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Abstract The polynomial interpolation problem with distinct interpolation points
and the polynomial represented in the power basis gives rise to a linear system of
equations with a Vandermonde matrix. This system can be solved efficiently by
exploiting the structure of the Vandermonde matrix with the aid of the Bjorck—
Peyrera algorithm. We are concerned with polynomial least-squares approximation
at the zeros of Chebyshev polynomials. This gives rise to a rectangular Vandermonde
matrix. We describe fast algorithms for the factorization of these matrices. Both QR
and QR-like factorizations are discussed. The situations when the nodes are extreme
points of Chebyshev polynomials or zeros of some classical orthogonal polynomial
also are considered.
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1 Introduction

We consider fast QR factorization of rectangular Vandermonde matrices

1 x; x%n-x’f_]
1 xy x2 .- x27!
2 2
v=1| . | eRY¥" N>n, (1.1)
1xy x2 - x07!
N AN N

whose nodes x; are the zeros of a Chebyshev polynomial of the first kind of degree
N for the interval [—1, 1],

2i — 1 .
X; = COS ), i=12,...,N. (1.2)
2N

We also will discuss the situation when the nodes are extreme points of a Chebyshev
polynomial of the first kind of degree N — 1. These nodes are given by

i — 1
X; = COS ! ), i=1,2,...,N. (1.3)
N-—-1
Rectangular Vandermonde matrices' arise in the polynomial least-squares approx-
imation problem

N n—1
. 2 _ J = r
min c, Xxi) — Vi), c,x) = cix’, c=lco,c1,...,cn-1]. (14
cewz(”( D=y, ple,x) Z J [co. €1 1] (14)
i=1 j=0
where the vector y = [y, y2, ..., yN]T represents data that is to be fitted in the
least-squares sense. The minimization problem (1.4) can be written in the form

min [|[Ve —yll,, (1.5)
ceR"

where || - |2 denotes the Euclidean vector norm. The use of the power form represen-
tation of the least-square polynomial p is convenient when the polynomial is to be
differentiated or integrated.

Although Vandermonde matrices with real nodes are known to generally be quite
ill-conditioned, the use of Chebyshev nodes (1.2) reduces this difficulty somewhat.
The condition number of a Vandermonde matrix is defined as

K(V) = VIV,

where V7 denotes the Moore—Penrose pseudoinverse of V, and | - || stands for a
matrix norm. The condition number indicates how errors in the data vector y in (1.5)
as well as round-off errors introduced during the solution process are propagated to
the computed solution. It is desirable that the condition number not be too large.
Gautschi [4] showed that for the Frobenius matrix norm, the condition number of a
square Vandermonde matrix V € R"*", with real nodes allocated to minimize the

UIn the literature, the transpose of the matrix (1.1) is sometimes referred to as a rectangular Vandermonde
matrix.
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condition number, grows exponentially at a rate slightly less than (1 + +/2)". When

the matrix norm is induced by the uniform vector norm and the nodes are given by

(1.2) with N = n, Gautschi [5] proved the condition number for square Vandermonde
3

matrices to be asymptotically 374(1 + +/2)" as n — oo. This result indicates that
it is beneficial to choose the nodes (1.2) for Vandermonde matrices. Moreover, it
is known that the approximation of functions on the interval [—1, 1] by polynomial
interpolation at Chebyshev nodes gives near-optimal approximants in the sense that
the polynomial interpolant is close to the best polynomial approximant of the same
degree in the uniform norm; see Mason and Handscomb [10]. The nodes (1.3) also are
known to be suitable interpolation points. If a polynomial approximant of a function
is desired on a bounded interval [a, b] different from [—1, 1], then it is convenient
to map this interval to [—1, 1] by a linear transformation and compute a polynomial
interpolant or least-squares approximant on the latter interval.

Eisinberg et al. [3] were the first to describe a fast factorization of a rectangular
Vandermonde matrix (1.1) determined by Chebyshev nodes (1.2). They presented the
factorization

V=HUD, (1.6)

where H = [h;;] € RN *" has the entries

hij = cos [w

, i=1,2,...,N, j=12....n,
2N

and the upper triangular matrix U = [u;;] € R"*" has the elements

i—i n n
wnoy = €YY, i=t2 |5 d=hit 5]

2 2
j—i . n ... n
uzi—1,2j—1 =C§§_12), l=1,2,...,’75-|, J=l,l+1,...,’75-‘,

i—1 . n
Ur2j-1 =C§§_3), ]=1,2,...,’V§—‘.

