi3=0 (i=1, 2, 3) while holding
the aN1 1 and aN2 2 repeat vectors fixed. The in-plane positions of the various stable stacking
faults are depicted in figure 2. An important advantage of the tilted-box method is that it
allows full relaxation of all atoms, in contrast to solely out of stacking fault plane relaxation in
the conventional method. The tilted-box method yields only stable stacking faults, if they
exists, in the corresponding stacking fault plane.

To measure the solute/stacking fault interaction energies, we start with the corresponding
relaxed stacking fault structure in the pure Mg. One Mg is then replaced by one Y solute atom

Figure 2. Schematic representation of coordinate system used in the simulation, and
(a) basal, (b) pyramidal I, (c) pyramidal II slip planes along with positions of stable
stacking faults observed.
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at each unique atomic position at height ri with respect to stacking fault plane as shown in
figure 3. The simulation box is then relaxed only in the out-of-plane x3 direction; this prevents
motion of the stacking fault. The interaction energy Eint(ri) of a solute at distance ri from the
stacking fault plane is then computed as

Figure 3. Schematics of the stacking fault simulation cells. (a) Basal I1 stacking fault as
a representative non-slip stacking fault. (b) Basal I2 stacking fault as an example using
the tilted-box method for creating slip stacking faults. In (b), the solid black lines
denotes the initial simulation cell of perfect Mg and the dashed lines show the
simulation box tilted by the stacking fault vector t, leading to the formation of stacking
fault. Index i refers to the solute position with respect to the stacking fault plane. Red
and green atoms denote the hcp and fcc atoms, respectively.
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E r E E E E , 4i Bint SF
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SF
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where ESF
A and ESF

Mg are the energies of the alloy (one Y atom at ri from stacking fault) and
pure Mg with the stacking fault, respectively. Note that these energies are total energies, not
energies per unit area. EB

A and EB
Mg are the energies of the hcp structure with and without the

Y solute, respectively. During the calculation of EB
A, one Mg atom is replaced by one Y atom

in the hcp bulk Mg and simulation box is then relaxed only in the out of corresponding
stacking fault plane direction while keeping the in-plane repeat vectors fixed.

4.3.2. Stacking fault energies versus solute concentration. In the dilute limit (neglecting
solute–solute interaction), we use the interaction energies to calculate the average stacking
fault energy γA (energy per unit area) in the alloy as follows. For volume concentration c= 1
of solute, which is also equal to the planar concentration for a uniform random distribution of
solutes in the material, the average stacking fault energy of the alloy γA can be written as

c

A
E r , 5

i
i

A Mg

0
intåg g= +

=-¥

¥

( ) ( )

where γMg is the stacking fault energy in the pure Mg and A0 is the effective atomic area of
one Mg atom corresponding to the stacking fault plane. Equation (5) can be written as

kc, 6A Mgg g= + ( )

where k E r Ai iint 0= å =-¥
¥( ( )) is the coefficient characterizing the effects of solutes on the

the stacking fault energy.
The interactions of Y atoms versus position for each of the the stable basal (I1, I2 and E),

pyramidal I (SF2 and SF3), and pyramidal II stacking faults in Mg are shown in figure 4. Also
shown are the DFT results of Yin et al [19] that were used for fitting of the MEAM Mg–Y
potential. Also shown in each figure is the coefficient k as computed using the MEAM
potential and DFT. For all planes, the interaction between a Y atom and the stacking fault
becomes negligible after a few atomic layers from stacking fault plane. For basal stacking
faults, the MEAM energies are always negative (attraction) whereas the DFT energies are
negative for the first few planes but then become positive at larger distances. The basal
intrinsic I1, I2 and extrinsic E stacking fault energies decrease with Y concentration but the
MEAM potential yields k values that are approximately 50% smaller than the DFT results.
The Y interactions with the pyramidal I SF2 show the same alternation in sign with positions
in alternate layers, consistent with the variations in out-of-plane atomic relaxation in
successive atomic layers in pure Mg [49]. But the MEAM values are again smaller in
magnitude than the DFT values, leading to a smaller value of the coefficient k. There are no
DFT results for the basal E and pyramidal I SF3 stacking faults. The Y interactions with the
pyramidal II stacking fault are in reasonably good agreement with the DFT results in trend
and magnitude. However, the MEAM value in the first plane is somewhat lower than the DFT
value. This leads to a value for the coefficient k that is slightly smaller than, but comparable
to, the DFT value. The MEAM and DFT values of k for the various stacking faults are shown
again in table 6 along with the predictions of the Kim potential. The new MEAM potential is
generally more accurate than the Kim potential in terms of signs and magnitudes, especially
for the pyramidal I faults.

