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Abstract. We derive a Poisson structure in the space of Fourier modes for the Euler

equations in vorticity formulation on a three-dimensional periodic domain. This allows
us to analyse the structure of the Euler equations using a Hamiltonian framework.

The Poisson structure is then restricted to the divergence-free subspace on which

the dynamics of the Euler equations takes place, reducing the size of the system of
ODEs by a third. The divergence-free subspace is realised as a subspace define by

sub-Casimirs, which are invariants which are Casimirs only after restriction to the
subspace. The Poisson structure is shown to have the helicity as a Casimir invariant.

We conclude by showing that periodic shear flows in three dimensions are equilibria

that correspond to singular points of the Poisson structure, and hence the usual
approach to study their nonlinear stability through the Energy-Casimir method fails.

1. Introduction

The field of Hamiltonian hydrodynamics has been a rich area of study [AK98, Mor98,
Sal88]. Arnold described the dynamics of the Euler equations on a two-dimensional peri-
odic domain as geodesics on the manifold of volume-preserving diffeomorphisms [Arn66b,
AK98]. This was used to prove, using the energy-Casimir method, stability results for
shear flows [Arn66a, AK98]. This structure also led to the truncated Poisson structure
approximating the Euler equations which was developed by Zeitlin [Zei91, Zei05], which
in turn led to the development of a Poisson integrator [McL93] and a number of stability
and instability results for shear flows [DMW16, DW17]. For alternative approaches to
geometric integration of incompressible fluid equations that are not in Fourier space see,
e.g., [Sal04, PMT+11, Mor17]. For more background on fluid brackets and in particular
on the question on how to project onto the divergence free subspace see [CDGB+13].
We present here a new Poisson structure in Fourier space for the Euler equations on a
three-dimensional periodic domain. The Poisson structure encapsulates the geometry un-
derlying the dynamics of the Fourier coefficients of the vorticity. It is hoped that this will
lay the foundations for geometric integration of the three-dimensional incompressible fluid
equations. As an application we study periodic shear flows in three dimensions, and show
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2 POISSON STRUCTURE OF 3D EULER

that for these equilibria the Poisson structure is singular. As a result, the Energy-Casimir
method cannot be applied.

2. Vorticity Formulation for the Euler Equations

The vorticity form of the Euler equations for an incompressible, inviscid fluid on some
three-dimensional domain D ⊂ R3 is

(2.1)
∂Ω

∂t
= (Ω · ∇)V − (V · ∇)Ω.

Here V : D × R→ R3 describes the instantaneous velocity of a fluid element at position
x = (x, y, z) ∈ D and time t ∈ R, and the vorticity Ω(x; t) = ∇ × V measures the local
rotational motion of a fluid element. One can think of each component of Ω representing
the rotation of the fluid around the axis parallel to the corresponding coordinate.

We assume that the fluid density ρ is constant — without loss of generality we can set
ρ = 1 — and that the two vector fields satisfy the divergence-free conditions

(2.2) ∇ · V = 0, ∇ · Ω = 0.

For the velocity field, this is a consequence of the assumed incompressibility; for the
vorticity, this follows from the fact that the divergence of the curl of any vector must
be zero. A recent review of the dynamics of the Euler equations is given in [Con07] for
example.

We will consider these equations on the periodic domain

D =

[
0,

2π

κx

)
×
[
0,

2π

κy

)
×
[
0,

2π

κz

)
for some κx, κy, κz ∈ R+. The anisotropy matrix

K :=

κx 0 0
0 κy 0
0 0 κz


represents the unit wavenumbers in D; it is diagonal, positive definite, and invertible. For
an isotropic domain we can scale so that K = I3; in general we allow for anisotropy by
letting the wavenumbers be arbitrary. The allowed wavenumbers on D are elements of
the scaled integer lattice

(2.3) D = {Ka | a ∈ Z3}.

Compare this to the approach in [DW17], where the lattice Z3 is used for the mode
numbers instead of D. By scaling the lattice instead, the influence of the domain size is
mostly hidden from view. This should not be misinterpreted as meaning it is unimportant;
for instance, the stability results of [DW17] depend on the domain size. However, “hiding”
the aspect ratios in this way makes the exposition less cumbersome.