Here |-] and [-] denote the “floor” and “ceiling” functions, respectively, and the
k!
)
cC,'=—- 1.7
k (k — £)1e! (L.7)

are binomial coefficients. They arise in the expansion of the powers x* in terms of
Chebyshev polynomials

Ti(x) = cos(iarccos(x)), —1=<x=<1, i=0,1,....k (1.8)
see, for instance, Cody [2], Mason and Handscomb [10, Chapter 2], or (2.5) below.
The matrix D = diag[d1, d22, . .., duy] € R™™™ has the entries

1 .
d[i:F’ i=1,2,...,n.

The representation (1.6) allows Eisinberg et al. [3] to express the Moore—Penrose
pseudoinverse of V in factored form,

1
vi= ND_IQBHT, (1.9)
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where the matrix Q = [¢;;] € R"*" is the inverse of U. It has the entries

q21,2]=( 1)’+12 — Cl(ill)z, l=1727"'5L§J5 J=171+17-"7L_J7

Goic12j-1 = (=D)L Cé]/ 2 i=1,2,..-,[—]’ j=i7i+1,...,(ﬂ,
i —

2
. n
Groj1= (=Dt =12, [ﬂ .

Moreover,
B = diag[1,2,2,...,2] € R"™*".

Eisinberg et al. [3] compute the solution of (1.5) by evaluating
c= VTy,

using the factorization (1.9). The computation of the vector ¢ in this manner requires
5Nn + 2n? arithmetic floating point operations (flops), assuming that the required
binomial coefficients (1.7) are explicitly known. The flop count does not include the
evaluation of the entries h;; of the matrix H. Here and throughout this paper, our
flop counts only give the leading terms. In computations reported in Section 4, we
precompute the coefficients (1.7) that will be used and store them in a file. We will
refer to this fast solver due to Eisinberg et al. [3] as the EFS factorization algorithm.

It is the purpose of this paper to discuss alternative fast algorithms for the fac-
torization of rectangular Vandermonde matrices and the solution of (1.5). These
algorithms exploit the structure of the matrix (1.1) in a different manner than
Eisinberg et al. [3]. We derive, in Section 2, a QR factorization

V = OR, (1.10)

where the Vandermonde matrix (1.1) is determined by the nodes (1.2), the matrix
Q € RV*" has orthonormal columns, and the matrix R € R"*" is upper triangular.
The entries of the matrices Q and R are explicitly known, which makes fast solution
of the least-squares problem (1.5) possible.

Another fast solution method for (1.5) is obtained by applying the formula

VR = Q. (1.11)

The matrices V and Q in (1.10) and (1.11) are the same, and the matrix R € R
in (1.11) is the inverse of R in (1.10). Thus, R is upper triangular. Its entries are
explicitly known. It follows that (1.11) can be applied to derive a fast solution method
for (1.5). The formula (1.11) was derived by Li [9], who applied it to investigate the
conditioning of rectangular Vandermonde matrices with Chebyshev nodes; Li did not
explore the application of the decomposition (1.11) in a fast solver for (1.5). Such a
solver is described in Section 2.

Formulas analogous to (1.10) and (1.11) for the situation when the nodes are
extreme points of a Chebyshev polynomial (1.3) also can be derived. The columns
of the matrix Q in the formulas then are orthonormal with respect to a weighted dis-
crete inner product and associated norm. These formulas are discussed in Section 3,
where we also consider the situation when the nodes x, x3, ..., xy are zeros of a
classical orthogonal polynomial. Computed examples that compare the accuracy of
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the computed solutions and the execution time required of the fast solvers outlined
above and of a structure-ignoring QR factorization method are presented in Section 4.
Concluding remarks can be found in Section 5.

2 Fast factorization methods for Vandermonde matrices defined
by zeros of Chebyshev polynomials

This section discusses fast solvers for (1.5) based on the formulas (1.10) and (1.11)
for Vandermonde matrices with the nodes (1.2). Introduce the normalized Chebyshev
polynomials

5 1 if k =
Ti(x) = \/; K00, k=0, 2.1)

\/ng(x), ifk > 0.

Lemma 2.1 The matrix
fo()ﬁ) 7317](3(])
To(x2) --- Th—1(x2)
0= /% : " : e RVxn (2.2)

To(xn) -+ Ty—1(xn)

has orthonormal columns for any 1 <n < N.

