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Abstract. Mixed-type dislocations are prevalent in metals and play an important

role in their plastic deformation. Key characteristics of mixed-type dislocations cannot

simply be extrapolated from those of dislocations with pure edge or pure screw

characters. However, mixed-type dislocations traditionally received disproportionately

less attention in the modeling and simulation community. In this work, we explore

core structures of mixed-type dislocations in Al using three continuum approaches,

namely, the phase-field dislocation dynamics (PFDD) method, the atomistic phase-

field microelasticity (APFM) method, and the concurrent atomistic-continuum (CAC)

method. Results are benchmarked against molecular statics. The PFDD and APFM

methods are advanced in several aspects such that they can better describe the

dislocation core structure. In particular, in these two approaches, the gradient energy

coefficients for mixed-type dislocations are determined based on those for pure-type

ones using a trigonometric interpolation scheme, which is shown to provide better

prediction than a linear interpolation scheme. The dependence of in-slip-plane spatial

numerical resolution in PFDD and CAC is also quantified.
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1. Introduction

Dislocations are the main carriers of plastic deformation in metals and are responsible

for their characteristic malleability [1]. From a continuum viewpoint, the geometry

of a dislocation can be described by two independent variables, line direction l and

Burgers vector b, the latter of which describes the magnitude and direction of the net

lattice displacement. The angle θ between l and b is termed the character angle of a

dislocation and ranges from 0◦ (l ‖ b) for a screw dislocation to 90◦ (l ⊥ b) for an edge

dislocation. Because of their simple and representative geometric configurations, most

modeling studies in dislocations have been devoted to those of pure edge/screw type [2].

While much is known about pure-type dislocations, the physics of mixed-type

dislocations, which possess character angles θ between 0◦ and 90◦, remain relatively

lightly explored computationally. Mixed-type dislocations are prevalent in metals

because for a given b in the lattice, θ can have any value between the two extremes

if l is infinitesimally varied. To date descriptions of dislocation cores have been best

provided by atomic-scale simulations, which find that key characteristics of mixed-type

dislocations cannot simply be extrapolated from those of pure-type ones [3–9]. Moreover,

atomistic simulations are limited to nano/submicron length scale even with dedicated

high-performance computing resources [10]. Thus, to understand plastic deformation of

bulk materials, continuum modeling of dislocation core structures is desirable [11].

One type of continuum dislocation models is energy-based, in which dislocations

are assumed to evolve such that the free energy of the dislocated system approaches

a local minimum [12]. An example is the phase-field (PF) dislocation model, the first

of which was proposed by Khachaturyan [13] and Wang et al. [14] based on gradient

thermodynamics of phase transformations, and was termed phase-field microelasticity

(PFM). Since then, the PFM method was advanced extensively. For dislocations in

face-centered cubic (FCC) crystals, for example, Shen and Wang [15] reformulated

the gradient energy density to allow for correct core–core interactions among perfect

dislocations on the same slip plane. Later in Ref. [16] the same authors related

the crystalline energy to the generalized stacking fault energy (GSFE). Mianroodi

and Svendsen [17] furthered the gradient energy coefficients with the Shockley partial

dislocation cores obtained in atomistic simulations. In 2014, Shen et al. [18] proposed the

microscopic phase-field model in which all order parameter evolution is confined to the

slip planes and the gradient energy is removed from the system energy. More recently,

Zheng et al. [19] modified the crystalline energy to fully account for the reactions between

dislocations gliding in intersecting slip planes, while also neglecting the gradient energy.

Besides PFM, another branch of PF dislocation model is based on the phase-field

theory of dislocation dynamics proposed by Koslowski et al. [20], in which the gradient

energy was not included in the system energy. For the model to be analytically tractable,

Koslowski et al. [20] did not use numerical grids in solving the energy functional. Later,

Koslowski and Ortiz [21] extended Ref. [20] to a multi-phase field model, in which

numerical grids were employed. In 2011, the same model was extended to 3D and
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termed as phase-field dislocation dynamics (PFDD) [22–25]. Since then, PFDD has

been employed to study a series of dislocation-mediated problems in multiple crystalline

materials. We refer the reader to the review article of Beyerlein and Hunter [26]

for further background information on PFDD. Mianroodi et al. [27] showed that the

previous PFDD variant was a model of generalized Peierls-Nabarro (GPN) type. More

specifically, it was mathematically different from, but physically the same as, for example

the GPN model of Xiang et al. [28]. In the current work, the PFDD energy model is

extended by inclusion of the gradient energy analogous to that in PFM. The resulting

“gradient” PFDD model is mathematically different from but physically the same as

PFM, and so APFM. In what follows, unless stated otherwise, the newly extended

PFDD model will be referred to as “PFDD” for brevity. A distinction will be made

when the new model is compared with the previous one.