The velocity and vorticity Fourier coefficients for a wavenumber j in the lattice (2.3)
are given by integrals over the domain D:

vj =
κxκyκz
(2π)3

∫
D
V (x, t)e−ij·xdx,

ωj =
κxκyκz
(2π)3

∫
D

Ω(x, t)e−ij·xdx
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where vj(t),ωj(t) ∈ C3. The inverse transform is

V =
∑
j∈D

vj(t)e
ij·x,

Ω =
∑
j∈D

ωj(t)e
ij·x.

(2.4)

Since V and Ω are real, v−j = vj and ω−j = ωj.
The divergence free conditions (2.2) imply that for all j ∈ D,

(2.5) j · vj = 0, j · ωj = 0.

Thus, all the dynamics of the Euler equations occur on the divergence-free subspace

(2.6) M = {ωj ∈ R3 | j ∈ D, j · ωj = 0}.

When v is divergence free, this space is invariant under the Euler equations (2.1).
To write (2.1) in Fourier space, it is convenient to define an antisymmetric matrix, the

cross-product matrix, for a vector a = (ax, ay, az)
T by

(2.7) â =

 0 −az ay
az 0 −ax
−ay ax 0

 .

The point is that for any vectors a,b ∈ R3, âb = a×b. Thus for example, the condition
Ω = ∇× V implies

(2.8) ωj = ij× vj = îjvj.

The properties of the cross product imply that for any invertible 3× 3 matrix M , Ma×
Mb = det(M)M−T(a× b). Thus we have

M̂a = det(M)M−TâM−1.

In the special case of a rotation matrix R ∈ SO(3), this reduces to R̂a = RâRT.
We wish to write (2.1) as an infinite set of differential equations for the dynamics of

the vorticity modes ωj only. Combining (2.5) and (2.8) implies

j× ωj = −i|j|2vj.

Thus from (2.8), for all j 6= 0, we can take the divergence-free inverse to the curl

(2.9) vj = i
j× ωj

|j|2
.

In addition we assume that we are in a frame of reference where v0 = 0. Note also that
ω0 = 0 by (2.8). This allows us to formally write V = (∇×)−1Ω on the divergence-free
subspace.

Since ρ = 1, the energy per unit volume becomes

E =
κxκyκz
2(2π)3

∫
D
V · V dx =

1

2

∑
j∈D

vj · v−j

=
1

2

∑
j∈D\{0}

ωj · ω−j
|j|2

,

(2.10)

where we used (2.5) and (2.9) for the last step.
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Now (2.9) implies that

(Ω · ∇)V =
∑

j,k∈D\{0}

i(j · ωk)vje
i(j+k)·x

= −
∑

j,k∈D\{0}

(j · ωk)
j× ωj

|j|2
ei(j+k)·x.

Similarly

(V · ∇)Ω =
∑

j,k∈D\{0}

i(j · vk)ωje
i(j+k)·x

= −
∑

j,k∈D\{0}

1

|k|2
j · (k× ωk)ωje

i(j+k)·x.

Thus rewriting (2.1) in Fourier space leads to the system of ODEs

ω̇j =
∑

k+l=j

1

|k|2
(l · (k× ωk)ωl − (k · ωl)k× ωk)

=
∑

k∈D\{0}

A(j,k)
ω−k
|k|2

,
(2.11)

where

(2.12) A(j,k) =
(
ωj+k(k× j)T − (k · ωj+k)k̂

)
.

Note that since v0 = ω0 = 0, the term k = 0 has been omitted in the summation so
there is no singularity in (2.11). Thus we derived an infinite set of ordinary differential
equation for the vorticity modes that does not depend on velocity.

3. Poisson Structure

To obtain a Poisson bracket for the Fourier space Euler equations (2.11) we define

J(j,k) := A(j,k)− 1

2
((j + k) · ωk+j)ĵ− k

= ωj+k(k× j)T +
1

2
((j− k) · ωj+k)k̂− 1

2
((j + k) · ωj+k)̂j.

(3.1)

On the subspace M, (2.6), A(j,k) = J(j,k) and so for initial conditions in this space,
the Euler equations (2.11) become

(3.2) ω̇j =
∑
k

J(j,k)
ω−k
|k|2

.

Notice that A and J are matrix valued functions depending on two lattice vectors j,k and
a vorticity vector ωj+k, but the dependence on the latter is suppressed in the notation. By
writing the differential equations in this form, the Euler equations on a three-dimensional
periodic domain are a Poisson system. To show this we first obtain a simple lemma.

