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ABSTRACT: A redox-regulated molecular tweezer com-
plex was synthesized via the weak-link approach. The Pt"
complex features a redox-switchable hemilabile ligand
(RHL) functionalized with a ferrocenyl moiety, whose
oxidation state modulates the opening of a specific
coordination site. Allosteric regulation by redox agents
gives reversible access to two distinct structural states—a
fully closed state and a semi-open state—whose
interconversion was studied via multinuclear NMR
spectroscopy, cyclic voltammetry, and UV—-vis—NIR
spectroscopy. Two structures in this four-state system
were further characterized via SCXRD, while the others
were modeled through DFT calculations. This fully
reversible, RHL-based system defines an unusual level of
electrochemical control over the occupancy of a specific
coordination site, thereby providing access to four distinct
coordination states within a single system, each defined
and differentiated by structure and oxidation state.

pening and closing a coordination site is a powerful way to

control the electronic properties and steric environment
of a metal center.' ™ Coordination state regulation has shown
promise in stoichiometric*™® and catalytic’™'" reactions
involving metal and metallo-supramolecular complexes. There-
fore, driving the reversible and selective opening of a metal’s
coordination site using external stimuli is an attractive goal in
organometallic and inorganic chemistry.

Electrons are among the most accessible and useful stimuli
employed to modulate the lability of metal—ligand bonds'"' and
the reactivity of metal centers."”"” Such modulation can occur
at a structure-directing metal node'®™>* or a redox-active
ligand.1 125733 The latter, which enables the control of
coordination sites without changing the metal’s formal oxidation
state, underlies the gremise of redox-switchable hemilabile
ligands (RHLs)."'"***%*} RHLs contain a non-labile, anchoring
heteroatom and a labile heteroatom whose donor strength
changes as a function of the ligand oxidation state. However,
achieving selective control over a single coordination site using
RHLs has been synthetically challenging. Designing RHLs that
enable selective and fully reversible opening of a coordination
site is non-trivial (Figure 1a),”>™**" and regulation can be
hampered by the instability of the oxidized states,”> >’ the
interference from multiple redox-active elements,”” or the
difficulty of studying open-shell species in solution.* Therefore,
it would be a significant advance to develop a complex whose
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Figure 1. (a) Challenges in reversibly opening coordination sites via
redox reactions. (b) A new redox-switchable complex design.

coordination site can be reversibly and selectively opened via
electron transfer.

A promising strategy to synthesize structurally addressable
coordination complexes with fine electronic and structural
control is the weak-link approach (WLA).*® The hemilabile
ligands employed allow one to regulate the coordination state of
substitutionally labile heteroatoms (the weak-link) using small-
molecule and anionic effectors (e.g., halides, amines, carbox-
ylates) ;%% as such, the WLA has been used to develop stimuli-
responsive catalysts,” "' host—§uest cages,””*’ polymeric
materials,"* and signal amplifiers.* 40

To address the challenges associated with designing RHLs
(Figure 1a), we have identified three requirements for a WLA-
based model system: (1) The weak-link should be displaced by
place-holding exogenous ligands only when the RHL is oxidized.
(2) The structure-directing metal node should be redox-
inactive. (3) The complex should possess spectroscopic handles
for facile structure characterization in solution.

Based on these requirements, we designed a Pt" heteroligated
WLA tweezer complex containing a novel RHL (Figure 1b). We
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chose to employ a redox-inactive Pt" node to avoid instability of
the oxidized states previously observed in Rh' complexes
possessing RHLs.”>*® The Pt'! heteroligated complex can be
formed by the stepwise assembly of an N-heterocyclic carbene-
thloether (NHC,S) ligand and a phosphino-thioether (P,S)
ligand.*” The non-labile NHC-Pt bond anchors the RHL to the
metal node and prevents undesirable ligand scrambling,*” while
the *'P nuclei provides a spectroscopic handle for facile structure
characterization.***” To enable complete, redox-driven inter-
conversion between two coordination states, the RHL
incorporates a ferrocenyl-bound thioether (S-Fc) as part of
the NHC,S chelate, which possesses a weaker Pt—S bond than a
P,S chelate.”> We hypothesized that, upon oxidation, the binding
affinity of S-Fc* would be sufficiently weakened,” allowing
exogenous ligands to specifically displace that thioether and
occupy the corresponding coordination site.

Transmetalation of the RHL precursor 1 with 0.5 equiv of
silver(I) oxide (Ag,O) and 1 equiv of dichloro(1,5-
cyclooctadiene)platinum(II) (PtCl,(cod)) gave the monoli-
gated complex 2, which was combined with 1 equiv of (2-
(phenylthio)ethyl)diphenylphosphine to form the fully open
heteroligated complex 3 (Figure 2). Subsequent chloride
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Figure 2. Synthesis and crystal structures of semi-open complex 4 and
fully closed complex § (50% probability ellipsoids). Counteranions and
solvent molecules are omitted for clarity.

abstractions resulted in the semi-open complex 4 and the fully
closed complex §. Each compound was characterized by
multinuclear NMR spectroscopy and high-resolution mass
spectrometry (HRMS) (see the Supporting Information (SI)).
In particular, the *'P NMR spectrum of § (Figure S2) exhibited a
downfield resonance (41.62 ppm) characteristic of a phosphine
in a five-membered chelate,” and the small coupling constant
(Yp_pe = 3183 Hz) indicates that the phosphine is trans to a
thioether,”” consistent with the fully closed structure. Density
Functional Theory (DFT) calculations, carried out at the -
B97XD/lanl2dz level of theory, were used to investigate the
structure and the electronic properties of these complexes (see
the SI). Comparing the diastereomers of S, a 1.59 kcal/mol
energy difference was found (Table S4), deeming them
isoenergetic. The presence of the second diastereomer was
confirmed by an additional signal (37.50 ppm, 'Jp_p &~ 3180
Hz), which fully coalesced with the major signal at 343 K due to
rapid diastereomer interconversion via thioether inversion
(Figure §2).%730

The solution-phase structures assigned to 1, 2, 4, and S are
consistent with the solid-state structures determined by single
crystal X-ray diffraction (SCXRD) studies (Figures 2 and S28).
The crystal structure of 5 showed that the NHC,S ligand and the

14591

P,S ligand chelate to the Pt" center with a square planar
geometry. The six-membered NHC,S chelate’s bond angle
approaches 90° at Pt" (C13—Pt1—S1 = 88.26(6)°) and thus
experiences less strain than the previously reported five-
membered NHC,S chelate.*” While the latter was opened by
mild nucleophiles such as acetonitrile (MeCN) and thioanisole
(PhSMe), we hypothesized that the former would not. Indeed,
when a 10-fold excess of PhSMe was added to a solution of 5, no
reaction occurred as evidenced by *P NMR spectroscopy
(Figure S3).