In this work, we explore core structures of mixed-type dislocations in FCC Al

using three continuum dislocation models, including PFDD, APFM, and the concurrent

atomistic-continuum (CAC) method [29, 30]. Among all PF dislocation models, PFDD

and APFM are chosen because they are atomistically informed, and we will validate

them in this paper by benchmarking their results against molecular statics (MS). Note

that straight mixed-type dislocations have been studied by CAC in Al and Cu [30], but

not by PFDD and APFM. Nevertheless, there is no theoretical challenge in applying

the two PF-based methods to straight mixed-type dislocations since they have been

employed to simulate curved dislocations [31, 32] and dislocation loops [17, 24]. In

particular, we have advanced both APFM and PFDD in several aspects, enabling better

representation of mixed-type dislocations compared with previous work.

Before reviewing the formulations in each method, we present the notation we will

use. 3D Euclidean vectors are represented by lower-case boldfaced, italicized characters

a, b, . . .. Cartesian basis vectors are represented by ix, iy, iz. Second-rank tensors are

represented by upper-case boldfaced, italicized characters A,B, . . ., with I being the

second-rank identity matrix. A · B = Aij···Bij··· is the scalar product of two tensors

of arbitrary order. Fourth-rank Euclidean tensors A,B, . . . are denoted by upper-case

slanted sans-serif characters. (a ⊗ b)c = (b · c)a defines the dyadic product a ⊗ b of

a and b, ATb · c = b · Ac defines the transpose AT of A, and ATB · C = B · AC
defines the transpose AT of A. Additional notations will be introduced as needed in

what follows.

2. Methodology

In this section, we provide theoretical background on the PF-based dislocation model

and the CAC method. Hereinafter b and bp, respectively, denote the magnitude of the

Burgers vector of a full dislocation b = (a0/2) 〈110〉 and a Shockley partial dislocation

bp = (a0/6) 〈112〉, where a0 is the lattice parameter.
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2.1. Phase-field-based dislocation model

Let u represent the displacement field, H = ∇u the distortion field, E = (H +HT)/2

the strain field, CE the elastic stiffness tensor, and γgsf the GSFE per unit area. In

a PF-based dislocation model, an order parameter φα represents the state of slip for

the αth slip system, with φα = 0 and 1 corresponding to the unslipped and slipped

states, respectively. In an FCC lattice, a full dislocation within a {111} plane is usually

dissociated into two Shockley partial dislocations bounding an intrinsic stacking fault

(ISF). Thus, a dislocation in the αth slip system in Al spans the region for which

0 < φα < 1.

For single-element FCC materials, the total free energy density ψ is the sum of the

elastic energy density ψela, the GSFE density ψgsf , and the gradient energy density ψgra

[13, 14], i.e.,

ψ(E,φ,∇φ) = ψela(E,φ) + ψgsf(φ) + ψgra(∇φ) . (1)

In particular,

ψela(E,φ) = 1
2
(E −ER(φ)) · CE (E −ER(φ)) (2)

ψgsf(φ) =
γgsf(φ)

lgsf
(3)

ψgra(∇φ) =
∑n

α,β=1
ηαβg0 ∇φα ·Nαβ∇φβ (4)

where n is the total number of order parameters, ER = (HR +HT
R )/2 is the residual

strain, lgsf is the interplanar spacing between two adjacent slip planes based on which

γgsf is calculated, and ηαβg0 are gradient energy coefficient, and

HR(φ) =
∑n

α=1

bαφα
dα

sα ⊗ nα (5)

Nαβ =
bα · bβ
dαdβ

[(nα · nβ)I − nβ ⊗ nα] (6)

where sα is the slip direction, nα is the slip plane unit normal, bα = bαsα is the

slip vector, and dα is the interplanar spacing between two adjacent slip planes, of

the αth order parameter. In the current work of a single slip plane in FCC crystals,

dα = dβ = lgsf = d111 = a0/
√

3, where d111 is the interplanar distance between two

{111} planes. ψgsf represents the density of energy stored in stacking faults (e.g., ISF)

and partial dislocation (e.g., Shockley partial) cores, while ψgra the density of energy

stored in the latter only.

