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Abstract. Mixed-type dislocations are prevalent in metals and play an important
role in their plastic deformation. Key characteristics of mixed-type dislocations cannot
simply be extrapolated from those of dislocations with pure edge or pure screw
characters. However, mixed-type dislocations traditionally received disproportionately
less attention in the modeling and simulation community. In this work, we explore
core structures of mixed-type dislocations in Al using three continuum approaches,
namely, the phase-field dislocation dynamics (PFDD) method, the atomistic phase-
field microelasticity (APFM) method, and the concurrent atomistic-continuum (CAC)
method. Results are benchmarked against molecular statics. The PFDD and APFM
methods are advanced in several aspects such that they can better describe the
dislocation core structure. In particular, in these two approaches, the gradient energy
coefficients for mixed-type dislocations are determined based on those for pure-type
ones using a trigonometric interpolation scheme, which is shown to provide better
prediction than a linear interpolation scheme. The dependence of in-slip-plane spatial
numerical resolution in PFDD and CAC is also quantified.
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1. Introduction

Dislocations are the main carriers of plastic deformation in metals and are responsible
for their characteristic malleability [1]. From a continuum viewpoint, the geometry
of a dislocation can be described by two independent variables, line direction I and
Burgers vector b, the latter of which describes the magnitude and direction of the net
lattice displacement. The angle # between I and b is termed the character angle of a
dislocation and ranges from 0° (I || b) for a screw dislocation to 90° (I L b) for an edge
dislocation. Because of their simple and representative geometric configurations, most
modeling studies in dislocations have been devoted to those of pure edge/screw type [2].
While much is known about pure-type dislocations, the physics of mixed-type
dislocations, which possess character angles 6 between 0° and 90°, remain relatively
lightly explored computationally. Mixed-type dislocations are prevalent in metals
because for a given b in the lattice, # can have any value between the two extremes
if I is infinitesimally varied. To date descriptions of dislocation cores have been best
provided by atomic-scale simulations, which find that key characteristics of mixed-type
dislocations cannot simply be extrapolated from those of pure-type ones [3-9]. Moreover,
atomistic simulations are limited to nano/submicron length scale even with dedicated
high-performance computing resources [10]. Thus, to understand plastic deformation of
bulk materials, continuum modeling of dislocation core structures is desirable [11].
One type of continuum dislocation models is energy-based, in which dislocations
are assumed to evolve such that the free energy of the dislocated system approaches
a local minimum [12]. An example is the phase-field (PF) dislocation model, the first
of which was proposed by Khachaturyan [13] and Wang et al. [14] based on gradient
thermodynamics of phase transformations, and was termed phase-field microelasticity
(PFM). Since then, the PFM method was advanced extensively. For dislocations in
face-centered cubic (FCC) crystals, for example, Shen and Wang [15] reformulated
the gradient energy density to allow for correct core—core interactions among perfect
dislocations on the same slip plane. Later in Ref. [16] the same authors related
the crystalline energy to the generalized stacking fault energy (GSFE). Mianroodi
and Svendsen [17] furthered the gradient energy coefficients with the Shockley partial
dislocation cores obtained in atomistic simulations. In 2014, Shen et al. [18] proposed the
microscopic phase-field model in which all order parameter evolution is confined to the
slip planes and the gradient energy is removed from the system energy. More recently,
Zheng et al. [19] modified the crystalline energy to fully account for the reactions between
dislocations gliding in intersecting slip planes, while also neglecting the gradient energy.
Besides PFM, another branch of PF dislocation model is based on the phase-field
theory of dislocation dynamics proposed by Koslowski et al. [20], in which the gradient
energy was not included in the system energy. For the model to be analytically tractable,
Koslowski et al. [20] did not use numerical grids in solving the energy functional. Later,
Koslowski and Ortiz [21] extended Ref. [20] to a multi-phase field model, in which
numerical grids were employed. In 2011, the same model was extended to 3D and
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termed as phase-field dislocation dynamics (PFDD) [22-25]. Since then, PFDD has
been employed to study a series of dislocation-mediated problems in multiple crystalline
materials. We refer the reader to the review article of Beyerlein and Hunter [26]
for further background information on PFDD. Mianroodi et al. [27] showed that the
previous PFDD variant was a model of generalized Peierls-Nabarro (GPN) type. More
specifically, it was mathematically different from, but physically the same as, for example
the GPN model of Xiang et al. [28]. In the current work, the PFDD energy model is
extended by inclusion of the gradient energy analogous to that in PFM. The resulting
“oradient” PFDD model is mathematically different from but physically the same as
PFM, and so APFM. In what follows, unless stated otherwise, the newly extended
PFDD model will be referred to as “PFDD” for brevity. A distinction will be made
when the new model is compared with the previous one.