To understand how exogenous ligands affect the electronic
properties of the RHL, complex S (E; , = 0.38 V vs Fc/Fc*) was
studied by cyclic voltammetry (Figure 3). The peak separation
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Figure 3. (a) Proposed electrochemical transformations for S. Cyclic
voltammograms of $ with (b) 0 and 100 equiv of PhSMe in 0.1 M
[nBu,N][PF,]/CH,Cl, at 50 mV s™, and (c) 10 equiv of PhSMe
recorded at different scan rates.

increased from 0.09 to 0.18 V after adding 100 equiv of PhSMe.
The cathodic peak associated with the reduction of Fe'" shifted
by 0.14 V to a less positive potential (*, Figure 3b), suggesting
that the oxidized RHL ligand underwent a coordination change
that stabilizes Fe'! when exogenous ligands are present. Cyclic
voltammograms of § with 10 equiv of PhSMe recorded at
varying scan rates show that although there is one anodic wave
associated with the conversion of § to 6, there are two cathodic
waves that can be detected at faster scan rates (Figure 3c). These
waves are associated with the reduction of 6 and 7, respectively,
which are in equilibrium with one another, a slow process on the
electrochemical time scale.”"”> These observations are con-
sistent with the proposed square scheme (Figure 3a),”” in which
the oxidized complex 6 is opened by PhSMe to form 7, whose
ferrocenium center is electronically stabilized by the relief of
electrostatic repulsion between Pt" and Fe™™. Upon reduction of
7 to give the transient species 8, PhSMe is displaced quickly to
re-form S.

With promising results from the electrochemical studies, we
investigated whether the coordination state of 5 could be
controlled with chemical redox agents. Thus, an orange solution
of § in dichloromethane-d, (CD,Cl,) was treated with silver
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tetrafluoroborate (AgBF,) to yield a green solution that
gradually formed a dark green precipitate which was redissolved
in nitromethane-d; (CD;NO,) for characterization. The
formation of S-Fc" in oxidized complex 6 was substantiated by
the ligand-to-metal charge-transfer (LMCT) band at 665 nm
(Figure 4a), characteristic of a ferrocenium substituted with
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Figure 4. (a) UV—vis—NIR spectra of 6 titrated with PhSMe to form 7.
(b) Crystal structure of 1°* drawn with 50% probability ellipsoids. UV—
vis—NIR spectra of 1> and 7 (S equiv of PhSMe). (c) Energy-
minimized models of 6, 7, and 8.

electron donating groups.”* To test the hypothesis that mild
nucleophiles open the oxidized complex, PhSMe was titrated to
a solution of 6 to give a reddish brown solution. Ultraviolet—
visible—near-infrared (UV—vis—NIR) spectroscopy revealed
isosbestic points at 507 and 705 nm, consistent with the
proposed two-state equilibrium between 6, PhSMe, and 7
(Figure 4a). Using the absorbance of the red-shifted band (845
nm) that increases with the concentration of PhSMe, binding
isotherms (Figure S25) were constructed and fitted to a 1:1
bindin% model to afford the association constant (K, = 1881 + 1
M™).> Importantly, 7 has a spectrum identical to that of the
oxidized RHL ligand precursor (1), whose structure was
verified by SCXRD studies (Figure 4b), supporting the
hypothesis that 7 possesses a non-coordinating S-Fc* displaced
from Pt" by PhSMe.

Comparison between the energy-minimized models of the
oxidized, semi-open complex 7 and its non-oxidized counterpart
8 (Figure 4c) revealed that electrostatic repulsion leads to an
extended ligand conformation that could be detected by NMR
spectroscopy. Upon conversion from 6 to 7, the distance
between the paramagnetic Fe' center and the *'P nuclei
increases by ~2.3 A (Table S5). Since paramagnetic relaxation
enhancement has a distance dependence of (r~°),°® conversion
to 7 should result in sharper *'P signals,** but the 'H signals of S-
Fc* should remain broadened and isotropically shifted to the
downfield region.”” Confirming our predictions, the 3'P NMR
spectrum of 7 sharpened significantly (Figure Sd) compared to
that of 6 (Figure 5c), while the '"H NMR spectrum continued to
exhibit broad, downfield signals. In addition, the magnetically
inequivalent protons of S-Fc* became relatively well-resolved in
the "H NMR spectrum of 7, showing the expected integral ratio
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Figure 5. (a) Interconversion of 5, 6, and 7. '"H NMR (CD,;NO,) and
3P NMR (CD;NO,) spectra of (b) §, after addition of (c) AgBF,, (d)
PhSMe, and (e) Fe(Cp*),.

of ~2:2:5 (Figure S56). This spectral resolution was only
observed among species with a non-coordinated, conformation-
ally flexible S-Fc* group (Figure S10).

Comparison between the >'P NMR spectra of § and 7 (Figure
5b,d) confirmed that they represent different species. The *'P
NMR spectrum of 7 exhibited a slightly upfield resonance (41.41
ppm), a smaller coupling constant (‘Jp_p, = 2994 Hz), and,
crucially, no signs of diastereomers—consistent with the
formation of a semi-open complex. Reduction of 7 by
decamethylferrocene Fe(Cp*), re-formed S as evidenced by
the 'H and P NMR spectra (Figure Se). Concurrent 'H
diffusion-ordered spectroscopy (DOSY) experiments showed
that the diffusion coefficient of PhSMe increased significantly
upon addition of Fe(Cp*), (Table S1), indicating that PhSMe
only associates with the oxidized complex 6 to form 7 and
diffuses more freely upon reduction of 7.

One-pot allosteric regulation can be achieved using oxidants
whose reduction potentials are less affected by the presence of
nucleophiles.”® For example, the oxidant [N(C¢H,Br-4);]"BF,”
was prepared in situ and added to a mixture of § and PhSMe in
CD,Cl,. Expected changes in *'P NMR spectrum (Figure S7c)
were observed—an upfield resonance shift (39.48 ppm), a
smaller coupling constant ('Jp_p, = 3043 Hz), and the
disappearance of the diastereomeric signal. Together with the
downfield signals in the '"H NMR spectrum, this evidence
confirmed that § was converted to 7, which can be reduced by
Fe(Cp*), to regenerate 5 (Figure S7).

Finally, it is important to consider whether the system design
meets our initial criteria. First, the redox-inactive Pt node
prevented degradation of the oxidized complexes. UV—vis—NIR
spectrum of 7 showed no signs of decomposition over 36 h
(Figure S26). Second, distal electron transfer modulated the
lability of the Fc-bound thioether. DFT calculations estimated
that the Pt—S bond weakens by 5.66 kcal/mol after RHL
oxidation (Table SS). Third, an exogenous ligand with
appropriate nucleophilicity was essential to achieving selective
regulation. A large excess of weak nucleophiles such as MeCN
was required for complete conversion to the semi-open state
(Figure S8). Strong nucleophiles such as tetrahydrothiophene,
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however, led to indiscriminate opening of both S and 6 (Figure
S9). Fourth, strategic placement of the redox-responsive group
was critical in ensuring complete opening of a coordination site
upon redox reaction. If Fc were attached to the thioether of a P,S
ligand, the resulting oxidized complex could only undergo partial
conversion to the semi-open state (Figure S6).

