Ferromagnetism and Spin-Valley liquid states in Moiré Correlated Insulators

L'iao-Caua Lu, l'ara a l'esci a ,2 Ca ao l'in g bia ,2 l'ell, ara Pa la ,1 a d Can e l'u

1 Department of Physics, University of California, Santa Barbara, CA 93106, USA

2 Kavli Institute of Theoretical Physics, Santa Barbara, CA 93106, USA

Motivated by the recent observations of exidences of ferminal quantum in correlated insulating states in system solventhal corresponding the recent observations, we study a two-orbital quantum instiferminal agreement odel in the trinniquiar lattice, where the two orbitals physically correspond to the two alleys of the original graphinal elect. For the photic thin and odel as a SN $(2)^s \otimes SN (2)^v$ some etries correspond to the rotation within the spin and valley space respectively. Moreover, where the two SN $(2)^s$ was etries correspond to the rotation within the spin and valley space respectively. Moreover, and also the properties of the respectively of the phase dragons with fully polarized ferminal agreement agreement at a Zone in field can drive an etallicist and topological ordered phases at various the its of thins odel. We also construct spin the idea and topological ordered phases at various the its of thins odel. We after doping thinse odel with extra charge carriers, the systemic ost labely become as spin-triplet/valley-singlet d+id topological superconductor as χ as predicted previously.

PACS numbers:

I. INTRODUCTION

Peca the a series of surfrish g correlated fresics subas superconductivity and insulators at communication okactional brangefillings nave been discoveredim ultiple s ste s it W oré sur clattices 1-9. Re ese discoveries 'n active the exercical studies 10-39. Wor different reasons, these systems can a general at 8,9,40-43; non-centeractor and a general at 2,8,9,40-43; non-centeractor at 2,8,9,40-43; from effects are significantly win an ced. 4.4 con son sus of tuen etuanian doctue observed a sulator and superconductor's associated bear read ed. An initial altro-orbital extended subbands odel on the triangular lattice as \$200 osed in Pet. 10 (Paysically the orbital space correso and to be so ace of to Drac allers in the origia al Baillouin zon e of grafin on e), In ion at least describes tue trilager graffuere and uggeral BN ugter ostructure $(\mathbf{N}_{\mathbf{P}}, \mathbf{N}_{\mathbf{P}}, \mathbf{P}_{\mathbf{P}})^{1,5}$, as cell as the tristed double bilated grant of $(\mathbf{N}_{\mathbf{P}}, \mathbf{P}_{\mathbf{P}})^{7-9}$, in certain tristed angle and out-of-plane electricalised (drsplaces on third), since in the see cases to exe is no servet etc. Protected band touching below to enter it energy, and to e isolated acroy band as
third unitary affect to ological and be 11,37,38,44-46.

This is in all odel ould to a naturally predict either
a servet is lot 10 or old in a glot 12 d + id to ological sub or a spin -trip let 10 \propto spin -sin glet d+id to ological sup \propto conductor, depending on the sign of the on-site of a d's coul In g.

Exidence of spin-tail let learing lendicted lexicious. 10 as second from din KDBy. 7,9. Exidence of learen agnetic coxellated in sulator afth abiliting a variation in argeneutrality as discovered in the same system 7-9. INDBy., besides clear learen agnetism signature observed at the 1/2 Lilling in sulator 7-9, it was also observed that coxellated in sulators at 14. and 34 Lillings in erge under in lanen agnetic field 1, in osen aim effect is larely just a spin-localizing Zeen an effect. Khis observation in lines in at the eKDBy, at 14. and 34 Lilling is saint exclose to a ferrom angetic coxellated in sulator, and a Zeen and

filed ould drive an etal-insulator transition. Evidouce of ferror agreement at the insulating the ase vith 34 filling a var from the branger entrality as also found in a other of oxes stand.

All ofizated by the ese exterior atts, in this concentration spin valler odel on the triangular lattice with the few ion the site, which concentration is a statice. The concentration of this odel reads

$$H = \sum_{\langle i,j \rangle} \sum_{a,b=1}^{3} J T_i^{ab} T_j^{ab} + J^s \sigma_i^a \sigma_j^a + J^v \tau_i^b \tau_j^b, \qquad (1)$$

In one σ^a and τ^b are Pauli of exators in the spin and alley spaces, and $T^{ab} = \sigma^a \otimes \tau^b$. And $J^s = J^v = J$, this odel becomes the SNAL) quantum antiferror agnetic odel with fundamental representation on each site. When SNAL) some etwars because by the rind discoupling 10 , which in general ares $J^v > J > J^s$, if we can oose the standard sign of the fund's coupling which favors large spin on each site. But we assure that the SNAL) breating of ection of strong enough to this age the sign of J^s , J^v and J_s are elder every all three coupling constants v ositive, i.e. an inferror agnetic. In deed, since the fund's coupling originates from the extra agree outling with involves overlap between vare functions at the two valleys, the rind's coupling is ould be a relatively sear of ect since the intervalley vare function of all is expected to be all because larger or in the transfer between the two valleys is sufficient of the Moiré sufferible. For since the spin valley is a sufficient so the spin valley of the larger of the spin valley of the larger of the spin valley of the larger of the spin valley of the valley space in a sits of SNAL) some etwar alleger of the Larger of the valley space in as its of SNAL) when the spin valley of the valley space in as its of SNAL) when the spin valley of the valley space in a sits of SNAL) when the spin valley of the valley space in as its of SNAL) when the spin valley of the valley space in as its of SNAL) when the spin valley of the valley space in a sits of SNAL) when the spin valley of the valley space in a sits of SNAL) when the spin valley of the valley space in a sits of SNAL) when the spin valley is each as its of SNAL).