It follows that the time-dependent Ginzburg-Landau (TDGL) equation is employed

to recursively minimize the system free energy with respect to each φα, i.e.,

φ̇α = m0 [∇ · ∂∇φαψgra − ∂φα(ψela + ψgsf)] (7)

where the superposed dot denotes the time derivative and the Ginzburg-Landau

coefficient m0 is non-negative and assumed constant here. Once all φα are determined,
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the disregistry field ζβ along the β direction is calculated by

ζβ =
∑nsp

α=1
φα bα · sβ (8)

where nsp is the total number of order parameters on the slip plane within which the

αth order parameter and β direction lie. In this paper, β = 1 and β = 2 represent the

directions along and normal to the full dislocation Burgers vector, respectively.

As discussed in our previous work [27, 33], different modeling choices are made in

PFDD and APFM. In what follows, subscripts or superscripts P and A are used to

denote quantities in PFDD and APFM, respectively. In PFDD, the slip vector bPα = b

is along a 〈110〉 direction, and three order parameters are used for each slip plane in

an FCC lattice. Thus, in PFDD, for a single slip plane, nP = 3 and there are nine

gradient energy coefficients ηαβP in Equation 4. In APFM, the slip vectors bA1 = b and

bA2 = (a0/2) 〈112〉 are perpendicular to each other, i.e., N12 = N21 = 0 in Equation 4.

Thus, in APFM, for a single slip plane, nA = 2 and there are two non-trivial coefficients,

η11A and η22A .

We remark that the form of the gradient energy density ψgra, including the

determination of the coefficients ηαβg0 , is the focus of on-going research and model

development. As noted in section 1, Shen and Wang [15] proposed Equation 4, where

ηαβg0 were arbitrary material parameters not associated with the dislocation type. In

APFM [17], which is an “atomistic” form of PFM, ηαβg0 are related to the Shockley

partial dislocation core size, among other atomistic-based parameters. This extension

was physically motivated because the character angles of the Shockley partials depend

on the character angle of the parent full dislocation. For example, an edge and a screw

dislocation, respectively, dissociate into two 60◦ and 30◦ Shockley partials. In addition,

a recent analytical work [34] revealed that the vectorial slip of a partial dislocation

may deviate from that of an ideal Shockley partial, (a0/6) 〈112〉. This deviation is

more pronounced in a screw dislocation than in an edge dislocation. Since the partial

dislocations, to which ηαβg0 are related, may have different atomistic structures as the

full dislocation character angle changes, it is desirable to extend ηαβg0 such that their

values depend on the dislocation type. Therefore, for dissociated dislocations in FCC

metals in APFM, Mianroodi and Svendsen [17] fit ηαβg0 to the MS-based Shockley partial

dislocation core structure. Similarly, in one GPN model, ηαβg0 were fit to the MS-based

disregistry fields [35].

However, in all those works, for the sake of simplicity, a uniform ηαβg0 was adopted for

all order parameters. In this work, we consider η11A and η22A as independently adjustable

parameters. Their characterization will be discussed in subsection 3.1.

As noted in section 1, all prior PFDD models did not include the gradient energy

density in the total energy density. Recently it was shown that introducing atomistically-

informed ψgra into PF-based models, such as APFM, provided descriptions of dislocation

cores of pure edge and screw characters closer to those calculated with MS [27, 33].

Therefore, ψgra is added to the PFDD energy formulation here. As a result, PFDD and
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APFM, despite employing different slip vectors, are physically equivalent and should

yield identical results, as long as all parameters used in the two models are equivalent.

2.2. Concurrent atomistic-continuum (CAC) method

The theoretical foundation of the CAC method is the atomistic field theory (AFT) [36].

In AFT, a crystal is viewed as a continuous collection of lattice points. Embedded

within each point is a unit cell containing a group of discrete atoms [37, 38]. In terms of

Eulerian coordinates, for monatomic crystals, like Al, in the absence of external force,

AFT has the following balance equations [39, 40], i.e.,

dρ

dt
= −ρ∇x · v (9)

ρ
dv

dt
= ∇x · T (10)

ρ
de

dt
= ∇x · q + T · ∇xv (11)

where x is the physical space coordinate of the continuously distributed lattice; ρ, v, ρv,

and ρe are the density of mass, velocity, linear momentum, and total energy, respectively;

T and q are the stress tensor and heat flux vector, respectively.

