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Motivated by the recent observation of evidences of ferromagnetism in correlated insulating states
in systems with Moiré superlattices, we study a two-orbital quantum antiferromagnetic model on
the triangular lattice, where the two orbitals physically correspond to the two valleys of the original
graphene sheet. For simplicity this model has a SU(2)s ⊗ SU(2)v symmetry, where the two SU(2)
symmetries correspond to the rotation within the spin and valley space respectively. Through
analytical argument, Schwinger boson analysis and also DMRG simulation, we find that even though
all the couplings in the Hamiltonian are antiferromagnetic, there is still a region in the phase
diagram with fully polarized ferromagnetic order. We argue that a Zeeman field can drive a metal-
insulator transition in our picture, as was observed experimentally. We also construct spin liquids
and topological ordered phases at various limits of this model. Then after doping this model with
extra charge carriers, the system most likely becomes spin-triplet/valley-singlet d + id topological
superconductor as was predicted previously.

PACS numbers:

I. INTRODUCTION

Recently a series of surprising correlated physics such
as superconductivity and insulators at commensurate
fractional charge fillings have been discovered in multiple
systems with Moiré superlattices1–9. These discoveries
have motivated very active theoretical studies10–39. For
different reasons, these systems can have narrow electron
bandwidth near charge neutrality8,9,40–43, hence interac-
tion effects are significantly enhanced. A consensus of
the mechanism for the observed insulator and supercon-
ductor has not yet been reached. A minimal two-orbital
extended Hubbard model on the triangular lattice was
proposed in Ref. 10 (physically the orbital space corre-
sponds to the space of two Dirac valleys in the origi-
nal Brillouin zone of graphene), which at least describes
the trilayer graphene and hexagonal BN heterostructure
(TLG/h-BN)1,5, as well as the twisted double bilayer
graphene (TDBG)7–9 with certain twisted angle and out-
of-plane electric field (displacement field), since in these
cases there is no symmetry protected band touching be-
low the fermi energy, and the isolated narrow band has
trivial quantum valley topological number11,37,38,44–46.
This minimal model would then naturally predict either
a spin-triplet10 or spin-singlet12 d+ id topological super-
conductor, depending on the sign of the on-site Hund’s
coupling.

Evidence of spin-triplet pairing predicted previously10

was recently found in TDBG7,9. Evidence of ferromag-
netic correlated insulator at half filling away from charge
neutrality was discovered in the same system7–9. In
TDBG, besides clear ferromagnetism signature observed
at the 1/2-filling insulator7–9, it was also observed that
correlated insulators at 1/4 and 3/4 fillings emerge under
inplane magnetic field9, whose main effect is likely just
a spin-polarizing Zeeman effect. This observation im-
plies that the TDBG at 1/4 and 3/4 filling is rather close
to a ferromangetic correlated insulator, and a Zeeman

field would drive a metal-insulator transition. Evidence
of ferromagnetism at the insulating phase with 3/4 fill-
ing away from the charge neutrality was also found in
another Moiré system6.

Motivated by these experiments, in this work we in-
vestigate a quantum spin-valley model on the triangular
lattice with one fermion per site, which corresponds to
either 1/4 filling or 3/4 filling on the Moiré superlattice.
The Hamiltonian of this model reads

H =
∑
<i,j>

3∑
a,b=1

JT abi T abj + Jsσai σ
a
j + Jvτ bi τ

b
j , (1)