In this work, we explore core structures of mixed-type dislocations in FCC Al
using three continuum dislocation models, including PFDD, APFM, and the concurrent
atomistic-continuum (CAC) method [29, 30]. Among all PF dislocation models, PEDD
and APFM are chosen because they are atomistically informed, and we will validate
them in this paper by benchmarking their results against molecular statics (MS). Note
that straight mixed-type dislocations have been studied by CAC in Al and Cu [30], but
not by PFDD and APFM. Nevertheless, there is no theoretical challenge in applying
the two PF-based methods to straight mixed-type dislocations since they have been
employed to simulate curved dislocations [31, 32] and dislocation loops [17, 24]. In
particular, we have advanced both APFM and PFDD in several aspects, enabling better
representation of mixed-type dislocations compared with previous work.

Before reviewing the formulations in each method, we present the notation we will
use. 3D Euclidean vectors are represented by lower-case boldfaced, italicized characters
a,b,.... Cartesian basis vectors are represented by 1,,1,,%.. Second-rank tensors are
represented by upper-case boldfaced, italicized characters A, B, ..., with I being the
second-rank identity matrix. A - B = A;;..B;;... is the scalar product of two tensors
of arbitrary order. Fourth-rank Euclidean tensors A, B, ... are denoted by upper-case
slanted sans-serif characters. (a ® b)e = (b - ¢)a defines the dyadic product a ® b of
a and b, ATb-c = b- Ac defines the transpose AT of A, and ATB-C = B - AC
defines the transpose AT of A. Additional notations will be introduced as needed in
what follows.

2. Methodology

In this section, we provide theoretical background on the PF-based dislocation model
and the CAC method. Hereinafter b and b, respectively, denote the magnitude of the
Burgers vector of a full dislocation b = (ay/2) (110) and a Shockley partial dislocation
b, = (ap/6) (112), where qy is the lattice parameter.
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2.1. Phase-field-based dislocation model

Let w represent the displacement field, H = Vu the distortion field, E = (H + HT)/2
the strain field, Cg the elastic stiffness tensor, and 74 the GSFE per unit area. In
a PF-based dislocation model, an order parameter ¢, represents the state of slip for
the ath slip system, with ¢, = 0 and 1 corresponding to the unslipped and slipped
states, respectively. In an FCC lattice, a full dislocation within a {111} plane is usually
dissociated into two Shockley partial dislocations bounding an intrinsic stacking fault
(ISF). Thus, a dislocation in the ath slip system in Al spans the region for which
0< o <1.

For single-element FCC materials, the total free energy density v is the sum of the
elastic energy density 1el, the GSFE density 1, and the gradient energy density 1
13, 14], ie.,

V(E, $,VO) = teia(E, @) + Vst (@) + Ygra(VD) . (1)
In particular,
Vera(E, @) = 3(E — Eg(¢)) - Cp (E — Er(9)) (2)
() = 21 ®)
gsf
Vgra (V) = Zzﬁzl ngoﬁ Voo - NogVopg (4)

where n is the total number of order parameters, Eg = (Hg + H7)/2 is the residual
strain, [y is the interplanar spacing between two adjacent slip planes based on which
Vest 1S calculated, and ngoﬁ are gradient energy coefficient, and

n baga

HR(¢) = Za:l d., Sa @ Mg (5)
b, b
Nos = ——[(n - 15)1 = n3 @, (6)
dadg
where s, is the slip direction, n, is the slip plane unit normal, b, = b,s, is the

slip vector, and d, is the interplanar spacing between two adjacent slip planes, of
the ath order parameter. In the current work of a single slip plane in FCC crystals,
do = dg = lgss = dy11 = ag/ \/3, where di1; is the interplanar distance between two
{111} planes. 1), represents the density of energy stored in stacking faults (e.g., ISF)
and partial dislocation (e.g., Shockley partial) cores, while 14, the density of energy
stored in the latter only.

