


Developing effective approaches under this setting is particularly
meaningful, as they will suggest that one can utilize less sensitive
information (i.e., co-occurrence statistics rather than raw sentences
in clinical texts) to perform the task well.

A straightforward approach to obtain synonyms is to map the
query term to a knowledge base (KB) entity and retrieve its syn-
onyms or aliases stored in the KBs. However, it is widely known
that KBs are incomplete and outdated, and their coverage of syn-
onyms can be very limited [38]. In addition, the informal writing
of clinical texts often contain variants of surface forms, layman
terms, frequently misspelling words, and locally practiced abbre-
viations, which should be mined to enrich synonyms in KBs. Re-
cent works [30, 37, 42] have been focused on automatic synonym
discovery from massive text corpora such as Wikipedia articles
and PubMed paper abstracts. When predicting if two terms are
synonyms or not, such approaches usually leverage the original
sentences (a.k.a. local contexts) mentioning them, and hence do not
apply or work well under our privacy-aware data setting where
such sentences are unavailable.

Despite the lack of local contexts, we observe two important
types of information carried in the privacy-aware data - surface
form information and global context information (i.e., co-occurrence
statistics). In this work, we aim to effectively leverage these two
types of information for synonym discovery, as shown in Figure 1.

Some recent works [24, 25] model the similarity between terms
in the character-level. For example, Mueller and Thyagarajan [24]
learn the similarity between two sequences of characters, which
can be applied for discovering synonyms that look alike such as "vit
c" and "vitamin c". However, we observe two common phenomena
that such approaches cannot address well and would induce false
positive and false negative predictions respectively: (1) Some terms
are similar in surface form but do not have the same meaning (e.g.,
"hemostatic" and "homeostasis", where the former means a process
stopping bleeding while the latter refers to a constant internal
environment in the human body); (2) Some terms have the same
meaning but are different in surface form (e.g., "ascorbic acid" and
"vitamin c" are the same medicinal product but look different).

On the other hand, given a term co-occurrence graph, various
distributional embedding methods such as [18, 28, 34] have been
proposed to learn a distributional representation (a.k.a. embedding)
for each term based on its global contexts (i.e., terms connected to
it in the co-occurrence graph). The main idea behind such methods
is that two terms should have similar embedding vectors if they
share a lot of global contexts. However, we observe that the privacy-
aware clinical data tends to be very noisy due to the original data
processing procedure3, which presents new challenges for utilizing
global contexts to model semantic similarity between terms. For
example, Finlayson et al. [8] prune the edges between two terms
co-occurring less than 100 times, which can lead to missing edges
between two related terms in the co-occurrence graph. Ta et al.
[33] remove all concepts with singleton frequency counts below
10. Hence, the noisy nature of the co-occurrence graph makes it
less accurate to embed a term based on their original contexts.
Moreover, when performing the synonym discovery task, users

3This tends to be a common issue in many scenarios as raw data has to go through
various pre-processing steps for privacy concerns.

are very likely to issue a query term that does not appear in the
given co-occurrence data. We refer to such query terms as Out-
of-Vocabulary (OOV). Unlike In-Vocabulary4 query terms, OOV
query terms do not have their global contexts readily available
in the given graph, which makes synonym discovery even more
challenging.

In this paper, to address the above challenges and effectively
utilize both the surface form and the global context information
in the privacy-aware clinical data, we propose a novel framework
named SurfCon which consists of a bi-level surface form encoding
component and a context matching component, both based on neu-
ral models. The bi-level surface form encoding component exploits
both character- and word-level information to encode a medical
term into a vector. It enables us to compute a surface score of two
terms based on their encoding vectors. As mentioned earlier, such
surface score works well for detecting synonyms that look simi-
lar in surface form. However, it tends to miss synonymous terms
that do not look alike. Therefore, we propose the context matching
component to model the semantic similarity between terms, which
plays a complementary role in synonymy discovery.

