
DeepDiffuse: Predicting the ‘Who’ and ‘When’
in Cascades

Mohammad Raihanul Islam, Sathappan Muthiah, Bijaya Adhikari, B. Aditya Prakash, Naren Ramakrishnan
Department of Computer Science, Virginia Tech, USA

Discovery Analytics Center, Virginia Tech, USA
Email: {raihan8, sathap1, bijaya, badityap, naren}@cs.vt.edu

Abstract—Cascades are an accepted model to capturing how
information diffuses across social network platforms. A large
body of research has been focused on dissecting the anatomy of
such cascades and forecasting their progression. One recurring
theme involves predicting the next stage(s) of cascades utilizing
pertinent information such as the underlying social network,
structural properties of nodes (e.g., degree) and (partial) histories
of cascade propagation. However, such type of granular informa-
tion is rarely available in practice. We study in this paper the
problem of cascade prediction utilizing only two types of (coarse)
information, viz. which node is infected and its corresponding
infection time. We first construct several simple baselines to
solve this cascade prediction problem. Then we describe the
shortcomings of these methods and propose a new solution
leveraging recent progress in embeddings and attention models
from representation learning. We also perform an exhaustive
analysis of our methods on several real world datasets. Our
proposed model outperforms the baselines and several other
state-of-the-art methods.

Keywords-Social Networks; Cascade and Diffusion Prediction

I. INTRODUCTION

Content sharing (e.g., of photos and videos) through online
social networks is so prevalent that cascades of propagation
have become the unit of discourse to study such phenomena.
Diverse applications in areas like social media, public health,
cybersecurity, and critical infrastructure, now benefit from
cascade models. A growing body of research has developed
around understanding the structural properties of cascades, and
engineering their growth, with applications in areas such as
viral marketing, crowdsourcing, rumor detection, and immu-
nization.
There has been a recent spate of interest in predicting cas-
cades in various contexts, e.g., tweets, memes, videos, movie
ratings and academic papers [1]–[3]. Most work has looked
into predictions using epidemiologically-inspired generative
models [4] or using a mixture of structural, content, and
temporal features [5]. Some recent works have also used
survival analysis [6], [7] or deep learning based models [8],
[9]. Studies have looked into different aspects of cascades
including macroscopic metrics like the possibility of becoming
viral [7] or the future size/volume of the cascade [8], [10],
[11], and microscopic aspects like predicting the next node
taking part in the diffusive process [9]. In general, in all these
works, more finer-grained analysis has in-turn needed varying
degrees of more auxiliary information such as assuming that

the source of infection is available [8], or knowing the degree
of the participating nodes [10], or even the full underlying
graph structure itself [9]. Much of this information is not
necessarily available, or is noisy or hard to construct [7], [12]–
[14]. Additionally, almost all of the above works ignore the
associated temporal information [8], [9].
In this paper, we extend the state-of-the-art in purely data-
driven cascade analysis in multiple directions. We present
a new approach to explore the diffusion dynamics of the
cascade comprehensively by only leveraging the observable
cascade information. Broadly, we conduct a finer grained-
analysis while using less information than some macroscopic
approaches. At the same time, we leverage temporal infor-

Next Node and Time Prediction

Next Node Prediction

Cascade Size Prediction

Virality Prediction

-

Full Network Structure

Meta Features (Age, gender etc.,)

Source of Infection

Which node and What time

Time of Infection

Count Per Unit Time

R
e
q
u
ir

e
s

Le
ss

 I
n

fo
rm

a
ti

o
n

PREDICTION PYRAMID

DATA PYRAMID

M
a
cr

o
sc

o
p
ic

 P
re

d
ic

ti
o
n
s

(a)

(b)
Fig. 1. (a) A pyramid view of the kind of data used and the type of problems
pursued in cascade analysis. The left pyramid gives the four major tasks with
granular level tasks at the top. The right pyramid details the type of data used
where the number of data features increase as we go down. Our proposed
method DeepDiffuse (in red color) is well situated at the middle of the data
pyramid while capable of performing all tasks in the prediction pyramid. (b)
A sample input and output of DeepDiffuse.