It follows that the time-dependent Ginzburg-Landau (TDGL) equation is employed
to recursively minimize the system free energy with respect to each ¢,, i.e.,

Q.ba = Mo [V : aV¢a¢gra - a¢a (¢ela + ¢gsf)] (7)

where the superposed dot denotes the time derivative and the Ginzburg-Landau
coefficient myq is non-negative and assumed constant here. Once all ¢, are determined,
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the disregistry field (g along the 3 direction is calculated by

Cp = ZZ; Pa ba - 85 (8)

where ng, is the total number of order parameters on the slip plane within which the
ath order parameter and § direction lie. In this paper, § = 1 and § = 2 represent the
directions along and normal to the full dislocation Burgers vector, respectively.

As discussed in our previous work [27, 33], different modeling choices are made in
PFDD and APFM. In what follows, subscripts or superscripts P and A are used to
denote quantities in PFDD and APFM, respectively. In PFDD, the slip vector b, = b
is along a (110) direction, and three order parameters are used for each slip plane in
an FCC lattice. Thus, in PFDD, for a single slip plane, np = 3 and there are nine
gradient energy coefficients 773’8 in Equation 4. In APFM, the slip vectors b = b and
by = (ap/2) (112) are perpendicular to each other, i.e., Nj» = Ny = 0 in Equation 4.
Thus, in APFM, for a single slip plane, ny = 2 and there are two non-trivial coefficients,
it and 2.

We remark that the form of the gradient energy density 4., including the
determination of the coefficients ngo‘oﬁ , is the focus of on-going research and model
development. As noted in section 1, Shen and Wang [15] proposed Equation 4, where
ngoﬁ were arbitrary material parameters not associated with the dislocation type. In
APFM [17], which is an “atomistic” form of PFM, ngoﬂ are related to the Shockley
partial dislocation core size, among other atomistic-based parameters. This extension
was physically motivated because the character angles of the Shockley partials depend
on the character angle of the parent full dislocation. For example, an edge and a screw
dislocation, respectively, dissociate into two 60° and 30° Shockley partials. In addition,
a recent analytical work [34] revealed that the vectorial slip of a partial dislocation
may deviate from that of an ideal Shockley partial, (ao/6) (112). This deviation is
more pronounced in a screw dislocation than in an edge dislocation. Since the partial
dislocations, to which Ug()ﬁ are related, may have different atomistic structures as the
full dislocation character angle changes, it is desirable to extend ngaoﬁ such that their
values depend on the dislocation type. Therefore, for dissociated dislocations in FCC
metals in APFM, Mianroodi and Svendsen [17] fit n‘g’Oﬁ to the MS-based Shockley partial
dislocation core structure. Similarly, in one GPN model, ngaf were fit to the MS-based
disregistry fields [35].

However, in all those works, for the sake of simplicity, a uniform nggj was adopted for
all order parameters. In this work, we consider 3! and n3? as independently adjustable
parameters. Their characterization will be discussed in subsection 3.1.

As noted in section 1, all prior PFDD models did not include the gradient energy
density in the total energy density. Recently it was shown that introducing atomistically-
informed 1), into PF-based models, such as APFM, provided descriptions of dislocation
cores of pure edge and screw characters closer to those calculated with MS [27, 33].
Therefore, g, is added to the PEFDD energy formulation here. As a result, PFDD and



A comparison of different continuum approaches in modeling mixed-type dislocations in Al6

APFM, despite employing different slip vectors, are physically equivalent and should
yield identical results, as long as all parameters used in the two models are equivalent.

2.2. Concurrent atomistic-continuum (CAC) method

The theoretical foundation of the CAC method is the atomistic field theory (AFT) [36].
In AFT, a crystal is viewed as a continuous collection of lattice points. Embedded
within each point is a unit cell containing a group of discrete atoms [37, 38|. In terms of
Eulerian coordinates, for monatomic crystals, like Al, in the absence of external force,
AFT has the following balance equations [39, 40], i.e.,

dp
dv
d
pd—isz-q—l—T-va (11)

where x is the physical space coordinate of the continuously distributed lattice; p, v, pv,
and pe are the density of mass, velocity, linear momentum, and total energy, respectively;
T and q are the stress tensor and heat flux vector, respectively.