As a realization of AFT, a CAC model usually consists of two domains: an atomistic

domain and a coarse-grained domain, with the interatomic potential being the only

constitutive rule [41]. In the atomistic domain, the atoms are updated in the same way

as in atomistic simulations; in the coarse-grained domain, finite elements that require

neither displacement continuity nor strain compatibility are employed [42]. Hence,

discontinuities such as dislocations and ISFs can be accommodated between two layers

of elements [43, 44]. For an FCC lattice, all surfaces of the finite elements lie on {111}
planes [45]. The CAC method equipped with these finite elements has been employed

to explore problems in which full atomistic resolution is required in some regions (e.g.,

lattice defects), with coarse-graining employed elsewhere to support representation of

dislocation interactions and transport [46, 47]. In this paper, we focus on the modeling

of dislocations between finite elements in the coarse-grained domain.

3. Simulation set-up

To maximize comparability, the same embedded-atom method (EAM) potential [48] is

used, for the interatomic interactions in MS and CAC simulations, and for material

parameters needed in the PF free energy model, including lattice parameter a0, elastic

constants C11, C12, C44, gradient energy coefficients ηαβg0 , and GSFE per unit area γgsf .

A dislocation dipole consisting of two dislocations of the same type but with

opposite Burgers vector is built into a 3D periodic simulation cell, as illustrated in

Figure 1. Seven character angles will be considered, including 0◦ (screw), 15◦, 30◦, 45◦,

60◦, 75◦, and 90◦ (edge). Let Lx, Ly, and Lz be the edge length of the cell along the
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Figure 1: Simulation box set-up for dissociation of a mixed-type dislocation dipole.

x, y, and z directions, respectively. The two dislocation lines lie on the mid-z plane

and are separated by Lx/2 along the x direction. In all simulations, the total energy

of the dislocated system is minimized, during which each dislocation extends on the

mid-z plane by dissociating into two Shockley partials. The center of each partial is

determined by projecting the disregistry field onto the partial dislocation direction [33].

The ISF width d is defined as the distance between the centers of two Shockley partial

dislocations.

3.1. PFDD and APFM simulations

PF simulations are carried out using a 3D structured grid. In PFDD, 128 grid points

are used in each direction; in APFM, the numbers of grid points along the x, y, and

z directions are 294, 7, and 180, respectively. Let hx, hy, and hz be the grid spacing

along the x, y, and z directions, respectively. Along the same direction, the grid spacing

is a constant. Following a prior APFM work [17], hz = d111. Unless stated otherwise,

hx = hy = d111. Note that, since the grid point spacing is comparable to the atomic

spacing, there is no computational gain with respect to MS. Conceptually, PF-based

models have much longer (i.e., diffusive) timescale resolution in comparison to molecular

dynamics, but this is not relevant in this work.

Material parameters a0, C11, C12, and C44 enter the free energy model, as

summarized in Table 1. In prior PFDD modeling, the material was assumed elastic

isotropic. Here, to be consistent with APFM, the full anisotropic stiffness tensor CE is

used.

Because the gradient energy density represents the energy of the partial dislocation

cores, the gradient energy coefficients, ηαβg0 , depend on the material and dislocation

type, as discussed earlier. Thus, these coefficients need to be characterized for a specific

dislocation type in a specific material. In this work, the two independent coefficients in

APFM, η11A and η22A , are determined by

[η11A , η
22
A ] = arg min

{
ζ(η11A , η

22
A )− ζMS

}
(12)
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Specifically, a series of APFM simulations are performed with a preassigned set of

[η11A , η
22
A ]. For each simulation, the disregistry field ζ(η11A , η

22
A ) is obtained and compared

to that from MS, ζMS. The values of [η11A , η
22
A ] providing the best agreement for edge and

screw dislocations are summarized in Table 2. Values of the nine coefficients in PFDD

are determined following Eqs. A.20 to A.22 in the Appendix. Note that, however, ηαβg0
do not depend on the grid spacing, and hence the same coefficients will be used when

the grid spacing varies. In this work, we will quantify the effects of ψgra on mixed-

type dislocations by repeating the same PFDD simulations without ψgra, which will be

designated by “PFDDng”.

Table 1: Lattice parameter a0 (in Å) and elastic constants C11, C12, C44 (in GPa)

determined based on the Al EAM potential [48].

a0 C11 C12 C44

4.05 113.80 61.55 31.60

Table 2: The two gradient energy coefficients in APFM for an extended edge or screw

dislocation configuration. The units are µd2111, where µ = (3C44 + C11 − C12)/5.