Lemma 3.1. The matrix J(j,k) satisfies J(j,k) + J(k, j)T = 0 and (jTJ(j,k))T =
J(j,k)k = − 1

2 ((j + k) · ωj+k)j× k.
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Proof. These can both be directly verified by computation. Note in particular that both
results are valid for arbitrary values of ωj+k. For values of ωj+k that are in the divergence
free subspace and hence satisfy (j + k) ·ωj+k = 0, both J(j,k)k and jTJ(j,k) vanish. �

Theorem 3.2 (Poisson Structure for Three-Dimensional Euler Equations). The dynam-
ics of the three-dimensional Euler equations for an incompressible, inviscid flow on a
periodic domain are a Poisson system with bracket

(3.3) {f, g} =
∑

j,k∈D

(
∂f

∂ωj

)T

J(j,k)

(
∂g

∂ωk

)

where J(j,k) is given by (3.1), and Hamiltonian

(3.4) H =
1

2

∑
j∈D\{0}

ω−j · ωj

|j|2

on the space of Fourier modes ωj ∈ R3 for all j ∈ D.
The physically relevant divergence free subspace is an invariant subspace of the dynam-

ics, given by the Poisson submanifold (2.6).

Proof. For the Hamiltonian (3.4), the differential equations for ωj are given by

ω̇j = {ωj, H} =
∑
k6=0

J(j,k)
ω−k
|k|2

which is the same as (3.2).
To be a Poisson bracket, (3.3) must be antisymmetric, bilinear, and satisfy the Jacobi

identity [Olv00, Mei17]. One can check

{g, f} =
∑

k,j∈D

(
∂g

∂ωk

)T

J(k, j)

(
∂f

∂ωj

)

= −
∑

k,j∈D

(
∂g

∂ωk

)T

J(j,k)T
(
∂f

∂ωj

)

= −
∑

k,j∈D

((
∂f

∂ωj

)T

J(j,k)

(
∂g

∂ωk

))T

= −{f, g}

as J(k, j)T = −J(j,k) by Lemma 3.1. Thus the bracket is antisymmetric. It also is
bilinear as the bracket is linear in the partial derivatives.

The final condition is the Jacobi identity, {f, {g, h}}+{g, {h, f}}+{h, {f, g}} = 0. For
a bracket of the form (3.3), this can be reduced to a condition on the structure matrix,
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[Olv00, Eq. (6.15)], which becomes

0 =
∑

δ∈{x,y,z},l∈D

[
J(i, l)α,δ

∂J(j,k)β,γ
∂(ωl)δ

+ J(k, l)γ,δ
∂J(i, j)α,β
∂(ωl)δ

+ J(j, l)β,δ
∂J(k, i)γ,α
∂(ωl)δ

]
=

∑
δ∈{x,y,z}

[
J(i, j + k)α,δ

∂J(j,k)β,γ
∂(ωj+k)δ

+ J(k, i + j)γ,δ
∂J(i, j)α,β
∂(ωi+j)δ

+ J(j,k + i)β,δ
∂J(k, i)γ,α
∂(ωk+i)δ

]
(3.5)

for all α, β, γ ∈ {x, y, z} and i, j,k ∈ D. Here we have used x, y, z-subscripts to denote
the components, e.g.,

ωj = ((ωj)x, (ωj)y, (ωj)z),

and similarly for the matrix J . The relation (3.5) can be directly verified from the
definition of J(j,k) by a tedious calculation.

The Jacobi property and antisymmetry are both satisfied for all ωj ∈ R3; however
the only physically relevant dynamics occur on the submanifold M, the divergence free
subspace. This is an invariant subspace because Lemma 3.1 gives

(3.6)
d

dt
(j · ωj) = {j · ωj, H} =

∑
j,k

jTJ(j,k)
∂H

∂ωk
= 0

assuming j ·ωj = 0 for all j . We can thus consider the Poisson system on the submanifold
M an invariant subsystem of a larger system without the divergence-free restriction.

Thus the system given by (3.3), (3.4) and (2.6) is a Poisson system, and generates the
dynamics of the Euler equations on a three-dimensional periodic domain. �

It appears surprising that the Poisson structure in Fourier space is not “tainted” in the
terminology of [CDGB+13]. The particular extension from A to J that we have chosen
does turn J into a true Poisson structure, without the necessity to employ projectors as
in [CDGB+13]. In the next section we will explicitly reduce the Poisson structure to the
divergence free subspace, by employing a local transformation that allows for the explicit
projection and restriction to the subspace.