As arealization of AFT, a CAC model usually consists of two domains: an atomistic
domain and a coarse-grained domain, with the interatomic potential being the only
constitutive rule [41]. In the atomistic domain, the atoms are updated in the same way
as in atomistic simulations; in the coarse-grained domain, finite elements that require
neither displacement continuity nor strain compatibility are employed [42]. Hence,
discontinuities such as dislocations and ISFs can be accommodated between two layers
of elements [43, 44]. For an FCC lattice, all surfaces of the finite elements lie on {111}
planes [45]. The CAC method equipped with these finite elements has been employed
to explore problems in which full atomistic resolution is required in some regions (e.g.,
lattice defects), with coarse-graining employed elsewhere to support representation of
dislocation interactions and transport [46, 47]. In this paper, we focus on the modeling
of dislocations between finite elements in the coarse-grained domain.

3. Simulation set-up

To maximize comparability, the same embedded-atom method (EAM) potential [48] is
used, for the interatomic interactions in MS and CAC simulations, and for material
parameters needed in the PF free energy model, including lattice parameter ag, elastic
constants C7q, Cia, Cyy, gradient energy coefficients nggj , and GSFE per unit area vgqt.

A dislocation dipole consisting of two dislocations of the same type but with
opposite Burgers vector is built into a 3D periodic simulation cell, as illustrated in
Figure 1. Seven character angles will be considered, including 0° (screw), 15°, 30°, 45°,
60°, 75°, and 90° (edge). Let L,, L,, and L, be the edge length of the cell along the



A comparison of different continuum approaches in modeling mixed-type dislocations in Al7

Figure 1: Simulation box set-up for dissociation of a mixed-type dislocation dipole.

x, y, and z directions, respectively. The two dislocation lines lie on the mid-z plane
and are separated by L,/2 along the x direction. In all simulations, the total energy
of the dislocated system is minimized, during which each dislocation extends on the
mid-z plane by dissociating into two Shockley partials. The center of each partial is
determined by projecting the disregistry field onto the partial dislocation direction [33].
The ISF width d is defined as the distance between the centers of two Shockley partial
dislocations.

3.1. PFDD and APFM simulations

PF simulations are carried out using a 3D structured grid. In PFDD, 128 grid points
are used in each direction; in APFM, the numbers of grid points along the z, y, and
z directions are 294, 7, and 180, respectively. Let hg, h,, and h, be the grid spacing
along the x, y, and z directions, respectively. Along the same direction, the grid spacing
is a constant. Following a prior APFM work [17], h, = dj1;. Unless stated otherwise,
hy = hy = di11. Note that, since the grid point spacing is comparable to the atomic
spacing, there is no computational gain with respect to MS. Conceptually, PF-based
models have much longer (i.e., diffusive) timescale resolution in comparison to molecular
dynamics, but this is not relevant in this work.

Material parameters ag, Cp;, Cis, and Cyy enter the free energy model, as
summarized in Table 1. In prior PFDD modeling, the material was assumed elastic
isotropic. Here, to be consistent with APFM, the full anisotropic stiffness tensor Cg is
used.

Because the gradient energy density represents the energy of the partial dislocation
cores, the gradient energy coefficients, ngoﬁ , depend on the material and dislocation
type, as discussed earlier. Thus, these coefficients need to be characterized for a specific
dislocation type in a specific material. In this work, the two independent coefficients in
APFM, n}! and 7%, are determined by

(A", 3] = argmin {¢(ny', n%) — Cus } (12)
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Specifically, a series of APFM simulations are performed with a preassigned set of
(il n3%]. For each simulation, the disregistry field ¢(n}!, n3?) is obtained and compared
to that from MS, {ys. The values of [ni, n3%] providing the best agreement for edge and
screw dislocations are summarized in Table 2. Values of the nine coefficients in PFDD
are determined following Eqs. A.20 to A.22 in the Appendix. Note that, however, ngoﬁ
do not depend on the grid spacing, and hence the same coefficients will be used when
the grid spacing varies. In this work, we will quantify the effects of 14, on mixed-
type dislocations by repeating the same PFDD simulations without t)g,, which will be

designated by “PFDD,,".

