
Durable Top-kkk Queries on Temporal Data

Junyang Gao
Duke University

jygao@cs.duke.edu

Pankaj K. Agarwal
Duke University

pankaj@cs.duke.edu

Jun Yang
Duke University

junyang@cs.duke.edu

ABSTRACT

Many datasets have a temporal dimension and contain a wealth of

historical information. When using such data to make decisions,

we often want to examine not only the current snapshot of the

data but also its history. For example, given a result object of a

snapshot query, we can ask for its “durability,” or intuitively, how

long (or how often) it was valid in the past. This paper considers

durable top-k queries, which look for objects whose values were

among the top k for at least some fraction of the times during a

given interval—e.g., stocks that were among the top 20 most heav-

ily traded for at least 80% of the trading days during the last quarter

of 2017. We present a comprehensive suite of techniques for solv-

ing this problem, ranging from exact algorithms where k is fixed in

advance, to approximate methods that work for any k and are able

to exploit workload and data characteristics to improve accuracy

while capping index cost. We show that our methods vastly outper-

form baseline and previous methods using both real and synthetic

datasets.

PVLDB Reference Format:

Junyang Gao, Pankaj K. Agarwal, Jun Yang. Durable Top-k Queries on
Temporal Data. PVLDB, 11 (13): 2223-2235, 2018.
DOI: https://doi.org/10.14778/3275366.3275371

1. INTRODUCTION
Many domains naturally produce temporal data. Making deci-

sion with such data involves considering not only the current snap-

shot of the data, but also its history. We consider the problem of

finding “durable” objects from temporal data. Intuitively, while

a snapshot query returns objects satisfying the query condition in

the current snapshot, a durability query returns objects that satisfy

the query condition with some consistency over time. Durability

queries can vary in complexity. As a simple example, in an en-

vironmental monitoring setting, a scientist may want to know lo-

cations where pollutant levels have consistently remained above a

threshold considered dangerous. As a more complex example, in a

stock market, an investor may be interested in stocks whose price-

to-earning ratios had been among the lowest 10 in the tech industry

over 80% of the time over the past year.

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by­nc­nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication
rights licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 11, No. 13
ISSN 2150­8097.
DOI: https://doi.org/10.14778/3275366.3275371

In this paper, we tackle τ -durable top-k queries, which general-

ize the last example above and have also been considered in [19].

Given a database of objects with time-varying attributes, assume

that we can rank these objects for every time instant. Intuitively, a

τ -durable top-k query returns, given a query interval I , objects that

rank among the top k for at least τ fraction of the time instants in

I . In our last example above, τ = 0.8 and k = 10. We give a more

formal problem statement below.

Problem Definition. Consider a discrete time domain of inter-

est T = {1, 2, . . . ,m} and a set of objects labeled 1, 2, . . . , n,

where each object i has a time-varying value given by function

vi : T → R. Let D = {vi | 1 ≤ i ≤ n} denote this time

series database.

Given time t ∈ T and object i, let ranki(t) denote the rank of i
among all objects according to their values at time t; i.e., ranki(t) =
1 +

∑

1≤j≤n 1[vj(t) > vi(t)].

Given a non-empty interval [a, b) ⊂ T,1 we define durki ([a, b)),
the durability of object i over [a, b) (with respect to a top-k query),

as the fraction of time during [a, b) when object i ranks k or above;

i.e., durki ([a, b)) = (
∑

t∈[a,b) 1[ranki(t) ≤ k])/(b− a).

Given D, a non-empty interval I ⊆ T, and a durability thresh-

old τ ∈ [0, 1], a durable top-k query, denoted DurTopk(I, τ), re-

turns the set of objects whose durability during I is at least τ , i.e.,

DurTopk(I, τ) = {i ∈ [1, n] | durki (I) ≥ τ}.

Contributions. We present a comprehensive suite of techniques

for answering durable top-k queries. First, even in the simpler case

when the query parameter k is fixed and known in advance, appli-

cation of standard techniques would lead to query complexity linear

in either the number of objects, or the total number of times objects

entering or leaving the top k during the query interval. We develop

a novel method based on a geometric reduction to 3d halfspace

reporting [1], with query complexity only linear in the number of

objects in the result, which can be substantially less than how many

times they enter or leave the top k during the query interval.

When k is not known in advance, supporting efficient queries

becomes more challenging. A straightforward solution is to ex-

tend the fixed-k solution and build an index for each possible k,

but doing so is impractical when there are many possible k val-

ues. Instead, we consider two approaches for computing approx-

imate answers: sampling-based and index-based approximation.

The sampling-based approach randomly samples time instants in

1By abuse of notation, we use [a, b) to represent all integers in interval
[a, b): i.e., [a, b) = {a, a + 1, . . . , b − 1}, where 1 ≤ a < b ≤ m + 1.
We will use this notation throughout the paper without further explanation
if the context is clear.

2223

the query interval, and approximates the answer with the set of ob-

jects that are durable over the sampled time instants (instead of the

full query interval). It provides a good trade-off between query

time (number of samples drawn) and result quality. The index-

based approach selects useful information to index in advance—

much like a synopsis [4]—from which queries with any k can be

answered approximately. We frame the problem of selecting what

to index as an optimization problem whose objective is to minimize

expected error over a query workload, and explore alternative solu-

tion strategies with different search spaces. This approach is able

to achieve high-quality approximate answers with fast query time

and low index space.

2. RELATED WORK
Lee et al. [11] considered the problem of computing consistent

top-k queries over time, which are essentially a special case of τ -

durable top-k queries with τ = 1. The basic idea of their solution is

to go through the query interval and verify membership of objects

in the top k for very time instant. This process can be further sped

up by precomputing the rank of each object at every time instant

and storing this information in a compressed format. However, for

long query intervals, this approach is still inefficient as its running

time is linear in the length of the query interval (as measured by the

number of time instants).

Wang et al. [19] extends the problem to the general case of τ ≤
1. One key observation is that in practice, between two consecutive

time instants, the set of top k objects is likely to change little. Their

approach, called TES, precomputes and indexes changes to top-k
memberships over time (and only at times when actual changes oc-

cur). Given a query interval, TES first retrieves the top k objects at

the start of the interval. Next, using its index, TES finds the next

time instant when the top-k set differs from the current, and updates

the set of candidate objects and how long they have been in the top

k so far; those with no chance of meeting the durability threshold

(even assuming they are among the top k during the entire remain-

ing interval to be processed) can be pruned. The process continues

until we reach the end of the query interval. The time complexity of

TES is linear in the total number of times objects entering or leav-

ing the top k during the query interval, which can still be as high as

k times the length of the query interval for complex temporal data.

Durable top-k queries also arise in informational retrieval [13].

Given a set of versioned documents (web pages whose contents

change over time), a set of query keywords Q and a time interval

I , the problem is to find documents that are consistently—more

than τ fraction of the time over over I—among the most relevant

to Q. The focus of [13] is how to merge multiple per-keyword

rankings over time efficiently into a ranking for Q, based on the

rank aggregation algorithm by Fagin et al. [6]. The problem in our

setting does not have this dimension of Q, so we are able to devise

more efficient indexes and algorithms. Finally, approximation has

not been addressed by any previous work above [11, 13, 19].

Returning τ -durable top-k objects is related to ranking temporal

objects based on their durability score during the query window,

which leads to another line of related work on ranking temporal

data. Li et al. [12] first considered instant top-k queries, which

ranks temporal objects based on a snapshot score for a given time

instant. Then, Jestes et al. [10] studied a more general and ro-

bust ranking operation on temporal data based on aggregation—for

each temporal object, an aggregate score (based on average or sum,

for example) is first computed from the object’s time-varying value

over the query interval, and then the objects are ranked according

to these scores. Note that their problem is markedly different from

ours: in our problem setting, we cannot directly compute the dura-

bility score of an object without examining all other objects’ values

over the query interval. Nonetheless, given a fixed k, we could pre-

compute a time-varying quantity hk
i (t) = 1[ranki(t) ≤ k] for each

object i and treat the results as input to the problem in [10], with

durability defined using the sum of hk
i (t) over time. Indeed, one of

the baseline methods we consider in Section 3 for the simple case

of fixed k, based on precomputed prefix sums [8], uses essentially

the same idea as the exact algorithm in [10]. The case of variable k
we consider requires very different approaches. While approxima-

tion was also considered in [10], they focus on approximating each

object’s time-varying value with selected “breakpoints” in time. In

contrast, because we cannot afford to index hk
i (t) for all possible k

values, we focus on how to select k’s to index in Section 4.2, which

is orthogonal to the approach in [10].

3. DURABLE TOP­KKK WITH FIXED KKK

This section considers the simpler case of durable top-k queries

where the query parameter k is fixed and known in advance; only

the query interval I is variable. Practically, this problem is less

interesting than the case where k is variable and known only at

query time. Nonetheless, we study this problem because its solu-

tions can be used as a building block in solving the variable k case.