Proof The orthonormality of the columns follows from the property that for 0 <
Jj. k<N,

T - 1, j=k
ﬁZ;Tj(xi)Tk(xi) = {O , ;ékz
=

which is a consequence of [10, eq. (6.12)]. ]

Proposition 2.2 The matrix (1.1) has a QR factorization (1.10) with Q € RN*"
given by (2.2) and the entries of the upper triangular matrix R = [r;;] € R
defined by

Jj—i
— =) ...
rj = 2! -/ﬁc](_ ), if j is odd, (2.3)
0, if j is even,
and
() N
rij = 2 2657, if j — i iseven, (2.4)
0, if j—iisoddorj <i.
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Proof Results by Cody [2] or Mason and Handscomb [10, Chapter 2] can be used to

show
¥/ =21 ,\/> Z )T(x) (2.5)

j— z even

where the * indicates that the first term (for i = 0 and j even) is to be multiplied by

1/+/2. It follows from (1.10) that every element of the matrix V can be expressed as
j+l

J
X = Z qkiTi, j+1,
i=1

where the gy; are the entries of the matrix (2.2). Using (2.2) and (2.5) gives (2.3) and
(2.4). O

The QR factorization (1.10) can be used to solve the minimization problem (1.5)

by first evaluating the vector Q7 y and then solving

Re=Q"y

by back substitution. These computations are backward stable; see [12]. The flop
count for this solution method is 2Nn + n> when n < N: the evaluation of Q”'y
requires 2Nn flops, and back substitution costs n2/2 flops. The latter count utilizes
the zero structure of the matrix R. When n = N, the vector QT y can be evaluated
more rapidly (in O(N log N) flops) by application of the fast Fourier transform; see,
e.g., [10, Chapter 4]. We are primarily interested in the situation when n < N.

Our MATLAB implementation of this solution method for (1.5) uses the standard
MATLAB function ¢ = linsolve(R,Q’ *y,opts) with opts.UT = true
for back substitution. This function does not exploit the zero structure of R. Back sub-
stitution therefore requires n2 flops in our implementation. We refer to this solution
method as the explicit OR factorization algorithm.

We turn to a solution method based on the formula (1.11). The entries of the
upper triangular matrix

Fi1 F12 F1,3 -+ T

P22 123 * I
R= 733 0 I3 | ¢ RV (2.6)
fn,n

can be determined from the formula
E(x) Z( 1)k l C(k)kzl —2k—1 l

see [10, Chapter 2] for a proof. We obtain 71| = l/m and

. N B
Fig— = (=1 ﬁj_i_lcj’ji_ly 22 21 =0

forj=2,3,...,nandi =0,1...,|j/2];seealso Li [9].
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It follows from (1.11) that VT = RQT. The solution of (1 .5) can be computed by
matrix-vector product evaluations with the matrices Q7 and R:

c=R(Q"y). 2.7)

Straightforward evaluation of (2.7) using the MATLAB command Rx (Q’ +y)
requires 2N n+n? flops, assuming that the entries of the matrices R and Q are known.
Note that the matrix-vector product evaluation with R does not use the zero-structure
of R. We will refer to the expression (1.11) as a QR-like factorization of V, and to the
solution method based on the computations (2.7) as the explicit QR-like factorization
algorithm. The computations (2.7) are backward stable.

We will compare the fast algorithms discussed to the structure-ignoring QR factor-
ization method that is implemented by the MATLAB function [Q, R] =gr (V). This
function computes a QR factorization of the matrix V by Householder triangulariza-
tion. The computation of this factorization requires 2Nn> — %n3 flops; see, e.g., [12]
for details. Evaluation of the solution vector ¢ demands 2Nn + n? additional flops.
The total flop count therefore is 2N (n* +n) — %n3 + n?. We refer to this solution
method as the standard OR factorization algorithm.

3 Fast factorization methods for Vandermonde matrices defined
by extrema of Chebyshev polynomials and extensions

In this section, the nodes xj, are the extreme points (1.3) of the Chebyshev polynomial
Tn_1.

Lemma 3.1 Define the matrices

fo(xl) fn—l(}ﬂ)
T To(x2) -+ Th—1(x2)

e RNVxn 3.1
To(xn) -+ Tuo1(xn)
and
E:diag[l/ﬁ,1,1,...,1,1/«/5] e RNV, 3.2)
Introduce the inner product (u, v)g = u’ E*v and associated norm ||v|| g = (v, v)llg/2
foru,v € RN, Then the matrix Q has orthonormal columns with respect to this inner
product and norm.