mation as well to do more meaningful predictions. In more
detail, our approach only utilizes the sequence of infected
nodes and their infection time to predict both (a) which node
is going to get infected and (b) when. Our method does not
require additional structural or content-based information (e.g.,
neighborhood information or number of friends) or which node
is responsible for the infection (see Fig. 1(a)). To the best of
our knowledge our work is the first of its kind to tackle such
a problem.
Our contributions are as follows:
1) Novel Problem Formulation: We define the novel prob-
lem of predicting diffusion dynamics in real world scenarios
based on realistic assumptions. The underlying problem is to
predict when and who is going to be infected in a social
network based on (only) previously observed cascades. We
only observe the times when the nodes get infected, but we
do not have any knowledge on who has infected them or who
are their neighbors.
2) New Solution Strategies: We leverage recent progress in
embeddings and attention models from representation learning
to propose a family of new models which can effectively
predict when the next infection will happen and who will be
infected. First we develop a baseline model for the prediction.
This helps identify its weaknesses and motivates our proposed
solution DeepDiffuse.
3) Rigorous Empirical Evaluation: We conduct a compre-
hensive set of experiments to evaluate the effectiveness of
DeepDiffuse over the baseline model and other state-of-the-
art methods proposed for similar problems.

II. OUR APPROACH

A. Problem Formulation

The input to our problem is a set of cascades C =
{c1, c2, . . . cn} on a set of nodes V . Each cascade ci ∈ C is a
sequence of tuples (vij , t

i
j), where tij ∈ R+ is the time when

a previously uninfected node v gets infected. We define this
node as vij (jth node in ith cascade). Here infection means this
node takes part in the cascade process (i.e. reshare a content
in social media etc.) Moreover time point is monotonic within
a cascade (i.e. tij < tij+1). We assume that a node can only be
infected once. Then we define the cascade prediction problem
in the following way:
Cascade Prediction Problem: Given a set of cascades C,
learn a model MC so that we can predict the next infec-
tion tuple (vkj+1, t

k
j+1) given a test cascade instance ck =

{(vk1 , tk1), . . . , (vkj , tkj)}. Due to the lack of explicit network
structure, we assume that the predicted node will be one of the
observed nodes in C (i.e. vkj+1 ∈ V). An illustrative example
is shown in Fig. 1(b).
Solution Sketch: We adopt a temporal point process for-
mulation: suppose within a small window between t and
t + dt, λ∗(t)dt is the probability of a new event occurring
(i.e. node infection) given the history of infections: Ht. Now
λ∗(t)dt = Prob{node infected in [t,t+dt) —Ht} We can then
specify the conditional density function since the last infection

tn by

f∗(t) = λ∗(t) exp −
Z t

tn

λ∗(t)dt (1)

We adopt a recurrent neural network (RNN) approach here
that can capture more complex state transitions than classical
probabilistic methods and further provide more flexible non-
linear transition functions. Here in our problem we use a
LSTM. Empirically it is shown that LSTM performs very well
in terms of sequence learning tasks commonly encountered in
natural language processing.

B. A vanilla LSTM Model:

Suppose we have a cascade sequence S =
{(v1, t1) . . . (vn, tn)}. As long standing practice, we represent
each node in the sequence as a vector rather than an index.
The embedding of all the nodes are stored in Xv ∈ Rdv×|V |,
where dv is the size of embedding for nodes. Now to extract
the embedding of a specific node vq we can use a one-hot
vector q.

xq = Xv · q (2)

where |q| = |V |. The embedding matrix Xv will be also be
learned during training. Now for the jth element of the input
sequence (vj , tj), suppose the embedding of vj is xvj and the
temporal feature dtj = tj− tj−1 (i.e. inter-infection duration).
Then the LSTM equations are as follows:

ij = σ(W i
vxvj +W i

t dtj + Uihj−1 + bi) (3a)

fj = σ(W f
v xvj +W f

t dtj + Ufhj−1 + bf) (3b)

C̃j = tanh(W c
vxvj +W c

t dtj + Uchj−1 + bc) (3c)

Cj = C̃j ij + fj Cj−1 (3d)
oj = σ(W o

v xvj +W o
t dtj + Uohj−1 + bo) (3e)

hj = oj tanh(Cj) (3f)

The hidden state vector hj captures the dynamics of cascade
sequence up to the latest point. We can use it to predict the
next infection time and the corresponding node as described
below.
Next Node Prediction: The score for a node getting infected
can be computed by the following equation wuj+1

= Vuhj +
bu. Here Vu ∈ R|V |×K and bu ∈ R|V |. Now we can use
a softmax layer to compute the probability of each node vu
getting infected.