In conclusion, this work lays the foundation for developing
systems where one can drive the reversible opening and closing
of targeted coordination sites using electron-transfer reactions.
Such control will be useful for activating and deactivating
catalytic structures'*>** and opens avenues to the develop-
ment of sophisticated allosteric protein mimics®”*" that can be
selectively regulated by electrochemical methods.
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General Methods

All chemicals, reagents, and solvents were purchased as reagent grade from
Sigma-Aldrich, Acros, or Alfa Aesar and used as received unless otherwise stated. When
specified, solvents were degassed under a stream of argon before use. All glassware and
stir bars were oven-dried at 180 °C. Flash chromatography was performed using SiO, 60
(230400 mesh ASTM, 0.040-0.063 mm; Fluka). Deuterated solvents were purchased
from Cambridge Isotope Laboratories and Sigma Aldrich and used as received. 'H, *'P,
PF, and '"Pt NMR spectra were recorded on a Bruker Avance 400 MHz NMR
spectrometer at 298 K, and chemical shifts (8) are given in parts per million. '"H NMR
spectra were referenced to residual proton resonances in the deuterated solvents
(dichloromethane-d, = & 5.32; nitromethane-d; = & 4.33), while absolute referencing was
applied for heteronuclear NMR spectra (Ec = 25.145020; Zp = 40.480742; Ep =
94.094011). High resolution mass spectra (HRMS) were recorded on an Agilent 6120
LC-TOF instrument in positive ion mode. Fe(n5-C5H5)(n5-C5H4SCH2CH2C1) was

synthesized following literature procedures.’

Synthesis

QG E
N e
SRV

/

RHL ligand precursor (1). Fe(nS-CsH5)(n5 -CsH4SCH,CH,CI) (0.626 g, 2.23 mmol) and
I-methylbenzimidazole (0.35 g, 2.68 mmol) were dissolved in 25 mL of anhydrous
acetonitrile (MeCN). The bright red reaction mixture, which gradually turned brown, was
stirred and refluxed at 100 °C for three days under N, atmosphere. The mixture was dried
and purified via flash chromatography (CH>Cl;:MeOH = 10:1, Ry = 0.11). The product
fraction was dried in vacuo to obtain a yellow solid (0.1315 g, 0.319 mmol, isolated yield
= 14%; unreacted Fe(n5—C5H5)(n5—C5H4SCH2CH2C1) was recovered and reused). 'H
NMR (400 MHz, CD,Cl,) & 11.80 (s, 1H), 7.70 — 7.57 (m, 3H), 7.55 — 7.48 (m, 1H), 4.66
(t,J=6.6 Hz, 2H), 4.29 (t, J = 1.8 Hz, 2H), 4.22 (s, 3H), 4.18 (t, /= 1.8 Hz, 2H), 4.17 (s,
5H), 3.24 (t, J = 6.6 Hz, 2H). °C NMR (101 MHz, CD,Cl,) & 144.29, 131.99, 131.17,
126.88, 126.85, 112.75, 112.64, 77.50, 73.83, 69.57, 69.53, 53.93, 53.66, 53.39, 53.12,
52.85, 50.18, 47.03, 36.38, 33.40. HRMS (ESI+) m/z Calcd for [M—-CI1]": 377.0766 m/-.
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Found: 377.0770 m/z. Single crystals suitable for X-ray diffraction studies were obtained
by slow diffusion of diethyl ether (Et,O) into a 1,2-dichloroethane solution of 1.

Qi B ™
N +Fe (IN)
s

N
/

Oxidized RHL ligand precursor (1°*). To a degassed nitromethane-d; (CD3;NO,)
solution of 1 (4.8 mg, 0.00116 mmol), AgBF, (5 mg, 0.0257 mmol) was added in the
glovebox. The resulting reddish brown solution was filtered for spectroscopic
characterization (by "H NMR spectroscopy = 100% conversion). 'H NMR (400 MHz,
CD3;NO») 6 39.36 (s, 2H, br), 35.63 (s, 2H, br), 30.00 (s, SH, br), 10.94 (s, 1H), 9.51 (d, J
=8.1 Hz, 1H), 9.15 (d, J = 7.7 Hz, 1H), 8.82 (t, ] = 7.6 Hz, 1H), 8.72 (d, J = 6.4 Hz, 1H),
5.88 (s, 2H), 5.63 (s, 3H), 5.30 (s, 2H). "’F NMR (376 MHz, CD;NO,) & -153.89, -153.95.
Single crystals suitable for X-ray diffraction studies were obtained by layering benzene

over a CD3;NO, solution of 1°*.

Monoligated complex (2). A solution of 1 (0.1254 g, 0.304 mmol) in dichloromethane
(CH,Cl,) (3 mL) was combined with Ag,O (35.2 mg, 0.152 mmol) and stirred at 43 °C.
After several minutes, a solution of PtCl,(cod) (0.1137 g, 0.304 mmol) in CH,Cl, (3 mL)
was added, and the mixture was shielded from light and stirred overnight. The resulting
suspension was filtered and the supernatant was concentrated in vacuo, and hexane was
added to precipitate a yellow solid. The yellow product was isolated via centrifugation.
The precipitates were washed with Et;O (10 mL x 3) and dried in vacuo to afford
monoligated complex 2 as a yellow powder (0.1939 g, 0.302 mmol, isolated yield = 99%).
'H NMR (400 MHz, CD,Cl,) & 7.54 (dt, J= 7.9, 1.0 Hz, 1H), 7.48 — 7.34 (m, 3H), 4.78 —
4.61 (m, 1H), 4.54 (d, J = 14.7 Hz, 1H), 4.48 (d, J = 0.7 Hz, 5SH), 4.33 (s, 3H), 4.24 (s,
1H), 4.15 (d, /= 2.6 Hz, 2H), 3.82 — 3.72 (m, 1H), 3.63 (d, /= 13.6 Hz, 1H), 2.37 (td, J =
13.0, 4.0 Hz, 1H). C NMR (101 MHz, CD,Cl,) & 134.73, 132.36, 124.24, 124.19,
111.23, 109.91, 80.20, 70.72, 70.08, 69.90, 69.68, 53.93, 53.66, 53.39, 53.12, 52.85,
46.08, 40.98, 34.64, 30.83. '>Pt NMR (86 MHz, CD,Cl,) & -3598.48. HRMS (ESI+) m/z
Calcd for [M—CI1]": 607.0020 m/z. Found: 607.0029 m/z. Single crystals suitable for X-ray
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diffraction studies were obtained by slow diffusion of Et;O into a 1,2-dichloroethane

solution of 2.

