
Riker: Mining Rich Keyword Representations for Interpretable
ProductQuestion Answering

Jie Zhao
The Ohio State University

zhao.1359@osu.edu

Ziyu Guan
Xidian University

zyguan@xidian.edu.cn

Huan Sun
The Ohio State University

sun.397@osu.com

ABSTRACT

This work studies product question answering (PQA) which aims to
answer product-related questions based on customer reviews. Most
recent PQA approaches adopt end2end semantic matching method-
ologies, which map questions and answers to a latent vector space
to measure their relevance. Such methods often achieve superior
performance but it tends to be difficult to interpret why. On the
other hand, simple keyword-based search methods exhibit natural
interpretability through matched keywords, but often suffer from
the lexical gap problem. In this work, we develop a new PQA frame-
work (named Riker) that enjoys the benefits of both interpretability
and effectiveness. Riker mines rich keyword representations of a
question with two major components, internal word re-weighting
and external word association, which predict the importance of each
question word and associate the question with outside relevant
keywords respectively, and can be jointly trained under weak su-
pervision with large-scale QA pairs. The keyword representations
from Riker can be directly used as input to a keyword-based search
module, enabling the whole process to be effective while preserv-
ing good interpretability. We conduct extensive experiments using
Amazon QA and review datasets from 5 different departments, and
our results show that Riker substantially outperforms previous
state-of-the-art methods in both synthetic settings and real user
evaluations. In addition, we compare keyword representations from
Riker and those from attention mechanisms popularly used for
deep neural networks through case studies, showing that the former
are more effective and interpretable.

KEYWORDS

Product QA, Interpretable Search, Question Representation

ACM Reference Format:

Jie Zhao, Ziyu Guan, and Huan Sun. 2019. Riker: Mining Rich Keyword
Representations for Interpretable Product Question Answering. In The 25th

ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD

’19), August 4ś8, 2019, Anchorage, AK, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3292500.3330985

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’19, August 4ś8, 2019, Anchorage, AK, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330985

1 INTRODUCTION

Question answering (QA) on e-commerce websites allows cus-
tomers to acquire useful information for making purchase decisions.
Currently, answering product-related questions still largely relies
on costly human efforts. It can take several days to get an answer
from sales representatives or other experienced customers. In this
work, we study the problem of automating product question an-
swering (PQA) [7]: Given a question regarding a product, we aim to
return relevant sentences extracted from corresponding customer
reviews to provide answer information. One important characteris-
tic of PQA in comparison with open domain answer selection (e.g.,
[45, 47, 51]) is its high demand in system interpretability, partly
because customers may have increasing concerns about hidden ad-
vertising agendas and leaked personal information and can distrust
a PQA system [18] if puzzled by how they get the results, and also
partly because latest policies and regulations are also urging com-
panies to provide interpretations for their algorithms that directly
affect users [13, 17].

To the best of our knowledge, all recent PQAworks [30, 43, 48] ad-
vocate end2end semantic matchingmethodologies, which tend to be
black-box and directly output a matching score for each <question,
review sentence> pair. Typically, questions/answers/reviews are
first encoded into low-dimensional vector representations, which
are then used to generate the matching scores based on some rele-
vance functions (e.g., dot product). For example, question-review
and answer-review encoders and relevance functions are simulta-
neously learned by optimizing a mixture-of-experts objective [30].
In fact, in open domain as well, almost all latest answer selection
works [41, 42, 50] fall into this category, e.g., relying on hidden units
within deep neural networks (DNN) to represent the relevance of
QA sentences pairs [28]. Despite its popularity, the end2end par-
adigm has received challenges on its lack of interpretability [14].
Even with many recent efforts [3, 5, 10, 37, 39], it is still very dif-
ficult to interpret dense vector representations or how an answer
is matched with a question. Meanwhile, different attention mech-
anisms [31, 41, 50] have been incorporated into DNN models to
associate the relevant parts across two sentences. Although to some
extent the intermediate attentions can help reveal the soft word
alignments between two sentences, the models are still less trans-
parent because of the nonlinear relationship between attention
scores and outputs [35].

In this work, we do not follow the end2end paradigm of existing
approaches, and instead advocate a hybrid framework marrying
the advantages of both DNN structures and classic keyword-based
Information Retrieval (IR) techniques [4]. Keyword-based IR tech-
niques such as tf-idf ranking functions naturally exhibit much

better interpretability owing to their transparency and intuitiveness:

Q/A Encoder

q2 q3 q4 q5 a1 a3 a4 a5 a2

GRU GRU

q1 a6
GRUweight of baby theseat weighs about 15seat lb

q a

Soft Pairwise
Matching

...

Q/A Encoder

 GRU GRU GRU... the

sSPM(q, a)

sEPM(q, a)

q4
q5

q1
q2
q3

oq4
oq5

oq1
oq2
oq3

Exact Pairwise
Matching

oa6oa1oa2oa3oa4oa5

a6a1 a2 a3 a4 a5

q4
q5

q1
q2
q3

Internal Word
Re-weighting

Figure 2: Training structure of Riker.

customers without domain knowledge, and are commonly acknowl-
edged by data scientists as interpretable algorithms among decision
trees, rule lists [44], sparse linear models [26], etc. However, naive
keyword-based search has drawbacks when applied to PQA: They
tend to ignore the relative importance of words given the question
context and can not relate different but semantically similar words.
To solve this problem, we design Riker that mines better keyword
representations for questions. Figure 2 shows the training neural
architecture of Riker. The internal word re-weighting component is
learned through exact pairwise matching (Section 3) and predicts
higher weights for question words that may exactly appear in the
correct answers but rarely in others, whereas the external word

association component is learned through soft pairwise matching
(Section 4) and captures semantic associations between different
words. Such keyword representations can preserve the natural in-
terpretability of keyword-based search methods, and also make
Riker more effective as experiments will show (Section 5). Addi-
tionally, we use case studies to further discuss the interpretability
of keyword representations from Riker (Section 6).