puj+1|hj =
exp(wuj+1

)P
z∈V exp(wzj+1

)
(4)

Time Prediction: For time prediction we use the approach
described in Du et al. [15]. From the hidden sate hj we can
compute the conditional intensity the following way:

λ∗(j) = exp αTt · hj + βt(t− tj) + γt (5)

Here αt ∈ Rk and βt ∈ R, γt ∈ R are scalars. The term
αTt ·hj determines the accrued influence from past infections,
whereas βt(t − tj) focuses on the current infection. The last

term represents the base intensity level. Now we can compute
the conditional density function:

f∗(j) = exp αTt · hj + βt(t− tj) + γt +
1

β
exp(αTt · hj + γt)

− 1

β
exp(αTt · hj + βt(t− tj) + γt)

(6)

We estimate the time of next estimation using the following
equation:

t̂j+1 =

Z ∞

tj

t · f∗(j)dj (7)

Now the full objective function for a single of cascade ck,
where ck = {(vk1 , tk1), . . . (vkn, tkn)} including both timing and
node prediction is as follows:

Ok = max
θ

nX
j=1

h
log(pkuj+1=vj+1|hj) + log f(dkj+1|hj)

i
where θ is the set of all model parameters. An alternative for-
mulation is to minimize the negative log-likelihood. Therefore
our objective becomes:

O = min
θ

−X
ck∈C

n−1X
j=1

h
log pkuj+1=vj+1|hj + log f(dkj+1|hj)

i
(8)

C. Cascade Dynamics in Networks: Introducing DeepDiffuse
One of the solutions to this problem is to compute the output
of the LSTM not just by the last state but as a weighted
summation of all the hidden states. This type of technique
is known as an attention mechanism and is used widely in
language modeling like neural machine translation [16]. Our
new model incorporating attention is termed DeepDiffuse. For
this, we introduce Wα ∈ RK×Kα and uα, bα ∈ RKα . Here
Kα is the attention size.

ujs = tanh(WT
α hjs + bα) (9a)

αajs =
exp(uTjsuα)P
z exp(u

T
jzuα)

(9b)

h̃j =
X
z

αajzhjz (9c)

Here hjs is the sth hidden state while processing the jth

element of the cascade (s < j). We can obtain a context
vector h̃j as a weighted sum of previous hidden states using
Eqn. 9c. In this way the model learns to attend which node to
concentrate. Hence, despite the absence of graph structure the
model will be able to make an informed choice to improve its
predictive power.

D. Bringing Flexibility to the model: Enhancing DeepDiffuse
First, the attention mechanism, unlike text modeling appli-
cations, is quite expensive to compute for cascade analysis
(compare cascade lengths versus sentence lengths). Second,
the attention model does not provide enough flexibility to

the model. For instance when analyzing a long sequence of
cascades the model does not provide a provision to leverage
or build off an earlier portion of the cascade.
To deal with these shortcomings, we propose some enhance-
ments to our model DeepDiffuse to provide more flexibility to
its attention mechanism. Inspired from the mechanism of how
human pay attention [17], our proposed model analyze one
portion of the cascade at a time and based on its evaluation
moves to the next location of the cascade. In this way we can
efficiently analyze cascades which are typically longer than
sentences. A high-level overview of the enhanced DeepDiffuse
model is presented in Fig. 2.
The enhanced version consists of two modules. The first
module Cascade Analyzer Network (CAN) takes a location
lj−1 ∈ N and a cascade sequence s (shown in green in
Fig. 2) and extracts a subsequence of the cascade starting from
location lj−1. The length of the subsequence is defined by the
ratio ρ. For example if ρ = 0.5 the length will be ρ×|s|, where
|s| is the length of the sequence. The extracted subsequence
is processed similar to the basic DeepDiffuse model. The
context vector of this model along with the location lj−1

are converted into two fixed-length vectors l0j ∈ RK and
g0j ∈ RK respectively (shown in blue color in Fig. 2) using a
fully connected network. They are added to get a combined
vector representation rj ∈ RK using a Rectified Linear Unit
(ReLU). This vector rj can be considered as a compressed
representation of the extracted cascade subsequence (cascade
along with its location). Equations for generating l0j , g

0
j , rj are

given below:

l0j =W r
l lj−1 + brl (10a)

g0j =W r
g h̃

A
j + brg (10b)

rj = ReLU(l0j + g0j) (10c)