η11A η22A
Screw 0.2667 0.4

Edge 1.0667 0.4

In all PF simulations, the elastic energy density ψela is calculated by the fast Fourier

transform method with the help of Green’s functions. Initially, an undissociated perfect

dislocation dipole with a given character angle θ is inserted by assigning, φP
1 = 1 and

φP
2 = φP

3 = 0 in PFDD and φA
1 = 1 and φA

2 = 0 in APFM, to selected grid points. The

dislocation lines remain along the y axis but the slip vectors bα change directions based

on θ. During recursively running the TDGL equation (Equation 7), each dislocation

becomes extended. Iterations are terminated when the Euclidean norm of the difference

in global vector of each order parameter between successive iterations is smaller than

10−4. The Ginzburg-Landau coefficient m0 is assumed to be unity and all slips are

confined to the pre-defined slip plane [18].

To solve the TDGL equation, the explicit Euler method is used. In this case, we

consider the maximum allowable timestep size ∆t that stabilizes the iteration [49]. We

find that ∆t decreases with (i) a smaller grid spacing, (ii) the inclusion of ψgra, and

(iii) larger gradient energy coefficients ηαβg0 . Based on a series of parametric studies, we

choose ∆t = 0.02 in all PF simulations in this paper.

3.2. MS and CAC simulations

MS and CAC simulations are carried out by LAMMPS [50] and PyCAC [51, 52],

respectively. The simulation cell sizes and the corresponding number of atoms are
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summarized in Table 3. In CAC, the coarse-grained domain adopts uniformly sized 3D

rhombohedral finite elements. Following PF models, the edge length of a finite element

is denoted by hx, which equals hy, in CAC. In this paper, hx = hy = 4b = 2
√

2a0,

unless stated otherwise. As a result, each finite element contains 125 atoms and 125

integration points. There is no computational gain with respect to MS.

The interplanar distance between two adjacent finite elements is kept as d111 because

the finite element boundaries must correspond to actual lattice sites. The Galerkin

method is used to convert the balance equations to a set of integration equations, wherein

the integration steps are approximated by Gaussian quadrature [53].

Table 3: Edge lengths Lx, Ly, and Lz of the MS and CAC simulation cell (in Å) and

the corresponding number of atoms Natom, for different dislocation character angle θ.

θ Lx Ly Lz Natom

0◦/60◦ 515.86 74.46 364.77 843,648

30◦/90◦ 630.03 34.72 420.89 554,400

15◦/45◦/75◦ 575.16 143.79 350.74 1,746,600

In each simulation, an undissociated perfect dislocation dipole is first created by

applying the corresponding isotropic elastic displacement field to all atoms/nodes. Then

conjugate gradient relaxation is carried out and terminated when one of the following

two criteria is satisfied: (i) the change in energy between successive iterations divided

by the most recent energy magnitude is less than or equal to 10−15 and (ii) the length

of the global force vector for all atoms is less than or equal to 10−15 eV/Å.

4. Results and Discussions

Figs. 2 and 3 present the calculated disregistry profiles of all seven dislocations based

on PFDDng. As shown, the profiles for the mixed-type dislocations lay between those

of the pure-type dislocations. Also, for the same character angle θ, PFDDng predicts a

more compact dislocation core than MS. This discrepancy would imply a need to include

the gradient energy density ψgra in the system free energy. Doing so gives rise to the

question: how should the coefficients ηαβg0 be determined for a given θ? On the one hand,

Table 2 shows that ηαβg0 is different for an edge and a screw dislocation. On the other

hand, it is difficult to fit ηαβg0 to all MS-based mixed-type dislocations which can have

any θ between 0◦ and 90◦.

Toward a solution, we first note that for a dislocation with a given θ, the associated

ISF width d can be approximated to first order by isotropic linear elasticity [1], i.e.,

d =
µb2p

8π(1− ν)γisf
[2− ν − 2ν cos(2θ)] (13)

where γisf is the ISF energy, and µ and ν are the isotropic shear modulus and Poisson’s

ratio, respectively. We remark that Equation 13, even with use of Al EAM potential-
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Figure 2: Disregistry fields of pure- and mixed-type dislocations with different character

angles along the perfect dislocation Burgers vector direction. Results are based on

PFDDng, where the gradient energy density ψgra is not included in the system free

energy. MS results of some dislocations are also shown for comparison.

informed parameters γisf = 146 mJ/m2, µ = 28 GPa, and ν = 0.3, in the model, we

can expect some deviation from the MS results to arise since core field contributions are

neglected [54–56]. Further, Equation 13 suggests that the edge and screw dislocations

are two extremes on the spectrum of not only θ but also d. On this basis, we propose

that their corresponding gradient energy coefficients ηαβg0 also lie at extreme ends.
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Figure 3: Disregistry fields of pure- and mixed-type dislocations with different character

angles normal to the perfect dislocation Burgers vector direction. Results are based on

PFDDng, where the gradient energy density ψgra is not included in the system free

energy. MS results of some dislocations are also shown for comparison.