Our context matching component first utilizes the bi-level sur-
face form encoding vector for a term to predict its potential global
contexts. Using predicted contexts rather than the raw contexts in
the given graph enables us to handle OOV query terms and also
turns out to be effective for InV query terms. Then we generate a
semantic vector for each term by aggregating the semantic features
from predicted contexts using twomechanisms - static and dynamic
representation mechanism. Specifically, given term a and term b,
the dynamic mechanism aims to learn to weigh the importance of
individual terms in a’s contexts based on their semantic matching
degree with b’s contexts, while the static mechanism assigns equal
weights to all terms in one’s contexts. The former takes better ad-
vantage of individual terms within the contexts and empirically
demonstrates superior performance.

Our contributions are summarized in three folds:

• We study the task of synonym discovery under a new setting, i.e.,
on privacy-aware clinical data, where only a set of medical terms
and their co-occurrence statistics are given, and local contexts
(e.g., sentences mentioning a term in a corpus) are not available. It
is a practical setting given the wide concern about patient privacy
for access to clinical texts and also presents unique challenges to
address for effective synonym discovery.

• We propose a novel and effective framework named SurfCon

that can discover synonyms for both In-Vocabulary (InV) and
Out-of-Vocabulary (OOV) query terms. SurfCon considers two
complementary types of information based on neural models -
surface form information and global context information of a
term, where the former works well for detecting synonyms that
are similar in surface form while the latter can help better find
synonyms that do not look alike but are semantically similar.

• We conduct extensive experiments on publicly available privacy-
aware clinical data and demonstrate the effectiveness of our
framework in comparison with various baselines and our own
model variants.

4Query terms that appear in the given co-occurrence graph are referred to as In-
Vocabulary (InV).





tend to be synonymous if they are very similar in surface forms.
Such observation is intuitive but works surprisingly well in syn-
onym discovery task. Driven by this observation, we design the
bi-level surface form encoding component in a way that both of
character- and word-level information of terms are captured. Then,
a score function is defined to measure the surface form similarity
for a pair of terms based on their bi-level encoding vectors. The
bi-level encoders are able to encode surface form information of
both InV terms and OOV terms.

Specifically, as shown in Figure 2, given a query term q and
a candidate term c , we denote their character-level sequences as
xq = {xq,1, ...,xq,mq },xc = {xc,1, ...,xc,mc }, and their word-level
sequences aswq = {wq,1, ...,wq,nq },wc = {wc,1, ...,wc,nc }, where
mq ,nq ,mc ,nc are the length of the character-level sequence and
word-level sequence of the query term and the candidate term

respectively. Then we build two encoders ENCch and ENCwd to
capture the surface form information at the character- and word-
level respectively:

schq = ENCch (xq,1, ..., xq,mq ), s
wd
q = ENCwd (wq,1, ..., wq,nq )

schc = ENCch (xc,1, ..., xc,mc ), s
wd
c = ENCwd (wc,1, ..., wc,nc )

(1)

where schq , s
ch
c ∈ Rdc are the character-level embeddings for the

query and candidate terms, and swd
q , s

wd
c ∈ Rdw are the word-level

embeddings for the query and candidate terms respectively.
Note that there has been a surge of effective encoders that model

sequential information from character-level or word-level, rang-
ing from simple look-up table (e.g., character n-gram [13] and
Skip-Gram [23]) to complicated neural network architectures (e.g.,
CNN [14], LSTM [1] and Transformer [35], etc.). For simplicity,
here, we adopt simple look-up tables for both character-level em-
beddings and word-level embeddings. Instead of randomly initial-
izing them, we borrow pre-trained character n-gram embeddings
from Hashimoto et al. [13] and word embeddings from Pennington
et al. [28]. Our experiments also demonstrate that these simple en-
coders can well encode surface form information of medical terms
for synonym discovery task. We leave evaluating more complicated
encoders as our future work.

After we obtain the embeddings at both levels, we concatenate
them and apply a nonlinear function to get the surface vector s for
the query and candidate term. Let us denote such encoding process
as a function h(·) with the input as term q or c and the output as
the surface vector sq or sc :

sq = h(q) = tanh([schq , s
wd
q ]Ws + bs ),

sc = h(c) = tanh([schc , s
wd
c ]Ws + bs )

(2)

where the surface vectors sq , sc ∈ Rds , andWs ∈ R(dc+dw )×ds
,bs ∈

R
ds are weight matrix and bias for a fully-connected layer.
Next, we define the surface score for a query term q and a candi-

date term c to measure the surface form similarity based on their
encoding vectors sq and sc :