It may seem as if the combinations j · ωj should be Casimirs of the Poisson structure.
Recall that a function f is a Casimir of a bracket if {f, g} = 0 for any function g. If f is
a Casimir then it is an invariant of any dynamics generated by the bracket, independent
of the choice of Hamiltonian. In our case, (3.6) is valid for any H on the invariant sub-
space (2.6), but it does not hold for an arbitrary Hamiltonian outside the divergence free
subspace. Such functions are often called sub-Casimirs, see, e.g. [HMRW85, OPBR05].

Having a Poisson formulation of our system is very useful, as it allows us to utilise the
ideas and language of Hamiltonian mechanics. However, as it stands analysing the system
is hindered by the fact that the physical dynamics takes place on the invariant manifold
M rather than R3, where the bracket is defined. Fortunately,M is simple enough so that
we can restrict the Poisson structure to the subspace.
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4. Poisson Structure on the Divergence-Free Subspace

We wish to explicitly restrict our system to the manifold M (2.6), the divergence free
subspace where j·ωj = 0 for all j. We will write the Poisson system as a lower-dimensional,
unrestricted system, thereby reducing the dimensionality of the system by one-third.

To do so, we introduce a rotation matrix Rj ∈ SO(3) for each j ∈ R3 with the goal of
making j · ωj the new x-component of a rotated vorticity; i.e., we rotate each j ∈ R3 to
a vector parallel to the x-axis. In principle we can assign a different rotation matrix to
each lattice point j. Such a rotation matrix can be constructed using a non-zero vector
n ∈ R3 and set

(4.1) Rj =

 jT/|j|
(j× n)T/|j× n|

(j× (j× n))T/(|j× n||j|)

 =

 jT/|j|
(j× n)T/|j|2

(j× (j× n))T/(|j|2|j|)

 , j× n 6= 0,

so that the rows of Rj are orthonormal. Here we defined the “2-norm” |j|2 = |j × n|.
Notice that we have

(4.2) R−jR
T
j = S = diag(−1,−1, 1) .

The “signature” matrix S will remain in the transformed Hamiltonian.
The most general case would be to consider n as a function of j. It could be convenient

to choose n = êx, the unit vector in the x-direction. When j and n are parallel, namely
for j = aêx, this definition fails. To allow for this, we define Ran = I and and R−an = S
for all a > 0. We then define a rotated vorticity by

(4.3) ω̌j = Rjωj

so that (ω̌j)x ∝ jTωj = 0 on the divergence free subspace. One may try to define the
special cases for Rj by a limit where n tends to a vector parallel to j. However, the result
depends on how the limit is taken, and this is why we resorted to the definition of R±an
above.

Instead of a rotation, it might have seemed convenient to choose a matrix so that R−j
and RT

j are inverses of each other, unlike the relation (4.2), for in this case H, (3.4),

would be invariant under the transformation (4.3). It is possible to change the definition
of Rj such that S becomes the identity. For this one has to divide the set D into positive
and negative lattice points, and use this sign in the definition of Rj; see [Wor17] for the
details. Since the lattice D, (2.3), is discrete, one could in principle use a different Rj

for each lattice point, as long as the first row is proportional to j. Specifically, each Rj

could include an additional rotation about the j-axis by an angle that depends on j. For
simplicity, we assume here that all these angles are equal to 0. Note that the definition
of ω̌j implies the reality condition ω̌−j = Sω̌j.

Since the first element of ω̌j must be zero on the divergence-free subspace, we can
project down to this subspace and still capture the full dynamics.

Proposition 4.1 (Reduced Poisson structure of three-dimensional Euler equations).
Defining ω̃j = (ω̌j,y, ω̌j,z) and the reduced manifold

M̃ = {ω̃j ∈ R2 | j ∈ D},
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the Poisson Structure of Theorem 3.2 reduces to

(4.4) {f, g} =
∑

j,k∈D

(
∂f

∂ω̃j

)T

J̃(j,k)

(
∂g

∂ω̃k

)
for a matrix valued function J̃ : D ×D × R2 → R2×2. The new Hamiltonian becomes

(4.5) H̃ =
1

2

∑
j∈D\{0}

1

|j|2
ω̃T
−jS̃ω̃j

with S̃ = diag(−1, 1). Then the dynamics of

(4.6) ˙̃ωj =
∑
k6=0

J̃(j,k)S̃
ω̃−k
|k|2

are equivalent to the dynamics of (3.2).