where σa and τ b are Pauli operators in the spin and val-
ley spaces, and T ab = σa ⊗ τ b. When Js = Jv = J ,
this model becomes the SU(4) quantum antiferromag-
netic model with fundamental representation on each
site. The SU(4) symmetry is broken by the Hund’s cou-
pling10, which in general makes Jv > J > Js, if we
choose the standard sign of the Hund’s coupling which
favors large spin on each site. But we assume that the
SU(4) breaking effect is not strong enough to change the
sign of Js, Jv and J , namely we keep all three coupling
constants positive, i.e. antiferromagnetic. Indeed, since
the Hund’s coupling originates from the exchange cou-
pling which involves overlap between wave functions at
the two valleys, the Hund’s coupling should be a rel-
atively weak effect since the inter-valley wave function
overlap is expected to be small because large momentum
transfer between the two valleys is suppressed by the long
wavelength modulation of the Moiré superlattice. For
simplicity we ignore other mechanisms that break the
SU(4) symmetry, such as valley-dependent hopping11,
hence in the spin-valley model Eq. 1 the valley space has
its own SU(2)v symmetry.
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II. DERIVATION OF THE SPIN-VALLEY
MODEL

The model Eq. 1 can be derived in the standard per-
turbation theory starting with a Hubbard model plus an
on-site Hund’s coupling on the triangular lattice. As we
mentioned in the introduction, this model at least applies
to TLG/h-BN1,5 and TDBG7–9 with certain twisted an-
gle and displacement field, since in these cases there is
no symmetry protected band touching below the fermi
energy, and the narrow band with correlated physics has
trivial quantum valley topological number (although the
exact valley topological number computed depends on
the models used in the literature)11,37,38,44–46:

H = Ht +HU +HV + . . . (2)

Ht = −t
∑
〈i,j〉

4∑
α=1

(
c†i,αcj,α + H.c.

)
, (3)

HU = U
∑
j

(nj − 1)
2
, (4)

HV = −V
∑
j

(
~̂σj

)2

+ V
∑
j

(
~̂τj

)2

, (5)

where c†j,α, cj,α are electron creation annihilation opera-
tors which have four flavors including both the spin and

valley indices, n̂j =
∑
α c
†
j,αcj,α is the total particle num-

ber per site, and 1
2 σ̂

a
j = 1

2c
†
jσ
acj is the total on-site spin

operator. The HU term is the on-site repulsive interac-
tion, and we assume the most natural sign of the Hund’s
coupling with V > 0, as a result of exchange interac-
tion. We treat the kinetic term Ht perturbatively. This
amounts to integrating out the charge degree of freedom
to obtain an effective spin-valley model in the correlated
insulator phase.

We follow the standard approach of degenerate per-
turbation theory. At quarter-filling, the ground state of
HU + HV has precisely one electron per site, and the
projection operator to the ground state manifold reads

P =
∏
j

(−1)
1

6
nj (nj − 2) (nj − 3) (nj − 4) . (6)

Considering any pair of nearest neighbor sites on the
Moiré superlattice, the ground state manifold can be fur-
ther divided into four sectors which correspond to spin-
singlet/triplet and valley-singlet/triplet states. We can
write

P = Pss + Pst + Pts + Ptt, (7)

where (for example) Pst means the projection to spin-
single/valley-triplet states. The effective Hamiltonian
can be calculated as

Heff = PHt
1

E0 −HU −HV
HtP, (8)

where E0 is the ground state energy for the two-site
problem. A detailed analysis of the intermediate states
considering the virtual hopping process can be found in
Ref. 10. We find that only Pst and Pts contribute to the
effective Hamiltonian which takes a diagonal form in this
basis

Heff = − 2t2

U + 4V
Pst −

2t2

U − 4V
Pts. (9)

Rewritten in terms of the SU(4) generators on the nearest
neighbor sites, the effective Hamiltonian is equivalent to
the spin-valley model Eq. 1 with the coupling constants
given by

Js = J − t2

U

(
2V

U
+O

(
V

U

)2
)
,

Jv = J +
t2

U

(
2V

U
+O

(
V

U

)2
)
,

J =
t2

4U

(
1 +O

(
V

U

)2
)
. (10)

There is a Z2 symmetry regarding the sign of the Hund’s
coupling. The coupling constants transform as Js/J ↔
Jv/J when we change V ↔ −V , as is naturally expected
from the form of the Hund’s coupling Eq. 5.