Surface Score (q, c) = fs (sq , sc ) (3)

3.2.2 ContextMatching. In order to discover synonyms that are
not similar in surface form, and also observing that two terms tend
to be synonyms if their global contexts in the co-occurrence graph
are semantically very relevant, we design the context matching

component to capture the semantic similarity of two terms by
carefully leveraging their global contexts. We first illustrate the
intuition behind this component using a toy example:

Example 1. [Toy Example for Illustration.] Assume we have

a query term "vitamin c" and a candidate term "ascorbic acid". The

former is connected with two terms "iron absorption" and "vitamin

b" in the co-occurrence graph as global contexts, while the latter has

"fatty acids" and "anemia" as global contexts.

Our context matching component essentially aims to use a term’s
contexts to represent its semantic meaning and a novel dynamic

context matching mechanism is developed to determine the impor-
tance of each individual term in one’s contexts. For example, "iron
absorption" is closely related to "anemia" since the disease "anemia"
is most likely to be caused by the iron deficiency. Based on the
observation, we aim to increase the relative importance of "iron
absorption" and "anemia" in their respective context sets when
representing the semantic meaning of "vitamin c" and "ascorbic

acid". Therefore, we develop a novel dynamic context matching
mechanism to be introduced shortly.

In order to recover global contexts for OOV terms and also
noticing the noisy nature of the co-occurrence graph mentioned
earlier, we propose an inductive context prediction module to predict
the global contexts for a term based on its surface form informa-
tion instead of relying on the raw global contexts in the given
co-occurrence graph.
Inductive Context Prediction Module. Let us first denote a gen-
eral medical term as t . For a term-term co-occurrence graph, we
treat all InV terms as possible context terms and denote them as

{uj }
|V |
j=1 where |V | is the total number of terms in the graph. The

inductive context prediction module aims to predict how likely
term uj appears in the context of t (denoted as the conditional
probability p (uj |t)). To learn a good context predictor, we utilize

all existing terms in the graph as term t , i.e., t ∈ {ui }
|V |
i=1 and the

conditional probability becomes p (uj |ui ).
Formally, the probability of observing term uj in the context of

term ui is denoted as:

p (uj |ui ) =
exp (νTuj · sui )

∑ |V |

k=1
exp (νTuk · sui )

(4)

where sui = h(ui ) and h(·) is the same encoder function defined

in section 3.2.1. νuj ∈ R
do is the context embedding vector corre-

sponding to term uj and we let do = ds . The predicted distribu-
tion p (uj |ui ) is optimized to be close to the empirical distribution
p̂ (uj |ui ) defined as:

p̂ (uj |ui ) =
wi j∑

(i,k )∈E wik
(5)

where E is the set of edges in the co-occurrence graph andwi j is the
weight between term ui and term uj . We adopt the cross entropy
loss function for optimizing:

Ln = −
∑

ui ,uj ∈V

p̂(uj |ui ) log (p(uj |ui )) (6)

When the number of terms in the graph |V | is very large, it
is computationally costly to calculate the conditional probability
p (uj |ui ), and one can utilize the negative sampling algorithm [22]





4 EXPERIMENTS

Now we evaluate our proposed framework SurfCon to show the
effectiveness of leveraging both surface form information and global
context information for synonym discovery.

4.1 Datasets
Medical Term Co-occurence Graph. We adopt publicly avail-
able sets of medical terms with their co-occurrence statistics which
are extracted by Finlayson et al. [8] from 20 million clinical notes
collected from Stanford Hospitals and Clinics[20] since 1995. Medi-
cal terms are extracted using an existing phrase mining tool [16] by
matching with 22 clinically relevant ontologies such as SNOMED-
CT andMedDRA. And co-occurrence frequencies are counted based
on how many times two terms co-occur in the same temporal bin
(i.e., a certain timeframe in patient’s records), e.g., 1, 7, 30, 90, 180,
365, and∞-day bins.