Table 1: Lattice parameter ay (in A) and elastic constants Ciy, Cha, Cyy (in GPa)
determined based on the Al EAM potential [48].

Qo 011 012 C(44
4.05 113.80 61.55 31.60

Table 2: The two gradient energy coefficients in APFM for an extended edge or screw
dislocation configuration. The units are ud?,,, where p = (3Cyy + C11 — C12) /5.

A R
Screw 0.2667 0.4

Edge 1.0667 0.4

In all PF simulations, the elastic energy density 1), is calculated by the fast Fourier
transform method with the help of Green’s functions. Initially, an undissociated perfect
dislocation dipole with a given character angle 6 is inserted by assigning, ¢ = 1 and
Y = ¢f = 0 in PFDD and ¢¢ =1 and ¢5 = 0 in APFM, to selected grid points. The
dislocation lines remain along the y axis but the slip vectors b, change directions based
on . During recursively running the TDGL equation (Equation 7), each dislocation
becomes extended. Iterations are terminated when the Euclidean norm of the difference
in global vector of each order parameter between successive iterations is smaller than
10~*. The Ginzburg-Landau coefficient mg is assumed to be unity and all slips are
confined to the pre-defined slip plane [18].

To solve the TDGL equation, the explicit Euler method is used. In this case, we
consider the maximum allowable timestep size At that stabilizes the iteration [49]. We
find that At decreases with (i) a smaller grid spacing, (ii) the inclusion of g, and
(iii) larger gradient energy coefficients ngo’B . Based on a series of parametric studies, we
choose At = 0.02 in all PF simulations in this paper.

3.2. MS and CAC simulations
MS and CAC simulations are carried out by LAMMPS [50] and PyCAC [51, 52],

respectively. The simulation cell sizes and the corresponding number of atoms are
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summarized in Table 3. In CAC, the coarse-grained domain adopts uniformly sized 3D
rhombohedral finite elements. Following PF models, the edge length of a finite element
is denoted by h,, which equals h,, in CAC. In this paper, h, = h, = 4b = 2v/2ay,
unless stated otherwise. As a result, each finite element contains 125 atoms and 125
integration points. There is no computational gain with respect to MS.

The interplanar distance between two adjacent finite elements is kept as dq1; because
the finite element boundaries must correspond to actual lattice sites. The Galerkin
method is used to convert the balance equations to a set of integration equations, wherein
the integration steps are approximated by Gaussian quadrature [53].

Table 3: Edge lengths L,, L,, and L. of the MS and CAC simulation cell (in A) and
the corresponding number of atoms N, for different dislocation character angle 6.

4 L, Ly, L. Natom
0°/60° 515.86 74.46 364.77 843,648
30°/90° 630.03  34.72  420.89 554,400
15°/45°/75° 575.16 143.79 350.74 1,746,600

In each simulation, an undissociated perfect dislocation dipole is first created by
applying the corresponding isotropic elastic displacement field to all atoms/nodes. Then
conjugate gradient relaxation is carried out and terminated when one of the following
two criteria is satisfied: (i) the change in energy between successive iterations divided
by the most recent energy magnitude is less than or equal to 107! and (ii) the length
of the global force vector for all atoms is less than or equal to 1075 eV /A.

4. Results and Discussions

Figs. 2 and 3 present the calculated disregistry profiles of all seven dislocations based
on PFDD,,,. As shown, the profiles for the mixed-type dislocations lay between those
of the pure-type dislocations. Also, for the same character angle 6, PFDD,,, predicts a
more compact dislocation core than MS. This discrepancy would imply a need to include
the gradient energy density g, in the system free energy. Doing so gives rise to the
question: how should the coefficients ngf be determined for a given 7 On the one hand,
Table 2 shows that ngoﬁ is different for an edge and a screw dislocation. On the other
hand, it is difficult to fit ngoﬁ to all MS-based mixed-type dislocations which can have
any 6 between 0° and 90°.