II. DERIVATION OF THE SPIN-VALLEY MODEL

When odel E. 1 can be derived in the standard perturbation to early starting in a fubbards odel plus and ensite of the discourant per the triangular lattice. It is not not true eding the introduction, the issued at least applies to Nov. In -BU 1.5 and NDRy. In certain the isted angle and displaced to the ledy, since in the see cases there is no series etc. Protected band toubing below to extend a conservation of the energy, and the energy band in a correlated the sickness trivial united alley topological and beautiful depends on the energy of the energy of

$$H = H_t + H_t + H_t + \dots (2)$$

$$H_t = -t \sum_{\langle i, j_{\mathbf{y}}} \sum_{\alpha=1}^{4} \left(c_{i,\alpha}^{\dagger} c_{j,\alpha} + \mathbf{c}.\mathbf{c}. \right), \tag{3}$$

$$H_{\widetilde{U}} = U \sum_{j} (n_j - 1)^2, \qquad (4.)$$

$$H_{\mathcal{C}} = -V \sum_{j} \left(\vec{\hat{\sigma}}_{j} \right)^{2} + V \sum_{j} \left(\vec{\hat{\tau}}_{j} \right)^{2}, \tag{5}$$

In one $c_{j,\alpha}^{\dagger}$, $c_{j,\alpha}$ are electron or eation are including of eators in the inax enforced at $c_{j,\alpha}$ and $c_{j,\alpha}$ are foundly as including both the spin and called indices, $\hat{n}_j = \sum_{\alpha} c_{j,\alpha}^{\dagger} c_{j,\alpha}$ is in e total ℓ as finder in obesides site, and $\frac{1}{2}\hat{\sigma}_j^a = \frac{1}{2}c_j^{\dagger}\sigma^a c_j$ is in e total or -site spin of eator. When H_j term is in ear-site spin of the find discounting in V>0, as a result of each in general term. We treat the spin effective H_t for the battle ℓ . Whise in our is to integrating out the brange degree of freeden to obtain an effective spin valley nodel in the correlated in sulator ℓ hase.

The follow in estandard approach of degenerate perturbation in each of the control of the extension of example of the extension of example of the extension of example of examp

$$\mathcal{P} = \prod_{i} (-1) \frac{1}{6} n_j (n_j - 2) (n_j - 3) (n_j - 4).$$
 (6)

Considering and Paix of nearest neighbox sites on the Mi oxé superlattice, the ground states an incold can be further divided in to four sectors in its correspond to similar singlet/triplet and alley-singlet/triplet states. We can write

$$\mathcal{P} = \mathcal{P}_{ss} + \mathcal{P}_{st} + \mathcal{P}_{ts} + \mathcal{P}_{tt}, \tag{7}$$

In one (for each le) \mathcal{P}_{st} each the Projection to spinsingle/alley-triplet states. When effective via illustration be calculated as

$$H_{\text{eff}} = \mathcal{P}H_t \frac{1}{E_0 - H_t - H_t} H_t \mathcal{P}, \tag{8}$$

In ore E_0 is the ground state energy for the two-site problem. A detailed an also of the intermediate states considering the extrustration of the grocess can be found in Ref. 10. A first of the at only \mathcal{P}_{st} and \mathcal{P}_{ts} contribute to the effective of an illuminary with tapes a diagonal form in this basis

$$H_{\text{eff}} = -\frac{2t^2}{U + 4 \cdot V} \mathcal{P}_{st} - \frac{2t^2}{U - 4 \cdot V} \mathcal{P}_{ts}. \tag{9}$$

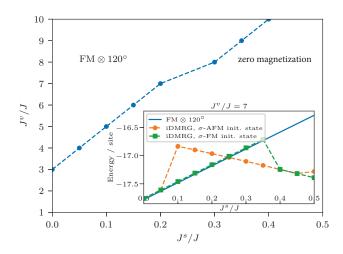
Peritte in ten softe e \$14.) generators on the enearest neighbor sites, the effective of interior is a divalent to the spin raller odel E. 1 in the coursing constants given by

$$J^{s} = J - \frac{t^{2}}{U} \left(\frac{2V}{U} + O\left(\frac{V}{U}\right)^{2} \right),$$

$$J^{v} = J + \frac{t^{2}}{U} \left(\frac{2V}{U} + O\left(\frac{V}{U}\right)^{2} \right),$$

$$J = \frac{t^{2}}{4 \cdot U} \left(1 + O\left(\frac{V}{U}\right)^{2} \right). \tag{10}$$

Where is a Z_2 some etc/regarding the sign of the council of some in given stants transform as $J^s/J \leftrightarrow J^v/J$ from the form of the council or $J^s/J \leftrightarrow J^v/J$ from the form of the council or $J^s/J \leftrightarrow J^v/J \to J^v/J$.


III. THE ■ △ 220° STATE

It least in certain in it, i.e. $J^v\gg J\gg J^s>0$, it is fairly easy to see in fearth and easy edge ould be easy to determ again with a course again odel E. I in all a there against a course again to course against the fair as some eigenstate of the earth literian:

$$\bigvee_{i} \operatorname{FM}_{i} = \left(\prod_{i} |\sigma_{i}^{z} = +1 \rangle \right) \otimes \bigvee_{i} \nabla \operatorname{of} \vec{\tau}_{\{i\}} \gamma.$$
(11)

Note that is a direct product of to parts: In effect part is a fully polarized force agreement of the extra of the extra

$$J_{\text{eff}} = J^s + J/\vec{\tau}_i \cdot \vec{\tau}_{j}. \tag{12}$$

120. 1: It as boundar, of the L1 120 state obtained using L1. Per minimize coinciders it is cross ferrose $L_y=6$. We exist a 0 state energy per site obtained for J^v J=7 as fraction of J^s J. Green squares (orange circles) indicate the mergies obtained using L1. Per J in the spins are initialized in a L1 (111) product state. We solid blue in eightcates the energy expected for the L1 120 state.

Because ϕ_i ϕ_j < 0 for the 120 state of ϕ_i , for large enough J the state χ ill see an electric form agreein could be given by ought the existing at odel E. 1 all the could be given as a substantial agreein.