III. THE FM ⊗ 120◦ STATE

At least in certain limit, i.e. Jv � J � Js > 0, it
is fairly easy to see why ferromagnetism would emerge
in model Eq. 1 with all antiferromagnetic coupling con-
stants. First of all, the following state will always be an
eigenstate of the Hamlitonian:

|ΨFM〉 =

(∏
i

|σzi = +1〉

)
⊗ |AF of ~τ{i} 〉. (11)

This state is a direct product of two parts: the first
part is a fully-polarized ferromagnetic state of the spin ~σi
space; the second part is the ground state of the nearest-
neighbor antiferromagnetic quantum Heisenberg model
on the triangular lattice in the ~τi space. Although we
cannot write down the explicit form of the exact micro-
scopic wave-function |AF of ~τ{i} 〉, we do know that this
state has a 120◦ antiferromagnetic order with reduced
moment due to quantum fluctuation and geometric frus-
tration. This state Eq. 11 is always the eigenstate of
Eq. 1 because a fully polarized ferromagnetic spin state
is the eigenstate of operator ~σi ·~σj on every link < i, j >.
Then in the limit of Jv � J � Js > 0, this eigenstate
|ΨFM〉 is also the ground state, because intuitively on
every link the spin ~σi will see a background “effective”
ferromagnetic coupling

Jeff = Js + J〈~τi · ~τj〉. (12)
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FIG. 1: Phase boundary of the FM 120 state obtained

using DMRG on in nite cylinders with circumference Ly = 6.

The inset shows the energy per site obtained for Jv J = 7 as

function of Js J . Green squares (orange circles) indicate the

energies obtained using iDMRG when the spins are initialized

in a FM (AFM) product state. The solid blue line indicates

the energy expected for the FM 120 state.

Because φi φj < 0 for the 120 state of φi, for large

enough J the spins will see an e ective ferromagnetic

coupling, even though in the original model Eq. 1 all the

couplings are antiferromagnetic.

With a xed large Jv, while increasing Js, eventually

J φi φj will not be strong enough to overcome the an-

tiferromagnetic coupling Js, hence we expect to see a

transition from the FM �120 state to another state

without ferromagnetic order. Numerically47, φi φj is

found to be 0 73 for the triangular lattice quantum

antiferromagnet. If we evaluate the energy of FM in

Eq. 11, while increasing Js J , this state is no longer the

ground state when Js J > 0 73. Hence the intuitive ar-

gument gives an upper bound for the transition point of

Js J .
DMRG simulation of the spin-valley model

We now provide numerical evidence for the fact that

the FM�120 state is the ground state in the Jv J
Js limit and obtain the phase boundary of this state.

To this end we use the density matrix renormalization

group (DMRG) method48,49. We note that in nite sys-

tems, boundaries can introduce strong oscillations in the

expectation value of φi φj on nearest-neighbor bonds

(which are expected to be uniform when the valley de-

gree of freedom is in the 120 state), and thus a ect the

e ective coupling seen by the spins. To avoid such bound-

ary e ects we use in nite DMRG50. To observe uniform

bond expectation values when the valley degree of free-

dom is in the 120 state wide enough cylinders have to

be considered. We perform our analysis on cylinders of

circumference Ly = 6, for which we obtain mean bond ex-

pectation value φi φj ≈ 0 74, consistent with Ref. 47,

with spatial variations below one percent.

For our numerical simulations we use the ITensor li-

brary51. We assume a 3-site unit cell along the cylinder

to allow for the formation of a 120 state in the val-

ley and/or spin degrees of freedom. The valley degree

of freedom is initialized in the total φz = 0 sector and

φz quantum number conservation is used. The spin de-

gree of freedom is initialized either in the fully polarized

state, or a classical anti-ferromagnetic state with total
z = 0. The maximal bond dimension in our simulations

is M = 1000.

We nd that at large Jv and small Js, the system in-

deed converges to a fully polarized spin-FM and a 120 -

valley ordered state, independent of the initial conditions.