Toward a solution, we first note that for a dislocation with a given #, the associated
ISF width d can be approximated to first order by isotropic linear elasticity [1], i.e.,

2
pb;

d= 8m(1 — v)yist

[2 — v — 2vcos(26)] (13)

where ;¢ is the ISF energy, and p and v are the isotropic shear modulus and Poisson’s
ratio, respectively. We remark that Equation 13, even with use of Al EAM potential-
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Figure 2: Disregistry fields of pure- and mixed-type dislocations with different character
angles along the perfect dislocation Burgers vector direction. Results are based on
PFDD,,, where the gradient energy density g, is not included in the system free
energy. MS results of some dislocations are also shown for comparison.

informed parameters i = 146 mJ/m? p = 28 GPa, and v = 0.3, in the model, we
can expect some deviation from the MS results to arise since core field contributions are
neglected [54-56]. Further, Equation 13 suggests that the edge and screw dislocations
are two extremes on the spectrum of not only # but also d. On this basis, we propose
that their corresponding gradient energy coefficients ngoﬂ also lie at extreme ends.
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Figure 3: Disregistry fields of pure- and mixed-type dislocations with different character
angles normal to the perfect dislocation Burgers vector direction. Results are based on
PFDD,,, where the gradient energy density g, is not included in the system free
energy. MS results of some dislocations are also shown for comparison.

Accordingly, two interpolation schemes to determine nggj for mixed-type dislocations are
put forth here and compared: a linear interpolation and a trigonometric interpolation,
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angles along the perfect dislocation Burgers vector direction. Results are based on
PFDD, where the gradient energy density g, is included in the system free energy
and the coefficients ng for mixed-type dislocations are interpolated from those of edge
and screw ones by Equation 15. MS results of some dislocations are also shown for
comparison.
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Figure 5: Disregistry fields of pure- and mixed-type dislocations with different character

angles normal to the perfect dislocation Burgers vector direction. Results are based on

PFDD, where the gradient energy density g, is included in the system free energy

and the coefficients ngoﬂ for mixed-type dislocations are interpolated from those of edge

and screw ones by Equation 15. MS results of some dislocations are also shown for

comparison.

where “E” and “S” denote the edge and screw dislocation, respectively.

In our earlier work in Al [33], we found that adding 1), to the system free energy

causes the dislocations to become more dissociated (i.e.,

a larger ISF width d) and



A comparison of different continuum approaches in modeling mixed-type dislocations in All4

2.5

[\
T

—
ot
T

——— PFDD,,
PFDD' —o—
PFDD —m—
APFM —aA—
CAC —v—
MS

Eq. 15 — —-
0 I I I I I
0 20 40 60 80

Character angle 6 (°)

—
T

<
ot
T

Intrinsic stacking fault width d/b

Figure 6: ISF widths, d, predicted by PFDD, APFM, CAC, and MS simulations, for
seven dislocations with different character angle . Isotropic linear elasticity prediction
in Equation 13 is also shown. PFDD,, refers to the PFDD variant without the
gradient energy in the system free energy; PFDD! and PFDD, respectively, refer
to the gradient energy-equipped PFDD variants with the linear (Equation 14) and
trigonometric (Equation 15) interpolation schemes for the coefficients ngf for mixed-
type dislocations. Results based on APFM are identical to those of PFDD.

the disregistry profiles achieve better agreement with the MS results. The present
work shows that it is also the case for mixed-type dislocations (Figs. 4 and 5). This
outcome is a result of the fact that it is more energetically favorable for the dislocation to
increase d, thereby reducing the interaction energy between the partial dislocation at the
expense of increasing the fault area. In addition, results based on the gradient energy-
equipped PFDD and APFM are identical, provided that equivalent parameters are used.
Moreover, Figure 6 shows that, compared with the linear interpolation (Equation 14),
results based on the trigonometric interpolation (Equation 15) better agree with MS.
This is somewhat expected, because the character angle of a Shockley partial dislocation
changes trigonometrically as the character angle of the full dislocation varies. Thus, only
PFDD results are discussed further in what follows and the trigonometric interpolation
scheme is used in the remainder of this paper.