3 INTERNAL WORD RE-WEIGHTING

The goal of internal word re-weighting component is to assign
different weights to words within a given question, according to
their relative importance in the context. In this section, we first
introduce the details of the re-weighting function, and then describe
how it can be trained with an exact pairwise matching objective.

The internal word re-weighting function takes a questionq that is
a word sequence [q1, ...,qn] as input, and outputs a weight for each
word, denoted as f int(qi |q). As shown in the left part of Figure 2, the
question words are mapped to word embeddings and then encoded
with a standard bidirectional recurrent neural network (Bi-RNN)
with Gated Recurrent Units (GRU) [11] to aggregate sentence-level
context information. Specifically, the i-th time step operation of a

forward GRU cell parameterized by { ®Wr ,
®br , ®Wu ,

®bu , ®W , ®b}is:

®r=σ (®Wr [e(qi), ®hi−1]+ ®br) ; ®u=σ (®Wu [e(qi), ®hi−1]+ ®bu)

®̃
hi=ϕ(®W [e(qi), ®r⊙®hi−1]+®b) ; ®hi=®u⊙®hi−1+(1−®u)⊙

®̃
hi

(1)

Here [·, ·] represents vector concatenation, e(qi) is the looked-up
word embedding of word qi , σ and ϕ represent sigmoid and tanh

activation functions respectively, and ⊙ is element-wise product. A
backward GRU cell is defined symmetrically to encode the question
from the last word to the first, with a different set of parameters

{ ®W r ,
®br , ®W u ,

®bu , ®W , ®b}. The forward and backward GRU hidden

states are concatenated at each position to be the output of the Bi-

RNN encoder, i.e., o
q
i = [®hi , ®hi] for qi . Next, the Bi-RNN output at

each step is passed through a fully connected feedforward network
with a sigmoid output layer, followed by a normalization step.

si = σ (W2 σ (W1o
q
i + b1) + b2) ; f int(qi |q) = si/

n∑

k=1

sk (2)

Exact pairwisematching.We define the exact pairwise matching
(EPM) score for a <q, a> pair as a weighted sum of all the overlapped
words (corresponding to the black squares of the exact pairwise
matching module in Figure 2):

sEPM(q,a) =

n∑

i=1

f int(qi |q) I(qi ∈ a) (3)

Here I(qi ∈ a) is an indicator function that returns 1 if qi appears
in a and 0 otherwise.

The objective of exact pairwise matching is to assign higher
scores to correct answers than incorrect ones, and therefore guides
f int to put more weights on words that occur in the correct answers
but not in other answer candidates. Specifically, we use a standard
cross-entropy loss function, minimizing which encourages increas-
ing sEPM of the correct answer a+ compared with a set of randomly
sampled non-answers A−:

LEPM
= − log

exp(sEPM(q,a+))∑
a∈{a+ }∪A− exp(sEPM(q,a))

(4)

Once the internal word re-weighting function f int is learned,
we can directly combine the predicted word weights of a question
with an off-the-shelf tf-idf based IR [22], so that the importance of
a word is measured by both its corpus-level statistical importance
and the context-aware semantic importance. Specifically, the tf-idf
weight of each question word in an answer candidate is multiplied
with its f int score, before they are summed up as the final score
of the answer candidate. Despite being simple, as experiments will
show, adopting this re-weighting (RW) strategy helps retrieve better
results, which also outperforms some existing baselines.

4 EXTERNALWORD ASSOCIATION

It is common that a question word semantically aligns with different
words in a correct answer, e.g., "weight" in q with "lb" or "weighs"
in a in Figure 2. Unfortunately, exact pairwise matching does not
exploit such connections, and is therefore incapable of solving the
lexical gap problem. This motivates us to design the soft pairwise
matching objective to further explore the associations between a
question word and other words that are outside the question but
likely to appear in correct answers. At the end of this section, we
discuss three different strategies that leverage the word associations
to expand a question at retrieval time.

Soft pairwise matching. Analogous to the previous section, we
define a soft pairwise matching (SPM) score, sSPM(q,a), based on
word associations from both the question side and the answer
side. Recall that in Equation 1, the question has already been en-
coded into [o

q
1 ,o

q
2 , ...,o

q
n]. During training, we use the same Bi-

RNN (with shared parameters) for questions to encode an answer
(a = [a1, ...,am]) as [oa1 , ...,o

a
m]. Afterwards, we calculate the exter-

nal word association score f ext(qi ,aj |q,a) for every word pair <qi ,
aj> as the cosine similarity of their corresponding Bi-RNN outputs,

Algorithm 1: General Question Expansion

1 Result: Question expansion words and weights

2 Input: internal word weights f int(qi |q); vocabulary V ;

3 expansion similarity function p(qi , w);

4 hyper-parameters: integer N ; float δ

5 for qi in question q = [q1, ..., qn] do

6 p(qi , qi) = 0

7 /* Select N words with highest expansion similarities: */

8 {wi,1, ..., wi,N } = top_k([p(qi , w0), ..., p(qi , w |V |)], N)

9 /* δ controls the contribution of expansion terms */

10 si, j = f int(qi |q) p(qi , w j) δ, j = 1, ..., N

end

11 Sum si, j that corresponds to the same word;

12 return distinct wi, j with corresponding aggregated si, j

and aggregate them into the overall soft pairwise matching score
sSPM(q,a) as follows:

f ext(qi ,aj |q,a) =
(o
q
i)
T · oaj

|o
q
i | |oaj |

(5)

sSPM(q,a) =

n∑

i=1

f int(qi |q) max
1≤j≤m

f ext(qi ,aj |q,a) (6)