=
o~ e
QNI\ /Cl @

/ /Pt\

Pth\_\CI

=

Fully open complex (3). Monoligated complex (2) (58.4 mg, 0.0909 mmol) and
(2-(phenylthio)ethyl)diphenylphosphine (29.4 mg, 0.0909 mmol) were combined in
CH,Cl, and stirred at room temperature for 3 h. The solution was concentrated in vacuo
and the product was purified via slow diffusion of Et,O into a solution of 3 in CH,Cl, to
form a yellow precipitate. The precipitate was dried in vacuo to afford fully open
complex 3 as a yellow powder (84.9 mg, 0.0880 mmol, isolated yield = 97%; after
purification: 82.7 mg, 0.0857 mmol, isolated yield = 94%). '"H NMR (400 MHz, CD,Cl,)
0 7.47 — 6.70 (m, 19H), 4.70 — 4.56 (m, 1H), 4.56 — 4.11 (m, 9H), 3.78 (s, 3H), 3.74 —
3.63 (m, 1H), 3.40 — 3.21 (m, 3H), 2.98 (dddd, J = 25.9, 15.9, 9.7, 5.6 Hz, 2H), 2.69 —
2.58 (m, 1H).*'P NMR (162 MHz, CD,Cl,) & 1.30 (s, Jp_p = 3765 Hz). '’Pt NMR (86
MHz, CD,Cl,) § -3994.57, -4038.71. HRMS (ESI+) m/z Calcd for [M—-CI]": 929.0972
m/z. Found: 929.0966 m/z.

Semi-open complex (4). To an acetone solution of 3 (80.1 mg, 0.0830 mmol), AgBF4
(16.2 mg, 0.0830 mmol) was added. The mixture was shielded from light and allowed to
stir overnight at room temperature. The resulting suspension was filtered, and the
supernatant was dried in vacuo to afford pure semi-open complex 4 as a yellow solid
(79.1 mg, 0.0779 mmol, isolated yield = 94%). '"H NMR (400 MHz, CD,Cl,) & 8.05 —
6.93 (m, 19H), 4.83 — 3.88 (m, 10H), 3.75 (d, J = 7.6 Hz, 3H), 3.57 (s, 1H), 3.40 — 3.22
(m, 1H), 3.22 — 2.70 (m, 4H), 2.59 (s, 1H). *'P NMR (162 MHz, CD,Cl,) & 37.02 (s, Jp_pt
= 3417 Hz). HRMS (ESI+). Calcd for [M-BF,]": 929.0972 m/z. Found: 929.0974 m/z.
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Semi-open complex (4), counteranion BPhs. To a methanol (MeOH) solution of 3 (7.7
mg, 0.00798 mmol), excess NaBPhs (3.4 mg, 0.00994 mmol) was added and a pale
yellow precipitate appeared. The resulting suspension was filtered, and the collected
precipitate was washed with cold MeOH and dried in vacuo to afford semi-open complex
4 as a yellow solid (8.2 mg, 0.00657 mmol, isolated yield = 82%), which can be purified
via crystallization (see below for procedure). "H NMR (400 MHz, CD,Cl,) § 7.93 — 7.30
(m, 19H), 7.28 — 6.79 (m, 23H), 4.58 — 4.19 (m, 9H), 4.19 — 2.08 (m, 11H). >'P NMR
(162 MHz, CD,Cly) o6 36.77 (s, Jp_pt = 3410 Hz). Single crystals suitable for X-ray

diffraction studies were obtained by slow diffusion of Et,O into a CH,Cl, solution of 4.

Fully closed complex (5). To an acetone solution of 4 (68.1 mg, 0.0670 mmol), AgBF,
(13 mg, 0.0670 mmol) was added. The mixture was shielded from light and stirred
overnight at room temperature. The resulting suspension was filtered, and the supernatant
was dried in vacuo to afford fully closed complex 5 as an orange-yellow solid (68.3 mg,
0.0640 mmol, isolated yield = 95%). The product can be purified via crystallization (see
below for procedure, 95% recovery). 'H NMR (400 MHz, CD,Cl,) & 7.99 — 7.26 (m,
19H), 5.12 (d, J = 70.2 Hz, 2H), 4.88 — 3.78 (m, 9H), 3.38 (d, J = 297.3 Hz, 9H). ’'P
NMR (162 MHz, CD,Cl,) & 42.02 (s, Jo_p = 3250 Hz), & 37.24 (s, Jo_p ~ 3140 Hz). °F
NMR (376 MHz, CD,Cl,) & -150.85, & -150.90. "H NMR (400 MHz, CD3NO,) & 8.08 —
7.43 (m, 20H), 5.43 — 4.76 (m, 2H), 4.29 — 3.59 (m, 9H), 3.56 — 2.44 (m, 9H). *'P NMR
(162 MHz, CD;NO,) & 41.62 (s, Jp_p = 3183 Hz), 37.50 (s, Jp_p ~ 3180 Hz). °F NMR
(376 MHz, CD3NOy) § -152.72, -152.77. HRMS (ESI+). Calcd for [M-BF,]": 980.1326
m/z. Found: 980.1337 m/z. Single crystals suitable for X-ray diffraction studies were
obtained by slow diffusion of Et,O into a CH,Cl, solution of 5.
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3+ 3BF,
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7N

PhR
R

Oxidized, fully closed complex (6). To a degassed CH,Cl, solution of 5 (35.4 mg,
0.0332 mmol), AgBF,4 (8mg, 0.0411 mmol) was added in the glovebox. The mixture was
shielded from light and allowed to stir overnight at room temperature. The orange
solution turned green, which decolorized gradually and formed a dark green precipitate.
The resulting suspension was filtered and the filtrate was discarded. The dark green
precipitate was dissolved in CDsNO, for spectroscopic characterization (by *'P NMR
spectroscopy = 100% conversion). 'H NMR (400 MHz, CDsNO,) & 38.56 (br), 9.74 (br),
8.09, 8.02, 8.01.°'P NMR (162 MHz, CD;NO,) & 39.04 (br), 5 -8.08 (br). ’F NMR (376
MHz, CD;NO,) & -154.53, -154.58. HRMS (ESI+). Calcd for [M—2BF,+Cl1]": 1016.1006
m/z. Found: 1016.0987 m/z.

|3+ 3BF,
~_SFe ()
A
/P

7N L = ~
Ph,P,

Oxidized, semi-open complex (7). To a degassed CD3;NO; solution of 6 (0.0180 mmol)
in the glovebox, degassed PhSMe (0.0902 mmol, 10.6 ;2 L) was added to give a reddish
brown solution with complex 7 (by *'P NMR spectroscopy = 100% conversion). 'H
NMR (400 MHz, CD3;NOy) 6 39.61 (br), 35.57 (br), 30.04 (br), 14.30 (br), 12.58 (br),
8.11 (br), 7.88 (br), 7.77 (br), 7.48 (br), 7.31 (br), 7.20 (br), 6.19 (br), 4.08 (br), 3.69 (br),
3.36 (br).*'P NMR (162 MHz, CD;NO,) & 41.41 (s, Jo_p. = 2994 Hz). '’F NMR (376
MHz, CD3NO,) 6 -154.11, -154.17.