Proof. Using the matrix (4.1) Rj and the definition (4.3) for ω̌j = (ω̌j,x, ω̌j,z, ω̌j,y), the
divergence-free condition implies that ω̌j,x is constant and zero for all j. We first look,
however, at the equations for all three components of ω̌j.

Define

J̌(j,k) = RjJ(j,k)RT
k

= Rj

[
(RT

j+kω̌j+k)(k× j)T − (k · (RT
j+kω̌j+k))k̂

− 1

2
(j + k) · (RT

j+kω̌j+k)(̂j− k)

]
RT

k .

(4.7)

Then the dynamics of ω̌j are

(4.8) ˙̌ωj =
∑
j,k

J̌(j,k)S
ω̌−k
|k|2

.

Since the first column of RT
k is k and the first row of Rj is jT, we can conclude by Lemma

3.1 that when ωj+k ∈M,

(4.9) J̌(j,k)x,β = J̌(j,k)β,x = 0, β ∈ {x, y, z},
which is expected since the divergence-free subspace is invariant. This remains true in the
most general case where a different vector n is used for the matrices Rj, Rk, and Rj+k.
We already noted after the main theorem that the conditions j·ωj = 0 are sub-Casimirs of
the system, and now we have explicitly reduced the dynamics to the invariant submanifold
that they define. Note that this does not imply that the divergence is constant for initial
conditions that are not on the divergence-free subspace.

Thus we can ignore the dynamics of the coordinate ω̌j,x, and define

(4.10) J̃(j,k) =

(
J̌(j,k)y,y J̌(j,k)y,z
J̌(j,k)z,y J̌(j,k)z,z

)
.

Note that the reality condition for ω̃j becomes ω̃−j = S̃ω̃j.

The form of J̃ is quite complicated. We can directly check that it satisfies the conditions
for a Poisson structure matrix (antisymmetry and Jacobi identity). However, this also
follows from the fact that the matrix J̌ has vanishing first row and column, so that the
Jacobi-identity is inherited from the matrix J , in particular because the transformation
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to the new coordinates is linear. Similarly, the antisymmetry is not changed by a linear
transformation. The Hamiltonian in the new coordinates is obtained by substituting ω̃j

into (3.4) to obtain

(4.11) H̃ =
1

2

∑
j∈D\{0}

ω̃T
−jS̃ω̃j

|j|2
.

As the coordinates ω̃j are no longer restricted, the Poisson manifold is the full space

of ω̃j ∈ R2 for all j ∈ D. Then the Poisson bracket with structure matrix J̃(j,k) and

the Hamiltonian H̃ generate the dynamics of the Euler equations in the new coordinates
ω̃j. �

Before we list the general formulas for J̃ we give the three special cases that occur
when either j, k, or j + k are proportional to n = êx. For example, when j = san the
corresponding rotation matrix is replaced by I or S, depending on whether s = 1 or
s = −1, respectively. Analogous rules hold for k and j + k. The results are

j||n : J̃ =
jx
|j + k|

(
(jxkyω̃j+k,z + kzω̃j+k,y|j + k|)s kzω̃j+k,z|k|s
jxkzω̃j+k,z − kyω̃j+k,y|j + k| −kyω̃j+k,z|k|

)
,

k||n : J̃ =

(
−(jx + kx)(jyω̃j+k,z − jzω̃j+k,ys) |k|(jzω̃j+k,z + jyω̃j+k,ys)
|j|(jzω̃j+k,z + jyω̃j+k,ys) 0

)
,

j+k||n : J̃ =
kx
|j + k|

(
−(jykxω̃j+k,z + jzω̃j+k,y|j + k|)s jyω̃j+k,y|j + k| − jzkxω̃j+k,z

−jzω̃j+k,z|j|s jyω̃j+k,z|j|

)
.