The a ved large J^v , it less creasing J^s , eventually $J \phi_i \phi_j$ vills of be strong enough to overcen either affects agreefic coulding J_s , it is converged eventually J_s , it is converged agreefic order. We exically J_s , J_s is stored to be J_s or the triangular lattices use the artiflexion agreef. If we calculate the energy of J_s in E. 11, in the creasing J_s J_s this state is no longer the ground state when J_s J_s or the triangular lattices converged in equal to J_s J_s or the state is no longer than the converged energy of J_s J_s or the state is no longer than J_s J_s or the triangular lattice J_s J_s or the state is no longer than J_s J_s J_s or the triangular lattice J_s J_s

DMRG simulation of the spin-valley model

For ordering which ended consists a fact that the Will \$120\$ state is the ground state in the J^v J J^s in it and obtain the finase boundary of this state. No this end J^s we the density attivities a dization group (IMP) in the od^{48,49}. For ote that in write systems, boundaries can introduce strong oscillations in the expectation value of ϕ_i ϕ_j on near exestine group box bonds (in the are expected to be uniform in the valley degree of freedom is in the 120 state), and then a ect the effect coupling seen by the spins. No axid such boundary electrons always in the valley degree of freedom is in the 120 state. No observe uniform boild expectation values in the valley degree of freedom is in the 120 state indeed only of hides of circumference $L_y = 6$, for in its electrons each of exercise of the expectation value ϕ_i $\phi_j \approx 0.4$, consistent in Pel4.7, with spatial variations belowed except on expectation.

For our ten exical sin ulations we use the Norson library 51 . We assume a 3-site unit cell along the winder to allow for the form after of a 120 state in the valley and/or spin degrees of freeden. When alley degree of freeden is initialized in the total $\phi^z=0$ sector and ϕ^{z0} unit ten in the conservation is used. The spin degree of freeden is initialized either in the fully ${\bf R}$ of a classical anti-ferron agreeing state with total z=0. When are allowed the existing our sin ulations is M=1000.

deed coverges to a fully polarized sense of a 120 valle ordered state, in der order to the emittal conditions. Let $1 \stackrel{\circ}{\text{at}} \text{get} J^s \stackrel{\circ}{\text{c}} \text{e observe a state}$ without any net magnetization. It is stage e cam of conclude as to in en ature of the on the eigenvalue with zero and agreefization (ith larger J^s and $J^s < J$, for the total z=0 sector and going to be d do a size s of up to 4.000 ce's a cen of idea fied a clear order for the sym degree of freedom), but in the enert section of exill or of ose sence of ossible in teresting Build states and top ological orders for in isregion of In ase dragram. While ground state unergy obtained usin giPN Py, for a $oting d J^v J = 7 \text{ as for citizen of } J^s$, for the typinitual states, is shown in the inset of Vig. 1. Kan e solid blue have on the same of lot in dicates the onerg/ e ℓ ected for the EM \gg 120 state, calculated usin g a minimum bound expectation value ϕ_i ϕ_j pprox 0 %. In at ce obtain for the 120 state on in write color decis of cir-Can be seen the first set of the first ase boundary for each J^v J to be at the J^s J for χ hith the lowest on ergy obtained using in the property is below to ever every ected for the even $\gg 120$ state. We execulting the ase boundary as function of $J^v \ J$ and J^s J is support in the entain Wig. 1. Our results for the ground state energy and the agreetization across the enase boundary both suggest that the transition bety een the fearen agretic ox dex and the graran agret is a est order level-orosin g.

Schwinger boson analysis

e can also construct the $N \gg 120$ state using the Studinger boson from also. Fe ast denie a four construct the $N \gg 120$ state using the Studinger boson $N \gg 120$ state using the state of the same also so that the spin and alley $N \gg 120$ state using the state of the collarged $N \gg 120$ state using the state of the collarged $N \gg 120$ state using the state of the collarged $N \gg 120$ state using the state of the collarged $N \gg 120$ state using the state of the collarged $N \gg 120$ state using the state of the collarged $N \gg 120$ state using the state $N \gg 120$ state $N \gg 120$ state using the state $N \gg 120$ state $N \gg 120$ state $N \gg 120$ state using the state $N \gg 120$ state $N \gg 120$ state $N \gg 120$ state using the state $N \gg 120$ state

$$\begin{array}{ccc}
 & & \\
 & b_j & b_j & = \tau & \\
\end{array} \tag{13}$$

Pu sically $\tau=1$, but in the Sharinger boson ear eld calculation τ is often treated as a tuning $\mathfrak k$ are etc. When in identity $\mathbb R$, I can be reorganized into the following

$$H = J_{ts} \quad {}^{ts}_{ij} \quad {}^{ts}_{ij} + J_{ss} \quad {}^{ss}_{ij} \quad {}^{ss}_{ij}$$
$$+ J_{st} \quad {}^{st}_{ij} \quad {}^{st}_{ij} + J_{tt} \mathbf{t} \mathbf{t} \quad {}^{tt}_{ij} \quad {}^{tt}_{ij} \quad (\mathbb{A})$$

When or exator Δ^{ts}_{ij} and Δ^{st}_{ij} are the spin-triplet/valleysinglet, and some singlet/calley-triplet pairing operator bet en So in ger boson b_{α} of site i, j:

$$\left(\vec{\Delta}_{ij}^{ts}, \vec{\Delta}_{ij}^{st}\right) = b_i^t \left(:\sigma^{32}, \sigma^{02}, :\sigma^{12}, \sigma^{23}, :\sigma^{20}, \sigma^{21}\right) b_j, \quad (15)$$