At larger Js we observe a state without any net magneti-
zation. At this stage we cannot conclude as to the nature

of the entire region with zero magnetization (with larger

Js and Js < J , for the total z = 0 sector and going

to bond dimensions of up to 4000 we have not identi-

ed a clear order for the spin degree of freedom), but in

the next section we will propose some possible interest-

ing liquid states and topological orders for this region of

phase diagram. The ground state energy obtained us-

ing iDMRG for a xed Jv J = 7 as function of Js, for

the two initial states, is shown in the inset of Fig. 1.

The solid blue line on the same plot indicates the en-

ergy expected for the FM�120 state, calculated using

a uniform bond expectation value φi φj ≈ 0 74 that

we obtain for the 120 state on in nite cylinders of cir-

cumference Ly = 6 as mentioned above. We estimate

the position of the phase boundary for each Jv J to be

at the Js J for which the lowest energy obtained using

iDMRG drops below the one expected for the FM�120

state. The resulting phase boundary as function of Jv J
and Js J is shown in the main Fig. 1. Our results for

the ground state energy and the magnetization across

the phase boundary both suggest that the transition be-

tween the ferromagnetic order and the paramagnet is a

rst order level-crossing.

Schwinger boson analysis
We can also construct the FM�120 state using the

Schwinger boson formalism. We rst de ne a four com-

ponent Schwinger boson bj on every site which forms

fundamental representation under both the spin and val-

ley SU(2) symmetry, and also a fundamental represen-

tation of the enlarged SU(4) symmetry. The Schwinger

boson Hilbert space is subject to a local constraint

4

=1

bj bj = τ (13)

Physically τ = 1, but in the Schwinger boson mean eld

calculation τ is often treated as a tuning parameter. The

Hamiltonian Eq. 1 can be reorganized into the following

form:

H = Jts
ts
ij

ts
ij + Jss

ss
ij

ss
ij

+ Jst
st
ij

st
ij + Jtttr

tt
ij

tt
ij (14)
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The operator ~∆ts
ij and ~∆st

ij are the spin-triplet/valley-
singlet, and spin-singlet/valley-triplet pairing operator
between Schwinger boson bα on site i, j:(

~∆ts
ij , ~∆

st
ij

)
= bti

(
iσ32, σ02, iσ12, σ23, iσ20, σ21

)
bj , (15)

where σab = σa ⊗ τ b, σ0 = τ0 = 12×2. Then ∆ss and
∆tt are the singlet/singlet, and triplet/triplet pairing re-
spectively, for example ∆ss

ij = btiσ
22bj .

In Eq. 14,

Jts = −1

4
(3Jv + 3J − Js), Jst = −1

4
(3J + 3Js − Jv),

Jss =
3

4
(3J − Js − Jv), Jtt =

1

4
(J + Js + Jv). (16)

With the most natural parameter region Jv > J >
Js > 0, Jts is always negative, and it corresponds to
the strongest mean field channel, while none of the other
parameters are guaranteed to be negative (for example
Jtt is always positive). Thus for the purpose of mean
field analysis, we will just keep the first term of Eq. 14,
and ignore all the rest three terms of Eq. 14. The mean
field Hamiltonian reads

HMF =
∑
ij

Jts

(
~φ · ~∆ts

ij +H.c.
)
− Jts|~φ|2

+
∑
j

µ(
4∑

α=1

b†j,αbj,α − κ), (17)

where ~φ is a complex vector under SU(2)s. Here we

choose a uniform ansatz of ~φ on the entire lattice, and all
the links i, j are included in the sum with the convention
j = i + ê with ê = (1, 0), (−1/2,±

√
3/2), i.e. the mean

field ansatz explicitly preserves the translation and rota-
tion by 2π/3 symmetry of the triangular lattice, while all
the crystal symmetries are preserved as projected sym-
metry group (PSG). µ is another variational parameter
of the mean field calculation which guarantees that the
filling of Schwinger boson is fixed at κ on every site.