We shall quickly go over two baseline methods based on standard

techniques, and then present in more detail a novel method based

on a geometric reduction. All these methods are exact.

Before presenting these methods, we introduce some notation.

For each object i, we define the time-varying indicator function

hk
i (t) = 1[ranki(t) ≤ k] for t ∈ T; its value at time t is 1 when

object i is among the top k at time t, or 0 otherwise. The durability

of object i over query interval I is simply the sum of this function

over t ∈ I , divided by the length of I . According to this function,

we can define for each object i a partitioning of T into a list Iki of

maximal intervals, such that:

• For each J ∈ I
k
i , hk

i (t) remains constant (either 1 or 0) for

all t ∈ J . We call J a 1-interval if this constant is 1, or

0-interval otherwise.

• For each pair of consecutive intervals J and J ′ in I
k
i , hk

i (t) 6=
hk
i (t

′) for all t ∈ J and t′ ∈ J ′. In other words, 1-intervals

and 0-intervals alternate in I
k
i , and each of them is maximal.

Intuitively, |Iki |, the number of intervals in I
k
i , measures the “com-

plexity” of hk
i (t) and is basically (one plus) the number of times

that object i enters or leaves the top k. Give k, we write |Ik| =
∑n

i=1|I
k
i | for the overall complexity of top-k membership over

time, or roughly, the total number of times that objects enter or

leave the top k over time. Given time interval I , we write |Ik[I]| =
∑n

i=1

∑

J∈I
k
i
1[J ∩ I 6= ∅] for the complexity of top-k member-

ship over I .

Note that given k, computing I
k
i (equivalently, hk

i (t)) for all ob-

jects takes only O(mn) (i.e., linear) time, assuming that data is

clustered by time such that the values of all objects at any time in-

stant can be efficiently retrieved—even if they may not be sorted

by value, a linear-time (top-k) selection algorithm can compute the

membership of each object in the top k [3, 16]. If data is not clus-

tered by time, we simply sort first. All methods below require com-

puting hk
i (t) and/or Iki for all objects for index construction.

3.1 Baseline Methods

Prefix Sums. A simple method for finding the τ -durable top-k
objects would be to compute the durability of each object over the

query interval and check if it is at least τ . Instead of computing

the durability an object i naively by summing hk
i (t) over the query

2224

0 2 4 6 8

t

0

0.5

1

1.5

2
h

ik
(t

)

0 2 4 6 8

t

0

1

2

3

4

5

H
ik
(t

)

Figure 1: Example hk
i (t) (left) and Hk

i (t) (right).

interval instant by instant, a standard method is to precompute and

index the prefix sums [8] for hk
i (t), defined as follows: Hk

i (1) = 0
and Hk

i (t) =
∑

1≤t′<t h
k
i (t). Then, we can compute the dura-

bility of object i over interval [a, b) using the prefix sums at the

interval endpoints; i.e., durki ([a, b)) = (Hk
i (b) −Hk

i (a))/(b − a).
The prefix-sum function Hk

i (t) is piecewise-linear, as illustrated in

Figure 1, where each piece corresponds to a 1-interval (if the slope

is 1) or 0-interval (if the slope is 0). Thus, we need to store and in-

dex only the breakpoints in a standard search tree (such as B+tree),

which takes O(|Iki |) space and supports Hk
i (t) lookups (and hence

durability computation over any interval) in O(log|Iki |) time, inde-

pendent of the length of the query interval. The same idea was used

in [10], as discussed in Section 2.

In practice, unless |Iki | is large, it is feasible to simply store

Hk
i (t) either as a sparse array of time-count pairs sorted by time, or

as a dense array of counts (where the array index implicitly encodes

the time), whichever uses less space. Doing so does not change

the asymptotic space or time complexity, but often results in more

compact storage.

Overall, given k, precomputing and indexing Hk
i for all objects

only takes time linear in the size of the database, and requires

O(|Ik|) index storage. With this method, although testing whether

an object τ -durable is very efficient, we must still check every ob-

ject, so the running time of a durable top-k query is still linear in

n, the total number of objects.

Interval Index. In practice, when k ≪ n, many objects may

never enter the top k at any point during the query interval; the

method above could waste significant time checking these objects.

To avoid such unnecessary work, we can apply another standard

technique: storing the 1-intervals for all objects in standard inter-

val index (such as interval tree) that supports efficient reporting of

intervals overlapping a query interval (logarithmic in the number

of indexed intervals and linear in the number of result intervals).

Given a query interval I , we use the index to find all 1-intervals that

overlap with I , and simply go through these 1-intervals to compute

durabilities for objects associated with these intervals (those not en-

tirely contained in I require special, but straightforward, handling).

Any object with 0 durability in I will never come up for processing.

Overall, given k, precomputing and indexing 1-intervals for all

objects takes time linear in the size of the database, and requires

O(|Ik|) index storage. The running time of a durable top-k query

over interval I is logarithmic in |Ik| but linear in |Ik[I]| (or the

number of times objects enter and leave top k during I).

3.2 Reduction to 3d Halfspace Reporting
The two baseline methods each have their own weakness. In

practice, durable top-k queries tend to be selective—after all, they

intend to find special objects. However, the method of prefix sums

examines every object (and hence runs in time linear in n), while

the method of interval index examines all 1-intervals during the

query interval (and hence runs in time linear in |Ik[I]|). These

methods can end up examining substantially more objects beyond

Figure 2: A geometric representation of cntki (x, y).

those in the actual result, as will shall see from experiments in Sec-

tion 5.1. Ideally, we would like an algorithm whose running time

is linear only in the number of actual result objects. In this section,

we present a novel reduction of durable top-k queries (for a fixed

k) to 3d halfspace reporting queries. Using the halfspace reporting

data structure proposed in [1], we can answer a durable top-k query

in time polylogarithmic in |Ik| plus the number of result objects.

The 3d halfspace reporting problem asks to preprocess a set of

points in R
3 in a data structure such that all points lying in a query

halfspace can be reported efficiently. Using the well-known point-

plane duality transform [5], an equivalent formulation of the prob-

lem is to store a set of planes in R
3 such that all planes below/above

a query point can be reported efficiently.

Consider object i. Let cntki (x, y) be the number of times that ob-

ject i ranks within the top k during [x, y). We show that cntki (x, y)
can be represented by a bivariate piecewise-linear function, with

the domain of each piece being a rectangle of the form [a, b) ×
[a′, b′) ⊆ T

2,2 where both [a, b) and [a′, b′) are intervals in I
k
i and

[a, b) precedes or is the same as [a′, b′); see Figure 2. There are a

total of N = |Iki |(|I
k
i |+ 1)/2 pieces. Note that:

• If [a, b) is a 1-interval, then cntki is linear in x with x-slope

of −1. Intuitively, when x lies in a 1-interval, cntki (x+ 1, y)
will be one less than cntki (x, y), for losing the contribution

of 1 from time instant x. On the other hand, if [a, b) is a

0-interval, then cntki does not change with x.

• If [a′, b′) is a 1-interval, then cntki is linear in y with y-slope

of 1. Intuitively, when y lies in a 1-interval, cntki (x, y + 1)
will be one more than cntki (x, y), for gaining the contribution

of 1 from time instant y. On the other hand, if [a′, b′) is a

0-interval, then cntki does not change with y.

Therefore, based on their domains, the linear functions can be clas-

sified into four types (0, 0), (0, 1), (−1, 0), and (−1, 1) below

(here c = cntki (a, a
′)):

[a′, b′) is 0-interval [a′, b′) is 1-interval

[a, b) is 0-interval Type (0, 0): Type (0, 1):

c c + (y − a′)
[a, b) is 1-interval Type (−1, 0): Type (−1, 1):

c − (x − a) c − (x − a) + (y − a′)

Geometrically, as Figure 2 shows, cntki (x, y) consists of O(|Iki |
2)

rectangular pieces classified into the four types above. Now, imag-

ine that in this 3d space, we put together all such pieces for all

n objects in our database. Note that DurTopk([x, y), τ) = {i ∈
[1, n] | cntki (x, y) ≥ τ · (y − x)}. From a geometric perspective, a

DurTopk([x, y), τ) query is specified by a point p = (x, y, τ(y−x))
in 3d, and should return precisely those pieces laying above or con-

taining p—each such piece corresponds to a result object. With the

index structure and algorithm in [2], we can support this query in

O(N polylogN) space and O(polylogN+|A|) time, where N =
∑n

i=1|I
k
i |(|I

k
i |+1)/2, and |A| denotes the number of result objects.