In see $\sigma^{ab}=\sigma^a\otimes \tau^b$, $\sigma^0=\tau^0=\mathbf{1}_{2\times 2}$. We see Δ^{ss} and Δ^{tt} are in e sin glet/sin glet, and triplet/triplet pairing respectrum, for each the $\Delta^{ss}_{ij}=b^t_i\sigma^{22}b_j$. It is the $\Delta^{ss}_{ij}=b^t_i\sigma^{22}b_j$.

$$J_{ts} = \frac{1}{4} (3J_v + 3J - J_s), \quad J_{st} = \frac{1}{4} (3J + 3J_s - J_v),$$

$$J_{ss} = \frac{3}{4} (3J - J_s - J_v), \quad J_{tt} = \frac{1}{4} (J + J_s + J_v). \quad (16)$$

The term ost natural Rama etc. region $J_v>J>J_s>0,\ J_{ts}$ is always negative, and it converses on ds to tue strougesta eou filield ou oura el, ¿nilea ou e of tue o tuor Raran eters are guaranteed to be egative (for evan Rie J_{tt} is always ${
m R}$ ositive). We us for the ${
m R}$ uncose of each field a a sis, e will just see to be set to of E. A., and ignore all the exest three terms of L.A. Known ear fileld far iltorian reads

$$H_{\text{MF}} = \sum_{ij} J_{ts} \left(\vec{\phi} \cdot \vec{\Delta}_{ij}^{ts} + H.c. \right) - J_{ts} |\vec{\phi}|^2$$

$$+ \sum_{j} \mu(\sum_{\alpha=1}^{4} b_{j,\alpha}^{\dagger} b_{j,\alpha} - \kappa), \qquad (17)$$

Let ϕ is a conclusive factor on $\det \operatorname{SL}(2)^s$. For e < ebe cose a minimum as satz of $\vec{\phi}$ on the cutive lattice, and all the eighth is i,j as eighth and in the eighth the contact from $j=i+\hat{e}$ with $\hat{e}=(1,0),\,(-1/2,\pm\sqrt{3}/2),\,i.e.$ there exists $\hat{e}=(1,0)$ field a satž explicitly preserves to e translation and rotatrue by $2\pi/3$ seems etc. of the triangular lattice, it is all the crystal spin etries are preserved as projected spinetry group (PSy.). μ is an other variation all parameter of the entireld calculation in the guarantees that the filling of Souringer boson is fixed at κ on every site.

Kan e Mu ⊗120° ox dexed state coxxes? on ds to ta en eau fineld an satz with $\phi = \phi_1 + i\phi_2$, and the real vectors $\vec{\phi}_1$ and $\vec{\phi}_2$ orthogonal vita each other. For evan RIe, when $\vec{\phi}=\phi(1,i,0),$ only the sym-up $(\sigma^3=+1)$ Source general bosons are article at the sym-up $(\sigma^3=+1)$ source general symbol $(\sigma^3=+1)$ source $(\sigma^3=+1)$ s ron agretic oxdex? aran etex coxxes? oxds to bre following gauge nain to un tity:

$$\vec{M} \sim \vec{i} \vec{\phi} \times \vec{\phi}^* \sim \vec{\phi}_1 \times \vec{\phi}_2. \tag{18}$$

in only spin-up Staringer bosons, in every enfined calculation reduces precisely to in e $\mathrm{SN}(2)$ spin-1/2 (eise berge odel on the triangular lattice 52 /ith essenberg coupling $J_{ij}=4$ J_{ts} (The Sp (N) essenberg odel distributed in Pet. 52 has for all the ran H= $\sum_{i,j} -\frac{1}{2} J_{ij} \Delta_{ij}^{\dagger} \Delta_{ij}$ are Δ_{ij} is to $\Phi(N)$ so glet $\mathbb R$ and in g between Sourin gen bosons on sites i, j):

$$H_{\rm MF} = \sum_{ij} J_{ts} \left(2\phi \ b_{\uparrow,i}^t \dot{\tau}^2 b_{j,\uparrow} + H.c. \right) - 2J_{ts} \phi^2$$

$$+ \sum_{j} \mu(\sum_{\alpha=1}^{2} b_{j,\uparrow,\alpha}^{\dagger} b_{j,\uparrow,\alpha} - \kappa). \tag{19}$$

Because the spin-down Stavinger bosons do not contribute to the end end fineld december of ositive χ to $\phi \sim$ (1,1,0), explace the constraint in \mathbb{E} . 13 by $\sum_{\alpha=1}^2 b_{j,\uparrow,\alpha}^\dagger b_{j,\uparrow,\alpha} = \kappa$ in \mathbb{E} . 19. If α term ically the earlield trees. E. 19 corresponds to tre "zerolling state" in Pet. 53, prior in as lower earlield energy tuan otuer eau Lueld au satz⁵³ kox tuis neaxest neiguboxen odel, and it as a ses to ear incine a of the Story in gen boson band structure locate at the come or of the Brillouin zon e $\vec{Q}=(\pm \pi/3,0)$. Kin ern ean filleld solution gives $\mu>0$, in its consistent in the fact that we set $\sum_{\alpha=1}^2 b_{j,\downarrow,\alpha}^\dagger b_{j,\downarrow,\alpha} = 0$. In d at the endiabeld level, in the fact that god the Source boson κ is greater than $0.3^{-52}, b_{\alpha}$ condenses, in the leads to a full 2 olarized \square in the spin space, and also 120° state in the valley space. If the enember ϕ is real (or ϕ is real) $ec{\phi}_1^{\,\,\,\,\,\,\,\,\,\,\,}$ is Racallel to $ec{\phi}_2$, for each Rie, $ec{\phi}\,\sim\,\phi(0,0.1)$, both sym -up and sym -down Souringer bosons participate in the earlield analysis, and there earlield analysis is tebraically Quivalent to be calculations in Pel. 52 for The eSp (2) \sim $\mathrm{SO}(5)$ and followed agree to the estimate gulac lat tice also it is ease being court in g $J_{ij} = 4 J_{ts}$, because $\left(\Delta_{ij}^{ts},\Delta_{ij}^{st}\right)$ togeth existen a $\mathrm{SO}(6)$ cctox, and consider sing each confine to the vector breaks the SO(6) down to $SO(5) \sim S(2)$. Each constant of Δ_{ts} can be see ed as to e $\Re(2)$ so glet to two duced to $\Re(52)$:

$$H_{\text{MF}} = \sum_{ij} J_{ts} \left(\phi \ b_{i}^{t} \sigma^{12} b_{j} + H.c. \right) - J_{ts} \phi^{2}$$

$$+ \sum_{i} \mu \left(\sum_{\alpha=1}^{4} b_{j,\alpha}^{\dagger} b_{j,\alpha} - \kappa \right), \tag{20}$$