In addition to the disregistry fields, we also compare the stress fields predicted
by different models. Consider the 30° and 45° mixed-type dislocations as an example.
Figure 7 shows that, introducing gradient energy to total energy in PFDD improves
the agreement in the stress fields with those of MS. Note that, however, the virial
stresses obtained in CAC and MS may have different physical meaning than those in
continuum-based (e.g., PF) models [57, 58]. Work is underway to develop an atomic
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Figure 7: The yz component of the stress tensor of the (a) 30° and (b) 45° mixed-
type dislocations. PFDD,, refers to the PFDD variant without the gradient energy
in the system free energy. PFDD and PFDD,, results are based on the trigonometric
interpolation scheme (Equation 15) for the gradient energy coefficients ngoﬁ for mixed-
type dislocations.

stress formulation that is directly comparable to the continuum stress.

In foregoing PFDD simulations, the number of grid points along each direction,
Ngp, = 128. To show that the cell size is sufficiently large, we vary Ng, from 80 to 160,
and calculated the ISF widths for all seven dislocations. Figure 8 presents the difference
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Figure 8: Ng, is the number of grid points along each direction in PFDD simulation
cells. d is the difference in the ISF width predicted in cells with different Ngp with
respect to that in cells with Ny, = 160, for seven dislocations with different character
angle 6. Results are based on the trigonometric interpolation scheme (Equation 15) for
the coefficients ngaf for mixed-type dislocations.

in the ISF width between the smaller Ny, with Ny, = 160. It is found that, for the
same dislocation, the difference reduces to less than 0.01b when Ny, = 128, suggesting
that the maximum relative error is about 1%.

In the foregoing simulations, h, = h, = h, = dy;; in PFDD, and h, = h, = 4b
and h, = dy1; in CAC. From a numerical perspective, it is important to understand the
effects of space resolution on simulation results. Here, we examine in-plane grid spacing
effects. First, we find that in PFDD, varying the grid spacing along the dislocation line
direction, h,, results in unchanged disregistry fields, suggesting that the effects of the
in-slip-plane grid spacing are dominated by h,. It follows that, we keep h, = dy1; and
vary h, and h, simultaneously in both PFDD and CAC. Figure 9 shows that, larger h,
and h, result in a larger d in CAC but a smaller d in PFDD. In PFDD, the dependence
of h, is stronger for screw-like dislocations than edge-like dislocations. When h, > 4b,
PFDD-predicted values for d are nearly zero. As h, in the simulation decreases to
the MS-based ISF width, dys, approximately between b and 2b, the PFDD-predicted d
quickly approaches dys. This is expected because (i) the dislocation core can be resolved
only when h, < dys and (ii) the gradient energy coefficients calibrated against MS are
suitable only for simulations at atomic or subatomic resolution. As h, decreases further
yields, the results slowly converge.
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Figure 9: ISF widths, d, predicted by PFDD and CAC simulations with different grid
spacings or finite element sizes, for seven dislocations with different character angle 6.
Unless stated otherwise, h, = hy, = h, = di1; in PFDD and h, = h, = 4b in CAC. MS
results are also shown for comparison. PFDD results are based on the trigonometric
interpolation scheme (Equation 15) for the gradient energy coefficients ngoﬁ for mixed-
type dislocations.

5. Conclusions

In this paper, three continuum dislocation models — PFDD, APFM, and CAC — are
employed to simulate static pure- and mixed-type dislocation core structures in FCC Al.
Seven dislocations, with the character angle ranging from 0°, 15°, 30°, 45°, 60°, 75°, to
90°, are considered. In PFDD, the gradient energy density is added to the system free
energy for the first time. In both PFDD and APFM, the gradient energy coefficients
are extended, from a uniform parameter to independently adjustable ones, to achieve
a better description of the dislocation core structure. A trigonometric interpolation
scheme is proposed to obtain the gradient energy coefficients for mixed-type dislocations
from those for pure-type ones. The effects of in-slip-plane space numerical resolution
on predicted disregistry profiles are analyzed. Our results suggest that, in the case
of a straight dislocation, for PFDD and APFM results to be comparable with MS,
subatomic or atomic resolution should be applied within the plane that is normal to
the dislocation line. The general agreement between MS and PFDD/APFM/CAC
simulations for straight dislocations lays a solid foundation for applying the latter set
of methods to more complex and practical problems, such as curved dislocations and
dislocation loops. Future work also includes extending PFDD to body-centered cubic
(BCC) lattice. With this in mind, further comparison between PFDD and a recent
extension of CAC to dislocation modeling in a BCC lattice [59] is expected.
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Appendix