Note that O(polylogN) = O(polylog|Ik|2) = O(polylog|Ik|).
2Here, instead of interpreting [a, b) and [a′, b′) as sets of consecutive inte-
gers as before, we treat them as continuous intervals, and [a, b) × [a′, b′)
would technically be a rectangle in R

2.

2225

0

5

0

10

15
c
n

t ik
(x

,y
)

x
y

105 50

Function z = c + (y-a')

Query point (x,y,z)

0

1

0

2

3

c
n

t ik
(x

,y
)

4

5

x

10

y

55 0

Sheared query point (x,y,z-y)

Sheared function z = c - a'

Figure 3: Shearing Type-(0, 1) pieces of cntki (x, y) to be axis-

aligned. The original coordinate space is on left and the trans-

formed space on the right.

A Practical R­tree Implementation. As practical alternative

to the theoretically optimal data structure from [2], we can index all

pieces of cntki (x, y) from all objects in a single 3d R-tree. However,

an obvious shortcoming of this approach is that many such pieces—

namely, those of types (0, 1), (−1, 0), and (−1, 1))—are not axis-

aligned, so they have rather large and loose bounding boxes that

lead to poor query performance.

Taking advantage of the observation that the pieces of cntki (x, y)
have only four distinct orientations, we propose a simple yet effec-

tive alternative that avoids the problem of non-axis-aligned pieces

altogether. We use four 3d R-trees, one to index each type of

cntki (x, y) pieces for all objects. Within each R-tree, all pieces share

the same orientation and have boundaries parallel to each other’s,

making them efficient to index as a group (more details below).

Then, a DurTopk([x, y), τ) query can be decomposed into four 3d

intersection queries, one for each of the R-trees.

In particular, for the R-tree indexing all Type-(0, 0) pieces, each

piece is an axis-aligned rectangle [a, b) × [a′, b′) × [c, c], lying

parallel to the xy-plane and vertically positioned at c. To answer

(the part of) DurTopk([x, y), τ) in this R-tree, we simply need to find

all rectangles stabbed by an upward vertical ray originating from

(x, y, τ(y − x)).
For an R-trees indexing pieces of a type other than (0, 0), al-

though the pieces are not axis-aligned to begin with, we can ap-

ply a shear transformation to the 3d coordinate space such that

these pieces become axis-aligned and the query ray remains ver-

tical. Hence, indexing and querying these sheared objects becomes

exactly the same problem as in the R-tree for Type-(0, 0) pieces.

For example, consider the following shear transformation for Type-

(0, 1) pieces, which takes a point (x, y, z) to




1 0 0
0 1 0
0 −1 1









x
y
z



 = (x, y, z − y).

Under this shear transformation, a Type-(0, 1) piece would become
an axis-aligned rectangle [a, b)× [a′, b′)× [c− a′, c− a′], paral-

lel to the xy-plane and vertically positioned at c − a′. The query

ray would originate from (x, y, τ(y − x)− y) and remain upward

vertical. Figure 3 illustrates this transformation. Shear transforma-

tions for other types can be similarly defined. We summarize them

below:
Type (0, 1) Type (−1, 0) Type (−1, 1)

Shear matrix





1 0 0
0 1 0
0 −1 1









1 0 0
0 1 0
1 0 1









1 0 0
0 1 0
1 −1 1





In sum, with four R-trees, we can process a DurTopk([x, y), τ)
query as four 3d queries intersecting a vertical query ray with ver-

tically elevated axis-parallel rectangles. The total space complex-

ity is O(N), lower than the theoretically optimal structure. While

this approach no longer offers the same theoretical guarantee on

the query time, it uses only a simple, standard data structure, and

is very efficient in practice, as we shall see from the experimental

evaluation in Section 5.1.

4. DURABLE TOP­KKK WITH VARIABLE KKK

The problem when k is variable and known only at the query

time is more interesting and challenging than the case of fixed k.

Naively, one could support variable k by creating an index for each

possible value of k, using one of the methods from Section 3. How-

ever, doing so is infeasible when there exist many possibilities for

k. As discussed in Section 2, TES, the best existing solution, in-

dexes all top-k membership changes over time, and runs in time

linear to the number of such changes during the query interval. For

data with complex characteristics, TES requires a large index and

still has high query complexity. In practice, users may be fine ap-

proximate answers to durable top-k queries. For example, it may

be acceptable if we return a few durable top-55 objects when users

ask for durable top-50 objects. Hence, in this section, we study ap-

proaches that allow us answer DurTopk(I, τ) queries with variable k
approximately and efficiently, with much lower space requirement.

Our methods come in two flavors: sampling-based and index-

based. The sampling-based approach is simple: we simply sample

time instants in the query interval I randomly, and use the durabil-

ities of objects over the sampled time instants as an approximation

to their durabilities over I . The index-based approach aims at pro-

viding approximate answers efficiently using a small (and tunable)

amount of index space—preferably small enough that we can af-

ford to keep the entire index in memory even for large datasets. To

this end, this approach intelligently chooses the most useful infor-

mation to index, based on query workload and data characteristics.

We note that given k and an object i, hk
i may not be all that dif-

ferent from hk+1

i (i.e., how object i enters or leaves top k is likely

similar to how it enters or leaves top k + 1); hence, remembering

hk
i may provide a good enough approximation to hk+1

i . Further-

more, not all k’s are queried with equal likelihood, and for some

k’s and i’s, hk
i has low complexity, and may in fact simply remains

0 throughout T. The index-based approach uses these observations

to guide its selection of what to index under a space budget. The

remainder this section describes the two above approaches, with

more emphasis on the index-based one.

4.1 Sampling­Based Method
Given query interval I , the sampling-based method chooses a

set of time instants IR randomly from I . With a slight abuse of

notation, let durki (IR) = (
∑

t∈IR
1[ranki(t) ≤ k])/|IR|. For each

t ∈ IR, this method computes the top k objects at time t, and keeps

a running count of how many times each object has been seen so far.

After examining all IR, the method returns the objects appearing at

least τ |IR| times, i.e., those with durki (IR) ≥ τ , as an approximate

answer to DurTopK(I, τ). With a sufficient number of sampled time

instants, we can ensure that durki (I) and durki (IR) are close with high

probability, as the following lemma shows (because of space limits,

see the extended version of this paper [7] for all proofs):

LEMMA 1. For the given parameters ǫ, δ ∈ (0, 1), let IR be a

set of randomly sampled time instants from I of size 1
2(ǫτ)2

ln(2k
δτ
).

Then for any object i, |dur
k

i (I) − dur
k

i (IR)| ≤ ǫτ , with probability

at least 1− δ.

The lemma guarantees that with sufficient samples, this method

with return any object with durki (I) ≥ (1 + ǫ)τ with probability at

least 1−δ; moreover, it will not return any object durki (I) < (1−ǫ)τ
with probability less than δ.

The running time of this method is linear in the number of sam-

ples. However, note from Lemma 1 that this number depends only

on k, ǫτ and δ, and not on the length of the query interval. Thus,

this method shines particularly for large query intervals, compared

with a naive exact method that has to examine every time instant

2226

i

K

Data-oblivious

k

k′

i

K

Column-wise

k

k′

i

K

Cell-wise

kk′

k′

k′

k′

Figure 4: Illustration of three index-based methods.

in the query interval. This approach works well if data is already

clustered by time, and ordered for each time instant (e.g., data on

Billboard 200 music charts would be naturally organized this way).

Otherwise, this approach would require either sorting objects at

sampled time instants during query evaluation (which is slower) or

pre-sorting objects and remembering their ordering for every time

instant (which takes more space).

4.2 Index­Based Approach
We now discuss an alternative approach that indexes a small

amount of data in order to answer durable top-k queries with vari-

able k approximately. Let K denotes the possible values of k that

can appear in a query, which in the worst case can be on the order of

n, the number of objects. Indexing Hk
i (the prefix sums for hk

i) for

each object i and each k ∈ K would be infeasible. Instead, given a

storage budget, we would like to choose a subset of possible (i, k)
pairs and only index them instead.

In more detail, for each object i, we index Hk
i only for a subset

Ki ⊆ K. As discussed in Section 3.1, by storing the prefix sums

Hk
i (which takes |Iki | space), we can compute durki (I) quickly us-

ing simply two fast index lookups (which takes log|Iki | time). But

what happens when the query specifies a k value not in Ki? In this

case, we find some “substitute” k′ ∈ Ki where hk′

i “best approx-

imates” hk
i (we will later clarify what that means precisely later).

Then, instead of checking durki (I) ≥ τ , we would check whether

durk
′

i (I) ≥ τ to decide whether to return object i.
We introduce some additional notation before going further. Let

M ⊆ [1, n] × K (where Ki = {k | (i, k) ∈ M}) specify what

(i, k) pairs to index. Note that we could choose Ki = ∅ for some i;
in that case, we effectively “forget” object i altogether—we would

pay no indexing cost for i and it would not be returned by any query.