Modelling Simul. Mater. Sci. Eng. 26 (2018) 065010 R Ahmad et al

12



5. Y interactions with the pyramidal II 〈c + a〉 edge dislocation

Slip of c a+⟨ ⟩ dislocations in Mg is crucial for achieving plastic strain in the c⟨ ⟩ direction.
This motivated a recent DFT study of the interaction of Y solutes with the pyramidal II
c a+⟨ ⟩ edge dislocation core [50].

Figure 4. Interaction energy of Y with various stacking faults in Mg, as computed using
the current MEAM potential and using DFT [19], as a function of distance from stacking
fault plane: (a) basal I1, (b) basal I2, (c) basal E, (d) pyramidal I SF2, (e) pyramidal I SF3,
and (f) pyramidal II. Size of the simulation cell N1×N3×N3 for the corresponding
stacking fault, used in MEAM calculation, is indicated in parentheses.
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In DFT study, the simulation box has a periodic length of ∼1 nm along the line direction
[50]. The computation yields the total energy Etot(xi,1, xi,2) of the DFT cell containing the Mg
dislocation and a solute at position (xi,1, xi,2) relative to the center of the dislocation core. The
interaction energy is the difference between the solute at (xi,1, xi,2) and the reference energy
Eref of a solute far from the dislocation in the perfect crystal Mg lattice, Eint(xi,1, xi,2)=
Etot(xi,1, xi,2)−Eref. Due to the small size of the DFT computational cell, it is not possible to
compute Eref in the same geometry. Uncertainties in the total energy computation also make
it inaccurate to use a separate simulation of a solute in a periodic perfect crystal as the
reference energy. A reference energy is therefore estimated by averaging the energies of the
dislocation with solutes at all sites on the two planes on either side of the dislocation slip
plane, E N E x x1 ,i i iref tot ,1 ,2= å( ) ( ). For interaction energies governed only by the elastic
interaction between the edge dislocation pressure field p and the solute misfit volume ΔV,
Eint(xi,1, xi,2)=p(xi,1, xi,2) ΔV, the sum above should be nearly zero. Consistency of the
estimated value of Eref and the DFT results can be further assessed by comparing the DFT
energies to the elasticity predictions for atomic sites away from the core, where the elasticity
prediction becomes increasingly accurate and the field of interaction energies versus atomic
position should be smooth. The use of the short periodic length combined with the low Peierls
stress of the dislocation (and presumably of the individual partial dislocations) also leads to an
inability to measure the interaction energy Eint(xi,1, xi,2) at sites whose neighbors along the
glide plane have much lower (more negative) interactions. When a solute is placed in such a
site, one or both partials glide such that the solute position relative to the dislocation core is in
the energetically favorable site.

Simulation of the dislocation using the MEAM potential follows a standard method. We
start with a large pure Mg simulation cell (l l l 30 nm 30 nm 1 nmx x x1 2 3´ ´ ~ ´ ´ ) with
x x1 3– as the glide plane, x3 axis parallel to the dislocation line, and x2 axis normal to the glide
plane. A straight dislocation is introduced at the origin by applying the anisotropic elastic
displacement field [11] corresponding to the Volterra dislocation. Relaxation of atomic
positions is then carried out while holding fixed those atoms within two times the cutoff
radius r2 c( ) from the outer boundary. Periodic boundary conditions are used in the dislocation
line direction. Relaxation is performed using the conjugate gradient method until the forces on

Table 6. Properties of Y solute atom in Mg as calculated by the current MEAM
potential, DFT, and the Kim potential. ΔV/V0 is the normalized Y misfit volume of Y
and k is coefficient for the average effect of solute concentration on the stacking fault
energy (units of mJ m−2).