Regeneration of fully closed complex (5). To a degassed CD;NO, solution of 7
(0.0107mmol) in the glovebox, Fe(Cp*), (0.0129 mmol, 4.2 mg) was added to give
complex 5 (by *'P NMR spectroscopy = 100% conversion). 'H NMR (400 MHz, complex
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5, CD:NO,) & 7.92, 7.86, 7.84, 7.80, 7.79, 7.78, 7.77, 7.74, 1.73, 7.67, 7.62, 7.60, 7.59,
7.58,7.56, 7.54,7.53, 7.48, 7.46, 5.33, 5.30, 4.92, 4.22, 4.16, 4.09, 3.75, 3.33, 3.23, 3.02.
'H NMR (400 MHz, PhSMe, CDsNO,) & 7.43 — 7.31 (m, 4H), 7.22 (dd, J = 7.9, 6.1 Hz,
1H), 2.53 (s, 3H). "H NMR (400 MHz, Fe(Cp*),, CD:NO») & -30.83 (s, 1H).*'P NMR
(162 MHz, CD3NO,) & 41.62 (s, Jo_p = 3188 Hz), 37.62 (s, Jo_pi ~ 3210 Hz). "F NMR
(376 MHz, CD5NO,)  -152.81, -152.86.
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Variable-Temperature NMR Studies

Fully closed complex 5 was dissolved in CD3NO,; for variable-temperature (VT) NMR
experiments. 'H and >'P NMR spectra were taken at increasing temperatures from 298 K
to 343 K in 15 K increments.

il m_,\_)/\\_)k___L o

328 K

I
j'\l.ﬂ 4

J | 77741}; _,\_JL’I “'\ p—

A

85 80 7.5 7.0 6.5 6.0 55 50 45 40 35 3.0 25 20 15 1.0
1 (ppm)

Figure S1. VT "H NMR (400 MHz, CD;NO,) spectra of 5.

313K

298 K

40.35 ppm

1Jpep = 3165 Hz

343 K

|

Ao i igrotnsaaivioh, 328 K

s My mapiaaon | 313 K

37.50 ppm
TJpp ~ 3180 Hz

1th_p =3183 Hz
298 K

8‘0 76 GIO 50 40 3‘0 2‘0 1I0 0
1 (ppm)
Figure S2. VT *'P NMR (162 MHz, CD3;NO,) spectra of 5.
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NMR Titrations

QT|2+ZBF.- Me’s
< } N Fe(n) \©
NJIJ\ S4B —_— No Reacti
/ Pt DG 0 reaction
Php” s> 3NO2
\/

41.64 ppm

11p NMR
CD;NO,

TJppp = 3185 Hz
10 equiv. PhSMe

41.66 ppm

Jpp = 3188 Hz

5 equiv, PhSMe

"Jpp = 3183 Hz
0 equiv, PhSMe

85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0
1 (ppm)

Figure S3. °'P NMR (162 MHz, CD;NO,, 298 K) spectra of fully closed complex 5
titrated with increasing equivalents of PhSMe.

2+ 287, < 2+ 2BF,-
mpe m ,‘Vsﬁun
Q_@ Q J\: L
IPf —_— /Pt
PR 5> CD;NO; PR 3> L=THT
3P NMR
CD;NO, 41.41 ppm

TJp.p = 3040 Hz

10 equiv. THT
41.16 ppm
"Jpp = 3080 Hz
- 5 equiv. THT
“Jrep = 3183 Hz 0 equiv. THT

85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 O
1 (ppm)

Figure S4. °'P NMR (162 MHz, CD3;NO,, 298 K) spectra of 5 titrated with increasing
equivalents of tetrahydrothiophene (THT). A smaller coupling constant ("Jp.p~ 3030Hz)
and the disappearance of the diasterecomeric signal at ~ 38 ppm indicate the formation of

the semi-open complex.
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—| 34 38F,- _| 3+ 3BF,-

Q,j/l Fe (IIl) %/\/S FE (i
MeCN

—_—

thP \S—O thP ‘5—0 L = MeCN

0 equiv. MeCN

2 equiv. MeCN ‘
4 equiv. MeCN .
10 equiv. MeCN |
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1 (ppm)

Figure S5. '"H NMR (400 MHz, CD3;NO,, 298 K) spectra of complex 6 titrated with

increasing equivalents of the surrogate ligand, MeCN.

QST Y0 g

Pl s—=> PhiRl L
L Ee () CD3NO; N
&

Fe (Ill)

1P NMR
CD;NO,

300 equiv. PhSMe

WM 200 equiv. PhSMe
Wm 100 equiv. PhSMe
WJKL‘ o . 0 equiv. PhSMe

100 9 80 70 60 50 40 30 20 10 0 -0 -20 -30
1 (ppm)

Figure S6. *'P NMR (162 MHz, CD;NO,, 298 K) spectra of the oxidized complex
titrated with increasing equivalents of PhSMe. The peak at ~8ppm is indicative of a *'P

nucleus that is not part of a 5-member chelate.” This complex has its redox-active Fc
covalently attached to the thioether of the P,S ligand instead of the NHC,S ligand.

S11



One-pot redox regulation

[N(C¢H4Br-4);]'BF,” was prepared in situ via addition of AgBF, into a degassed CH,Cl,
solution of N(C¢H4Br-4);. The resulting deep blue solution was added to a yellow

solution of 5 to give a brown solution of 7.

(a) L —l 2+ 2BF,-

Fe (I)

'H NMR
(b) 5

3P NMR
_42.21 ppm

"Jpep = 3229 Hz

39.48 ppm

[R] u [0]

<
Fe (Ill)

s

3+ 3BF,- "Jorp = 3043 Hz

_ 42.22 pPpm

. 1Jpep = 3232 Hz
[O] = [N(C¢H4Br-4);]"BF ;- 1

[R] = Fe(Cp*);
S\ T T T T T T T
L= ©/ PhSMe 40 20 0 20
1 (ppm)

Figure S7. (a) Direct interconversion between complexes 5and 7. "H NMR (400 MHz,
CD,Cl,, 298 K) and *'P NMR (162 MHz, CD,Cl,, 298 K) spectra of (b) 5 with 4.5 equiv
of PhSMe, (c) after oxidation by [N(C¢H4Br-4);]'BFy4, and (d) after subsequent reduction
by Fe(Cp*)..

70 60 50 40 30 20 10
1 (ppm)

Alternative surrogate ligands
All transformations were performed, as described in the synthesis section, by substituting

PhSMe with a different surrogate ligand in the specified amount. Upon addition of the

surrogate ligand, the deep green solution changed into a reddish brown solution.
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For the transformation using MeCN as a surrogate ligand, the formation of 7-MeCN was
confirmed spectroscopically (Figure S8d)—a large upfield shift of the *'P resonance
(32.69 ppm) and a large coupling constant (“Jp.p = 3609 Hz), the latter of which is
indicative of a *'P nucleus trans to a weakly donating ligand such as MeCN. The gradual
opening of 6 by MeCN was also followed by '"H NMR via titrating increasing equivalents
of MeCN (Figure S5).