Quoting in execults in Per. 52, in e NV $\otimes 120^{\circ}$ state in the Previous eta each include a satz with $\phi_1 \perp \phi_2$ has a lower 🛰 earfiield ground state on organisty, Andon is consistent it our analytical observation and also was exical 🐝 ulatica .

—Zeeman field driven Metal-Insulator transition

Since the insulator has a fully colorized force agna etic oxdex, its na exgrena be that ed by na external Zee-ખા સામાં∟eld. ાંખા સારીસાંભના agreticalield, ∠ારા ose—ા સાંતા અનિ kect is to e Zeen and count hong can drive allowst ox decent etalin sulator transition (a level-crossing) between the multolarized etal and the full of olarized force agreeic sulator, as as observed experimentally at the 14. and 34. fulling of KDBy. 7.9.

Kare e is an o'ther gossibleme that are ison of etal-in sulator transition driven by a Zeen and ineld. At the en etalic side at the transition, the system is larger described by a t-J odel it as it is J,J^s,J^v too s as E. 1. When Zee-🛰 aufineld touds to 🤋 olasize tue som , 🚉 ibu erfectively in creases to e an inferror ago etic court in gine to exaller st ace

 $J^v_{eff} = J^v + J (\vec{\sigma}_i \cdot \vec{\sigma}_j)$. We us at costain to Q exature, in e → agaitude of the 120° oxdex in the valler stace is truable and who anced by an external Zeen and fireld. If the in sulating because of the system is a consequence of the finites en enten calle order into folds to e Brilloun zon e and a artrall gas s'out to ellem i surface, an in creasin go agaitude of the 120° order in the valley so ace can gar out larger roution of the West I surface, decrease the be arge carrier du sity, and hence eye tually drive a continuous etal a sulator transition.

LIQUIDS AND TOPOLOGICAL PHASES

in each $J^v\sim J^s\sim J$, it would be rained for the system to form any semiclassical order due to "double fourtraine": in e J^s and J^v term of E. 1 are both akead kustrated due to be gen et of be triangular lattice, it is to e J tend further fruits ates/disfaces The estimate 120° sent inclassical order of $\vec{\sigma}_i$ and $\vec{\tau}_i$. Since there is an objious Nieb-Siultz W atthis the core in its forbids a central trivial disordered in ase, we expect this "double frustration" of ect to lead to either a ca Pletel disordered sin - alle Puid state, or a Patially ordered state with cortain to ological order. The his section χ e explore se et al $\mathfrak k$ ossible sym χ alleger $J^v \sim J^s \sim J^s$.

—Spin nematic Z_2 topological phase

Let us get begat to the earlield and illumina E. 17. As we discussed before, if the earlield value of $\vec{\phi}$ is real (or Q uivalently if $\vec{\phi}_1$ is Q arallel to $\vec{\phi}_2$, for $\vec{\phi}_3$ - $\Re \operatorname{le}, ec{\phi} \sim (0,0,1), ext{ both } \operatorname{spin}$ -up and spin -dozn Stazin gen bosons & articia ate in the en enfined an alisis, and the ensumed and sisis term it call to the calculations in Ped. 52 for the SQL) and inference agree on the trian gular lattice. And it large sin sum etc, the quarter f L uctuation f a es it f a e f L cult f a $f b_lpha$ to con donse. If b_{α} is not condensed, in one can finely or der Rear a etex ϕ already breaks the SN(2) s , and also break In e ${f L}(1)$ gauge spin etc does to Z_2 gauge degree of keeda .

Knew ature of the state it condensed ϕ but mconsider sed b_{α} depends on the ensure of ϕ and ϕ the ereversal. When transform aften of b_lpha to der to e-reversal can be indexed by the efact that $\vec{\sigma} \to -\vec{\sigma}, (\tau^1, \tau^2, \tau^3) \to$ $(\tau^1, \tau^2, -\tau^3)$:

$$\mathcal{T}: b_j \to i\sigma^{21}b_j, \quad \vec{\Delta}_{ij}^{ts} \to \vec{\Delta}_{ij}^{ts},$$
 (21)

as long as ϕ is a real vector (or ϕ_1 ? arallel vita ϕ_2), the exercise reserved, and this state is a spin real afficience. Z_2 to ological order. By contrast, if $ec{\phi}_1 \perp ec{\phi}_2$ in e to ereversal is brown.