MEAM Kim potential DFT

ΔV/V0 0.593 0.240 0.567a, 0.580b, 0.636c

k(basal I1) −65.83 −2.41 −145.52a

k(basal I2)
* −132.54 −5.33 −210.93a

k(basal E) −199.22 −8.26
k(pyramidal I SF2)* −187.34 −19.08 −675.43a

k(pyramidal I SF3) −140.74 73.32
k(pyramidal II)* −163.92 −250.45 −214.02a

Note: asterisks (*) denote the properties used during the potential fitting procedure.
a Yin et al [19].
b Sandlöbes et al [14].
c Yasi et al [48].

Modelling Simul. Mater. Sci. Eng. 26 (2018) 065010 R Ahmad et al

14



all atoms are less than 10−6 eVÅ−1. A single-solute is then introduced at (xi,1, xi,2), the
system is relaxed and the total energy is computed. The interaction energy is then computed
as Eint(xi,1, xi,2)=Etot(xi,1, xi,2)−Eref. Here, Eref can be computed either by placing a solute
far from the dislocation (but not near the outer boundary) or in a separate perfect crystal
simulation. As in the DFT simulations, high energy solute sites are not always measurable
because the dislocation can glide such that the solute resides in a lower energy site relative to
the final position of the dislocation. In atomistic simulations, which are not limited to small
sizes, this issue can sometimes be mitigated by using a longer dislocation line length.
However, for longer line lengths, the dislocation may still glide locally near the solute while
remaining in the original locations further away, i.e. the dislocation becomes bowed. Thus,
the computed energy may still not reflect the true interaction energy of a solute with a straight
dislocation.

The interaction energies of Y solutes for all of the atomic sites around the edge
dislocation as computed using the Mg–Y MEAM potential are shown in figure 5(b) for
dislocation line length ∼6.5 nm. Specific MEAM and DFT values for the sites shown in
figure 5(a) are listed in table 7. The table indicates those sites that are unstable, and the final
relative position of the solute due to dislocation glide during relaxation. MEAM computations
are carried out for two lengths, l 1, 6.5 nmx3 ~ . For cases where solutes are stable at both
lengths, the difference reflects solute–solute interactions at a separation ∼1 nm. For cases
where the solutes are unstable at l 1 nmx3 ~ , the energies at l 6.5 nmx3 ~ are estimates only
due to possible dislocation bowing.

The interaction energies calculated from the MEAM potential with l 6.5 nmx3 ~ are
generally in good agreement with the DFT values. The sign of interaction energies—indi-
cating the attractive and repulsive sites—at each site are same in both DFT and MEAM
calculations except for the site 4. Moreover, in both DFT and MEAM calculations, the most
stable sites around both partials (site 3 around left partial and site 6′ around right partial) are
the same. In DFT, site number 7′ has a very large positive interaction energy which is unusual
given that the neighboring sites (4′, 10′) have negative interaction energies and so the dis-
location would be expected to glide to one of these substantially lower-energy sites. The
typical absolute deviation in interaction energy, excluding sites 4 and 7′, is ∼0.04 eV, with a
maximum of 0.107 eV for site 2′. The absence of any systematic difference suggests that the
reference energy used in the DFT is reasonable. The deviations also might not be crucial

Figure 5. (a) Core structure of pyramidal II c a+⟨ ⟩ edge dislocation in pure Mg
obtained from MEAM potential. Yellow atoms correspond to non-hcp core atoms as
identified from common neighbor analysis. Atomic sites are marked for which
interaction energies are listed in table 7. (b) Interaction energy map for different atomic
sites around the dislocation with l 6.5 nmx3 ~ , as computed from the MEAM potential.
For the site highlighted by the cyan outline, the interaction energy of −0.563 eV is
beyond the range of the indicated scale.
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Table 7. Interaction energy, in eV, of Y with the pyramidal II c a+⟨ ⟩ edge dislocation in Mg at various atomic sites around the dislocation core, as
calculated from the current MEAM potential and using DFT. The atomic sites of Y solute are marked in figure 5(a).