(a) 1H NMR 31p NMR

?jlz» 2BF,-
Hd”

/Pt
PhR s 5

l [0]

@ 41.62 ppm

"Jpep = 3182 Hz

S, |3+ 3BF,-
~ %ﬂm ¢ 39.04 ppm
1y <8
/ /Pt\s [R]
Ph.P” s—> 6
N (d) 7-MeCN
l 32.69 ppm
L
@._'3+ 3BF,- "Jerp = 3609 Hz
s Fe (Ill)
N
i =
I PE
PhoR “s—C> 7-MeCN 138 ppm
T Jpp = 3189 Hz
[0] = AgBF, [R] = Fe(Cp*),
Fe(Cp*),*
L = N=Me ,...._(.p)z,,T,,‘,,,,
3 10 -10 -30 70 50 30 10 -10
MeCN 1 (ppm) ppm

Figure S8. (a) Interconversion of 5, 6, and 7-MeCN. 'H NMR (400 MHz, CD3sNO,, 298
K) and *'P NMR (162 MHz, CD3;NO,, 298 K) spectra of (b) 5, after sequential addition of
(c) AgBF4, (d) 10 equiv of MeCN, and (e) Fe(Cp*),.

For the transformation using tetrahydrothiophene (THT) as a surrogate ligand, the
formation of 7-THT was marked by the disappearance of diastereomeric signal (Figure
S9d) and a decrease in coupling constant (Ith_p = 2948 Hz). Note that upon reduction of
7-THT by Fe(Cp*),, instead of re-forming 5 directly, the non-oxidized, semi-open
complex 8-THT was formed. This is consistent with the titration experiment that shows

that THT is a strongly coordinating ligand for 5 (Figure S4).
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P NMR 41.62 ppm

Jpp = 3182 Hz

i

(a)
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oI |22 MM
/1 Ee () Nsﬁf“) (d) 7-THT 42.27 ppm
* _@ '\:/L
I P I P "Jpp = 2948 Hz
thp\_;s—o 6 thp\_;s—o
l L 40.98 ppm
|3+ 38Fs
Q ~_S_Fe () R] 1 Jpp = 3090 Hz
.fN)IPt’L Fe(Cp*)
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[O] = AgBF, [R] = Fe(Cp*)2
L= 0 2 0 20 4 70 50 30 10 -10
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Figure S9. (a) Interconversion of 5, 6, 7-THT, and 8-THT. '"H NMR (400 MHz,
CDsNO,, 298 K) and *'P NMR (162 MHz, CD;NO,, 298 K) spectra of (b) 5, after
addition of (c) AgBF,, (d) 5 equiv of THT, and (e) Fe(Cp*),. (f) In vacuo overnight.

7-THT

7-MeCN "

it

M N .
50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20
1 (ppm)

Figure $10. '"H NMR (400 MHz, CD3;NO,, 298 K) spectra of oxidized complexes (fully
closed 6, semi-open 7, 7-THT, and 7-MeCN), and oxidized RHL ligand precursor (1°%).
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"H DOSY NMR Experiments

A series of '"H DOSY NMR experiments were performed to further confirm that the
surrogate ligand PhSMe opens only the oxidized complex 6 but not complex 5. If the
surrogate ligands were to interact with WLA complexes, they would co-diffuse and result
in a lower diffusion coefficient for PhSMe. As shown in Table S1, the calculated
diffusion coefficient of PhSMe exhibited negligible changes without 5 (1.85 x 10” m’s™)
or with 5 (1.86 x 10” m’s™) in the solution. This is highly consistent with the fact that
PhSMe does not open 5. On the other hand, the diffusion coefficient of PhSMe decreased
drastically when the oxidized, semi-open complex 7 is present in the solution (1.61 x 107
m’s™), suggesting that PhSMe interacts with the oxidized complex. Reduction with
Fe(Cp*), led to an increase in the diffusion coefficient of PhSMe (2.00 x 10 m’s™),

consistent with PhSMe decoordination upon reduction of the RHL.

Table S1. Diffusion coefficients (unit: 10°m’s™) determined by 'H DOSY NMR
experiments (400 MHz, CD3;NO,, 298 K).

Sample CDsNO; (Solvent) PhSMe
Only PhSMe 2.50 1.85
5 + 10 equiv of PhSMe 2.46 1.86
7 + 5 equiv of PhSMe 2.56 1.61
7 + 5 equiv of PhSMe,
2.62 2.00
then Fe(Cp*),
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Figure S11. "H NMR (400 MHz, CD;NO,, 298 K) spectra of PhSMe.
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Figure S12. '"H DOSY NMR (400 MHz, CD3NO,, 298 K) spectrum of PhSMe.
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Figure S13. '"H NMR (400 MHz, CD;NO,, 298 K) spectra of 5.
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Figure S14. '"H DOSY NMR (400 MHz, CD3NO,, 298 K) spectrum of 5.
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Figure S15. '"H NMR (400 MHz, CD3;NO,, 298 K) spectra of 5 and 10 equiv of PhSMe.
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Figure S16. 'H DOSY NMR (400 MHz, CD3;NO,, 298 K) spectrum of 5 and 10 equiv of

PhSMe.
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Figure S17. "H NMR (400 MHz, CD;NO,, 298 K) spectra of 6.
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Figure S18. '"H DOSY NMR (400 MHz, CD3NO,, 298 K) spectrum of 6.
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Figure S19. '"H NMR (400 MHz, CD3;NO,, 298 K) spectra of 7 and 5 equiv of PhSMe.
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Figure $20. '"H DOSY NMR (400 MHz, CD3;NO,, 298 K) spectrum of 7 and 5 equiv of
PhSMe.
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Figure S21. '"H NMR (400 MHz, CDsNO,, 298 K) spectra of 5 equiv of PhSMe and 5,
regenerated by reduction of the oxidized complex 7 with Fe(Cp*),.
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Figure S22. '"H DOSY NMR (400 MHz, CD3sNO,, 298 K) spectrum of 5 equiv of PhSMe

and 5, regenerated by reduction of the oxidized complex 7 with Fe(Cp*)s,.
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Electrochemical Studies

Cyclic voltammograms were recorded in a 10 mL scintillation vial with electrodes fixed
in position. The analyte was dissolved as a 1.0 mM solution in CH,Cl, (5§ mL) with 0.1 M
[nBusN][PFs] as the supporting electrolyte. All experiments were performed with a
glassy-carbon working electrode (3.0 mm diameter), a coiled platinum-wire counter
electrode (23 cm, 0.5 mm diameter), and a non-aqueous Ag/Ag’ pseudo-reference
electrode, which were purchased from BASi. The working electrode was polished with
15 pm and then 1 um diamond paste and was rinsed with water, MeOH, and CH,Cl, prior
to use. Decamethylferrocene (E = 0.548 V vs Fc/Fe¢'in 0.1 M [nBusN][PFs]/CH,Cl,) was
added at the end of the experiments and used as an internal reference,’ and all potentials

were reported referenced to Fc/Fc'.

Fe(Cp*), /
[Fe(Cp*),I* 1}

5|.|A:[

— Complex 5
— + 100 equiv. PhSMe

0.7 0.5 0.3 0.1 -0.1 0.3 -0.5 07 -0.9
E(V) vs Fc/Fc*

Figure S23. Cyclic voltammograms recorded in 0.1 M [nBusN][PF¢]/CH,Cl, with

Fe(Cp*), added as an internal reference.