Proof Introduce the discrete inner product

N—-1

[f. 8] = Sf0gG) + Y fagli) + 5 fxm)gw)

i=2
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for polynomials f and g of degree at most N — 1. It is well-known that the Chebyshev
polynomials (1.8) satisfy the orthogonality relations, for 0 < j, k < N,

0, j#k,
7, kl=1{ Y2, j=k#0, (3.3)
N=1, j=k=0;

see, e.g., [10, p. 87] for a proof. Rescaling according to (2.1) shows the lemma. [

The following result can be shown similarly as Proposition 2.2. We refer to a
factorization V. = QR € RV*" as a QR-type factorization if the columns of Q €
RN*" are orthonormal with respect to a weighted inner product and associated norm,
and R € R™*" is upper triangular.

Proposition 3.2 Let the nodes of the Vandermonde matrix (1.1) be Chebyshev
extreme points (1.3) and let E be defined by (3.2). Then the matrix V has a QR-type
factorization V.= QR, where Q, defined by (3.1), has orthonormal columns with
respect to the inner product (-, -) g and associated norm, and the entries of the upper
triangular matrix R = [r;;] € R"*" are given by

j—i
i 2 g
rj=12 f«/N—le(_l), if j is odd,

0, if j is even,
and
2—j | N—1 (%) : :
rij = 2 711/T_Cj71 , if j — i is even,
0, if j—iisoddorj <i.

The matrices of Proposition 3.2 can be applied to solve the weighted least-squares
problem

min |[Ve — y||E. 34
ceR"

Its solution can be computed as
Rc = QT E?y.

The vector c is evaluated by back substitution. A QR-like factorization, analogous to
(1.11), also can be derived. We omit the details.

Let du be a nonnegative measure with support on the real axis and let
Po, P1, P2, ... denote a family of orthonormal polynomials associated with this
measure. One can derive a QR-type factorization of a Vandermonde matrix V =
OR € RY*1 whose nodes xj, x, . .., xn are the zeros of PN, by using the orthog-
onality of the polynomials pg, pi, ..., pn—1 With respect to a discrete inner product
defined by the N-point Gauss quadrature rule associated with d . Thus, the columns
of Q0 € RV are orthonormal with respect to a weighted inner product and associ-
ated norm determined by the Gauss quadrature rule; the matrix R € R"*" is upper
triangular. The computation of this factorization requires the evaluation of the nodes
and weights of this Gauss rule. This can be carried out rapidly in several ways when
the recursion coefficients of the polynomials p; are known or easily computable; see
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[1, 6-8]. One obtains a factorization V. = QR, where R € R"*" is upper triangu-
lar, and the columns of Q € RY*" are orthonormal with respect to a discrete inner
product and associated norm determined by the N-point Gauss rule. The matrix R is
analogous to the upper triangular matrix of Proposition 3.2. Its entries are explicitly
known for many families of classical orthogonal polynomials; see, e.g., Szeg6 [11].

4 Numerical experiments

We report numerical experiments that shed light on the performance of the EFS,
explicit QR, and explicit QR-like factorization algorithms for Vandermonde matrices
V e RN*" given by (1.1) with the nodes (1.2). For each pair (n, N) with N > n, we
generate 10000 vectors y with uniformly distributed entries in the interval [—1, 1],
and compute for each one of these vectors the solution ¢ of the least-squares problem
(1.5) so defined by using the fast algorithms as well as the “slow” standard structure-
ignoring QR factorization algorithm based on the use of Householder matrices. The
exact solution ¢* is calculated with Mathematica using high-precision arithmetic;
these computations are carried out with 50 significant decimal digits. All other com-
putations are carried out in MATLAB with about 15 significant decimal digits on a
Dell computer with an 17-4770 processor running at 3.44 GHz.

Figure 1 displays the CPU time required by the algorithms as a function of N
for n = 20. The graphs show the total time required by each method for 10000

n=20
1-
expl. QR fact.
0.9 1 |-+ expl. QR-like fact.
— — EFSfact.
0.8 |~ stand. QR fact.
0.7 r
L06F
c
I}
[&]
205
o)
E 04}
03 o
O h | “ I
1, M
W Py, e T
by, gt A
0.2 Caalod ' U\V\prww\Aﬂva v T
AIR i
gt e
01r
O Il Il Il Il Il Il Il I}
100 150 200 250 300 350 400 450 500
N

Fig. 1 Computing time as a function of N for n = 20 for the explicit QR, explicit QR-like, EFS, and
standard QR factorization algorithms for Vandermonde matrices with Chebyshev nodes
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experiments. The CPU time is seen to grow linearly with N for all algorithms in
agreement with the flop counts reported in Sections 1 and 2. The CPU time for the
explicit QR and QR-like algorithms grows the slowest with N.