Site#
Interaction energy (eV)

Site#
Interaction energy (eV)

MEAM
DFT

MEAM
DFT

l 1 nmx3 ~ l 6.5 nmx3 ~ l 1x3 ~ nm l 1 nmx3 ~ l 6.5 nmx3 ~ l 1x3 ~ nm

1 ∗( 4 ) 0.034 0.081 1′ ∗( 6 ¢) −0.187 −0.211
2 ∗( 5 ) −0.344 ∗ 2′ ∗( 11 ¢) −0.327 −0.220
3 −0.558 −0.563 −0.475 3¢ ∗( 6 ¢) −0.289 −0.278
4 −0.056 −0.033 0.180 4′ −0.095 −0.068 −0.090
5 −0.445 −0.446 −0.385 5′ ∗( 4 ¢) −0.011 ∗
6 ∗( 3 ) −0.482 ∗ 6′ −0.333 −0.340 −0.280
7 ∗( 4 ) −0.003 ∗ 7′ ∗( 4 ¢) 0.022 1.183
8 0.043 0.017 0.054 8′ ∗( 12 ¢) 0.074 0.048
9 −0.341 −0.342 −0.308 9′ ∗( 13 ¢) 0.135 0.074

10′ ∗( 14 ¢) −0.099 −0.074
11′ −0.384 −0.376
12′ −0.111 −0.112
13′ 0.047 0.042
14′ −0.147 −0.151

Note: asterisks(∗) mean that the dislocation configuration is unstable for solutes at that site, and the dislocation partial glides to put the solute on the site mentioned in parentheses.
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because dislocation properties are influenced by the collective solute field in a random alloy
[51]. Finally, the interactions of Y with the left partial dislocation (around x1=−3a in
figure 5(b)) are observed to be stronger than around the right partial dislocation (at around
x1=3a in figure 5(b)), which is consistent with the wider spreading of the right partial
dislocation core. The wider spreading of right partial core is also presumably associated
with a lower Peierls stress that leads to a larger number of atomic sites being unstable to glide
that partial.

6. Y interaction with {101̄2} 〈1̄011〉 tension-twin boundary

In pure Mg, the 1012( ¯ ) tension-twin is the most dominant twin mode for accommodation of
c-axis plastic strain under c-axis tension [52, 53]. Therefore, the interaction energy of Y
solutes with the twin boundary—which dictates the strengthening of twinning dislocations
[54]—is calculated here with the MEAM potential and compared to DFT values for various
positions of the Y solute.

We create the coherent twin boundary starting from Mg bulk hcp simulation
box having periodic boundary condition in all directions following the methodology in
Ghazisaeidi et al [54]. x1 and x2 axes of the simulation box lie in the twin plane 1012( ¯ ) with
x1 axis along the twinning direction 1011[ ¯ ], and the x3 axis perpendicular to the twin plane.
The simulation box contains 5120 Mg atoms and has dimensions ∼60 Å×25 Å×74 Å.
The twin boundary is constructed by applying mirror symmetry on the bulk Mg hcp lattice
across the twin plane followed by relaxation of all atomic positions and simulation box
dimension perpendicular to the twin boundary to forces below 10−6 meVÅ−1. After
relaxation, two coherent twin boundaries are formed separated by 24 atomic layers, as
shown in figure 6 and in good agreement with the DFT-computed structure [52, 54]. The

Figure 6. Structure of the 1012 1011{ ¯ }⟨ ¯ ⟩ tension-twin boundary in pure Mg as
calculated using the MEAM potential. White atoms, identified using common neighbor
analysis, represent hcp atoms while yellow atoms correspond to non-hcp atoms. The
marked sites show the positions of solute with respect to the twin boundary for which
the interaction energies are tabulated in table 8.
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twin boundary energy using the current MEAM potential is 149 mJ m−2, somewhat higher
than the DFT values of 114 mJ m−2 [52, 54, 55] and 118 mJ m−2[56].

We calculate the interaction energy of Y solute atoms at the positions shown in the
figure 6 following the methodology described in section 5 for the calculation of pyramidal II

ac +⟨ ⟩ edge dislocation-Y solute interaction energy. The reference energy Eref is
calculated as the Y energy at an atomic site situated in the bulk-equivalent site halfway
between the two twin boundaries. A Y atom is substituted into each atomic site and
the total energy Etot(i) is computed, from which the interaction energy is computed as
Eint(i)=Etot(i)−Eref. The same steps are followed for both MEAM and DFT calculations
and the interaction energies thus obtained are listed in table 8. Sites 1 and 2 are the
prominent compression and dilatation sites, respectively, and so show large interaction
energies. The MEAM potential yields stronger interactions as compared to the DFT. The
interaction energy decays rapidly with distance from the twin boundary, justifying the
calculated reference energy.