(a) (b)

4. apa]

&~

— 400 mVs" — 400 mVs1
—— 200 mVs" =—— 200 mVs-
— 100 mVs" — 100 mVs-
—— 50 mVs- — 50 mVs™"
— 10 mVs1
0:6 0:4 0:2 0 -0..2 0.6 0.4 0.2 0 -0.2
E(V) vs Fc/Fc* E(V) vs Fc/Fc*

Figure S24. Cyclic voltammograms of (a) 5 and (b) § with 100 equiv of PhSMe recorded
in 0.1 M [nBuyN][PFs])/CH,Cl, at varying scan rates.
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Ultraviolet-visible-near infrared spectra

Ultraviolet-visible-near infrared (UV-Vis-NIR) spectra were obtained with a Cary 5000
UV-Vis-NIR spectrometer and a 10 mm path length screw-capped quartz cell. Samples
were prepared in the glovebox. Each binding isotherm was fitted to a 1:1 binding model
to obtain an association constant via non-linear regression.” The association constant (K,)

was taken as the average of the values obtained from two different titrations.

0.7 0.3 "
0.6 0.25
c 0.5 e 02
s 04 H
(3 0.15
0.3 <
< 4 o4
0.2
01 0.05
0 ]
0 0.5 1 1.5 2 25 3 35 4 o 1 2 3 4 5

Equiv of PhSMe Equiv of PhSMe

Figure S25. Binding isotherms of 6 and PhSMe in nitromethane. Initial concentration of

6: 1.01 mM (left) and 0.442 mM (right).

1
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Figure S26. UV-Vis-NIR spectrum of 7 in nitromethane over 36 h.

3

A
2 08 [f \ ’/ \ ene 0 equiv of PhsMe
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Figure S27. UV-Vis-NIR spectrum of 1°* in nitromethane. Titration experiments show
that PhSMe does not interact with the S-Fc' moiety.
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Crystallographic Information

Suitable single crystals of 1, 1°%, 2, 4, and 5 were selected and mounted on a MITIGEN
holder in Paratone oil on a Bruker Kappa APEX-II CCD diffractometer. All
measurements were made with graphite-monochromated Mo Ka radiation. Using Olex2,’
the structure was solved with the ShelXT structure solution program,’ using Intrinsic
Phasing (for 1, 1°*, 2, and 5) or Dual Space (for 4) and refined with the ShelXL

refinement package using Least Squares minimization.’

Figure S28. Crystal structures of (a) 1, (b) 1%, (c) 2, (d) 4, and (e) 5 drawn with 50%

probability thermal ellipsoids. Solvent molecules and H atoms are omitted for clarity.
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Table S2. Crystallographic Data for 1, 1°* and 2.

1 1 2
Empirical formula C,0H,,CIFeN,0y 5sS C,oH, BoN,FgSFe C,,H,,C1,FeN,PtS
Formula weight 421.75 550.92 741.23
Temperature / K 100.09 100.0 99.94
Crystal system monoclinic monoclinic monoclinic
Space group P2,/c P2//n P2,/c
a/Ab/A, c/A 17.6572(8), 11.1718(4), 9.4143(6) |  11.8881(4), 9.8041(4), 18.9098(8) 17.862(4), 9.0804(18), 15.254(3)
a/°, B/e, y/° 90, 98.445(4), 90 90, 94.289(2), 90 90, 99.06(3), 90
Volume / A 1836.95(16) 2197.80(15) 2443.3(9)
V4 4 4 4
Peale/ Mg mm”> 1.525 1.665 2.015
p/mm‘l 1.089 0.861 6.850
F(000) 876 1116 1432

Crystal size / mm’

0.11 x 0.016 x 0.011

0.119 x 0.041 x 0.019

0.131 x 0.025 x 0.023

20 range for data collection

4.328 t0 49.982°

3.92 to 59.098°

4.618 to 63.338°

Index ranges

-20<h<20,0<k<13,0<1<11

-16<h<16,-13<k<13,-25<1<25

-26<h<22,-10<k<13,-19<1<22

Reflections collected

3217

58364

31961

Independent reflections

3217[R(int) = 0.0454]

6038[R(int) = 0.0469]

8254[R(int) = 0.0520]

Data/restraints/parameters

3217/0/240

6038/0/400

8254/180/409

Goodness-of-fit on F?

1.051

1.159

0.986

Final R indexes [[>26 (I)]

R, = 0.0499, wR, = 0.0812

R, =0.0713, wR, = 0.1600

R, = 0.0281, wR, = 0.0539
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Final R indexes [all data]

R, = 0.0782, wR, = 0.0890

R, = 0.0942, wR, = 0.1698

R, = 0.0384, wR, = 0.0569

Largest diff. peak/hole /e A~ 0.592/-0.436 1.963/-0.753 1.183/-1.157
Table S3. Crystallographic Data for 4 and 5.
4 5
Empirical formula CssHgoBCIFeN,OPPtS, C4Hy4B,CL,FgFeN,PPtS,
Formula weight 1322.54 1152.31
Temperature / K 100.01 100.02
Crystal system triclinic triclinic
Space group P-1 P-1
a/Ab/A c/A 11.0864(7), 12.6716(8), 23.6012(15) 9.755(2), 10.735(3), 20.825(5)
a/°, Bl°, y/° 86.285(3), 76.550(3), 68.456(3) 88.803(6), 79.374(7), 79.790(6)
Volume / A® 2998.6(3) 2109.4(9)
Z 2 2
Peate/ Mg mm” 1.465 1.814
p/mm’ 2.758 3.990
F(000) 1344 1136

Crystal size / mm’

0.117 x 0.062 x 0.055

0.277 x 0.184 x 0.014

20 range for data collection

3.456t0 61.13°

1.99 to 66.554°

Index ranges

-15<h<15,-17<k<18,-33<1<31

-15<h<14,-15<k<16,-32<1<32

Reflections collected

46366

80312

Independent reflections

18220[R(int) = 0.0438]

16044[R(int) = 0.0474]
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Data/restraints/parameters 18220/0/706 16044/0/542
Goodness-of-fit on F> 1.097 1.063
Final R indexes [I>2c (I)] R;=0.0525, wR,=0.1172 R; =0.0305, wR, = 0.0790
Final R indexes [all data] R;=0.0591, wR, = 0.1203 R; =0.0364, wR, = 0.0808
Largest diff. peak/hole /e A~ 5.550/-2.380 6.005/-1.523

Computational Studies

All structures were optimized at the ®-B97XD/lanl2dz level of theory. Functional
®-B97XD includes dispersion effects albeit empirically. The lanl2dz basis set includes a
pseudopotential for heavy atoms (second row and beyond),® whereby the core electrons
on these heavier atoms are replaced by a set of functions that simulate their presence and
their effect on the valence electrons. This approach allows computational resources to be
used instead for a higher quality description of the valence electrons and their interactions
with surrounding units.” Interaction energies were calculated with the Natural Bond
Orbital (NBO) deletion method and developed under the NBO population analysis. NBO
allows for a localized, pairwise description of the electron density and is more reliable
than the Mulliken’s default. This takes the Fock matrix and finds the elements that
connect orbitals from one atom to those of another and sets their values to zero (deletion);
the resulting matrix is re-diagonalized and the associated energy value increases with
respect to the original non-deleted one. The change in energy is ascribed to the interaction

10-11
energy.'’