Without loss of generality, we choose 1-day per-bin and ∞-day
per-bin7 graphs to evaluate different methods. We first convert the
global counts between nodes to the PPMI values [17] and adopt
subsampling [23] to filter very common terms, such as "medical his-
tory", "medication dose", etc. We choose these two datasets because
they have very different connection density as shown in Table 1,
and denote them as 1-day and All-day datasets.
Synonym Label. In the released datasets, Finlayson et al. [8] pro-
vided a term-to-UMLS CUI mapping based on the same 22 ontolo-
gies as used when extracting terms. They reduced the ambiguity
of a term by suppressing its least likely meaning so as to provide
a high-quality mapping. We utilized such mapping to obtain the
synonym labels: Terms mapped to the same UMLS CUI are treated
as synonyms, e.g., terms like "c vitamin", "vit c", "ascorbic acid" are
synonyms as they are all mapped to the concept "Ascorbic Acid"
with ID C0003968.
Query Terms. Given a medical term-term co-occurrence graph,
terms in the graph that can be mapped to UMLS CUIs are treated
as potential query terms, and we split all such terms into training,
development and testing sets. Here, since all terms appear in the
given co-occurrence graph, this testing set is referred to as the InV
testing set. We also create an OOV testing set: Under a UMLS
CUI, terms not in the co-occurrence graph are treated as OOV
query terms and are paired with their synonyms which are in
the graph to form positive pairs. We sample 2,000 of such OOV
query terms for experiments. In addition, since synonyms with
different surface forms tend to be more challenging to discover
(e.g., "vitamin c" vs. "ascorbic acid"), we also sample a subset named
Dissim under both InV and OOV testing set, where query terms
paired with their dissimilar synonyms8 are selected. Statistics of
our training/dev/testing sets are given in Table 1.

4.2 Experimental Setup
4.2.1 Baseline methods. We compare SurfCon with the following
10 methods. The baselines can be categorized by three types: (i)
Surface form based methods, which focus on capturing the sur-
face form information of terms. (ii) Global context based methods,
which try to learn embeddings of terms for synonym discovery; (iii)

7Per-bin means each unique co-occurring term-term pair is counted at most once
for each relevant bin of a patient. We refer readers to Finlayson et al. [8] for more
information.
8Dissimilarity is measured by Levenshtein edit distance [10] with a threshold (0.8).

Table 1: Statistics of our datasets.

1-day dataset All-day dataset

# Nodes 52,804 43,406
# Edges 16,197,319 50,134,332

Average # Degrees 613.5 2310.0

# Train Terms 9,451 7,021
# Dev Terms 960 726

# InV Test Terms
All 960 726

Dissim 175 152

# OOV Test Terms
All 2,000 2,000

Dissim 809 841

Hybrid methods, which combine surface form and global context
information. The others are our model variants.
Surface form based methods. (1) CharNgram [13]: We borrow
pre-trained character n-gram embeddings from Hashimoto et al.
[13] and take the average of unique n-gram embeddings for each
term as its feature, and then train a bilinear scoring function fol-
lowing previous works [30, 42]. (2) CHARAGRAM [40]: Similar as
above, but we further fine-tune CharNgram embeddings using syn-
onym supervision. (3) SRN [25]: A Siamese network structure is
adopted with a bi-directional LSTM to encode character sequence
of each term and cosine similarity is used as the scoring function.
Global context based methods. (4)Word2vec [23]: A popular dis-
tributional embedding method. We obtain word2vec embeddings
by doing SVD decomposition over the Shifted PPMI co-occurrence
matrix [18]. We treat the embeddings as features and use a bilin-
ear score function for synonym discovery. (5) LINE(2nd) [34]: A
widely-adopted graph embedding approach. Similarly, embeddings
are treated as features and a bilinear score function is trained to
detect synonyms. (6) DPE-NoP [30]: DPE is proposed for synonym
discovery on text corpus, and consists of a distributional module
and a pattern module, where the former utilizes global context in-
formation and the latter learns patterns from raw sentences. Since
raw texts are unavailable in our setting, we only deploy the distri-
butional module (a.k.a. DPE-NoP in Qu et al. [30]).
Hybrid methods. (7) Concept Space Model [37]: A medical syn-
onym extraction method that combines word embeddings and
heuristic rule-based string features. (8) Planetoid [41]: An induc-
tive graph embedding method that can generate embeddings for
both observed and unseen nodes. We use the bi-level surface form
encoding vectors as the input and take the intermediate hidden
layer as embeddings. Similarly, a bilinear score function is used for
synonym discovery.
Model variants. (9) SurfCon (Surf-Only): A variant of our frame-
work which only uses the surface score for ranking. (10) SurfCon
(Static): Our framework with static representation mechanism. By
comparing these variants, we verify the performance gain brought
by modeling global contexts using different matching mechanisms.