Here f int(qi |q) is the internal word weight from Equation 2, rep-
resenting the relative importance of the i-th word in the question.
The intuition behind this SPM function is that an answer should
achieve a high score if for each important word of the question,
at least one word in the answer matches well with it. We also em-
pirically test for each question word qi , summing f ext(qi ,aj |q,a)

of all the answer words aj instead of using max pooling, which
leads to similar results but takes longer time to train. Same as in
the previous section, the soft pairwise matching function can also
be trained using negatively sampled QA pairs:

LSPM
= − log

exp(sSPM(q,a+))∑
a∈{a+ }∪A− exp(sSPM(q,a))

(7)

Optimizing LSPM alone can affect both internal word re-weighting
(f int) and external word association (f ext) modules through back-
propagation, but the effect on the former can be distant and indirect.
Therefore, we propose to jointly optimize both objectives:

min
Θ

(LEPM
+ LSPM) (8)

Here, Θ represents all parameters including word embedding vec-
tors, those in Bi-RNN, and {W1,b1,W2,b2}.

Question expansion based on external word associations. Al-
though directly ranking answer candidates through soft pairwise
matching seems applicable, it requires encoding all the review sen-
tences with Bi-RNN at testing time, which is computationally expen-
sive for PQA. We propose to use easy-to-compute word similarity
functions to transform the neural external word associations from
the training phase (Eq. 6) to a small set of expanded keywords for a
question, which promotes interpretability as it is easier for humans
to check expansion words than pairwise word associations and can
also be used to enhance the performance of keyword-based IR.

There has been a broad spectrum of works on question/query ex-
pansion (QE) in the past for retrieving web pages [46], emails [23],
answers [38] and so on. However, many existing QE techniques
are not directly applicable in this PQA scenario (e.g., those trained

with click-through data). The most related QE techniques to ours
are those using word embeddings [12, 24, 49]. The difference of our
QE methods is that we jointly consider internal word weights in
training word associations (f int in Eq.6), and find external relevant
words not only at the word embedding level, but also at higher
levels projected by the trained neural architecture. Algorithm 1
outlines a general query expansion scheme based on which we de-
veloped three intuitive variants (QE1/2/3) using different expansion
similarity functions (p /p′/p′′). Given an expansion similarity func-
tion, it finds N most similar words for each question word (line 8),
and their weights are the product of the internal word weights f int,
the expansion similarities p(qi ,w) and a hyper-parameter δ (line 9).
Duplicated expansion words are aggregated by summing up their
individual weights (line 11). The final output is a set of weighted ex-
ternal words, which can be combined with the re-weighted internal
words and then input together to the off-the-shelf keyword-based
IR method as discussed earlier.

QE1: Word embedding similarity. This is a basic expansion sim-
ilarity function that directly leverages trained word embeddings
[12]. It is defined as the cosine similarity between the word em-
beddings of a question word qi and an arbitrary wordw from the
vocabulary:

p(qi ,w) =
e(w)T · e(qi)

|e(w)| |e(qi)|
(9)

Word embeddings in our model are initialized with pre-trained
results [33] in the general domain, but further trained to be product
domain specific [12] and can be more suitable for query expansion
in our settings.

QE2: Higher-level word similarity. During training, the raw
word embeddings of a sentence are further encoded by the Bi-RNN,
which outputs higher-level representations at each step. We hypoth-
esize that even without context (i.e., surrounding words), such low
to high level transformations can help capture word associations
more effectively. Therefore, we propose to leverage the learned pa-
rameters within the GRU cell. Specifically, we concatenate the word
embedding e(qi) (same for e(w)) with zero vectors in both forward
and backward directions, and project them by part of the GRU pa-
rameters. The projected vectors are concatenated into higher-level
representations e ′(qi) and e ′(w) and measured by cosine similarity:

e ′(qi) = [ϕ(®W [e(qi), 0] + ®b), ϕ(®W [e(qi), 0] + ®b)]

e ′(w) = [ϕ(®W [e(w), 0] + ®b), ϕ(®W [e(w), 0] + ®b)]

p′(qi ,w) =
e ′(w)T · e ′(qi)

|e ′(w)| |e ′(qi)|

(10)

QE3: Context-aware similarity. We further propose a question-
context-aware QE strategy, which considers the entire question
sentence at testing time and dynamically calculates expansion word
similarities based on its Bi-RNN encodings (note for computational
efficiency, there is no context considered for the expansion word
side). Formally, with o

q
i being the Bi-RNN output corresponding to

the i-th question word, and e ′(w) the same as in Equation 10, the
new expansion similarity is defined as:

p′′(qi ,w) =
e ′(w)T · o

q
i

|e ′(w)| |o
q
i |

(11)

Comparing the three variants, QE1 and QE2 are off-line strate-
gies meaning that the expansion similarity between any two words
in the vocabulary can be pre-calculated, stored in a table, and ready
to look up at testing time. QE2 is slightly more complex than QE1
as it requires to project word embeddings. They both enjoy a higher
computational efficiency than QE3, which is an online strategy that
needs to dynamically compute the expansion similarities based on
the context of a specific question. However, QE3 is closer to how the
external word association score f ext is optimized during training,
and can potentially achieve the best performance.

5 EXPERIMENTS

Due to the lack of labeled review sentences (being relevant/irrelevant
to a question), previous works [30, 43] adopted a synthetic eval-
uation setting using large-scale historical QA pairs. Specifically,
answers to all questions are gathered as an entire answer candidate
pool for retrieval. For each question, its paired answer given by
a human expert (the top rated one if there are many), is treated
as correct whereas all other answer candidates as incorrect. The
candidate pools for training, dev and testing sets are separated.
In addition to this synthetic setting, we also experiment under a
realistic scenario where we retrieve review sentences to answer
questions, and ask human annotators to evaluate their relevance.