The FM⊗ 120◦ ordered state corresponds to the mean

field ansatz with ~φ = ~φ1 + i~φ2, and the real vectors ~φ1

and ~φ2 orthogonal with each other. For example, when
~φ = φ(1, i, 0), only the spin-up (σ3 = +1) Schwinger
bosons participate in this mean field analysis. The fer-
romagnetic order parameter corresponds to the following
gauge invariant quantity:

~M ∼ i~φ× ~φ∗ ∼ ~φ1 × ~φ2. (18)

With only spin-up Schwinger bosons, the mean
field calculation reduces precisely to the SU(2) spin-
1/2 Heisenberg model on the triangular lattice52 with
Heisenberg coupling Jij = −4Jts (The Sp(N) Heisen-
berg model defined in Ref. 52 has Hamiltonian H =∑
i,j −

1
2N Jij∆

†
ij∆ij where ∆ij is the Sp(N) singlet pair-

ing between Schwinger bosons on sites i, j):

HMF =
∑
ij

Jts
(
2φ bt↑,iiτ

2bj,↑ +H.c.
)
− 2Jtsφ

2

+
∑
j

µ(
2∑

α=1

b†j,↑,αbj,↑,α − κ). (19)

Because the spin-down Schwinger bosons do not con-

tribute to the mean field decomposition when ~φ ∼
(1, i, 0), we replace the constraint in Eq. 13 by∑2
α=1 b

†
j,↑,αbj,↑,α = κ in Eq. 19. Now technically the

mean field theory Eq. 19 corresponds to the “zero-flux
state” in Ref. 53, which has lower mean field energy
than other mean field ansatz53 for this nearest neigh-
bor model, and it makes the minima of the Schwinger
boson band structure locate at the corner of the Bril-
louin zone ~Q = (±4π/3, 0). The mean field solution
gives µ > 0, which is consistent with the fact that we

set
∑2
α=1 b

†
j,↓,αbj,↓,α = 0. And at the mean field level,

when the filling of the Schwinger boson κ is greater than
0.3452, bα condenses, which leads to a fully polarized FM
in the spin space, and also 120◦ state in the valley space.

If the mean field value of ~φ is real (or equivalently if
~φ1 is parallel to ~φ2, for example, ~φ ∼ φ(0, 0, 1), both
spin-up and spin-down Schwinger bosons participate in
the mean field analysis, and the mean field analysis is
technically equivalent to the calculations in Ref. 52 for
the Sp(2) ∼ SO(5) antiferromagnet on the triangular lat-
tice also with Heisenberg coupling Jij = −4Jts, because(
~∆ts
ij ,
~∆st
ij

)
together form a SO(6) vector, and condensing

each component of the vector breaks the SO(6) down to

SO(5) ∼ Sp(2). Each component of ~∆ts can be viewed
as the Sp(2) singlet introduced in Ref. 52:

HMF =
∑
ij

Jts
(
φ btiiσ

12bj +H.c.
)
− Jtsφ2

+
∑
j

µ(
4∑

α=1

b†j,αbj,α − κ), (20)

Quoting the results in Ref. 52, the FM⊗ 120◦ state with
the previous mean field ansatz with φ1 ⊥ φ2 has a lower
mean field ground state energy density, which is consis-
tent with our analytical observation and also numerical
simulation.

—Zeeman field driven Metal-Insulator transition
Since the insulator has a fully polarized ferromag-

netic order, its energy can be tuned by an external Zee-
man field. An inplane magnetic field, whose main ef-
fect is the Zeeman coupling can drive a first order metal-
insulator transition (a level-crossing) between the unpo-
larized metal and the fully polarized ferromagnetic insu-
lator, as was observed experimentally at the 1/4 and 3/4
filling of TDBG7,9.