 $-Z_2 \times Z_2$ spin-valley liquid

Nove states can be constructed by introducing t√dLacas of Souringer bosons $b^s_{j,\alpha}$ and $b^v_{j,\alpha}$ for the spin and all of space on each site respectively, which are subject to be constraint

$$\sum_{\alpha=1,2} b_{j,\alpha}^{s,\dagger} b_{j,\alpha}^s = b_{j,\alpha}^{v,\dagger} b_{j,\alpha}^v = 1.$$
 (22)

Knese to constraints introduces to (1) gauge seeties. It is fairly straightforward to construct the $\otimes 120^b$ state using this type of Souringer bosons: b^s_lpha condonses at zero and onto , in the small ultaneously b^v_{α} condenses at the cosmon of the Ballouin zone.

a fact, due to the "double faustration" effect, both The symmetric alley synace can form a Z_2 to y ological order (over all speaking the system is in a $Z_2 \times Z_2$ spin -valley unid state), in ose e^{-2} articles carry the fine damental ¿na ben ean£ueld Raxan etexs break bobn 1∆(1) gauge

Starting from the $Z_2 \times Z_2$ spin—alley A wid state, one can also construct a spin—alley A wid with only one Z_2 to clogical order. This can be formally obtained by for in g bound state of in e "visons" (in e'm evitations) of both Z_2 to pological orders, and condense the both d state. We is condensate ill comme b_{α}^{s} and b_{α}^{v} ser a ately, but to ex born d state is still decome ed, and become stree e () as ficle of the energy Z_2 to () ological ox d ox dto ological order preserves all the same etries of the systen, and it can also be constructed using the same en ear filield form almon as L.A., as long as one condonses bue Sin -sin glet/caller-sin glet $\mathbb R$ aixin g of exator Δ_{ij}^{ss} in $\mathbb R$. 4.

 $-\mathbf{N}(1) \times \mathbf{N}(1)$ Dirac spin-valley liquid \mathbf{N} de exotic \mathbf{N} will states can be constructed by introducing ten reads slave f articles $f_{j,\alpha}^s$ and $f_{j,\alpha}^v$ in are subject to the constraints

$$\sum_{\alpha=1,2} f_{j,\alpha}^{s,\dagger} f_{j,\alpha}^s = f_{j,\alpha}^{v,\dagger} f_{j,\alpha}^v = 1.$$
 (23)

Pef. 1., a Drac syn Build in N(1) gaugefield and $N_f=4$ Layors of Drac few ions, as constructed for syn-1/2 systems on the extrangular lattice. And this Dirac sym Build is the Rama t state of both the 120° ox dexed state and in example a description and solid state $^{54-56}$, and it could be a decomined use two critical of one to between the ese two different ox dex ed states 57 .

n our case, both som and aller some can down the Drac A uid rase a traced abore, due to be double krustration effect. Krusin total there are eight Layors of Dracker in sand to (1) gaugefields.

— The SU(4) point

At the Robert $J^v=J^s=J$, the second as a SNAL) \sim SO(6) seem etc. A Ith origin second such as a hi ear sign an odel care studied before for $\mathrm{SL}(N)$ an inferred aga et in our expressed taken $\mathbf{s}^{58},$ in a finedan a tal refresa tation on every site, him odeln as no objious sa iclassical in it to start it, and it is ex-Rected to be an outrivial sym. A uid or to ological ordex. At this ? on t, it is nost convenient to diene a Nour control to Starting get boson $b_{j,lpha}$ on every site in its

does s does des ou tal regresses tation on der bots the sym and all $e \in SL(2)$ sum etc., and there is a constraint $\sum_{\alpha=1}^{4} b_{j,\alpha}^{\dagger} b_{j,\alpha} = 1.$

Lipe a SN(2) syn system, one can grove that at the SN(2) gone there cannot be a fully symmetric Z_2 syn in the case of article is the b_{α} slavely article. We excase is that all the local stin excitations can be critten as $b_{j,\alpha}^{\dagger}b_{j,\beta}$, its different $\alpha,\beta=1$. 4., is a ce all to e local Some excitations are invariant on derive Z_4 center of the SNA.) group. A a Z_2 topological order, two of the eRaticles a ould exgento a local excitations, it is two b_{α} slave \mathbb{R} article cannot have in to a refresentation that is in variou tou dex tu e Z_4 coutex. Whis argument also be ∞ s In at a Z_2 to cological order in ose $e \$ article is a SO(6)ector is allowed.

On the other hand, using the slave Racticle b_{lpha} one can construct a Z_2 topological order with contain spontaneous SNAL) seem etc. breaking. It is a SNAL) point, in on odel B. .1 can be written as

$$H = \sum_{ij} J\left(-\frac{5}{4} (\vec{\Delta}_{ij}^{\dagger}) \cdot (\vec{\Delta}_{ij}) + \cdots\right), \qquad (2.)$$

In each $\vec{\Delta}_{ij}$ is a six con Reneal tyector Raining between b_{α} . On each introduce a six con Reneal to Ref SO(6), ector ightharpoonup earlierd q area eter ϕ :

$$H_{\rm MF} = \sum_{ij} J\left(-\frac{5}{4}\vec{\phi}\cdot\vec{\Delta}_{ij} + H.c.\right) + \frac{5}{4}J|\vec{\phi}|^2.$$
 (25)

When con Plex vector $\vec{\phi} = \vec{\phi}_1 + i\vec{\phi}_2$, in one its real and in agin and $\widehat{\phi}_1$ and $\widehat{\phi}_2$ can be either $\widehat{\chi}$ axallel or oxthe ogen at to each other. If the Sturing ger boson does not con dense, both \bullet can fineld to excise ζ ould lead to a Z_2 topological order on top of the spontaneous SNA.) sym -🕶 etz/bzeaping.

Our IVI Ry is ulation actually suggest in at in e SNA.)

R on t of in e spin valley odel is a spin valley in its state Litu a Wen i surface of ten ionic slave ? articles, Luibu Zill be reseated in detail in an other zon.

V. CONCLUSION

this con e de oustrated both analytically and exically that a unatten spin - aller odel in all au theorem aguetic in texaction can in a e a full ? Olarized ferre aguetic order in its on ase diagram. Le order ose Rossible∙ ebuacisa dox au in-Rlau e Zeon au fi∟lèld to dxi∠e an etalin sulator transition, as as observed ever ontally at the 14. and 34. fulling of NDRy. we also discussed acrous possible a trivial state. A wide state and top ological order of the issue odel.

e could he to acre o ledge se et al Prezious he eo-refical cons hat studied he ferre ag ets in M oxé system s using different approach es and different odels^{29,35,36,39}. Vox example, in Pet. 35, a spin caller odel zitu ferromagnetic couplings on an effective in a execute onélatrice as devied for the tristed bila en grant en e s sten. This en our con (ribh an s to the destand a different Worké s sten, i.e. the tristed double bila en grafin en e) den en strated tratiferen agretar caren eige from the spin valler odel on a triangular lattice vitu fully antiferromagnetic interaction.