5.1 Experimental Setup

Datasets. We use the Amazon QA [30] and review datasets [29]
from 5 different departments.We pre-process these raw data slightly
differently from [30] and the statistics are summarized in Table 1.
First, we do not classify a question as yes-no or open-ended type.
As emphasized in [30], even for yes-no questions, it is critical to
find relevant review sentences as supporting evidence. Therefore,
we directly treat PQA as a review sentence selection task. Second,
we filter out QA pairs whose answers contain less than two words
other than stop words or "yes"/"no", because they contain little
useful information for either training or testing. The last column of
Table 1 shows that after filtering, we still keep 80%∼97% of all the
questions in the raw datasets, much higher than the 44% classified
as open-ended in [30], additionally showing that treating PQA as a
retrieval problem has a broader coverage. The datasets are randomly
divided into train, dev and test set using 7: 1: 2 ratio. The same
pre-processed data splits are used for all methods.

EvaluationMeasure. For synthetic evaluation, we follow previous
work [30, 43] to use average Area Under the Curve (AUC):

AUC =
1

|Q|

∑

q∈Q

1

|A| − 1

∑

a−∈A−{a+ }

I(score(q,a+) > score(q,a−)) ,

where Q represents all the questions in dev or test set, andA is the
corresponding set of all the answers. I(score(q,a+) > score(q,a−))
is a binary indicator function that returns 1 when the paired an-
swer is ranker higher than the non-answer1. In the real user study
experiment, where humans are asked to annotate the relevance

1Same as previous work [30, 43], we approximately assume only the paired answer is
correct to a question. AUC essentially measures the percentage of non-paired answers
getting lower scores than the paired one, and is less sensitive to the dataset noise
compared with other ranking metrics like Mean Reciprocal Rank (MRR) or nDCG,
especially when the number of correct answers to a question is significantly smaller
than the answer pool size |A |.

Dept.
vocab
size

of QA pairs subjective
Qs (%)Train Dev Test

Appliances 31,694 6,156 879 1,760 97.17
Baby 62,267 14,901 2,128 4,259 73.58
Patio 89,449 37,427 5,346 10,695 89.72
Tools 116,635 62,242 8,891 17,785 87.96
Electronics 100,000 179,858 25,694 51,389 81.76

Table 1: Dataset statistics.

of each retrieved review sentence, we use normalized discounted
cumulative gain (nDCG), a popular ranking metric for IR [21].

Baselinemethods.The baselinemethods can be divided into those
without and with explicit question expansion. Those without ex-
plicit QE are: (1)Moqa and BM25+ [30]: They both use the same
mixture-of-experts framework to jointly optimize answer-review
and question-review relevance functions. Moqa models the rele-
vance functions as approximated bilinear models to match sentence
pairs in latent vector spaces, while BM25+ models them as Okapi
BM25+ ranking function with a few learnable parameters [27]. We
used their published code for both Moqa and BM25+ on our pre-
processed datasets. (3) OQ and OQ - stop: Two naive baselines
using the same tf-idf IR module as in our framework, one directly
using the original question to query and the other with stopwords

removed from the question using SpaCy. (4)RW: Our internal word
re-weighting method as described in Section 3.

We select the following baselineswith question expansion: (5)PRF-
TFIDF: A classic QE method [6] that expands a query using the
top-K tf-idf words from the top-N pseudo-relevant sentences re-
turned by IR. (6) PRF-RM: A popular QE strategy based on rele-
vance model [25]. Specifically, given original query q0, the proba-
bility of selecting a term t in the reformulated query is: P(t |q0) =
(1−λ)P ′(t |q0)+λ

∑
d ∈D0

1/|D0 |P(t |d)P(q0 |d), whereD0 is the set of
top-N pseudo-relevant documents returned by q0 and λ is set at 0.5
following previous work. P(t |q0) is defined as the normalized tf-idf

weight of t in q0 and P(t |d) the add-one smoothed language model:
P(t |d) ∝ tf(t ,d) + 1. We select top-K terms with highest probability
to expand query q0. (7)GloVe andGloVe

tgt: Following state-of-the-
art word embedding based QE works [12, 49], question words are
expanded through similarities (equivalent to p(q,wi) in Equation 9)
measured by two types of word embeddings: (i) those pre-trained by
GloVe [33] and (ii) those fine-tuned on our target (tgt) domain cor-
pus with the relevance-based objective designed by [49] for search
tasks. Specifically, the QE process is equivalent to Algorithm 1 but
without considering learned internal word weights (i.e., fix f int to
1 in line 10). (8) GloVe+RW and GloVetgt+RW: Same as above but
further take into account our learnt internal word weights (i.e., f int

given by Riker in line 10). (9) Riker+QE1/QE2/QE3: After Riker
is trained, we test the three question expansion variants described
in Section 4 respectively.

5.2 Results

Comparing Riker with baselines without QE. The upper half
of Table 2 compares all the methods without explicit question ex-
pansion. We observe that our internal word re-weighting (RW)
strategy outperforms the search baselines OQ and OQ - stop, show-
ing the benefit of dynamically predicting word weights over naive
strategies using equal weights or removing stop words (which may

Appliances Baby Patio Tools Electronics
Dev Test Dev Test Dev Test Dev Test Dev Test