There is another possible mechanism of metal-insulator
transition driven by a Zeeman field. At the metalic side
at the transition, the system is likely described by a t−J
model with a similar J, Js, Jv terms as Eq. 1. The Zee-
man field tends to polarize the spin, which effectively in-
creases the antiferromagnetic coupling in the valley space
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Jveff = Jv + J〈~σi · ~σj〉. Thus at certain temperature, the
magnitude of the 120◦ order in the valley space is tun-
able and enhanced by an external Zeeman field. If the
insulating behavior of the system is a consequence of the
finite momentum valley order which folds the Brillouin
zone and partially gaps out the Fermi surface, an increas-
ing magnitude of the 120◦ order in the valley space can
gap out larger portion of the Fermi surface, decrease the
charge carrier density, and hence eventually drive a con-
tinuous metal insulator transition.

IV. LIQUIDS AND TOPOLOGICAL PHASES

When Jv ∼ Js ∼ J , it would be rather difficult for
the system to form any semiclassical order due to “dou-
ble frustration”: the Js and Jv term of Eq. 1 are both
already frustrated due to the geometry of the triangu-
lar lattice, while the J term further frustrates/disfavors
the simultaneous 120◦ semiclassical order of ~σi and ~τi.
Since there is an obvious Lieb-Shultz-Matthis theorem
which forbids a completely trivial disordered phase, we
expect this “double frustration” effect to lead to either a
completely disordered spin-valley liquid state, or a par-
tially ordered state with certain topological order. In this
section we explore several possible spin-valley liquids or
topological orders in the region Jv ∼ Js ∼ J .

—Spin nematic Z2 topological phase
Let us get back to the mean field Hamiltonian Eq. 17.

As we discussed before, if the mean field value of ~φ is

real (or equivalently if ~φ1 is parallel to ~φ2, for exam-

ple, ~φ ∼ (0, 0, 1), both spin-up and spin-down Schwinger
bosons participate in the mean field analysis, and the
mean field analysis is technically equivalent to the calcu-
lations in Ref. 52 for the Sp(4) antiferromagnet on the
triangular lattice. And with large spin symmetry, the
quantum fluctuation makes it more difficult for bα to
condense. If bα is not condensed, the mean field order

parameter ~φ already breaks the SU(2)s, and also break
the U(1) gauge symmetry down to Z2 gauge degree of
freedom.

The nature of the state with condensed ~φ but un-

condensed bα depends on the nature of ~φ under time-
reversal. The transformation of bα under time-reversal
can be inferred by the fact that ~σ → −~σ, (τ1, τ2, τ3) →
(τ1, τ2,−τ3):

T : bj → iσ21bj , ~∆ts
ij → ~∆ts

ij , (21)

as long as ~φ is a real vector (or ~φ1 parallel with ~φ2),
time-reversal is preserved, and this state is a spin nematic

Z2 topological order. By contrast, if ~φ1 ⊥ ~φ2 the time-
reversal is broken.

—Z2 × Z2 spin-valley liquid
More states can be constructed by introducing two fla-

vors of Schwinger bosons bsj,α and bvj,α for the spin and
valley space on each site respectively, which are subject

to the constraint∑
α=1,2

bs,†j,αb
s
j,α = bv,†j,αb

v
j,α = 1. (22)

These two constraints introduces two U(1) gauge sym-
metries. It is fairly straightforward to construct the
FM ⊗ 120◦ state using this type of Schwinger bosons:
bsα condenses at zero momentum, while simultaneously
bvα condenses at the corner of the Brillouin zone.

In fact, due to the “double frustration” effect, both
the spin and valley space can form a Z2 topological order
(overall speaking the system is in a Z2 × Z2 spin-valley
liquid state), whose e particles carry the fundamental
representation of SU(2)s and SU(2)v respectively, as long
as neither bsj,α nor bvj,α introduced in Eq. 22 condenses
when the mean field parameters break both U(1) gauge
symmetries down to Z2.