Now we proceed to the general case where none of j, k, j + k are parallel to n. Since
J̃(j,k) is linear in ω̃j+k, and the x component of ω̃j+k is zero, we can write

J̃(j,k) =

(
J̃y(j,k)y,y J̃y(j,k)y,z
J̃y(j,k)z,y J̃y(j,k)z,z

)
ω̃j+k,y

+

(
J̃z(j,k)y,y J̃z(j,k)y,z
J̃z(j,k)z,y J̃z(j,k)z,z

)
ω̃j+k,z

(4.12)

where J̃y(j,k)i,j , J̃z(j,k)i,j are functions of j,k only.

Lemma 4.1. The Poisson structure matrix J̃ after restriction to the divergence free
subspace satisfies

1

|k|
J̃y(j,k)b,y +

1

|j + k|
J̃z(j,−j− k)b,z = 0,

1

|k|
J̃y(j,k)b,z +

1

|j + k|
J̃y(j,−j− k)b,z = 0,

1

|k|
J̃z(j,k)b,y +

1

|j + k|
J̃z(j,−j− k)b,y = 0,

(4.13)

for b = y and b = z.

Proof. This follows by direction computation from the explicit formulas given below.

(4.14) J̃y(j,k)y,y = n ·
(

(j× k)× (k |j|22 + j |k|22)
) 1

|j|2|k|2|j + k|2
,
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(4.15) J̃y(j,k)y,z = −n · (j× k)
|j|2|k|

|j + k|2|k|2

(4.16) J̃y(j,k)z,y = −n · (j× k)
|k|2|j|

|j + k|2|j|2

(4.17) J̃y(j,k)z,z = 0,

(4.18) J̃z(j,k)y,y = n · (j× k) |n× (j× k)|2 1

|j|2|k|2|j + k|2|j + k|
,

(4.19) J̃z(j,k)y,z = − |k|
|j + k|

J̃y(j,−j− k)yy,

(4.20) J̃z(j,k)z,y = −J̃z(k, j)y,z,

(4.21) J̃z(j,k)z,z = −n · (j× k)
|j||k||j + k|2
|j|2|k|2|j + k|

.

�

The condition for antisymmetry now reads

(4.22) J̃y(j,k) + J̃y(k, j)T = J̃z(j,k) + J̃z(k, j)
T = 0 .

5. Helicity

The three-dimensional Euler equations have a constant of motion, called the helicity,
given by

h =
κxκyκz
(2π)3

∫
D
V · (∇× V ) dx =

κxκyκz
(2π)3

∫
D
V · Ω dx.

see, e.g., [Gib08]. In terms of the Fourier modes on the periodic domain, this quantity
becomes

h =
∑

vk · ω−k =
∑ i

|k|2
k · (ωk × ω−k).

Note that h ∈ R, as ω−k = ωk so ωk × ω−k ∈ iR3.
By transforming to the coordinates introduced in Section 4 and noting that

ωk × ω−k = RT
kω̌k ×RT

−kω̌−k

= RT
k(ω̌k × Sω̌−k)

= RT
k(ω̌k × ω̌k)

= i
k

|k|
2=(ω̃k,yω̃k,z) =

k

|k|
(ω̃k,yω̃−k,z + ω̃k,zω̃−k,y),

(5.1)

we see that the helicity can be rewritten as

(5.2) h =
∑
k

1

|k|
2=(ω̃k,yω̃k,z).

We now confirm that this is a Casimir of the Poisson system described in Proposition 4.1.

Lemma 5.1. The helicity h given by (5.2) is a Casimir of the reduced Poisson structure
described in Proposition 4.1.
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Proof. To show that h is a Casimir, we must show that { g , h} = 0 for any function

g. This requires that
∑

k∈D J̃(j,k) ∂h̃
∂ω̃k

= 0 for all j,k ∈ D. Now, ∂h̃
∂ω̃k

= 2i
|k|

(
ω̃−k,z
ω̃−k,y

)
.

By left-multiplying by J̃(j,k), and separating out the terms, the required conditions are
exactly those stated in (4.13). We can thus conclude that the helicity is a Casimir. �

Note that h is not a Casimir of the full system before restriction to the divergence free
subspace.