BM25+ 56.577 56.746 65.799 65.385 65.349 64.497 64.280 65.219 63.913 63.818
OQ 78.120 79.039 87.078 87.600 85.020 84.510 86.131 86.049 86.356 86.408
OQ - Stop 77.448 78.319 86.002 85.963 83.559 83.311 84.873 84.888 84.537 84.683
Moqa 76.367 76.314 83.836 83.349 85.292 85.011 86.673 86.421 87.836 87.824
RW 78.332 79.653 87.743 89.043 85.204 84.792 86.524 86.436 87.063 87.082
PRF-TFIDF 74.382 75.061 84.802 85.102 82.205 82.884 83.534 83.723 82.847 83.492
PRF-RM 78.446 79.801 87.931 88.235 85.469 85.113 86.766 86.688 86.058 86.083
GloVe 65.410 66.918 74.775 74.456 73.760 73.440 77.785 77.676 78.072 78.003
GloVetgt 76.146 77.293 85.777 85.517 82.748 82.590 84.613 84.442 83.126 83.054
GloVe+RW 77.071 78.628 88.600 88.307 86.147 85.599 87.261 87.156 86.692 86.749
GloVetgt+RW 79.959 80.981 90.298 90.053 87.884 87.856 89.060 88.918 88.151 88.126
Riker+QE1 78.733 79.920 89.486 89.170 86.744 86.384 86.436 87.836 87.380 87.436
Riker+QE2 80.405 81.427 91.527 91.367 89.427 89.681 90.394 90.175 89.493 89.537
Riker+QE3 84.415 84.629 92.262 92.086 91.365 91.368 91.969 91.643 91.095 91.010

Table 2: PQA results (AUC) under the synthetic setting. The upper(lower) half shows methods without(with) explicit QE.

Riker+QE2/QE3 achieve the best overall performance, showing that it mines effective keyword representations.

fail because words such as "without", "last", "bottom" that are often
treated as stop words are actually important for product-related
questions). RW also achieves comparable or better performances
to the end2end Moqa baseline especially when the dataset size
gets smaller, indicating that the task to predict word importance
is less sensitive to dataset sizes, and is especially suitable for new
domains without much available data. Another observation is that
with our pre-processing steps, using the original question (OQ)2 to
search has already achieved performances close to Moqa, showing
that keyword-based search can be decently effective in product
domain. Next, we will discuss that RW also plays a key role for QE
to succeed.

Comparing Riker with baselines with QE. The lower half of
Table 2 compares all methods with explicit question expansion.
Our proposed Riker+QE2/QE3 variants outperform all baselines.
GloVe(tgt)+RW using word embeddings fine-tuned for retrieval pur-
pose in the target domain corpus is the strongest baseline, but is
less effective than some Riker variants because we jointly trained
internal word re-weighting and external word association in a uni-
fied framework. Notice that word embedding based QE baselines
perform poorly if not combined with RW (GloVe(tgt)), again show-
ing the importance of internal word re-weighting for PQA because
treating question words equally when incorporating external terms
will introduce much noise. The classic QE methods PRF-TFIDF and
PRF-RM generally works not as well as embedding based ones be-
cause the representation power of word embedding can be more
expressive than corpus level statistics.

Comparing Riker variants. Riker+QE2 with the novel use of
GRU cell parameters outperforms Riker+QE1, demonstrating that
the trained neural layer can project word embeddings into more ef-
fective higher-level semantic representations. As expected,Riker+QE3,
which takes the context information of an entire question into ac-
count, performs the best, but it comes at a cost of computing vector
similarities at testing time as discussed earlier. In practice, one may
consider the trade-off between efficiency and effectiveness when
choosing from QE2 and QE3.

2This baseline was not tested in [30].

Objective
dev AUC test AUC

RW QE3 RW QE3

EPM 87.434 86.563 88.117 86.632
SPM 87.104 91.646 87.589 91.426
EPM+SPM 87.743 92.626 88.041 92.086

Table 3: Training objective ablation.

Ablation study of training objectives. Table 3 shows the effect
of our proposed training objectives. Due to space limit, we only
show the Baby dataset but the results for others are similar. Train-
ing using only the EPM objective gets comparable performance
as using both objectives for our RW method, but makes QE3 in-
effective because without SPM, the Bi-RNN does not learn how
to associate words at the high level. The QE3 strategy works the
best when the EPM (Eq. 4) and SPM (Eq. 7) objective are optimized
simultaneously, showing that with explicit supervision for internal
word re-weighting using EPM, Riker can better find the important
expansion words to be associated with a question.

Parameter sensitivity. Figure 3 shows that Riker+QE3, our best
variant, is insensitive to QE hyper-parameters N and δ on Baby
dataset. Similar results are observed on the other datasets.Riker+QE3
significantly outperforms the baseline without QE (i.e., RW in Table
2), whose AUC for the dev/test set is 87.743/89.043, far below the cur-
rent coordinate ranges in Figure 3. Results on dev and test datasets
are similar, with AUCs reaching the best when the expansion scale
δ = 0.15. The performance tends to get better as N increases, but
involving more and more external words will make keyword-based
IR less understandable, and hence we balance effectiveness and
interpretability by upper-bounding N at 70.

Real User Evaluation So far, we have been experimenting under
the synthetic setting, where Riker performs the best at selecting
answer sentences. However, one might suspect such performance
gain could come from that Riker is trained to optimize answer
ranking, whereas the existing state-of-the-art PQA method Moqa
[30] jointly models the relevance between questions, answers and
reviews in a comprehensive probabilistic model.3

3It is fair to compare Riker with other baselines such as GloVetgt(+RW) under the
synthetic evaluation, since they all directly match QA pairs, not through reviews.

Question ATTN+QE3 Riker+QE3

"can i use this for

outdoors? thank..."

::::::

sensitive outside weather
aviation camping d100 cop
extensively sonar 60csx
eave coordinate 1980 bel-
tronics fahrenheit resonate
ra dingy enemy 9500ix

:::::

outside outdoor backyard
camping weather windy
unprotected rain indoor
rv camper atmosphere
weatherproof hiking
rooftop wherever desert

"how large be

the base of the

light stand? i need

to know if these

stand can fit in a

smallish space."