Let map : [1, n]×K → K∪{⊥} specify the mapping function that

directs queries to appropriate indexed entries. Of course, if (i, k) ∈
M , then map(i, k) = k; otherwise, map(i, k) returns some k′ ∈ Ki

as a “substitute.” If Ki = ∅, we let map(i, k) = ⊥, I⊥i = ∅, and

dur⊥i (I) = 0. The approximate answer to DurTopk(I, τ) is given by

the following:

Ak(I, τ) = {i ∈ [1, n] | dur
k′

i (I) ≥ τ where k′ = map(i, k)}.

We consider three different methods that follow this index-based

approach. They differ in their strategy for selecting M and con-

sequently their choice of map, as illustrated in Figure 4. Here, the

candidate (i, k) pairs to be indexed are shown as square cells, and

the selected ones are colored black. The simplest, data-oblivious

method chooses the same set of k values to index across all ob-

jects, regardless of data distribution; given k, it simply maps k to

the closest indexed k (for example, k = 4 is mapped to 2 because

4 is closer to 2 than to 7). The other two methods are data-driven in

that they select their cells intelligently, based on data distribution—

how much space each cell takes to index and how well it approxi-

mates nearby cells in the same row. Between these two data-driven

methods, the simpler column-wise method limits its choices of M
to columns, and its map function returns the same substitute k′ for

a given k consistently across all objects, like the data-oblivious

method.3 Unlike the data-oblivious method, however, its choices

of M and map seek to minimize errors on the given dataset (for ex-

ample, k = 4 may be mapped to 7 instead of 2 because it may turn

out that overall H7
i approximates H4

i better than H2
i does across

i’s). The more sophisticated cell-wise method is free to select in-

dividual cells to index (as opposed to just columns), and its map
function is “individualized” for each object (for example, given the

same k = 4, it returns 2 for the first object, 1 for the second object,

6 for the third, etc.).

Regardless of the method for choosing M (and map), durable top-

k query processing with our index-based approach is fast and has

very low memory requirement. We defer the discussion of how to

compute map till later when discussing each method in detail; as-

suming we have found the “substitute” k′ = map(i, k), to compute

durk
′

i (I), we simply need two lookups in Hk′

i , which can be done in

O(log|Ik
′

i |) time with a small, constant amount of working mem-

ory. Overall, the complexity is loosely bounded by O(n⋆ log|T|),
where n⋆ ≤ n is the number of indexed objects, which is no more

than the number of objects that have ever entered top max(K).
As we will see later, including the cost of computing map does

not change the complexity for data-oblivious indexing and column-

wise indexing, but adds O(n⋆ log|K|) for cell-wise indexing.

In terms of index space, as mentioned at the beginning of Sec-

tion 4, our index-based approach allows the storage budget to be

set as an optimization constraint. Our experiments in Section 5

show that even for large datasets (e.g., n = 1M and m = 5k,

with billions of data points), to deliver fast, high-quality approx-

imate answers, we only need a small index (e.g., a couple of GB

in size) that can easily fit in main memory. If needed, our index

structure also generalizes to the external-memory setting: the pre-

fix sums and map can be implemented as B+trees; the logarithmic

terms in the complexity analysis above would simply be replaced

with B+tree lookup bounds.

4.2.1 Data­Oblivious Indexing

The data-oblivious method is straightforward. Let K denote

the set of k values being indexed. We simply define map(i, k) =
argmink′∈K |k − k′|. By indexing the k values in K in an or-

dered search tree or array, we can look up map(i, k) for any given

k in O(log|K|) time; the space is negligible. The overall index

space, consumed mostly by prefix sums, is
∑

k∈K

∑n

i=1|I
k
i | =

∑

k∈K |Ik|. We choose K such that this space does not exceed the

budget allowed.

The choice of K depends on how much we know about the dis-

tribution of k in our query workload. One may choose to index

the most popular k values used in queries, a geometric sequence of

k values (reflecting the assumption that smaller k’s are more fre-

quently queries), or simply evenly spaced k values (reflecting the

assumption that all k ∈ K are queried equally frequently), up to

the budget allowed. We shall not dwell on the choice of K further

here, as Section 4.2.2 below will approach this problem in a more

principled manner.

4.2.2 Data­Driven Indexing

Before describing the two data-driven methods, we first show

how to formulate the problem of choosing what to index as an

optimization problem. Suppose that we know the distribution Q

(multivariate in k, I , and τ) describing the query workload. For

3Although both methods index columns, for a chosen k, cells in the column
corresponding to objects that never enter top k during T are not indexed.

2227

simplicity, let us assume that Q is discrete (generalization to con-

tinuous τ is straightforward). Let K = supp(QK) be the support

of the marginal distribution of the query rank parameter k; in other

words, k will only be drawn from K. Similarly, let I = supp(QI) ⊆
{[a, b) ∈ T×T | a ≤ b} be the support of the marginal distribution

of the query interval parameter I . Recall that M ⊆ [1, n]×K spec-

ifies the (i, k) pairs to index, and Ak(I, τ) denotes the approximate

query answer computing using M and map(i, k). Let ω(M) denote

the cost of indexing M (e.g., in terms of storage cost). Given the

database D, query workload Q, and a cost budget B, our goal is to

maximize
M,map

n−E

[

Ak(I, τ)⊖ DurTop
k(I, τ)

]

(1)

subject to ω(M) ≤ B. (2)

Here, Ak(I, τ)⊖DurTopk(I, τ) denotes the error in the approximate

answer Ak(I, τ) relative to the true answer DurTopk(I, τ), and we

minimize its expectation over Q. Note that our objective function

is non-negative, since n would be the worst-case error.

The choice of the error metric ⊖ depends on the application.

To make our discussion more concrete, here we consider the case

where it computes the size of the symmetric difference between

Ak(I, τ) and DurTopk(I, τ), i.e., the number of false positives and

false negatives. We show how to assess this error efficiently.

Assessing Errors. Let us first break down the error (size of

the symmetric difference) Ak(I, τ)⊖ DurTopk(I, τ) by contribution

from individual objects. Given k, I , τ , suppose map(i, k) = k′. Let

δi(k, k
′; I, τ) be an indicator function denoting object i’s contri-

bution to error. Consider the two durabilities durki (I) and durk
′

i (I)
computed with k and k′, respectively. The key observation is that

object i contributes to the error only if the query threshold τ falls

between these two durabilities. More precisely:

δi(k, k
′; I, τ) =

{

1, if τ ∈ Γi(k, k
′; I)

0, otherwise

where Γi(k, k
′; I) = [min{τ1, τ2},max{τ1, τ2}],

and τ1 = dur
k

i (I), τ2 = dur
k′

i (I).

Intuitively, Γi(k, k
′; I) defined above establishes the “unsafe range”

of τ for which error could arise: if τ is no less (or strictly greater)

than both τ1 and τ2, then object i does not contribute to the error.

Therefore, given k and assuming map(i, k) = k′, we can com-

pute di(k, k
′), object i’s expected error contribution over Q (con-

ditioned on k) as

di(k, k
′) = E

[

δi(k, k
′; I, τ) | k

]

= P
[

τ ∈ Γi(k, k
′; I) | k

]

=
∑

I∈I

∑

τ∈Γi(k,k′;I)

p(τ, I | k).

Computing di(k, k
′) for all possible (k, k′) pairs seems daunt-

ing. However, if we assume that the distribution of k in Q is inde-

pendent from I and τ , we can embed K on a line and compute di
as simple line distance, as shown by the lemma below.

LEMMA 2. Assume that k is independent from I and τ in Q.

Let Di(k) = P[τ ≤ dur
k

i (I)]. Then Di(k) is non-decreasing in k,

and di(k, k
′) = |Di(k

′)−Di(k)|.

The lemma above implies that, we could simply precompute and

store Di(k) for all k ∈ K, which would allow us to compute

di(k, k
′) efficiently for any (k, k′) pair.

Computation of Di(k)’s, which is only needed at the index con-

struction time, proceeds as follows. We first sort the entire dataset

by time and value to produce the top max(K) objects with their

ranks at each time instant. We then sort by object and time to ob-

tain the sequence of rank changes over time for each object. After

sorting, we can process each object i in turn. For each k ∈ K,

we scan object i’s sequence of rank changes sequentially to com-

pute the prefix sums Hk
i , which we store in memory using O(|Iki |)

space. Di(k) involves summing over all possible I and τ val-

ues. With the prefix sums in memory, we can compute durki (I)
efficiently given any I; the same durki (I) then allows us to evaluate

predicate τ ≤ durki (I) for any possible τ value. Thus, the remain-

ing expensive factor in computing Di(k) is enumerating possible I
values. Fortunately, there is no need to compute Di(k)’s precisely,

because after all, we are simply using them to estimate error for the

optimization problem. In practice, we use a Monte Carlo approach,

sampling I from I to obtain approximate Di(k) values. Our exper-

iments in Section 5 show that even with very low sampling rates,

the approximate Di(k) values still lead to index choices that have

high-quality answers.