For baseline methods (1-3 and 8) and our models, we test them
under both InV and OOV settings. For the others (4-7), because
they rely on embeddings that are only available for InV terms, we
only test them under InV setting.

4.2.2 Candidate Selection and Performance Evaluation. For evalu-
ating baseline methods and our model, we experiment with two
strategies: (1) Random candidate selection. For each query term, we
randomly sample 100 non-synonyms as negative samples and mix



Table 2: Model evaluation inMAP with random candidate selection.

Method Category Methods
1-day Dataset All-day Dataset

Dev
InV Test OOV Test

Dev
InV Test OOV Test

All Dissim All Dissim All Dissim All Dissim

Surface form
based methods

CharNgram [13] 0.8755 0.8473 0.4657 0.7427 0.4131 0.8652 0.8553 0.4615 0.7675 0.4424
CHARAGRAM [40] 0.8705 0.8507 0.5504 0.7609 0.5142 0.8915 0.8805 0.5153 0.8119 0.5282

SRN [25] 0.8886 0.8565 0.5102 0.7241 0.4341 0.8460 0.8170 0.4523 0.7110 0.4176

Global context
based methods

Word2vec [23] 0.3838 0.3748 0.3188 - - 0.4801 0.476 0.4180 - -
LINE(2nd) [34] 0.4279 0.4301 0.3494 - - 0.5068 0.5043 0.4369 - -
DPE-NoP [30] 0.6222 0.6107 0.4855 - - 0.5928 0.5949 0.4938 - -

Hybrid methods
(surface+context)

Concept Space [37] 0.8094 0.8109 0.4690 - - 0.8064 0.7924 0.5574 - -
Planetoid [41] 0.8813 0.8514 0.5612 0.731 0.4714 0.8818 0.8765 0.6963 0.7403 0.4986

Our model
and variants

SurfCon (Surf-Only) 0.9160 0.9053 0.6145 0.8228 0.5829 0.9034 0.8958 0.6006 0.8183 0.5622
SurfCon (Static) 0.9242 0.9151 0.6542 0.8285 0.5933 0.9170 0.9019 0.6656 0.8203 0.5664

SurfCon 0.9348 0.9176 0.6821 0.8301 0.6009 0.9219 0.9199 0.7171 0.8232 0.5673

them with synonyms for testing. This strategy is widely adopted by
previous work on synonym discovery for testing efficiency [37, 42].
(2) Inference-stage candidate selection. As mentioned in section
3.3, at the inference stage, we first obtain high potential candidates
in a lightweight way. Specifically, after the context predictor is
pre-trained, for all terms in the given graph as well as the query
term, we generate their surface form vector s and context semantic
vector v obtained by the static representation. Then we find top 50
nearest neighbors of the query term respectively based on s and
v using cosine similarity. Finally, we apply our methods and base-
lines to re-rank the 100 high potential candidates. We refer to these
two strategies as random candidate selection and inference-stage

candidate selection.
For evaluation, we adopt a popular ranking metric Mean Aver-

age Precision defined asMAP =
1
|Q |

∑ |Q |
i=1

1
mi

∑mi

j=1 Precision(Ri j ),

where Ri j is the set of ranked terms from 1 to j ,mi is the length of
i-th list, and |Q | is the number of queries.

4.2.3 Implementation details. Our framework is implemented in
Pytorch [27] with Adam optimizer [15]. The dimensions of charac-
ter embeddings (dc ), word embeddings (dw ), surface vectors (ds ),
and sementic vectors (de ) are set to be 100, 100, 128, 128. Early
stopping is used when the performance in the dev sets does not
increase continuously for 10 epochs. We directly optimize Eqn. 6
since the number of terms in our corpus is not very large, and
set fs (·) and fc (·) to be cosine similarity and bilinear similarity
function respectively, based on the model performance on the dev
sets. When needed, string similarities are calculated by using the
Distance package9. Pre-trained CharNgram [13] embeddings are
borrowed from the authors10. For CHARAGRAM [40], we initial-
ize the n-gram embeddings by using pre-trained CharNgram and
fine-tune them on our dataset by the synonym supervision. We
learn LINE(2nd) embeddings [34] by using OpenNE11. Heuristic
rule-based matching features of Concept Space model are imple-
mented according to [37]. Code, datasets, and more implementation
details are available online12.