In the current work of a single slip plane, d, = dg = dy, substituting Equation 6 into
Equation 4 yields

Vera(V) = Z 1o b - b5V e - NoVs (A.1)

aﬁl

where Ny = [(n,-ng)I —nz®n,] is the same for all sets of o because n, = ng. Below,
subscripts or superscripts A and P denote quantities in APFM and PFDD, respectively.
Our earlier work [33] showed that

bt = b (A.2)
by = b5 — b (A.3)
6 = 8% — 505 + o) (A4)
63 = 5(0k — o). (A.5)
It follows that
Vo = Y6} - 5(Vek +Ve) (4.6)
Voh = 5 (el — Vb, (A7)

In APFM, b2 - b = 0 when a # b, hence there are two independent coefficients ni!
and 732, and Equation A.1 becomes

Vra (V) = d2<nA by - biVer - NoVoy + by - by Vey - NoVidy).  (A)
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Substituting Eqs. A.2, A.3, A.6, and A.7 into Equation A.8 yields
1 1
Vo (V) = ' - B [V0F = (V] + Vob] - Nu[Vof — 5V + V)

+ix (by — by) - (b —b§)[%(v¢2 Vy)] - N [ (Voy — Vé5)l. (A.9)

On the other hand, Equation A.8 equals its equivalent in PFDD, i.e.,

3

Ygra (V) = Z bl - bEV L - NoVel (A.10)
a,B 1

In other words, each of the nine terms in Equation A.9 that contains (V¢ - NOVqﬁg)
should equal its counterpart in Equation A.10. In specific, in Equation A.9,

e when oo = 1, 8 = 1, the relevant term is
AbY - bVer - NoVepy, (A.11)

11 _ 11,
SO Tlp" = TA's

e when oo = 1, 5 = 2, the relevant term is
1
Y - BV - Ny~ )V, (A12)

which, along with b} - b = —2b% - bY | leads to 0y = nil;

e when oo = 1, 8 = 3, the relevant term is
1
BT - BIY 6L Ny~ 1)Vl (A13)

which, along with b - bY = —2b% - b§, leads to 1’ = ny';

e when o« = 2, 5 = 1, the relevant term is
1
naby - b1 (=5) Vs - NoVey, (A.14)

which, along with b} - bY = —2b% - b’ leads to 3! = n}l;

e when o = 2, § = 2, the relevant terms are
11,p gp, L P 1 P
na by - by (_§)V¢2 ) NO(_é)Vsz
1 1
+ix (by — b5) - (by — b§)§V¢§ : N0§V¢§, (A.15)

which along with b7 - b = (bY — ) - (b} — bY)/3 = bY - bL, leads to n# =
na /4 + 3n32 /4
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e when o = 2, = 3, the relevant terms are

1 1
by By (=5)Vey - No(—5) Vel

1 1
(B B5) - (6] — b)Yk - Ny(— )V (A.16)
which, along with b7 - b = (bY — &%) - (b — bY)/3 = —2bY - b, leads to
e = —na' 2+ 3% /2;

e when o = 3,8 = 1, the relevant term is
1
Y B ()08 - NoVE, (A17)

which, along with b} - bY = —2b% - bY' | leads to ni! = nil;

e when o = 3, 8 = 2, the relevant terms are

1 1
IR bf(—g)vﬂg : No(—i)VGﬁg

1 1
(05— b)) - (6 — )1y Nt A1
which, along with b7 - b = (b — bY) - (b5 — bY)/3 = —2b% - by, leads to
Mt = —nA 2+ 303 /2;

e when o = 3, 5 = 3, the relevant terms are
1P ey L P 1 P
na by - by (_§)V¢3 : NO(_§>V¢3
1 1
IR0 — BE) - (BF — BE)(—) VL - No(—) Ve, (A19)

Which along with b} - by = (bY — %) - () — bY)/3 = bY - bL, leads to n¥® =
nat/4 + 3032 /4.

In summary,

771D = 77P = 77P = 7713 = 77P = 77/141 (A-20)
e =y =y /A+ 307 /4 (A.21)
e =yt = —n)' /24 303 /2 (A.22)

Note that the current gradient energy model does not take into account the material
symmetry, and so 75!, n2%, and 73® may differ.
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