::::

ceiling riser plywood
sanus symmetrical perpen-
dicular shelf finesse firing
endure attached peerless
50-inch cushioning sleeker
stretchy 15inch sail

:::::

folding standing spaced
headboard collapse stool
heel pray centimeter small
raise hang 161 hanging
chair bookcase strong
ledge pedestal liking

"how do you turn

the alarm off?"

::::::

switched hardwired good-
bye elevator reseat instan-
taneously tutorial unin-
terrupted shutdown shaft
hitch shutoff swiping unin-
stalled direction quadrant

:::

alert disarm deactivate
beeping buzzer count-
down unplug regulate
annoying beep inactive
disable checkbox snooze
timer shutoff inactivity

Table 5: Qualitative comparison of word expansion with

QE3. In general, the top few words expanded by Riker+QE3

(e.g., "outside", "folding", "alert") is more relevant than those

using DNN attentions (e.g., "sensitive", "ceiling", "switched").

evaluation methodology suggested by [13] for interpretable machine
learning, which advocates using the performance improvement of
some interpretable model (i.e., the tf-idf based search in our setting)
as proxy to evaluate the explanation/interpretation quality. We pre-
fer this evaluation method to user studies (e.g., hiring humans to
score the expanded keywords such as those in Table 5) in that it is
more objective, much cheaper and easier to conduct. For example,
it is not easy for humans to compare the two columns in Table 5 at
large scale, especially when both contain some relevant keywords.

Table 6 summarizes the comparison between Riker and ATTN
with both QE2 and QE3. We also list the performance of end2end
DNN at the bottom despite its known lack of interpretability. As
we can see, all methods outperform the RW baseline, indicating
that the learned pairwise attentions from DNN indeed associate
interpretable expansion words. Consistent with Riker’s results,
ATTN+QE2 is less effective than ATTN+QE3. Importantly, both
ATTN+QE2 and ATTN+QE3 are inferior to their counterparts using
Riker, showing that our methods can generate more interpretable
expansion words. The reason is that the attention within DNN is
trained only as intermediate weights used for aggregating latent
word representations (Eq. 13), while our training objective directly
optimize the score function sSPM, which is the sum of pairwise
word associations (Eq. 6). The end2endDNNmodel achieves the best
performance when the dataset size is large, but its interpretability is
worse than ATTN+QE2/QE3 as the last few steps (Eq. 14 and 15) are
non-linear and the low-dimensional dense feature vectors still need
further interpretation [14, 20]. Our framework can be viewed as a

model that constrains the question and review sentences to be matched

in the lexical space with sparse bag-of-word features, and is optimized

to strike a good balance between effectiveness and interpretability.

7 RELATED WORK

(Product) answer sentence selection. Product QA on large-scale
Amazon datasets is first studied in [30], which proposes a mixture-
of-experts framework to jointly model review-answer and review-
question relevance with latent vector representations. Wan et al.

Appl. Baby Patio Tools Elec.

RW 79.653 89.043 84.792 86.436 87.082
Riker+QE2 81.427 91.367 89.681 90.175 89.537
ATTN+QE2 78.405 89.434 86.965 88.749 88.112
Riker+QE3 84.629 92.086 91.368 91.643 91.010
ATTN+QE3 80.682 90.070 87.729 89.428 88.587

DNN (end2end) 82.115 90.318 91.756 94.158 95.927

Table 6: Quantitative comparison of Riker, end2end DNN

and using its ATTeNtion for QE on test set. For methods

using keyword-based search (except end2end DNN), higher

retrieval performance (AUC) corresponds to better inter-

pretability reflected by the tf-idf proxy [13].

[43] build upon the above framework to handle the situation where
questions can have multiple answers and reviews can be subjective
by including more features (e.g., reviewer expertise and biases).
Similar to [30], our framework currently models text information
only and optimizes one correct answer, but can be extended to the
scenario in [43] by averaging the scores of all correct answers and
incorporating non-text features in our objective functions. Yu et al.
[48] focus on "yes-no" questions only, and shows that learning la-
tent product aspects and aspect-specific embeddings can help make
binary predictions. Outside the product domain, answer sentence
selection (e.g., [41, 42]) has been a popular topic in general. Our
internal word re-weighting function and soft pairwise matching
module are related to attention mechanism (e.g., [50]) and pair-
wise semantic interactions (e.g., [31, 41]), which are two popular
techniques applied in general answer sentence selection models,
but differ from them in the sense that we use the explicit weights
(f int and f ext) to directly rank answers, while their techniques are
integrated in latent vector representations in a less interpretable
end2end fashion.

Query expansion. Query expansion aims to automatically ex-
pand a query with additional terms to get better search results, and
has been a longstanding topic [6, 23, 25, 38, 46]. Question expan-
sion strategies in our work (especially QE1) are most related to
recent word embedding based techniques such as [24]. Diaz et al.
[12] further show that fine-tuning word embeddings on domain
specific corpus can help get better performance, but it requires
re-training word embeddings for every query. Zamani et al. [49]
propose learning offline word embeddings based on "relevance"
instead of "proximity". In this work, we do not focus on developing
novel QE strategies, and instead apply existing or most intuitive
ones to employ the learned word weights and associations by Riker
and test its effectiveness. It is interesting for future work to see
whether QE techniques learned from other data sources may be
combined with Riker to achieve overall better performances.

Interpretablemachine learning. Interpretable machine learning
receives a lot of attention recently in a broad range of fields [16ś
18]. Some works focus on understanding general machine learning
algorithms including deep neural networks, e.g., through proxy
models [37], salient mapping [3], interpreting latent semantic rep-
resentations [5], or adversarial networks [10]. On the application
level, people have explored making systems more interpretable to
users including recommendation systems [2], visual QA [32], mul-
tiple choice answers [40] and so on. To the best of our knowledge,

we make the first effort towards interpretable PQA and advocate
mining keyword, rather than vector, representations of a question
to boost the effectiveness of keyword-bases search.