In the DFT calculation, the twin boundary is observed to migrate when a Y atom is
introduced at site 6, making the interaction energy calculation impossible. To circumvent
the migration, two solutes are introduced at two symmetric sites 6, one above the twin plane
and other below. The two symmetric solutes prevent boundary migration. Assuming no
interaction between the two solutes, the interaction energy is one-half the interaction energy
of the structure with two solutes minus the energy of a reference structure. This yields an
interaction energy for site 6 that is negative and relatively large compared to the neigh-
boring sites. This would then suggest that a solute at site 6 is quite stable, whereas the DFT
shows that the boundary migrates for a solute at just one site 6; this issue is not understood
at this time. Using the MEAM potential, two solutes at two symmetric sites 6 yields an
interaction energy of −0.0776 eV quite close to the value of −0.0783 eV for one solute
at site 6, suggesting the absence of elastic interactions between the two solutes. Finally,
sites 3 and 4 have positive interaction energies in the MEAM potential calculation while
DFT yields negative interaction energies, but the absolute energies are fairly small. Overall,
the agreement between DFT and MEAM potential is not highly accurate but the MEAM
potential may still provide qualitative understanding of solute effects on twin deformation
in Mg–Y alloys.

Table 8. Interaction energy, in eV, of Y solutes with the 1012 1011{ ¯ }⟨ ¯ ⟩ tension-twin in
Mg, as calculated from the current MEAM potential and DFT. The atomic sites are
indicated in figure 6. Migration of the twin boundary is observed in DFT calculation for
one solute at site 6 and so the quoted value is derived from a DFT containing two
symmetric solutes in sites 6 (see text).

Site#

Interaction
energy (eV)

Site#

Interaction
energy (eV)

MEAM DFT MEAM DFT

1 0.342 9 0.2269 5 0.0600 0.0784
2 −0.3162 −0.2639 6 −0.0783 −0.0998*

3 0.0291 −0.0213 7 0.0001 −0.0119
4 0.0341 −0.0004 8 −0.0172 0.0180
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7. Discussion

The Mg–Y MEAM potential developed here starts with the constituent MEAM potentials for
Mg (Wu et al [5]) and, with slight modifications, Y (Ko and Lee [30], Kim et al [21]). The
additional potential parameters corresponding to binary Mg–Y are fitted against the enthalpy
of formation, lattice and elastic constants of the B2 Mg–Y intermetallic, and the interactions
of Y solutes with the basal I1, I2, pyramidal I SF2, and pyramidal II stacking faults. The
resulting potential provides the best overall fits to the target properties that we have been
able to obtain across the range of MEAM parameters. The potential was then used to compute
the properties of several other intermetallic compounds, the solute misfit volume, the solute
interactions with the basal E and pyramidal I SF3 stacking faults (for which no DFT results
exist), and the solute interactions with the pyramidal II c a+⟨ ⟩ edge dislocation and with
1012 1011{ ¯ }⟨ ¯ ⟩ tension-twin boundary.

The potential makes predictions that are generally in reasonable agreement with
experiments and/or DFT. However, as with all potentials, the agreement is not perfect. Since
plastic deformation in Mg involves many different dislocation phenomena (solute strength-
ening of various slip systems, pyramidal-to-basal transformation, pyramidal cross-slip), it is
thus important to carefully identify those problems for which the potential is useful and those
problems where the potential remains insufficient for obtaining realistic semi-quantitative
results.

First, the MEAM solute misfit volume is well-captured. This is important for solute
interactions with the pressure field of a dislocation. These interactions tend to dominate solute
strengthening [48, 51, 57]. The role of the solute interaction with the basal I2 stacking fault in
solute strengthening of basal slip appears small [58], suggesting that the potential is suitable
for the study of basal solute strengthening. The full interactions with the pyramidal II c a+⟨ ⟩
edge dislocation around the core are also reasonably good (with the exception of one unusual
site energy in the DFT results). Along with the good misfit volume, this indicates that
the potential should be suitable for semi-quantitative assessment of pyramidal II solute
strengthening. Together, these enable some assessment of the plastic anistropy as char-
acterized by the ratio of pyramidal II to basal Peierls stresses. The interactions of Y with
the pyramidal I c a+⟨ ⟩ and prismatic a⟨ ⟩ dislocations have not been examined, and so
applications to strengthening of these slip systems is not yet validated.