Figure 2 shows how the CPU time depends on the parameter n for N = 500. The
times reported are for 10000 experiments. The CPU time required by the explicit
QR, explicit QR-like, and EFS factorization algorithms is seen to grow roughly lin-
early with n, while the CPU time for the standard QR factorization algorithm grows
quadratically with n, in agreement with the flop counts for these methods. Figures 1
and 2 show the structure exploiting explicit QR and explicit QR-like factorization
algorithms of Section 2 to determine the solutions the fastest.

Figure 3 displays the mean relative error ||c — c*||2/|Ic*|l2 over 10000 samples for
each pair (n, N) for 2 < n < 40 and N = 100 for the four algorithms in our com-
parison. The figure shows all the algorithms to give roughly the same accuracy for
all n-values; for small n-values the slow structure-ignoring QR factorization algo-
rithm gives slightly higher accuracy than the fast algorithms, but for n close to 40
the fast algorithms yield more accurate solutions. The accuracy achieved with the
algorithms of Section 2 is almost indistinguishable. Figure 4 differs from Fig. 3 only
in that N = 1000. The relative performance of the methods compared is quite sim-
ilar in Figs. 3 and 4. The average errors in the computed solutions can be seen to
grow exponentially with n for fixed N. Comparing Figs. 3 and 4 shows that the error
does not grow significantly with N for fixed n. This behavior is in agreement with
the result by Eisinberg et al. [3] that the spectral condition number of a rectangular

N=500
102 f
b expl. QR fact.
- expl. QR-like fact.
— — EFS fact.
1 stand. QR fact.
10 £

time, seconds
)
o

N
o
N

1072
5 10 15 20 25 30 35 40

n

Fig. 2 Computing time as a function of n for N = 500 for the explicit QR, explicit QR-like, EFS, and
standard QR factorization algorithms for Vandermonde matrices with Chebyshev nodes
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relative mean error

10°

10—10

101

10»20

N=100
expl. QR fact. e -
- expl. QR-like fact. P
— — EFSfact. p —
| |~ stand. QR fact. L
1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

n

Fig. 3 Mean error as a function of n for N = 100 for the explicit QR, explicit QR-like, EFS, and standard
QR factorization algorithms for Vandermonde matrices with Chebyshev nodes

relative mean error

10°

10°®

10710

10—15

10—20

N=1000
expl. QR fact. .
- expl. QR-like fact. L~
— — EFSfact. oy
| stand. QR fact. Py
0 5 10 15 20 25 30 35 40

n

Fig. 4 Mean error as a function of n for N = 1000 for the explicit QR, explicit QR-like, EFS, and
standard QR factorization algorithms for Vandermonde matrices with Chebyshev nodes
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N=1000
100
expl. QR fact.
102k - expl. QR-like fact.
— — EFS fact.
—— stand. QR fact.
104
S
s F A
-6
5 107 F
o}
1S
2 108
©
[
1010 F
E
10-12 E
10,14 1 1 1 1 1 1
0 5 10 15 20 25 30
Fig. 5 Maximum component-wise relative error as a function of n for N = 1000 for the explicit

QR, explicit QR-like, EFS, and standard QR factorization algorithms for Vandermonde matrices with
Chebyshev nodes

Vandermonde matrix V with Chebyshev nodes is independent of the number of nodes
N >n.

Fitting a straight line to logarithmically scaled data in the least-square sense, we
find the error growth to be proportional to (2.4)". This holds for the data of both
Figs. 3 and 4. This growth rate is close to the growth of the condition number of
Vandermonde matrices with Chebyshev nodes; see Section 1.

Figure 5 shows the maximum component-wise relative error. Each point of each
graph is the maximum relative error over 10000 least-squares problems (1.5) with
data-vectors y € RV with uniformly distributed entries in [—1, 1]. This error is seen
to be larger than the mean relative error shown in Fig. 4, but just like in the latter
figure the errors in the computed solutions of the algorithms compared are of about
the same size.

5 Conclusion

We presented new fast algorithms, referred to as explicit QR and QR-like factor-
ization algorithms, for the factorization of rectangular Vandermonde matrices with
Chebyshev nodes or Chebyshev extreme points. Such matrices arise in polynomial
least-squares approximation problems and yield the polynomial in a particularly sim-
ple form for further processing, including differentiation and integration. The new
algorithms are found to be faster and about as accurate as an available fast algorithm.
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The computed examples show the accuracy of the fast algorithms to be about the
same as that of the much slower standard QR factorization algorithm based on the
use of Householder matrices.

Funding information This research was supported in part by NSF grants DMS-1729509 and DMS-
1720259.
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