8 CONCLUSION

This work proposes a new hybrid framework combining the advan-
tages of deep models and keyword-based search towards effective
yet interpretable PQA. We employ an easily interpretable tf-idf

based IR module to rank answers, but in order to address the lexical
gap problem, we propose Riker to mine rich keyword represen-
tations for customer questions, consisting of re-weighted internal
words and associated external words. Experimental results show
that the mined keyword representations can help improve PQA
performance substantially over existing PQA methods, while at
the same time preserve good interpretability of the keyword-based
search paradigm.

ACKNOWLEDGMENTS

This research was sponsored in part by the Army Research Of-
fice under cooperative agreements W911NF-17-1-0412, NSF Grant
IIS1815674, and Ohio Supercomputer Center [8]. The views and con-
clusions contained herein are those of the authors and should not be
interpreted as representing the official policies, either expressed or
implied, of the Army Research Office or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notice
herein.

REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, et al. 2016. Tensorflow:

a system for large-scale machine learning. In OSDI, Vol. 16. 265ś283.
[2] Q. Ai, V. Azizi, X. Chen, and Y. Zhang. 2018. Learning Heterogeneous Knowl-

edge Base Embeddings for Explainable Recommendation. arXiv preprint
arXiv:1805.03352 (2018).

[3] S. Bach, A. Binder, G. Montavon, F. Klauschen, K. R. Müller, and W. Samek.
2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PloS one 10, 7 (2015), e0130140.

[4] R. Baeza-Yates, B. Ribeiro-Neto, et al. 1999. Modern information retrieval. Vol. 463.
[5] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. 2017. Network dissec-

tion: Quantifying interpretability of deep visual representations. arXiv preprint
arXiv:1704.05796 (2017).

[6] C. Buckley, G. Salton, J. Allan, and A. Singhal. 1995. Automatic query expansion
using SMART: TREC 3. NIST special publication sp (1995), 69ś69.

[7] D. Carmel, L. Lewin-Eytan, and Y. Maarek. 2018. Product Question Answering
Using Customer Generated Content-Research Challenges. In SIGIR. 1349ś1350.

[8] Ohio Supercomputer Center. 1987. Ohio Supercomputer Center. http://osc.edu/
ark:/19495/f5s1ph73

[9] Q. Chen, X. Zhu, Z. Ling, S. Wei, H. Jiang, and D. Inkpen. 2016. Enhanced lstm
for natural language inference. arXiv preprint arXiv:1609.06038 (2016).

[10] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. 2016.
Infogan: Interpretable representation learning by information maximizing gener-
ative adversarial nets. In NIPS. 2172ś2180.

[11] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. 2014. Learning phrase representations using RNN encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014).

[12] F. Diaz, B. Mitra, and N. Craswell. 2016. Query expansion with locally-trained
word embeddings. arXiv preprint arXiv:1605.07891 (2016).

[13] F. Doshi-Velez and B. Kim. 2017. Towards a rigorous science of interpretable
machine learning. arXiv preprint arXiv:1702.08608 (2017).

[14] M. Du, N. Liu, and X. Hu. 2018. Techniques for interpretable machine learning.
arXiv preprint arXiv:1808.00033 (2018).

[15] J. L. Fleiss and J. Cohen. 1973. The equivalence of weighted kappa and the
intraclass correlation coefficient as measures of reliability. Educational and
psychological measurement 33, 3 (1973), 613ś619.

[16] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal. 2018. Ex-
plaining Explanations: An Approach to Evaluating Interpretability of Machine
Learning. arXiv preprint arXiv:1806.00069 (2018).

[17] B. Goodman and S. Flaxman. 2016. European Union regulations on algorithmic
decision-making and a" right to explanation". arXiv preprint arXiv:1606.08813
(2016).

[18] D. Gunning. 2017. Explainable artificial intelligence (xai). Defense Advanced
Research Projects Agency (DARPA), nd Web (2017).

[19] Matthew H. and Ines M. 2017. spaCy 2: Natural language understanding with
Bloom embeddings, convolutional neural networks and incremental parsing. To
appear (2017).

[20] S. Jain and B. C. Wallace. 2019. Attention is not Explanation. arXiv preprint
arXiv:1902.10186 (2019).

[21] K. Järvelin and J. Kekäläinen. 2002. Cumulated gain-based evaluation of IR
techniques. ACM TOIS 20, 4 (2002), 422ś446.

[22] K S. Jones, S. Walker, and S. E. Robertson. 2000. A probabilistic model of infor-
mation retrieval: development and comparative experiments: Part 2. Information
processing & management 36, 6 (2000), 809ś840.

[23] S. Kuzi, D. Carmel, A. Libov, and A. Raviv. 2017. Query Expansion for Email
Search. In SIGIR. 849ś852.

[24] S. Kuzi, A. Shtok, and O. Kurland. 2016. Query expansion using word embeddings.
In CIKM. 1929ś1932.

[25] V. Lavrenko and W. B. Croft. 2001. Relevance Based Language Models. In SIGIR.
[26] Z. C. Lipton. 2016. The mythos of model interpretability. arXiv preprint

arXiv:1606.03490 (2016).
[27] Y. Lv and C. Zhai. 2011. Lower-bounding term frequency normalization. In CIKM.

7ś16.
[28] G. Marcus. 2018. Deep learning: A critical appraisal. arXiv preprint

arXiv:1801.00631 (2018).
[29] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel. 2015. Image-based

recommendations on styles and substitutes. In SIGIR. 43ś52.
[30] J. McAuley and A. Yang. 2016. Addressing complex and subjective product-related

queries with customer reviews. In WWW. 625ś635.
[31] A. P. Parikh, O. Täckström, D. Das, and J. Uszkoreit. 2016. A decomposable

attention model for natural language inference. arXiv preprint arXiv:1606.01933
(2016).