Starting from the Z2 ×Z2 spin-valley liquid state, one
can also construct a spin-valley liquid with only one Z2

topological order. This can be formally obtained by
forming bound state of the “visons” (the m excitations)
of both Z2 topological orders, and condense the bound
state. This condensate will confine bsα and bvα separately,
but their bound state is still deconfined, and becomes the
e particle of the new Z2 topological order. This final Z2

topological order preserves all the symmetries of the sys-
tem, and it can also be constructed using the same mean
field formalism as Eq. 14, as long as one condenses the
spin-singlet/valley-singlet pairing operator ∆ss

ij in Eq. 14.
—U(1)×U(1) Dirac spin-valley liquid
More exotic spin-valley liquid states can be constructed

by introducing fermionic slave particles fsj,α and fvj,α
which are subject to the constraints∑

α=1,2

fs,†j,αf
s
j,α = fv,†j,αf

v
j,α = 1. (23)

In Ref. 54, a Dirac spin liquid with U(1) gauge field and
Nf = 4 flavors of Dirac fermions was constructed for spin-
1/2 systems on the triangular lattice. And this Dirac spin
liquid is the parent state of both the 120◦ ordered state
and the valence bond solid state54–56, and it could be
a deconfined quantum critical point between these two
different ordered states57.

In our case, both spin and valley space can form the
Dirac liquid phase mentioned above, due to the double
frustration effect. Thus in total there are eight flavors of
Dirac fermions and two U(1) gauge fields.

— The SU(4) point
At the point Jv = Js = J , this model has a SU(4) ∼

SO(6) symmetry. Although semiclasical approach such
as nonlinear sigma model were studied before for SU(N)
antiferromagnet with other representations58, with a fun-
damental representation on every site, this model has no
obvious semiclassical limit to start with, and it is ex-
pected to be a nontrivial spin liquid or topological or-
der. At this point, it is most convenient to define a
four component Schwinger boson bj,α on every site which
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forms fundamental representation under both the spin
and valley SU(2) symmetry, and there is a constraint∑4
α=1 b

†
j,αbj,α = 1.

Unlike a SU(2) spin system, one can prove that at the
SU(4) point there cannot be a fully symmetric Z2 spin
liquid whose e particle is the bα slave particle. The reason
is that all the local spin excitations can be written as

b†j,αbj,β with different α, β = 1 · · · 4, hence all the local
spin excitations are invariant under the Z4 center of the
SU(4) group. In a Z2 topological order, two of the e
particles should merge into a local excitations, while two
bα slave particle cannot fuse into a representation that is
invariant under the Z4 center. This argument also shows
that a Z2 topological order whose e particle is a SO(6)
vector is allowed.

On the other hand, using the slave particle bα one
can construct a Z2 topological order with certain spon-
taneous SU(4) symmetry breaking. At the SU(4) point,
the model Eq. 1 can be written as

H =
∑
ij

J

(
−5

4
(~∆†ij) · (~∆ij) + · · ·

)
, (24)

where ~∆ij is a six component vector pairing between bα.
One can introduce a six component complex SO(6) vector

mean field parameter ~φ:

HMF =
∑
ij

J

(
−5

4
~φ · ~∆ij +H.c.

)
+

5

4
J |~φ|2. (25)

The complex vector ~φ = ~φ1 + i~φ2, where its real and

imaginary parts ~φ1 and ~φ2 can be either parallel or or-
thogonal to each other. If the Schwinger boson does not
condense, both mean field theories would lead to a Z2

topological order on top of the spontaneous SU(4) sym-
metry breaking.

Our DMRG simulation actually suggest that the SU(4)
point of the spin-valley model is a spin-valley liquid state
with a Fermi surface of fermionic slave particles, which
will be presented in detail in another work.

V. CONCLUSION

In this work we demonstrated both analytically and
numerically that a quantum spin-valley model with all
antiferromagnetic interaction can have a fully polarized
ferromagnetic order in its phase diagram. We propose
possible mechanism for an inplane Zeeman field to drive
a metal-insulator transition, as was observed experimen-
tally at the 1/4 and 3/4 filling of TDBG. We also dis-
cussed various possible nontrivial spin-valley liquid state
and topological order of this model.
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superconductor with spin triplet pairing.
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