This out few expanses, and decorate graph in expectation of the t-J odel in the smaller J,J^s,J^v terms as E. 1. When the small sistem Pel. 10 still applies: to e spin -triplet/ aller-sin glet pairin g to an n el bet∕en electrons∠ould becon etne strongest? ain g be acreed. Due to a strong on -site of ubbarding teraction, to expect the could still fraction to become a d+id to clogical suggested ductor its symmetric let garing.

Administration of the second o tue Groedon and Betty Woode Woon dations EFiQS (niitrative tracough Grant G. IN IL. 30. Corredure sur-Rocted by the Dayid and Ducile Page and Tour dation. Ase as ade of the conquitation al facilities administered by the Contex of ox School fillic Control of uting at the CN/S/and WPP (a VSVA PSEC; IN P-1720256) and Run ased ta e otiga W SW ON S-1725797.

6. 1. Si arpe, E. J. Voy, 1. 1. Banard, 1. Vance, 2. Aatnabe, V. Vaigud'i, M. 1. 1. 2. Saster, and D. Sidi aber Fordus, ax 1, 1901.03520 (2019).

7 P. Jin , Ferromagnetic superconductivity in twisted double bilayer graphene, http://online.kitp.ucsb.edu/

abe, K. Krigudi, Z. Si, A. Zing, ad V. Ving,

abe, K. Kanguell, Z. S.I., Anag, and F. Zing, aszin:1803.01985 (2018).

² (Cao, L. Vatauri, A. Bauir, S. Vang, S. F. Kanasha, A. Vataushe, K. Kangueli, E. Zaziras, et al., Vature 556, 80 (2018).

³ (Cao, L. Vatauri, S. Vang, Z. Zataushe, K. Kangueli, E. Zaziras, and P. Zazillo Yerrero, Vature 556, A3 (2018).

14. Cao Zitz, S. Cin, Y. Polsha, G. Zing, Z. Zataushe, K. Kangueli, D. Graf, Z. T. Joneg, and C. P. Den, Schnice 363, 1059 (2019), ISSV 0036-8075, http://schnice.schning.ag.org/content/363/0.31/1059.mll. dttp://scinece.scineme ag.org/cnetnet/363/6a31/1059 full.pdf, ht 6431/1059. http://science.sciencemag.org/content/363/

G. Gin, A. D. Siarpe, P. Gallagier, L. R. Posni, E. Voy, P. Jing, B. B. U., Y. Marabe, V. Naigudi, et al., asri, 1901.08621 (2019).

online/bands_m19/kim/ (2019), \blacksquare all s at \blacksquare . In (2019), \blacksquare

⁸ C. Sin, V. W., S. Ang, A. Ziao, J. Knig, J. Wu, J. Kin, A. Giu, X. Ziatnabe, K. Knigudi, et al., axin, 1903.06952 (2019).

 $[\]checkmark$. Viu, Z. Yao, E. \checkmark l alaf, [. I. Vee, \checkmark . \checkmark atm-

abe, K. Knigudi, 🚣. Nisk mati, ned P. 📹 , ar (1903.08130 (2019).

C. Yu ad h. Balats, Phys. Pey. Mett. 121, 087001 (2018), hPh https://link.aps.org/doi/10.1103/PhysRevLett.121.087001.

11 C. C. Po, M. Zou, J. Nisk and J. M. Smith, Phys. Phys. 48, 031089 (2018), Ph. https://link.aps.org/doi/10.1103/PhysRevX.8.031089.

12 (.T. Dodaro, S. / Kinelsan, d. Sciathier, K. Q. San, and C. / hang, Phys. Pet. B 98, 07515. (2018), LPD https://link.aps.org/doi/10.1103/PhysRevB.98.075154.

13 W. W. Q. Quas and M. Wu, Phys. Pey. B 98, 0.5103 (2018), PP https://link.aps.org/doi/10.1103/PhysRevB.98.045103.

(...\lambda g m d O. hafel, Plys. Pey. \lambda 8, 031088 (2018), https://link.aps.org/doi/10.1103/PhysRevX.8.

B. Padi'i, C. Sett, and P. A. Willips, Waso Petters 18, 6175 (2018), Wall D: 3018509, petters 18, 6175 (2018), WLID: ttps://doi.org/10.1021/acsumolett.8b02033, https://doi.org/10.1021/acs.nanolett.8b02033.

16 B. Radii and P. Willips, as (in 1810.0088, (2018).

17 C. Bashara, as (in 180.00627 (2018).

18 C.-C. Biu, b.-D. Zing, /1.-Q. Gin, and V. (ing, Riss. Per. Bett. 121, 217001 (2018), NPb https://link.aps.org/doi/10.1103/PhysRevLett.121.217001.

1. Padmader and P.M. Iellado, Phys. Pey. B 98, 235158 (2018), LP1 https://link.aps.org/doi/10.1103/PhysRevB.98.235158.

20 N. (sobe, W. Y. Q. Quu, and M. Yu, Riys. Pey. 8, 6.16.1 (2018), APP https://link.aps.org/doi/10.1103/PhysRevX.8.041041.

² A.J. Xosiiso, W. W. Q. Quin, K. Xoretsnie, M.J. Odi, X. Xurdi, ad D. Vu, Phys. Per. X 8, 031087 (2018), Ph. https://link.aps.org/doi/10.1103/PhysRevX.8.031087.