The solute interactions with the pyramidal II stacking fault are also well-captured. This is
encouraging since pyramidal II c a+⟨ ⟩ dislocations are energetically preferred to pyramidal I
c a+⟨ ⟩ dislocations, such that study of pyramidal II c a+⟨ ⟩ is probably more important
than study of pyramidal I c a+⟨ ⟩. The MEAM solute interactions with the basal faults are
reasonable, but not quite strong enough. The resulting k values are then too small in com-
parison to the corresponding value for the pyramidal II stacking fault. This suggests some
inaccuracy in using the potential to examine the pyramidal-to-basal c a+⟨ ⟩ transformation of
the pyramidal II edge dislocation. However, at low solute concentrations the absolute dif-
ference in basal stacking fault energy will be small and the pyramidal-to-basal transition is not
dominated by the energy of the I1 stacking fault [59]. Thus, the potential may provide some
insights into any role of Y solutes in modifying the energy barrier for this transformation [20].

The interaction energy of Y solute atoms with the 1012 1011{ ¯ }⟨ ¯ ⟩ tension-twin boundary
is in reasonable agreement with the DFT values. The prominent interacting sites within the
twin boundary interface are accurately identified but have a stronger interaction energy than
found in DFT. These highly interacting sites are important for solute segregation along twin
boundary, which can control the strength of Mg alloys after annealing [60]. Due to some
differences in the interaction energies, the strengthening of the twinning dislocation might not
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be computed with high accuracy but the potential can be utilized for qualitative assessment of
the strengthening effects of Y.

The major deviation for the MEAM potential is in the value of k for the pyramidal I SF2
stacking fault. The MEAM potential predicts this value to be comparable to the k value for
pyramidal II, whereas the DFT value for the pyramidal I k is approximately 3 times larger
than that of pyramidal II. The MEAM potential therefore cannot be used to fully investigate
the change in pyramidal II to pyramidal I cross-slip energy barrier, which we believe holds the
key to understanding ductility in Mg alloys [16]. However, the potential can be used to assess
the role of specific solute configurations in reducing the pyramidal II-I cross-slip barrier.
Specifically, since the solute/stacking fault interactions at individual sites around the pyr-
amidal II and pyramidal I faults can be computed with reasonable accuracy using the MEAM
potential, the energies of pyramidal II and pyramidal I screw dislocations in the presence of
specific solute configurations can be analyzed, and the cross-slip barrier between pyramidal II
and pyramidal I computed. The correlation of local solute energies, even if approximate, with
a corresponding change in cross-slip barrier would enable testing of assumptions underlying
the model proposed by Wu et al [16].

The application of any interatomic potential must always be undertaken with care.
Researchers may identify other valuable phenomena for which atomistic studies of Mg–Y
could be insightful. The current potential may be useful for examining such problems,
especially for testing mechanistic models. However, we advocate that researchers examine the
properties of this Mg–Y potential in detail to validate, quantitatively or qualitatively, its
applicability to any specific phenomenon. We also encourage further validation and testing of
the potential to reveal any additional positive features or to expose any flaws that would make
the potential unsuitable for certain problems. We will report on the application of this Mg–Y
potential to the study of some of the above-mentioned problems in future work.
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Appendix. Formalism of MEAM interatomic potential

Here we present the theory behind the MEAM interatomic potential following Lee and
Baskes [28] and Lee et al [29].

A.1. Formalism for pure element

Under the framework of MEAM potential, energy of a system is given as
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where F is the embedding function, ir̄ is the background electron density at site i, fij is the
pair interaction between atoms at sites i and j with a distance Rij between them. The
embedding function takes the form
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where A is an element-dependent adjustable parameter, Ec is the cohesive energy, and 0r̄ is
the background electron density for a reference structure which is usually the equilibrium
structure. The background electron density ir̄ comprised spherically symmetric partial
contribution i
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where Rj
a h

ijr ( )( ) denote the atomic electron densities from a site j at a distance Rij from site
i R, ij

a is the α component of distance vector between atoms at sites j and i, and Sij is the
screening between atoms at sites i and j as described below. Several expressions have been
proposed to combine the partial electron densities to obtain the total background electron
density [61]. We use the following expression in the present work
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where t( h) are adjustable parameters. The atomic electron density is computed as
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where 0r is element-dependent density scaling factor, β( h) are adjustable parameters, and re is
the nearest-neighbor distance in the equilibrium reference structure.