Finally, returning to the maximization objective in (1), we have

n−E

[

Ak(I, τ)⊖ DurTop
k(I, τ)

]

= n−
∑

k∈K

(

p(k)
n
∑

i=1

di(k,map(i, k))

)

. (3)

4.2.2.1 Column­wise Indexing.
The column-wise method makes several simplifying assumptions

to make the optimization problem easier to solve. First, we restrict

ourselves to selecting columns of cells from [1, n] × K; i.e., we

pick only K ⊆ K for all objects and M = [1, n] × K. Second,

we restrict map to return the same substitute for a given k across all

objects; hence, we would write map(k) instead of map(i, k). Third,

we let ω(M) = |K|, and we specify the budget B in terms of the

number of different k values we choose to index (as opposed to a

more accurate measure of index space).

Under these assumptions, we define d(k, k′) =
∑n

i=1 di(k, k
′)

as the expected overall error in answer if we substitute k′ for k.

Naturally, we define map(k) = argmink′∈K d(k, k′); i.e., we map

k to the substitute indexed in K that minimizes the expected overall

error. Now, the optimization problem becomes to

maximize
K

n−
∑

k∈K

(

p(k) min
k′∈K

d(k, k′)

)

(4)

subject to |K| ≤ B. (5)

Lemma 2, which applies to di(k, k
′) on an individual object ba-

sis, can be readily extended to d(k, k′), as the following shows.

LEMMA 3. Assume that k is independent from I and τ in Q.

Let D(k) =
∑n

i=1 Di(k). Then D(k) is non-decreasing in k, and

d(k, k′) = |D(k′)−D(k)|.

Thus, we can embed K on a line and compute d as simple line dis-

tance. By indexing the selected k values in K in an ordered search

tree or array, we can look up map(k) for any given k in O(log|K|)
time; the space is negligible.

This observation also implies that the optimization problem in

(4)–(5) for the column-wise method in has optimal substructure, as

the following lemma shows.

2228

1 2 3 4 5 6 7 8 9

Figure 5: Partitioning of K by a chosen subset K. Each k⋆ ∈ K is

shown as a circled point, and the interval of K that k⋆ is enclosed

by { and }.

LEMMA 4. Assume that k is independent from I and τ in Q.

Let OPT([k1, k2], b) denote the optimal solution4 for (4)–(5) with

K = [k1, k2] and B = b. Then,

OPT
(

[k1, k2], b
)

= max
k1<k≤k2

{

OPT
(

[k1, k − 1], b− 1
)

+ OPT
(

[k, k2], 1
)

}

The above lemma immediately leads to a dynamic programming

solution to the optimization problem for the column-wise method,

with time complexity O(k3
max), where kmax = max(K). Note that

we incur this cost only at the index construction time. The memory

requirement for dynamic programming is the size of a 3d table for

storing optimal substructures, which is O(k3
max) in our case. In

practice, kmax is usually not large compared with n, so we can per-

form dynamic programming in memory. If this 3d table is too large

for memory, we can store the 3d table of optimal substructures as

sequence of 2d tables organized along the dimension of budget (b).

By Lemma 4, it is not hard to see that our dynamic programming

procedure sequentially steps through b, so at any point during exe-

cution, we only need three 2d tables (for b, b−1, and 1) in memory,

reducing the memory requirement to O(k2
max).

Despite the simplicity of the solution, the column-wise method

suffers from a rather restrictive space of possible solutions. First,

map is not specialized for each object; even though it minimizes

overall error subject to this restriction, the substitute k it produces

may not be the best choice of every object. Second, indexing all

entries in one single column may already take a lot of space; there-

fore, under tight storage constraints, the column-wise method may

be forced to pick a few columns to index, hurting accuracy.

4.2.2.2 Cell­wise Indexing.
We now consider the more sophisticated cell-wise method, which

can select any individual cells to index (as opposed to just columns)

and customize its map function for each object. Specifically, we

choose a set M of (i, k) pairs to index from [1, n]× K. Let Ki =
{k | (i, k) ∈ M}. We define map(i, k) = argmink′∈Ki

di(k, k
′),

i.e., to minimize the expected error by substituting k with k′ for ob-

ject i. By indexing the selected k values in Ki in an ordered search

tree or array, we can look up map(i, k) for any k in O(log|Ki|) time.

Finally, we define the index storage cost as ω(M) =
∑

(i,k)∈M |Iki |,

since storing the prefix sums for entry (i, k) takes |Iki | space (index

storage for supporting map is negligible in comparison). The opti-

mization problem now becomes to

maximize
M

n−
n
∑

i

(

∑

k∈K

p(k) min
k′∈Ki

di(k, k
′)

)

(6)

subject to ω(M) =
∑

(i,k)∈M

|Iki | ≤ B. (7)

We show the NP-hardness of this optimization problem by re-

duction from the well-known knapsack problem.

LEMMA 5. The optimization problem in (6)–(7) for the cell-

wise method is NP-hard.

4For simplicity of presentation we assume that there are no ties for the op-
timal solution here, but generalization to the case of ties is straightforward.

Algorithm 1: Two-phase greedy algorithm.

Input : Objective function G to maximize, additive cost function ω,
budget B, and candidate set U = [1, n]× K

Output: A subset M⋆ ⊆ U with ω(M⋆) ≤ B

1 S1 ← ∅; max1 ← 0;
2 foreach M ⊆ U where |M | = 1 or |M | = 2 do

3 if ω(M) ≤ B then continue;
4 if G(M) > max1 then
5 max1 ← G(M);
6 S1 ←M ;

7 S2 ← ∅; max2 ← 0;
8 foreach M ⊆ U where |M | = 3 do

9 if ω(M) > B then continue;
10 S ←M , I ← U \ S;
11 while I 6= ∅ do

12 θ ← max
θ∈I

G(S ∪ {θ})− G(S)

ω({θ})
;

13 if ω(S ∪ {θ}) ≤ B then S ← S ∪ {θ};
14 I ← I \ {θ};

15 if G(S) > max2 then

16 max2 ← G(S);
17 S2 ← S;

18 if G(S1) ≥ G(S2) then return S1;
19 else return S2;

Although the problem is NP-hard, the following lemma shows

that its objective function is monotone and submodular [15].

LEMMA 6. The following function,

G(M) = n−
n
∑

i

(

∑

k∈K

p(k) min
k′∈Ki

di(k, k
′)

)

(8)

(recall Ki = {k | (i, k) ∈ M}) is a monotone and submodular

set function; i.e., for all M1 ⊆ M2 ⊆ [1, n]× K and θ = (i, k) ∈
([1, n]×K) \M2, we have:

G(M1) ≤ G(M2), and (9)

G(M1 ∪ {θ})− G(M1) ≥ G(M2 ∪ {θ})− G(M2). (10)

It was shown in [14] that a simple greedy algorithm provides a

(1 − 1/e)-approximation for maximizing a monotone submodu-

lar set function with cardinality constraint. Sviridenko et al. further

showed in [17] that a modification of the greedy algorithm for solv-

ing the problem in [14] can also produce a (1−1/e)-approximation

for maximizing a monotone submodular set function with knapsack

constraint. The modified greedy algorithm, shown as Algorithm 1,

works as follows. In the first phase, we enumerates all feasible sub-

sets of size up to two, and remember the subset S1 that maximizes

G. In the second phase, we start with each feasible subset of size

three, and try to grow it greedily and repeatedly by adding a new

element at a time, which gives the largest improvement over G per

unit cost. We remember the best subset found in the second phase

as S2. Finally, we return the better solution between S1 and S2.
THEOREM 1. Let M opt be the optimal solution to the cell-wise

selection problem, and M greedy be the solution returned by Algo-

rithm 1. We have

G(M greedy) ≥ (1−
1

e
) · G(M opt).

In practice, enumerating all feasible subsets of size up to 3 can be

expensive, so we use a simplified greedy algorithm that starts with

singleton subsets and tries to grow them. It turns out that the sim-

plified greedy algorithm still makes good choices that lead to high

2229

10
0

10
2

10
4

10
6

average number of objects (log-scale)

100

500

1000

5000

10000

k

PREFIX PREFIX-O TES/INTERVAL RTREE

(a) Objects examined per query; τ = 0.2

0.1 0.3 0.5 0.7 0.9
10

-4

10
-3

10
-2

10
-1

10
0

ti
m

e
 (

s
e
c
o
n
d
s
)

PREFIX INTERVAL TES RTREE PREFIX-O

(b) Time per query; k = 100

0.1 0.3 0.5 0.7 0.9
10

-3

10
-2

10
-1

10
0

10
1

ti
m

e
 (

s
e
c
o
n
d
s
)

PREFIX INTERVAL TES RTREE PREFIX-O

(c) Time per query; k = 5000

Figure 7: Comparing query efficiency for methods for the fixed-k
setting. Dataset is Syn, with n = 1M, m = 5K, and σ = 10.