6. An Example: Shear Flows

A shear flow on the torus is an equilibrium solution V e of Euler’s equations with the
direction of the velocity constant and (V e · ∇)V e = 0. The vorticity Ωe = ∇× V e then
must have the form

Ωe(x) = ΓC(p · x)

where C is an arbitrary periodic function with period 2π, p = (p1, p2, p3)T is a fixed
vector with components that are co-prime integers, and Γ is a real fixed vector satisfying
Γ · p = 0. Let the Fourier coefficients of C be cn, then the corresponding Fourier modes
are ωek = Γcnδk−np. Thus

ω̇j|ω̃e =
∑
k

J(j,k,Γcnδk+j−np)
Γc−mδ−k+mp

|k|2

where we have written J with three arguments to make the linear dependence on the last
argument explicit. The Kronnecker δ’s pick out the terms k = mp and j = (n −m)p.
Relabelling n→ n+m, the non-zero equations become

ω̇np|ω̃e =
∑
m

J(np,mp,Γcm+n)
Γc−m
|mp|2

.

Now J vanishes because p · Γ = 0 (the divergence free condition) and because j = np
and k = mp are parallel. Hence Ωe is indeed an equilibrium, since either J vanishes or
is multiplied by zero coming from the gradient of the Hamiltonian. A similar argument
applies to the reduced system with J̃ .

A point of a Poisson structure at which the co-rank of the Poisson tensor is less than
the maximal co-rank is called a singular point of the Poisson structure. If the equilibrium
is a regular point of the Poisson structure then the gradient of the Hamiltonian is a linear
combination of gradients of the Casimirs, proving that the gradient of the Hamiltonian is
in the kernel of the Poisson structure, and hence the vector field vanishes at the equilib-
rium point. For example, this happens for the two-dimensional case and has been used
in [DW17] to study the nonlinear stability of two-dimensional shear flows through the
Energy-Casimir method.

In the three-dimensional case at hand here, the gradient of the Hamiltonian H̃ is not
proportional to the gradient of the Casimir h̃, as we now show. At the equilibrium point
the gradient ∇H̃ has components

∂H̃

∂ω̃k

∣∣∣∣∣
ω̃e

=
1

|np|2
S̃Γ̃c−nδk+np
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where Γ̃ are the last two components of RnpΓ. The gradient of h̃ at the equilibrium is
similar,

∂h̃

∂ω̃k

∣∣∣∣∣
ω̃e

=
2i

|np|
T̃ Γ̃c−nδk+np

where T̃ is the anti-diagonal matrix. But clearly S̃ and T̃ are not proportional, so the
two gradients are not proportional. Assuming that there is no additional (unknown)
Casimir function this implies that the equilibrium point is a singular point of the Poisson
structure, i.e. a point where the co-rank drops.

When the gradient of the Hamiltonian is a linear combination of gradients of Casimirs
the linearisation of the vector field can be found by multiplying the Poisson structure
at the equilibrium by a certain Hessian. This is, however, not true at a singular point
of the Poisson structure. We refrain from giving explicit formulas for the linearisation
here, but we conclude this example by observing that because periodic shear flows in
three dimensions are singular points of the Poisson structure the Energy-Casimir method
cannot be applied in this case. This is a notable difference from shear flows in two
dimensions.

7. Conclusion

By describing the dynamics of the vorticity Fourier modes as a Poisson system, we
have opened the possibility of future study analysing and exploiting this structure.

One possible use for this structure could be the development of a structure preserving
integrator akin to the integrator for the two-dimensional Euler equations in [McL93]. Even
though that integrator in practice requires the finite-dimensional truncation developed in
[Zei91], one may hope to also find such a truncation and hence a similar integrator for the

three-dimensional problem. In the two-dimensional case the analogue of our J̃ is simply
the z-component of the cross product of j×k, and the finite-dimensional truncation leads
to the sine-bracket [Zei91]. Our Poisson structure J̃ for the three-dimensional case is
already so much more complicated algebraically that we were not able to find an analogue
of the sine-bracket. Nevertheless, we suspect that such a structure preserving truncation
exists.

The reduced Poisson structure J̃ can also be the basis for nonlinear stability analysis.
In the two-dimensional case [DW17] nonlinear stability results were obtained using the
Energy-Casimir method. But we have shown above that for periodic shear flows in three
dimensions the Energy-Casimir fails, because the Poisson structure is singular at the
equilibrium. It would be interesting to find other equilibria for which the gradient of
the Hamiltonian H̃ and the gradient of the helicity h̃ are proportional (and hence these
are regular points of the Poisson structure), and for such equilibria the Energy-Casimir
method may work.
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