The complexes with same surrogate ligands were superimposed onto each other and the
corresponding root-mean square deviation of atomic positions (RMSD) values were
calculated (Table S5). A large RMSD value denotes that the conformation of ligand
changes significantly upon redox reaction. The superimposed energy-minimized models
show that the change in orientation of Fc/Fc™ group is responsible for the large RMSD
values in 7/8 and 7-THT/8-THT (Figure S30).
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Molecular electrostatic potentials were calculated at the ®-B97XD/lanl2dz level of theory
and mapped with the 0.02 ¢/A® isodensity value (Figure S31). The oxidized complexes
(Fe'") are most electron poor at the Fe" node (for 6) or the Pt" node (for 7 and
7-THT).The small shift in electron density during the formation of 7 and 7-THT from 6

is consistent with electronic stabilization of S-F¢' via ligand displacement.

The oxidized complexes have an odd electron count and thus require an unrestricted
calculation with their electron density being separated into o and P spin. The
corresponding HOMO and LUMO are denoted as HOMOaf, LUMOof3 and LUMOf
respectively. For all the calculations HOMOa are qualitatively indistinguishable from
HOMOZp and thus only one is shown as HOMOuof. For the non-oxidized complexes, the
HOMO resides on ferrocene, which is susceptible of being oxidized, whereas the LUMO
are located on the organometallic fragment. Upon oxidation, however, the HOMOs reside
on the organometallic fragment whereas the LUMOs are located on ferrocenium, which is

susceptible of being reduced (Figure S32).

Table S4. Relative free energies (kcal/mol) and energy minimized models of §, 5*, 6 and
6*. Asterisk denotes the minor diastereomer of the fully closed complex.

Compound

Relative free energy
(kcal/mol)

Compound

Relative free energy
(kcal/mol)

0 3.103
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7-THT

8-THT

Figure S29. Energy minimized DFT models of 7, 8, 7-THT, and 8-THT.

Table S5. Calculated Pt-L bond energies (kcal/mol) and P1-Fel distances (A).

Fe oxidation | Bond Energy P1-Fel RMSD
Compound L .
state (kcal/mol) | distance (A) A)
5 N/A II 66.22 7.592
0.267
6 N/A I 60.56 7.732
7 PhSMe 111 62.20 9.985 5129
8 PhSMe 1 61.57 7.668 '
7-THT THT 11 56.25 9.933 2949
8-THT THT 11 51.39 6.714 '
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Figure S30. Superimposed energy-minimized models of the non-oxidized complex and

its oxidized counterpart.

5, Fe'
0100 V I 0221V 0.100 V I 0.312V

8, Fe'
0100 V' N I 0211V 0.100 v N T T 0313V

8-THT, Fe'" 7-THT, Fell
0.100 V D 0.221V  0.100 V I ST 0311V

Figure S31. Electrostatic potential maps of 5, 6, 7, 8, 7-THT, and 8-THT. Regions of
higher electron density are color coded red, and electron poor regions are color coded
blue.
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Figure S32. Frontier orbital maps of 5, 6, 7, 8, 7-THT, and 8-THT.
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NMR Spectra
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Figure S33. '"H NMR (400 MHz, CD,Cl,, 298 K) spectrum of 1.
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Figure S34. °C NMR (101 MHz, CD,Cl,, 298 K) spectrum of 1.
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Figure S35. '"H NMR (400 MHz, CD3sNO,, 298 K) spectrum of 1°%.
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Figure S36. ’F NMR (376 MHz, CD3;NO,, 298 K) spectrum of 1°*.
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Figure S37. '"H NMR (400 MHz, CD,Cl,, 298 K) spectrum of 2.
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Figure S38. *C NMR (101 MHz, CD,Cl,, 298 K) spectrum of 2.
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Figure S39. '°Pt NMR (86 MHz, CD,Cl,, 298 K) spectrum of 2.
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Figure S40. '"H NMR (400 MHz, CD,Cl,, 298 K) spectrum of 3.
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Figure S41. 3P NMR (162 MHz, CD,Cl,, 298 K) spectrum of 3.
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Figure S42. '°Pt NMR (86 MHz, CD,Cl,) spectrum of 3 at 298 K.
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Figure S43. '"H NMR (400 MHz, CD,Cl,, 298 K) spectrum of 4.
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Figure S44. *'P NMR (162 MHz, CD,Cl,, 298 K) spectrum of 4.
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Figure S45. 'H NMR (400 MHz, CD,Cl,, 298 K) spectrum of 4 (with BPhy).
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Figure S46. *'P NMR (162 MHz, CD,Cl,, 298 K) spectrum of 4 (with BPhy).
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Figure S47. '"H NMR (400 MHz, CD,Cl,, 298 K) spectrum of 5.
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Figure S48. *'P NMR (162 MHz, CD,Cl,, 298 K) spectrum of 5.
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Figure S49. ”F NMR (376 MHz, CD,Cl,, 298 K) spectrum of 5.
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Figure S50. '"H NMR (400 MHz, CD3;NO,, 298 K) spectrum of 5.
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Figure S51. *'P NMR (162 MHz, CD3;NO,, 298 K) spectrum of 5.
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Figure S52. ’F NMR (376 MHz, CD3;NO,, 298 K) spectrum of 5.
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Figure S53. '"H NMR (400 MHz, CD3;NO,, 298 K) spectrum of 6.
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Figure S54. *'P NMR (162 MHz, CD3;NO,, 298 K) spectrum of 6.
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Figure S55. ’F NMR (376 MHz, CD3;NO,, 298 K) spectrum of 6.
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Figure S56. '"H NMR (400 MHz, CD3;NO,, 298 K) spectrum of 7.
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Figure S57. *'P NMR (162 MHz, CD3;NO,, 298 K) spectrum of 7.
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Figure S58. ’F NMR (376 MHz, CD3;NO,, 298 K) spectrum of 7.
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Figure S59. '"H NMR (400 MHz, CD3NO,, 298 K) spectrum of 5, formed from the

reduction of complex 7.
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Figure S60. *'P NMR (162 MHz, CD;NO,, 298 K) spectrum of 5, formed from the

reduction of complex 7.
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Figure S61. F NMR (376 MHz, CD3sNO,, 298 K) spectrum of 5, formed from the

reduction of complex 7.
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Figure S62. HRMS (ESI+) spectrum and the ISOPRO simulation of the molecular ion
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Figure S63. HRMS (ESI+) spectrum and the ISOPRO simulation of the molecular ion
[M—CI]" of 2. Solvent: MeOH.
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Figure S64. HRMS (ESI+) spectrum and the ISOPRO simulation of the molecular ion
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