[32] D. H. Park, L. A. Hendricks, Z. Akata, A. Rohrbach, B. Schiele, T. Darrell, and M.
Rohrbach. 2018. Multimodal Explanations: Justifying Decisions and Pointing to
the Evidence. In CVPR.

[33] J. Pennington, R. Socher, and C. Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. 1532ś1543.

[34] J. Pérez-Iglesias, J. Pérez-Agüera, V. Fresno, and Y. Z. Feinstein. 2009. Integrating
the probabilistic models BM25/BM25F into Lucene. arXiv preprint arXiv:0911.5046
(2009).

[35] R. Pryzant, S. Basu, and K. Sone. 2018. Interpretable Neural Architectures for
Attributing an Ad’s Performance to its Writing Style. In EMNLP Workshop Black-
boxNLP. 125ś135.

[36] R. Řehůřek and P. Sojka. 2010. Software Framework for Topic Modelling with
Large Corpora. In LRECWorkshop on New Challenges for NLP Frameworks. 45ś50.

[37] M. T. Ribeiro, S. Singh, and C. Guestrin. 2016. Why should i trust you?: Explaining
the predictions of any classifier. In KDD. 1135ś1144.

[38] S. Riezler, A. Vasserman, I. Tsochantaridis, V. Mittal, and Y. Liu. 2007. Statistical
machine translation for query expansion in answer retrieval. In ACL. 464ś471.

[39] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra.
2017. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based
Localization.. In ICCV. 618ś626.

[40] R. Sharp, M. Surdeanu, P. Jansen, M. A. Valenzuela-Escárcega, P. Clark, and M.
Hammond. 2017. Tell me why: Using question answering as distant supervision
for answer justification. In CoNLL. 69ś79.

[41] G. Shen, Y. Yang, and Z. H. Deng. 2017. Inter-Weighted Alignment Network for
Sentence Pair Modeling. In EMNLP. 1190ś1200.

[42] Y. Tay, L. A. Tuan, and S. C. Hui. 2018. Multi-Cast Attention Networks for
Retrieval-based Question Answering and Response Prediction. arXiv preprint
arXiv:1806.00778 (2018).

[43] M. Wan and J. McAuley. 2016. Modeling ambiguity, subjectivity, and diverging
viewpoints in opinion question answering systems. In ICDM. 489ś498.

[44] F. Wang and C. Rudin. 2015. Falling rule lists. In AISTATS.
[45] M. Wang, N. A. Smith, and T. Mitamura. 2007. What is the Jeopardy model? A

quasi-synchronous grammar for QA. In EMNLP-CoNLL.
[46] J. Xu and W. B. Croft. 1996. Query expansion using local and global document

analysis. In SIGIR. 4ś11.
[47] Y. Yang, W. T. Yih, and C. Meek. 2015. Wikiqa: A challenge dataset for open-

domain question answering. In EMNLP. 2013ś2018.
[48] Q. Yu andW. Lam. 2018. Aware Answer Prediction for Product-Related Questions

Incorporating Aspects. In WSDM. 691ś699.
[49] H. Zamani and W. B. Croft. 2017. Relevance-based Word Embedding. In SIGIR.

505ś514.
[50] X. Zhang, S. Li, L. Sha, and H. Wang. 2017. Attentive Interactive Neural Networks

for Answer Selection in Community Question Answering.. In AAAI. 3525ś3531.
[51] J. Zhao, Y. Su, Z. Guan, and H. Sun. 2017. An End-to-End Deep Framework for

Answer Triggering with a Novel Group-Level Objective. In EMNLP.

A IMPLEMENTATION DETAILS

Some extra implementation details of this work are clarified here.
For data pre-processing, we use SpaCy [19] to lemmatize and lower-
case words. The vocabulary (Table 1) is constructed by including
all words from the training set that either appear in the GloVe[33]
pre-trained vocabulary or appear more than 5 times, except for the
Electronics department, where for efficiency reasons we further
truncate the vocabulary size to 100K from more than 300K words
obtained by the above preprocessing method.

For the question expansion baselines PRF-TFIDF and PRF-RM
(Table 2), we grid search the pseudo-relevant sentence number N
from [10, 20, ..., 60] and top expansion word number K from [10,
20, ..., 80]. For all other QE baselines using Algorithm 1, we grid
search N from [40, 50, 60, 70] and δ from [0.05, 0.10, 0.15, 0.20]. We
select the best combination for each dataset based on dev set. For
keeping the same level of interpretability, the expanded queries are
evaluated through the same tf-idf based IR across our experiments,
which is different from the language model based IR used in state-
of-the-art word embedding based QE works [12, 49].

In the evaluation of the end2end DNN baseline (Table 6), because
of the high computational cost to encode all answer candidates
through Bi-RNN, we approximate its AUC performance by ran-
domly sampling 1000 negative answers for each question following
the method used in [30].

We use Tensorflow [1] to implement Riker. For each training
epoch, we randomly sample 5 non-answers from the train/dev
answer pool for each QA pair. We tune the model hyper-parameters
based on the Baby domain dev set because of its moderate size for
efficiency concerns, and use them for all other domains. We use
the Adam optimizer with the learning rate set at 5e-4 and batch
size set at 64. We add L2 regularization with coefficient 1e-4. For
the keyword-based IR module, we employ an off-the-shelf inverted
index based IR tool [36] and use the standard BM25 function with
default parameters [34] to rank answers or review sentences. Source
code and data will be available at: https://github.com/jiez-osu/PQA.