Accordingly, two interpolation schemes to determine ηαβg0 for mixed-type dislocations are

put forth here and compared: a linear interpolation and a trigonometric interpolation,
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Figure 4: Disregistry fields of pure- and mixed-type dislocations with different character

angles along the perfect dislocation Burgers vector direction. Results are based on

PFDD, where the gradient energy density ψgra is included in the system free energy

and the coefficients ηαβg0 for mixed-type dislocations are interpolated from those of edge

and screw ones by Equation 15. MS results of some dislocations are also shown for

comparison.

i.e.,

ηαβlin (θ) = ηαβS + 2θ(ηαβE − ηαβS )/π (14)

ηαβtri (θ) =
1

2

[
ηαβE + ηαβS − (ηαβE − ηαβS ) cos(2θ)

]
(15)
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0◦
15◦
30◦
45◦

0◦ (MS)
45◦ (MS)

(a)

−0.05

0

0.05

0.1

0.15

0.2

0.25

−20 −15 −10 −5 0 5 10 15 20

ζ 2
/b

x (Å)
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Figure 5: Disregistry fields of pure- and mixed-type dislocations with different character

angles normal to the perfect dislocation Burgers vector direction. Results are based on

PFDD, where the gradient energy density ψgra is included in the system free energy

and the coefficients ηαβg0 for mixed-type dislocations are interpolated from those of edge

and screw ones by Equation 15. MS results of some dislocations are also shown for

comparison.

where “E” and “S” denote the edge and screw dislocation, respectively.

In our earlier work in Al [33], we found that adding ψgra to the system free energy

causes the dislocations to become more dissociated (i.e., a larger ISF width d) and
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Figure 6: ISF widths, d, predicted by PFDD, APFM, CAC, and MS simulations, for

seven dislocations with different character angle θ. Isotropic linear elasticity prediction

in Equation 13 is also shown. PFDDng refers to the PFDD variant without the

gradient energy in the system free energy; PFDD† and PFDD, respectively, refer

to the gradient energy-equipped PFDD variants with the linear (Equation 14) and

trigonometric (Equation 15) interpolation schemes for the coefficients ηαβg0 for mixed-

type dislocations. Results based on APFM are identical to those of PFDD.

the disregistry profiles achieve better agreement with the MS results. The present

work shows that it is also the case for mixed-type dislocations (Figs. 4 and 5). This

outcome is a result of the fact that it is more energetically favorable for the dislocation to

increase d, thereby reducing the interaction energy between the partial dislocation at the

expense of increasing the fault area. In addition, results based on the gradient energy-

equipped PFDD and APFM are identical, provided that equivalent parameters are used.

Moreover, Figure 6 shows that, compared with the linear interpolation (Equation 14),

results based on the trigonometric interpolation (Equation 15) better agree with MS.

This is somewhat expected, because the character angle of a Shockley partial dislocation

changes trigonometrically as the character angle of the full dislocation varies. Thus, only

PFDD results are discussed further in what follows and the trigonometric interpolation

scheme is used in the remainder of this paper.

In addition to the disregistry fields, we also compare the stress fields predicted

by different models. Consider the 30◦ and 45◦ mixed-type dislocations as an example.

Figure 7 shows that, introducing gradient energy to total energy in PFDD improves

the agreement in the stress fields with those of MS. Note that, however, the virial

stresses obtained in CAC and MS may have different physical meaning than those in

continuum-based (e.g., PF) models [57, 58]. Work is underway to develop an atomic
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Figure 7: The yz component of the stress tensor of the (a) 30◦ and (b) 45◦ mixed-

type dislocations. PFDDng refers to the PFDD variant without the gradient energy

in the system free energy. PFDD and PFDDng results are based on the trigonometric

interpolation scheme (Equation 15) for the gradient energy coefficients ηαβg0 for mixed-

type dislocations.

stress formulation that is directly comparable to the continuum stress.

In foregoing PFDD simulations, the number of grid points along each direction,

Ngp = 128. To show that the cell size is sufficiently large, we vary Ngp from 80 to 160,

and calculated the ISF widths for all seven dislocations. Figure 8 presents the difference
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Figure 8: Ngp is the number of grid points along each direction in PFDD simulation

cells. d̄ is the difference in the ISF width predicted in cells with different Ngp with

respect to that in cells with Ngp = 160, for seven dislocations with different character

angle θ. Results are based on the trigonometric interpolation scheme (Equation 15) for

the coefficients ηαβg0 for mixed-type dislocations.

in the ISF width between the smaller Ngp with Ngp = 160. It is found that, for the

same dislocation, the difference reduces to less than 0.01b when Ngp = 128, suggesting

that the maximum relative error is about 1%.