In terms of query time, however, the comparison is more nu-

anced. Figures 7b and 7c compare the query execution times of

PREFIX, PREFIX-O, INTERVAL, TES, and RTREE, for two dif-

ferent settings of k, as we increase the durability threshold τ to

make the queries more selective. First, in Figure 7b, where k =
100 is relatively small, we see that PREFIX-O and RTREE are the

fastest. PREFIX-O is the fastest when queries are less selective

(i.e., lower τ), but as queries become more selective, RTREE be-

comes faster and eventually overtakes PREFIX-O. TES is better

than INTERVAL, though both pale in comparison to RTREE and

PREFIX-O, and do not benefit from selective queries as RTREE

does. The basic version of PREFIX is the slowest here. On the

other hand, in Figure 7c, where k = 5000 is relatively large, we see

that PREFIX-O becomes the clear winner among all methods—its

performance is unaffected by the change in k. PREFIX’s perfor-

mance is also unchanged. However, the other methods take a hit

in performance, because a larger k generally reduces opportunities

for pruning (as seen in Figure 7a), so the computational overhead

of pruning and more complex index structures make them less at-

tractive, though they still examine fewer objects than PREFIX.

Overall, we conclude that PREFIX-O offers solid, competitive

performance in practice, beating the theoretically more interesting

RTREE except when queries are extremely selective. Because of its

performance and simplicity, we also use PREFIX-O for our approx-

imate index-based approach for handling the variable-k setting.

Note that in contrast to RTREE, the pruning power of PREFIX-

O heavily depends on data characteristics: for example, if every

object appears in top-k at some time, no objects will be pruned, re-

sulting in performance similar to PREFIX. However, we also note

that the use of PREFIX-O by our index-based approach offers addi-

tional protection from such boundary cases, because approximation

still allows us to ignore some objects that rarely ranked high, with-

out significantly affecting accuracy.

5.2 Variable­kkk setting
In this section, we continue to evaluate approximate methods

for τ -durable top-k queries with variable k. Section 4 proposed

two approaches for computing approximate answers: sample-based

and index-based. Section 5.2.1 first evaluates the alternative meth-

ods for the index-based approach in terms of space and accuracy.

Then, Section 5.2.2 compares the best index-based method against

the sample-based approach as well as baseline and state-of-the-art

approaches that produce exact answers. Finally, Section 5.2.3 eval-

uates the index construction costs of our index-based methods.

We use the standard F1 score (harmonic mean of precision and

recall) to measure the quality of approximate answers. The maxi-

mum possible F1 is 1, achieved when both precision and recall are

perfect. Since answer quality varies across query parameter set-

tings, we experiment with various query workloads wherein query

parameters are drawn from different distributions. Unless other-

wise noted, we let τ = 1 − x/100, where ln(x) is drawn from

N (3, 0.52) and x is truncated to [0, 100]. We typically draw k
from normal or log-normal distributions, discretized and truncated

to appropriate ranges. Here, heavier-tailed log-normal distributions

capture scenarios where users likely query with high τ and small k,

but they may still try larger k or lower τ more often than a normal

distribution would suggest. We typically draw the endpoints of I
uniformly at random, sometimes with interval length restricted to

appropriate ranges. Additional details will be given with the exper-

iments. When constructing the indexes, our index-based methods

have the knowledge of the workload distribution, but not the ac-

tual queries used in the experiments. Unless otherwise noted, for

each experimental setting, we generate 1000 random queries from

the workload and report both average and standard deviation for F1

score and running time.

5.2.1 Approximate Index­Based Methods

Here we compare the three index-based methods we proposed

in Section 4.2: data-oblivious indexing (DOS), column-wise in-

dexing (COL), and cell-wise indexing (CEL). Note that all these

methods allow the index size to be adjusted, which affects their ap-

proximation quality. In the following experiments, for DOS, we

generate 8 geometric sequences, with ratios 1.2, 1.4, 1.6, 1.8, 2.0,

3.0, 4.0, and 5.0. Each sequence defines a subset of columns to

index in K; e.g., ratio of 2.0 would index k = 1, 2, 4, 8, . . ., up

to the maximum k possible. A larger ratio implies fewer columns

and hence a smaller index. For each these 8 DOS index config-

urations, we produce a corresponding COL index with the same

number of columns (which does not guarantee the same index size,

as different columns may require different amounts of index space).

Finally, we use 16 actual index sizes (in terms of the number of in-

tervals indexed)—obtained from the 8 DOS configurations and the

8 COL configurations—as constraints to produce 16 CEL configu-

rations for comparison. Figures 8 and 9 compare the three index-

based methods across four datasets, Stock, Billboard, Temp, and

Syn, in terms of the quality of their approximate query answers.

Results in these two figures differ in the distribution of k in the

query workload—k follows a log-normal distribution in Figure 8,

but a normal distribution in Figure 9; the endpoints of I are drawn

uniformly at random from the time domain. As seen in both figures,

CEL consistently produces answers with the highest-quality ap-

proximate answers. Even at the lowest space setting, CEL achieves

F1 scores of no less than 0.9 across datasets and query workloads.

COL also offers reasonably good quality, but not as good as CEL.

COL is also not as frugal as CEL or DOS in terms of space: when

using the same number of columns as DOS, COL tends to consume

more space.7 DOS has unacceptably low F1 scores at low space

settings, but given more index space, F1 scores improve, as with

other two methods. In terms of the standard deviation in F1 scores,

DOS is also the worst among the three methods; CEL again is the

7This behavior also explains why in Figure 8d, COL does seemingly worse
than DOS: given the same number of columns to index, COL in fact does
offer higher accuracy than DOS, but it also chooses columns that require
more space, hence pushing its curve to the right of that of DOS.

2231

1 2 3
number of intervals selected 1e4

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
F1

 sc
or

e

CEL
COL
DOS

(a) Stock

0.5 1.0 1.5
number of intervals selected 1e5

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL
DOS

(b) Billboard

2 4 6
number of intervals selected 1e5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL
DOS

(c) Temp

0.0 0.5 1.0 1.5 2.0 2.5
number of intervals selected 1e6

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL
DOS

(d) Syn, n = 1M, m = 5K, σ = 10

Figure 8: Quality of approximate answers by various index-based methods; ln(k) ∼ N (3, 0.52) and K = [1, 500]; uniform I .

0 2 4 6
number of intervals selected 1e4

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F1
 sc

or
e

CEL
COL
DOS

(a) Stock

0.5 1.0 1.5 2.0
number of intervals selected 1e5

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL
DOS

(b) Billboard

0.2 0.4 0.6 0.8 1.0
number of intervals selected 1e6

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL
DOS

(c) Temp

0.0 0.5 1.0 1.5 2.0 2.5
number of intervals selected 1e6

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL
DOS

(d) Syn, n = 1M, m = 5K, σ = 10

Figure 9: Quality of approximate answers by various index-based methods; k ∼ N (50, 152) and K = [1, 500]; uniform I .

0.2 0.4 0.6 0.8 1.0 1.2
number of intervals selected 1e5

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL

(a) d = 100

0.25 0.50 0.75 1.00 1.25
number of intervals selected 1e5

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL

(b) d = 50

0.5 1.0 1.5
number of intervals selected 1e5

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL

(c) d = 20

0.5 1.0 1.5 2.0
number of intervals selected 1e5

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL

(d) d = 10

Figure 10: Quality of approximate answers by CEL vs. COL on SynX with n = 1K, m = 1K, σ = 20; ln(k) ∼ N (3, 0.52) and

K = [1, 500]; uniform I .

best, consistently delivering high accuracy with very little variation

among individual queries. Finally, between Figures 8 and 9, we see

that the accuracy under DOS and COL is more sensitive to the dis-

tribution of k in the query workload than under CEL. For DOS and

COL, log-normal distribution used in Figure 8 is “harder” than the

normal distribution used in Figure 9, because the latter distribution

is concentrated around fewer choices of k (99.7% of the density

would be within ±3σ of the mean), hence making it easier to pick

columns to index.8 In contrast, CEL offers consistently excellent

accuracy in both figures, because it has more degrees of freedom in

its choices to adapt to different query distributions.