9https://github.com/doukremt/distance
10https://github.com/hassyGo/charNgram2vec
11https://github.com/thunlp/OpenNE
12https://github.com/yzabc007/SurfCon

4.3 Results and Analysis

4.3.1 Evaluation with Random Candidate Selection. We compare
all methods under random candidate selection strategy with the
results shown in Table 2.
(1) Comparing SurfCon with surface form based methods.

Our model beats all surface form based methods, including strong
baselines such as SRN that use complicated sequence models to
capture character-level information. This is because: 1) Bi-level
encoder of SurfCon could capture surface form information from
both character- and word-level, while baselines only consider either
of them; 2) SurfCon captures global context information, which
could complement surface form information for synonym discovery.
In addition, in comparison with CharNgram and CHARAGRAM,
our model variant SurfCon (Surf-Only), which also only uses sur-
face form information, obtains consistently better performance,
especially in the OOV Test set. The results demonstrate that adding
word-level surface form information is useful to discover synonyms.
(2) Comparing SurfConwith global context based methods.

SurfCon substantially outperforms all other global context based
methods (Word2vec, LINE(2nd) and DPE-NoP). This is largely due
to the usage of surface form information. In fact, as one can see,
global context based methods are generally inferior to surface form
based methods, partly due to the fact that a large part of synonyms
are similar in surface form, while only a small portion of them are
in very different surface form. Thus, detecting synonyms without
leveraging surface information can hardly lead to good results. Be-
sides, our context matching component conducts context prediction
and matching strategies, which takes better advantage of global
context information and thus lead to better performance on the
synonym discovery task.
(3) Comparing SurfCon with hybrid methods. We also com-
pare our model with baselines that combine both surface form
and global context information. First, SurfCon is superior to the
concept space model because the latter simply concatenates dis-
tributional embeddings with rule-based string features, e.g., the
number of shared words as features and apply a logistic regression
classifier for classification. Further, SurfCon also performs better
than Planetoid, partly because our framework more explicitly lever-
ages both surface form and global context information to formulate





words in the corpus or nodes in the graph, and thus fail to address
the OOV issue. On the other hand, some more recent inductive
graph embedding works, such as Planetoid [41], GraphSAGE [12],
and SEANO [19], could generate embeddings for nodes that are
unobserved in the training phase by utilizing their node features
(e.g., text attributes). However, most of them assume the neighbor-

hood of those unseen nodes is known, which is not the case for our

OOV issue as the real contexts of an OOV term are unknown. Since
Planetoid [41] can generate node embeddings based on node fea-
tures such as character sequence encoding vectors, it can handle
the OOV issue and is chosen as a baseline model.
Synonym Discovery. A variety of methods have been proposed
to detect synonyms of medical terms, ranging from utilizing lexical
patterns [39] and clustering [21] to the distributional semantics
models [11]. There are some more recent works on automatic syn-
onym discovery [30, 31, 37, 42]. For example, Wang et al. [37] try to
learn better embeddings for terms in medical corpora by incorporat-
ing their semantic types and then build a linear classifier to decide
whether a pair of medical terms is synonyms or not. Qu et al. [30]
combine distributional and pattern based methods for automatic
synonym discovery. However, many aforementioned models focus
on finding synonyms based on raw texts information, which is not
suitable for our privacy-aware clinical data. In addition, nearly all
methods could only find synonyms for terms that appear in the
training corpus and, thus cannot address the OOV query terms.

6 CONCLUSION
In this paper, we study synonym discovery on privacy-aware clin-
ical data, which is a new yet practical setting and consumes less
sensitive information to discover synonyms. We propose a novel
and effective framework named SurfCon that considers both the
surface form information and the global context information, can
handle both InV and OOV query terms, and substantially outper-
forms various baselines on real-world datasets. As future work, we
will extend SurfCon to infer more semantic relationships (besides
synonymity) between terms and test it on more real-life datasets.
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