After determining the embedding function, we turn our attention to the pair potential
contribution f(R) in the total energy given by equation (A.1). In MEAM, no specific func-
tional form is given to pair potential f(R), instead, it is determined from the known values of
total energy and embedding function. The energy per atom for the reference structure is
obtained from the universal equation of state by Rose et al [31] as a function of nearest-
neighbor R

E R E a da a a1 exp , A.6u
ic

3* * *= - + + -( ) ( ) ( ) ( )
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where d is an adjustable parameter, B is the bulk modulus, and Ω is equilibrium atomic
volume. Considering the second-nearest-neighbor interaction, energy per atom in the
reference structure is written by using equation (A.1)

E R F R
Z

R
Z S

aR
2 2

, A.7u 1 2r f f= + +( ) [ ¯ ( )] ( ) ( ) ( )

where Rr̄ ( ) is the background electron density, Z1 and Z2 are, respectively, number of the first
and second-nearest-neighbor atoms, a is the ratio between the second and first nearest-
neighbor distance, and S is the screening on the second-nearest-neighbor interaction. Another
function ψ(R) is introduced to write equation (A.7) as
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Now, ψ(R) can be calculated as a function of R from equation (A.8a) and then, f(R) is
computed as function of R by using following relation
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where summation is performed until the correct value of energy is obtained.
Now we discuss the final component of elemental-MEAM potential, the screening

function Sij between the atoms at sites i and j. Screening function is built such that Sij=1 for
completely unscreened atoms within the cutoff radius rc of the potential, and Sij=0 for atom
pair completely screened or outside the cutoff radius. For partial screening, it takes a value
between 0 and 1. The total screening function is the product of the radial cutoff function and
three body terms The expression for screening function is

S S f
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where Δr is parameter to smoothen the radial cutoff of potential which has a cutoff radius rc.
Three body screening function Sikj, amount of screening between atoms at i and j due to atom
at k, is determined from a simple geometrical construction. Imagine an ellipse in x y– plane
passing through atoms i, j and k with the atoms i and j on the x axis
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where the value of C is computed for every atom k. Two adjustable limiting values Cmin and
Cmax (Cmax>Cmin) are defined for every possible triplet (i, j, k). If atom k is located outside
the ellipse defined by Cmax, that is , C>Cmax, the atom k does not provide any screening. If
atom k is inside the ellipse defined by Cmin, that is, C<Cmin, the atom k completely screens
the interaction between i and j. On the other hand, if Cmin<C<Cmax, there will be only
partial screening. Following is the expression for three body screening function Sikj which
satisfies the conditions mentioned above
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A.2. Formalism for binary system

Interatomic potential of binary system, under MEAM framework, is constructed upon the
potential of individual constituents. In addition to individual elements, pair interaction
between different elements is required. Considering an ordered binary intermetallic as the
reference structure (here we assume having i1

2
atom + j1

2
atom), the total energy per atoms

E Rij
u ( ) as a function of nearest-neighbor distance R is given as
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where Eu
ij is determined from the equation of state [31] using experimentally determined

cohesive energy Ec, bulk modulus B, atomic volume Ω and parameter d. The embedding
functions Fi and Fj can always be computed. Zij

1 and Zij
2 are, respectively, number of the first

and second-nearest-neighbor atoms in the reference structure, fii and fjj are pair interaction,
respectively between i atoms and between j atoms, and a is the ratio between the second and
first nearest-neighbor distances. Therefore, the pair interaction between the different types of
atoms is calculated as
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The values of Cmax and Cmin are needed to be specified for all possible triplet of
atom types. For pure elements, there is only one possible triplet, however, for binary system
there are four possible types of triplet. Additionally, the density scaling factor ρ0, see
equation (A.5), also becomes important for binary alloys. This is an arbitrary value having no
effect on the calculation for pure elements. However, for alloy systems, especially for systems
where the constituent elements have different coordination numbers, the scaling factor (the ratio
of the two values) has a great effect on calculations. In the current work, ρ0, Cmin(Mg, Y, Mg),
and Cmin(Y, Mg, Y) were used to correlate the elastic constants, and the interaction between
Y and I2 stacking fault. In addition Cmin(Mg, Mg, Y) was set to 0 to qualitatively recover the
trend on k between I2, pyramidal I SF2 and pyramidal II SF.
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