Next, we perform experiments to evaluate how well the three

methods handle data with increasing complexity (in terms of rank

changes over time). We use SynX with σ = 20 and vary d, where a

smaller d leads to more frequent rank ranges. Figure 10 shows the

results when k in the query workload follows a log-normal distribu-

tion (as in Figure 8); the results for normal distribution are similar

and can be found in [7]. We focus on comparing just COL and CEL

here because DOS is clearly inferior. In Figure 10, we see that, as

d decreases and rank change complexity increases, the advantage

of CEL over COL widens significantly. As complexity grows, it

becomes exceedingly difficult (or simply impossible) for COL to

find a set of columns and a single mapping function that work for

8An exception to this observation is that DOS has more trouble at low space
settings under the normal distribution than the log-normal. The reason is
that in these experiments, we hard-coded the sequences of k for DOS to
index, independent of the distribution of k in the query workload; some of
these sequences happen to miss the high-density region of the distribution.

all objects—not only doe F1 scores drop, but the variance in F1

scores over individual queries also increases. In contrast, CEL sees

only very little degradation in F1 score as complexity grows, and

the variance remains low. For example, when d = 10, at the lowest

space setting, CEL’s F1 score is 0.94, with a standard deviation of

0.02, compared with COL’s F1 score of 0.71 and standard devia-

tion of 0.12. We have also experimented with instances of Syn with

varying σ (with higher σ leading to more volatile rank changes),

and drew similar conclusions; see [7] for details.

To conclude this section, CEL is the best among our index-based

methods. It provides higher and more consistent accuracy across

individual queries and on a wide range of datasets, and its ad-

vantages over DOS and COL become even more significant un-

der lower space settings and for data with more complex charac-

teristics. Another practical advantage of CEL is that it provides a

smoother control over the space-accuracy trade-off than DOS and

COL. DOS and COL allow the number of columns to be tuned, but

some columns require more space than others to index, resulting

in coarser and less predictable control over space. Moreover, DOS

does not guarantee that more columns will lead to higher accuracy.

In contrast, the smoother space-accuracy trade-off offered by CEL

makes it easier to apply in practice.

5.2.2 CEL vs. Other Approaches

In this section, we compare CEL, our best approximate index-

based method, with other approaches for answering durable top-k
queries in the variable-k setting: NAI, SAM, and TES. NAI is a

baseline exact solution, which precomputes and stores the top-kmax

2232

20%|T| 40%|T| 60%|T|
0

1

2

3

4

5

6

7
ti
m

e
/s

e
c

NAI SAM TES CEL

(a) Varying length of I; K = [5K, 6K]

0-1K 3-4K 5-6K 7-8K 9-10K
0

1

2

3

4

5

ti
m

e
/s

e
c

NAI TES CEL

(b) Varying K; uniform I

Figure 11: Query execution times for various durable top-k solu-

tions. Syn, n = 1M, m = 5K, σ = 10.

0-1K 3-4K 5-6K 7-8K 9-10K
0

2000

4000

6000

8000

10000

12000

14000

in
d

e
x
 s

p
a

c
e

 (
m

e
g

a
b

y
te

s
)

NAI/SAM TES CEL

Figure 12: Index space for various durable top-k solutions. Syn,

n = 1M, m = 5K, σ = 10; uniform I (relevant to only CEL).

membership at every time instant, where kmax = max(K) is the

maximum k that can be queried. To answer a query, NAI sequen-

tially scans all top-k memberships in the query interval, and ag-

gregates them to compute durability for each object it encounters.

SAM is the approximate, sampling-based approach introduced in

Section 4.1; it materializes exactly the same information as NAI.

TES is our implementation of the state-of-the-art exact solution

from [19]. Since its query performance depends on the actual data

structures used, we take care to discount any possible dependency

when taking measurements for TES.9 As a result, TES query ex-

ecution times reported here are only a lower bound; actual times

will be higher. Moreover, although TES is intended as an external-

memory solution, all indexes fit in memory in our experiments, so

for a fair comparison, we implement TES using internal-memory

data structures and ensure that all its data is memory-resident. For

these experiments, we implemented all approaches in Python.

Note that NAI and TES are exact, while CEL and SAM are

approximate. For a fair comparison, for CEL, we choose its in-

dex space budget such that CEL achieves an F1 score of at least

0.97; for SAM, we target a similarly high accuracy guarantee with

δ = 0.05 and ǫ = 0.1 (Lemma 1), using about 2000 samples (ex-

act number also depends on the τ parameter in queries). We use a

large synthetic dataset Syn with five billion data points, and com-

pare query efficiencies for different query workloads.

Figure 11a shows how the length of the query interval I influ-

ences query execution times of various approaches. Here, we draw

I’s starting point randomly, and make their lengths span 20%, 40%,

or 60% of the entire time domain. We draw k from N (5500, 1002),
truncated to [5000, 6000]. For NAI and TES, their execution times

generally increase with the query interval length. SAM’s times re-

main roughly the same, because the number of random samples

needed is a function of the desired error bound, independent of the

query interval length. Still, CEL is the fastest by a wide margin,

and its times are also independent of the query interval length.

9TES uses a non-trivial data structure for reporting all rank changes within
k during the query interval, and we do not have access to its original im-
plementation. Hence, for the execution times of TES we report in these
experiments, we simply exclude the time spent using our implementation
of this data structure altogether; of course, time spent by TES processing
the reported changes is still included.

Figure 11b shows how k influences the comparison of query exe-

cution times. Here, we always draw I uniformly at random, but we

change the distribution of k: we start from N (500, 1002) truncated

to [0, 1000], and then shift this distribution to the right in each set-

ting, stopping finally at the range [9000, 10000]. We do not report

query execution times for SAM, because for small query intervals

(say, those with length less than 1000), random sampling is not ap-

plicable. From Figure 11b, we see that NAI and TES times grow

roughly linearly with k; both also exhibit large standard deviations

(shown as error bars), as their performance heavily depends on the

query interval length. In comparison, CEL’s times are consistently

low (a small fraction of a second) and largely unaffected by the

query parameters.

Next, we compare the index space used by the various approaches

in Figure 12, as measured by the amounts of space consumed by

Python data structures. The query workloads are the same as those

in Figure 11b. Note that the space consumption of NAI/SAM (re-

call that they use the same data structure) and TES depend on the

maximum k they support. Hence, for each workload setting, we

report two space measurements: the higher one, shown as the red

segment on top of the bar, covers the entire range of k in the work-

load; the lower one covers only the lower half of the range (mean-

ing that half of the queries cannot be answered). For example, when

k ∼ N (500, 1002) truncated to [0, 1000], we report the space con-

sumed by NAI/SAM and TES for kmax = 1000 and kmax = 500.

CEL does not have such an issue, as it does not assume a hard limit

on k. From Figure 12, we see that overall, larger k’s lead to larger

index space for all approaches (although CEL can operate under a

specified space budget, recall that achieving the same high accu-

racy requires more index space for larger k’s). NAI and SAM use

the least amount of space, which is not surprising as these methods

rely less on preprocessing. TES consumes the most space (about

13GB for K = [9000, 10000]), which may not be acceptable as an

internal-memory solution. TES’s high space consumption can be

explained by its approach of indexing all object rank changes over

time; if data exhibit somewhat complex characteristics, indexing

individual rank changes would carry a lot of overhead compared

with the more compact representation of NAI/SAM. In compari-

son, CEL uses only 2.3GB on the highest k setting, which makes

it more practical to store the index in memory. We further note

that our Python-based implementation is not particularly memory-

efficient. Thanks to CEL’s simple data structures, a C++ imple-

mentation would reduce the memory footprint by about a factor

of 2 (e.g., from 2.3GB to 1.18GB), where we can store each time

instant or prefix sum with exactly 4 bytes, incurring far lower over-

head than Python’s implementation of lists of integers.

To further demonstrate scalability of CEL, we test it on an even

larger version of Syn with 50 billion data points (n = 10M, m =
5K, and σ = 10). In the query workload, I is uniform and K =
[5000, 6000]. Under this setting, CEL only needs 3.6GB of index

space to deliver F1 scores of at least 0.97, with mean query execu-

tion time of 0.53 seconds (and a 0.03 standard deviation).

To summarize, CEL is both much faster and more space-efficient

than TES. Even for large datasets with billions of data points, CEL

only needs a couple of GB of memory to deliver fast, highly accu-

rate results. While NAI and SAM require less space, their query

execution times are not competitive.

5.2.3 Index Construction

The two data-driven index-based methods, COL and CEL, per-

form elaborate preprocessing and optimization during their index

construction step. In this section, we evaluate the performance

of index construction for these two methods and demonstrate their

2233

100 101 102 103

time spent assessing errors (minutes)
0.5

0.6

0.7

0.8

0.9

1.0
F1

 sc
or

e

(a) Temp

101 102 103

time spent assessing errors (minutes)
0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

(b) Syn, n = 1M, m = 5K, σ = 10

Figure 13: CEL index quality as a function of optimization time

spent on assessing expected error using Monte Carlo simulations

during optimization; same query workload as Figure 8.