 22 (.-Z. (ou a.d./ . Nisl., a.d. , as(i):1805.06867 (2018). 23 (./u, / .)M. | acDa ald, a.d. M. | artu, R. s. Pey. Pett. 121, 257001 (2018), PP https://link.aps.org/doi/10.1103/PhysRevLett.121.257001.

 24 . A . Zi u, K . Ying, nd M. J. Zi ng, as 1806.07535(2078).

25 B. Jine, Z. / Leg, and B. / . Benegig, axis:1807.0.382 (20.8).

²⁶ N. Juo, Y. Ziu, S. Ning, and P. K. Scalettar, Phys. Pep. B 97, 232 53 (2018), APP https://link.aps.org/doi/10.1103/PhysRevB.97.235453.

²⁷ (A. Zing ad K. Sastiil, ascin:1809.05110 (2018).
²⁸ (C. Po, M. Zou, K. Sastiil, add J. Sist and J. ascin:1808.0282 (2018).

29 1 2 mg and O. Nafel, arch.: 1810.086.2 (2018).
30 Q. Z. Kang, D. (mag, D. Zhang, T. C. Zinnig, and Q. Y. Zhang, arch.: 1809.06772 (2018).
31. Y. Kimishi, S. Gilatterjee, S. Sacider, and M. J. S.

Sd eurer, Plys. Pey. B 98, 075109 (2018), PP https://link.aps.org/doi/10.1103/PhysRevB.98.075109.

X. Wejazi, C. Wiu, W. Slapouřím, X. Glas, and M. Balasts, R. S. Pen. B 99, 035111 (2019), XPM https://link.aps.org/doi/10.1103/PhysRevB.99.035111.

 $^{33}\int$. Viu, \int . Viu, $\mathbf{1}$ d $\boldsymbol{\chi}$. Dai, as \mathcal{L}_{12} :1810.03103 (2018).

34 (-C. /u, OM). (in, nd C. /u, Pl.s. Per. B 99, 16 N05 (2019), PP1 https://link.aps.org/doi/10. 1103/PhysRevB.99.161405.

 35 \checkmark . Seo, $\rat{1}$. $\rat{1}$ oto, , and B. Ad oa, arc in 1812.02550

(2018).

 36 ψ . Bultud, S. Glatterjee, and M.J. \mathbf{P} . Zaletel,

36 P. Bulfield, S. Cramerjee, as in 1901.08110 (2019).

37 A. Dee, E. Stalaf, S. Biu, S. Biu, Z. P. ao, P. Sin, and A. Distributed C. Dai, as in 1903.08130 (2019).

38 A. Biu and S. D. Sama, as in 1903.1019 (2019).

39 T. Ziu and S. D. Sama, as in 1908.07875 (2019).

40 P. Bistritzer and A. M. LacDuald, Proceedings of the Platinial Academ of Scinces 108, 12233 (2011), ISSP 0027-8-2. d ttp://____aas.org/cmstmst/108/30/12233 full.pdf,

Ph http://www.pnas.org/content/108/30/12233.

L. Suáre M. Jorell, J. D. Correa, P. Dargas M.J. Pad eco, and Z. Bartice, R. S. Pep. B 82, 121-07 (2010), 82.121407. https://link.aps.org/doi/10.1103/PhysRevB.

42 S. Wing and E. Warras, W. S. Pen. B 93, 235153 (2016), https://link.aps.org/doi/10.1103/PhysRevB.

43 C. Krus bl., de Waissardière, DM Jayou, and DM Jagaud, Pl., s. Per. B 86, 125-13 (2012), APP https://link.aps.org/doi/10.1103/PhysRevB.86.125413.

44 (1.4. Zing, DM.Jao, (1. Cao, P. Jarillo Verrero, n.d. N. Snatil, Phys. Rep. B 99, 075127 (2019), 1. Ph https://link.aps.org/doi/10.1103/PhysRevB.99.075127.

45 A. Zing ad X. Snail, as in 1809.05110 (2018).
46 B. Gittan, G. Gin, J. Zing, Y. Ang, ad J. Ang,
Phys. Per. Bett. 122, 016.01 (2019), 220 https://link.
aps.org/doi/10.1103/PhysRevLett.122.016401.

47 B. Bersu, P. Medminsst, C. Müller, and M. Fierre, Plysica Scripta T49A, 192 (1993), APA https://doi.org/10.1088/2F0031-8949/2F1993/2F449a/2F032.

48 S. P. Airte, Phys. Per. Pett. 69, 2863 (1992).
 49 S. Salolly od , Per M. Jod. Phys. 77, 259 (2005).

49 N. Scholl oct, temporal strains, 1, 200 (2008), 50 (1. PM lcCullod), arch e-pairts arch: 080.2509 (2008),

51 Kn sor Wibrar, 1 ttp://itn sor.org/.

52 S. Sad de, S. See, B 45, 12377 (1992), PN https://link.aps.org/doi/10.1103/PhysRevB.45.12377.

53 7. / lag and . N. Lag. and . B. S. Pep. B 74, 170.23 (2006), Pp. https://link.aps.org/doi/10. 1103/PhysRevB.74.174423.

M.J. Mu, Plys. Pey. B 93, 165113 (2016), MPN https://link.aps.org/doi/10.1103/PhysRevB.93.165113.

55 4.4. Snig, 4.-C. Ye, 4. Nisk man, and C. Mang, and 1.1811.11182 (2018).

X.1. Saig, C. / laig, 14. Nisl matl, aid (.-C.) e, as 13:1811111186 (2018).

57 CM.J. (me; d. . Nime sne; d. . Pane ussne, Z. Br, ned C. Cu, Figs. 2e, B 97, 195115 (2018), LPN https://link.aps.org/doi/10.1103/PhysRevB.97.195115.

 $^{58}\, \Psi$. Pead and S. Saddes, Ψ uclear \blacksquare sics B 316, 609 (1989), SSV 0550-3213, P1 http://www.sciencedirect.com/science/article/pii/ 0550321389900618.