In the foregoing simulations, hx = hy = hz = d111 in PFDD, and hx = hy = 4b

and hz = d111 in CAC. From a numerical perspective, it is important to understand the

effects of space resolution on simulation results. Here, we examine in-plane grid spacing

effects. First, we find that in PFDD, varying the grid spacing along the dislocation line

direction, hy, results in unchanged disregistry fields, suggesting that the effects of the

in-slip-plane grid spacing are dominated by hx. It follows that, we keep hz = d111 and

vary hx and hy simultaneously in both PFDD and CAC. Figure 9 shows that, larger hx
and hy result in a larger d in CAC but a smaller d in PFDD. In PFDD, the dependence

of hz is stronger for screw-like dislocations than edge-like dislocations. When hx > 4b,

PFDD-predicted values for d are nearly zero. As hx in the simulation decreases to

the MS-based ISF width, dMS, approximately between b and 2b, the PFDD-predicted d

quickly approaches dMS. This is expected because (i) the dislocation core can be resolved

only when hx ≤ dMS and (ii) the gradient energy coefficients calibrated against MS are

suitable only for simulations at atomic or subatomic resolution. As hx decreases further

yields, the results slowly converge.
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Figure 9: ISF widths, d, predicted by PFDD and CAC simulations with different grid

spacings or finite element sizes, for seven dislocations with different character angle θ.

Unless stated otherwise, hx = hy = hz = d111 in PFDD and hx = hy = 4b in CAC. MS

results are also shown for comparison. PFDD results are based on the trigonometric

interpolation scheme (Equation 15) for the gradient energy coefficients ηαβg0 for mixed-

type dislocations.

5. Conclusions

In this paper, three continuum dislocation models — PFDD, APFM, and CAC — are

employed to simulate static pure- and mixed-type dislocation core structures in FCC Al.

Seven dislocations, with the character angle ranging from 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, to

90◦, are considered. In PFDD, the gradient energy density is added to the system free

energy for the first time. In both PFDD and APFM, the gradient energy coefficients

are extended, from a uniform parameter to independently adjustable ones, to achieve

a better description of the dislocation core structure. A trigonometric interpolation

scheme is proposed to obtain the gradient energy coefficients for mixed-type dislocations

from those for pure-type ones. The effects of in-slip-plane space numerical resolution

on predicted disregistry profiles are analyzed. Our results suggest that, in the case

of a straight dislocation, for PFDD and APFM results to be comparable with MS,

subatomic or atomic resolution should be applied within the plane that is normal to

the dislocation line. The general agreement between MS and PFDD/APFM/CAC

simulations for straight dislocations lays a solid foundation for applying the latter set

of methods to more complex and practical problems, such as curved dislocations and

dislocation loops. Future work also includes extending PFDD to body-centered cubic

(BCC) lattice. With this in mind, further comparison between PFDD and a recent

extension of CAC to dislocation modeling in a BCC lattice [59] is expected.
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Appendix

In the current work of a single slip plane, dα = dβ = d0, substituting Equation 6 into

Equation 4 yields

ψgra(∇φ) =
1

d20

n∑
α,β=1

ηαβg0 bα · bβ∇φα ·N0∇φβ (A.1)

whereN0 = [(nα ·nβ)I−nβ⊗nα] is the same for all sets of αβ because nα = nβ. Below,

subscripts or superscripts A and P denote quantities in APFM and PFDD, respectively.

Our earlier work [33] showed that

bA1 = bP1 (A.2)

bA2 = bP2 − bP3 (A.3)

φA
1 = φP

1 −
1

2
(φP

2 + φP
3 ) (A.4)

φA
2 =

1

2
(φP

2 − φP
3 ). (A.5)

It follows that

∇φA
1 = ∇φP

1 −
1

2
(∇φP

2 +∇φP
3 ) (A.6)

∇φA
2 =

1

2
(∇φP

2 −∇φP
3 ). (A.7)

In APFM, bAa · bAb = 0 when a 6= b, hence there are two independent coefficients η11A
and η22A , and Equation A.1 becomes

ψgra(∇φ) =
1

d20
(η11A b

A
1 · bA1∇φA

1 ·N0∇φA
1 + η22A b

A
2 · bA2∇φA

2 ·N0∇φA
2 ). (A.8)
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Substituting Eqs. A.2, A.3, A.6, and A.7 into Equation A.8 yields