0 100 200 300 400 500

number of columns selected

0

50

100

150

200

ti
m

e
 (

m
in

u
te

s
)

(a) Dynamic programming for COL

0.4 0.6 0.8 1 1.2 1.4 1.6

number of cells selected 10
5

120

140

160

180

200

220

ti
m

e
 (

m
in

u
te

s
)

(b) Greedy for CEL

Figure 14: Optimization time as a function of budget. Syn, n =
1M, m = 5K, σ = 10, K = [9K, 10K]

feasibility on large temporal datasets. Recall that in order for these

methods to select what to index, they need to 1) estimate expected

error over the query workload, and 2) search for the optimal in-

dex that minimize this error under a space constraint. Both tasks

can be expensive. We now take a closer look at these tasks before

examining the end-to-end index construction cost.

As discussed in Section 4.2, one of the ideas we use to speed up

the task of error estimation is Monte Carlo simulation, which sam-

ples from the query interval distribution to estimate the expected

error. To evaluate the effectiveness of this strategy, we vary the

number of samples drawn by the Monte Carlo simulation, which

translates into varying index construction times; intuitively, more

samples and longer running times produce more accurate estimates,

which can potentially lead to higher index quality. Figure 13 shows

how index quality is affected by the time spent on assessing errors

(controlled by the number of Monte Carlo samples) during opti-

mization. We show results for CEL on Temp and Syn (with five

billion data points); results on other datasets and for COL are simi-

lar. The query workload is the same as in Figure 8. We measure the

index quality by the observed F1 scores on 1000 random queries

generated from the workload. For a fair comparison across set-

tings, we always give the optimization procedure the same space

budget (used by the longest time settings in Figure 13 to produce

a sufficiently high F1 score). Under settings with shorter times,

less accurate error estimates can potentially make the optimization

procedure pick suboptimal indexes under the same space budget.

As shown in Figure 13, however, even when at fairly low sampling

rates—which translate to under 1.67 minutes spent on assessing

errors for Temp or under 40 minutes for the much bigger Syn—we

are able to deliver CEL indexes with qualities comparable to those

obtained under the longest time settings. In other words, the Monte

Carlo approach is quite effective in taming the cost of assessing

errors while ensuring the resulting index quality.

Next, we examine the costs of the optimization algorithms: dy-

namic programming for COL (Section 4.2.2.1) and greedy for CEL

(Section 4.2.2.2). Figure 14 plots the optimization times of COL

and CEL (excluding time spent on computing error metrics) as

functions of budget. The budget is in terms of the number of in-

Table 2: End-to-end CEL index construction times on various

datasets.

Stock Billboard Temp Syn Syn

m × n = 5 billion m × n = 50 billion

6.05 minutes 38.56 minutes 1.97 hours 8.33 hours 16.3 hours

dexed columns for COL, and in terms of the number of indexed

cells for CEL. The underlying dataset is Syn (n = 1M, m = 5K,

σ = 10). We further stress-test index construction by enlarging the

range of parameter k, drawing it from N (9500, 1002), discretized

and truncated to [9000, 10000]. Compared with the experiments on

real datasets, the increases in the size of Syn and effective k value

range together give a multiplicative boost in the search space for

CEL’s greedy selection algorithm, resulting in a much more chal-

lenging optimization problem. The other query workload settings

are again the same as those for Figure 8. As we can see in Fig-

ure 14, generally speaking, bigger space budgets result in longer

optimization times, and CEL optimization is more expensive than

COL optimization. At a moderate budget settings for CEL, shown

as the third data point in Figure 14(b), the resulting indexes already

have F1 scores of no less than 0.97, and require about 3.5 hours of

optimization time, which is practically feasible since it only hap-

pens during index construction.

Finally, Table 2 lists the end-to-end CEL index construction times

for all our real datasets and two large synthetic datasets. For Stock,

Billboard and Temp, we use the same query workload as in Fig-

ure 8. For Syn with 5 billion data points (n = 1M, m = 5K,

σ = 10), we use the query workload as in Figure 14. For Syn

with 50 billion data points (n = 10M, m = 5K, σ = 10), we

use the same query workload as the one used for this dataset in

Section 5.2.2. As shown in Figure 2, for real datasets, index con-

struction can be completed within a couple of hours. For the first

Syn dataset, we can construct the index within 9 hours. For the

second Syn dataset that is 10 times bigger, we can construct the

index under 17 hours. Even for such large datasets, index construc-

tion time is acceptable considering that it is a one-time cost. For

all datasets, the constructed CEL index provides an F1 score of no

less than 0.97.

6. CONCLUSION
In this paper, we have studied the problem of finding durable

top-k objects in large temporal datasets. We first considered the

case when k is fixed and known in advance, and proposed a novel

solution based on a geometric reduction to the 3d halfspace report-

ing problem. We then studied in depth the general case where k
is variable and known only at query time. We proposed a suite of

approximate methods for this case, including both sampling- and

index-based approaches, and considered the optimization problem

of selecting what to index. As demonstrated by experiments with

real and synthetic data, our best approximate method, cell-wise in-

dexing, achieves high-quality approximate answers with fast query

time and low index space on large temporal datasets.

7. ACKNOWLEDGMENTS
This work was supported by NSF grants IIS-14-08846, IIS-17-

18398, IIS-18-14493, CCF-13-31133, and CCF-15-13816, an ARO

grant W911NF-15-1-0408, a grant from the Knight Foundation,

and a Google Faculty Award. Any opinions, findings, and conclu-

sions or recommendations expressed in this publication are those of

the author(s) and do not necessarily reflect the views of the funding

agencies.

2234

8. REFERENCES
[1] P. Afshani and T. M. Chan. Optimal halfspace range reporting in

three dimensions. In Proceedings of the twentieth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 180–186. Society for
Industrial and Applied Mathematics, 2009.

[2] P. K. Agarwal, S.-W. Cheng, and K. Yi. Range searching on uncertain
data. ACM Transactions on Algorithms (TALG), 8(4):43, 2012.

[3] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan.
Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, 1973.

[4] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine.
Synopses for massive data: Samples, histograms, wavelets, sketches.
Foundations and Trends in Databases, 4(1-3):1–294, 2012.

[5] M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Overmars.
Computational geometry: algorithms and applications, 3rd Edition.
Springer, 2008.

[6] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware. Journal of computer and system sciences,
66(4):614–656, 2003.

[7] J. Gao, P. K. Agarwal, and J. Yang. Durable top-k queries on
temporal data. Technical report, Duke University, 2018.
http://db.cs.duke.edu/papers/

2018-GaoAgarwalYang-durable_topk.pdf.

[8] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range queries in

OLAP data cubes, volume 26. ACM, 1997.

[9] J. Horel, M. Splitt, L. Dunn, J. Pechmann, B. White, C. Ciliberti,
S. Lazarus, J. Slemmer, D. Zaff, and J. Burks. Mesowest:
Cooperative mesonets in the western united states. Bulletin of the

American Meteorological Society, 83(2):211–225, 2002.

[10] J. Jestes, J. M. Phillips, F. Li, and M. Tang. Ranking large temporal
data. PVLDB, 5(11):1412–1423, 2012.

[11] M. L. Lee, W. Hsu, L. Li, and W. H. Tok. Consistent top-k queries
over time. In International Conference on Database Systems for

Advanced Applications, pages 51–65. Springer, 2009.

[12] F. Li, K. Yi, and W. Le. Top-k queries on temporal data. The VLDB

Journal, 19(5):715–733, Oct. 2010.

[13] N. Mamoulis, K. Berberich, S. Bedathur, et al. Durable top-k search
in document archives. In Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data, pages 555–566.
ACM, 2010.

[14] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of
approximations for maximizing submodular set functionsi.
Mathematical Programming, 14(1):265–294, 1978.

[15] A. Schrijver. Combinatorial optimization: polyhedra and efficiency,
volume 24. Springer Science & Business Media, 2003.

[16] J. F. Sibeyn. External selection. J. Algorithms, 58(2):104–117, 2006.

[17] M. Sviridenko. A note on maximizing a submodular set function
subject to a knapsack constraint. Operations Research Letters,
32(1):41–43, 2004.

[18] R. S. Tsay. Analysis of financial time series, volume 543. John Wiley
& Sons, 2005.

[19] H. Wang, Y. Cai, Y. Yang, S. Zhang, and N. Mamoulis. Durable
queries over historical time series. IEEE Transactions on Knowledge

and Data Engineering, 26(3):595–607, 2014.

[20] Y. Wu, J. Gao, P. K. Agarwal, and J. Yang. Finding diverse,
high-value representatives on a surface of answers. PVLDB,
10(7):793–804, 2017.

2235