ψgra(∇φ) =
1

d20
(η11A b

P
1 · bP1 [∇φP

1 −
1

2
(∇φP

2 +∇φP
3 )] ·N0[∇φP

1 −
1

2
(∇φP

2 +∇φP
3 )]

+η22A (bP2 − bP3 ) · (bP2 − bP3 )[
1

2
(∇φP

2 −∇φP
3 )] ·N0[

1

2
(∇φP

2 −∇φP
3 )]. (A.9)

On the other hand, Equation A.8 equals its equivalent in PFDD, i.e.,

ψgra(∇φ) =
1

d20

3∑
α,β=1

ηαβP b
P
α · bPβ∇φP

α ·N0∇φP
β (A.10)

In other words, each of the nine terms in Equation A.9 that contains (∇φP
α ·N0∇φP

β )

should equal its counterpart in Equation A.10. In specific, in Equation A.9,

• when α = 1, β = 1, the relevant term is

η11A b
P
1 · bP1∇φP

1 ·N0∇φP
1 , (A.11)

so η11P = η11A ;

• when α = 1, β = 2, the relevant term is

η11A b
P
1 · bP1∇φP

1 ·N0(−
1

2
)∇φP

2 , (A.12)

which, along with bP1 · bP1 = −2bP1 · bP2 , leads to η12P = η11A ;

• when α = 1, β = 3, the relevant term is

η11A b
P
1 · bP1∇φP

1 ·N0(−
1

2
)∇φP

3 , (A.13)

which, along with bP1 · bP1 = −2bP1 · bP3 , leads to η13P = η11A ;

• when α = 2, β = 1, the relevant term is

η11A b
P
1 · bP1 (−1

2
)∇φP

2 ·N0∇φP
1 , (A.14)

which, along with bP1 · bP1 = −2bP2 · bP1 , leads to η21P = η11A ;

• when α = 2, β = 2, the relevant terms are

η11A b
P
1 · bP1 (−1

2
)∇φP

2 ·N0(−
1

2
)∇φP

2

+η22A (bP2 − bP3 ) · (bP2 − bP3 )
1

2
∇φP

2 ·N0
1

2
∇φP

2 , (A.15)

which, along with bP1 · bP1 = (bP2 − bP3 ) · (bP2 − bP3 )/3 = bP2 · bP2 , leads to η22P =

η11A /4 + 3η22A /4;
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• when α = 2, β = 3, the relevant terms are

η11A b
P
1 · bP1 (−1

2
)∇φP

2 ·N0(−
1

2
)∇φP

3

+η22A (bP2 − bP3 ) · (bP2 − bP3 )
1

2
∇φP

2 ·N0(−
1

2
)∇φP

3 , (A.16)

which, along with bP1 · bP1 = (bP2 − bP3 ) · (bP2 − bP3 )/3 = −2bP2 · bP3 , leads to

η23P = −η11A /2 + 3η22A /2;

• when α = 3, β = 1, the relevant term is

η11A b
P
1 · bP1 (−1

2
)∇φP

3 ·N0∇φP
1 , (A.17)

which, along with bP1 · bP1 = −2bP3 · bP1 , leads to η31P = η11A ;

• when α = 3, β = 2, the relevant terms are

η11A b
P
1 · bP1 (−1

2
)∇φP

3 ·N0(−
1

2
)∇φP

2

+η22A (bP2 − bP3 ) · (bP2 − bP3 )(−1

2
)∇φP

3 ·N0
1

2
∇φP

2 , (A.18)

which, along with bP1 · bP1 = (bP2 − bP3 ) · (bP2 − bP3 )/3 = −2bP3 · bP2 , leads to

η32P = −η11A /2 + 3η22A /2;

• when α = 3, β = 3, the relevant terms are

η11A b
P
1 · bP1 (−1

2
)∇φP

3 ·N0(−
1

2
)∇φP

3

+η22A (bP2 − bP3 ) · (bP2 − bP3 )(−1

2
)∇φP

2 ·N0(−
1

2
)∇φP

2 , (A.19)

which, along with bP1 · bP1 = (bP2 − bP3 ) · (bP2 − bP3 )/3 = bP3 · bP3 , leads to η33P =

η11A /4 + 3η22A /4.

In summary,

η11P = η12P = η13P = η21P = η31P = η11A (A.20)

η22P = η33P = η11A /4 + 3η22A /4 (A.21)

η23P = η32P = −η11A /2 + 3η22A /2 (A.22)

Note that the current gradient energy model does not take into account the material

symmetry, and so η11P , η22P , and η33P may differ.
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