Here, W r
l ∈ RK×1, W r

g ∈ RK×K and brl , b
r
g ∈ RK×1 and h̃Aj

is the context vector from the attention layer (computed from
Eqn. 9c).
The representation vector rj is now fed to the Cascade
Predictor Network (CPN). The CPN has three components.
The first component contains an LSTM decoder which takes
the vector rj as input to produce an output vector (hidden
state) hPj . The second component of CPN contains a location
network (fully connected network) which takes hPj as input
and return the next location lj as output. The output of the
location network is clipped such a way that it always gives
a valid location w.r.t. the cascade sequence. The last part of
the CPN is the output layer which computes the probability
distribution of the node infection and the conditional density
function similar to previously introduced models.
The benefit of the enhanced version of DeepDiffuse is that
it can learn which part of the cascade to analyze without
any external supervision. Moreover, since it only requires a
subsequence of the cascade (defined by a ratio ρ), the cost
of attention mechanism is much lower than that of the basic
DeepDiffuse model. These two factors make the model more
flexible and efficient.

t=0 t1 t2 t3 t4 t5 t6 t7 t8

 xA xB xC xD xE xF xG xH

 xC xD xE xF

 t3 t4 t5 t6

lj-1

(current
location)

temporal features and node embedding

In
pu

t t
o

LS
TM

M

od
el

Attention Layers

𝒍𝒍𝒋𝒋′ 𝒈𝒈𝒋𝒋′

𝒓𝒓𝒋𝒋

Cascade Analyzer
Network (CAN)

LSTM Network
(CPN) 𝒉𝒉𝒋𝒋−𝟏𝟏𝑷𝑷 𝒉𝒉𝒋𝒋𝑷𝑷

Vu, bu
𝜶𝜶𝒕𝒕,𝜷𝜷𝒕𝒕,𝜸𝜸𝒕𝒕

−𝐥𝐥𝐥𝐥𝐥𝐥 (𝒗𝒗𝒋𝒋+𝟏𝟏|𝒉𝒉𝒋𝒋) −𝐥𝐥𝐥𝐥𝐥𝐥 𝒇𝒇∗(𝒋𝒋 + 𝟏𝟏)

𝒍𝒍𝒋𝒋
(next

location)

Cascade Predictor
Network (CPN)

LSTM Network
(CAN)

 𝒉𝒉𝒋𝒋𝑨𝑨

window ratio 𝝆𝝆 = 𝟎𝟎.𝟓𝟓

 𝒉𝒉�𝒋𝒋𝑨𝑨

 softmax

𝑾𝑾𝒍𝒍
𝒓𝒓,𝒃𝒃𝒍𝒍𝒓𝒓

Feed forward
neural

network

embedding of cascade
w.r.t. position 𝒍𝒍𝒋𝒋−𝟏𝟏

context vector

Fig. 2. Architecture of enhanced DeepDiffuse. The model has two ma-
jor components: Cascade Analyzer Network (CAN) and Cascade Predictor
Network (CPN). CAN produces an internal vector representation (rj) of a
subsequence of the cascade (in blue color) as per Eqn. 10a-c. This subsequence
is extracted from a location lj−1 computed in the previous time step of CPN.
The processing of the subsequence is same as the basic DeepDiffuse model as
shown through the green (cascade sequence), violet (input feature), red (LSTM
network), and orange (attention) colors. CPN takes this representation rj and
feeds it to another LSTM network which calculates the next location of the
cascade to be analyzed (lj) as well as compute the next node and timing
information.

III. EXPERIMENTS

A. Experimental Setup

Datasets: We conduct our empirical analysis on three publicly
available real world datasets. For all the datasets we picked
75% as training and the rest for testing.
• Digg [11] is a news aggregator. The dataset contains votes
by its users for 3,553 news articles. The timestamp of votes
along with the anonymized user-id form the cascade. It has
82,778 nodes (users) and has an average cascade length of

30.0.
• Twitter [18] dataset contains 569 URLS shared by 5,942
users. The reshare sequence for a URL creates a cascade where
the average cascade length is 5.70.
• Memetracker [19] dataset contains 54,847 popular memes
published on 4,403 news websites. Sharing time along with the
website names form the cascade. The average cascade length
is 17.0.
Baselines: We consider several state-of-the-art methods to
compare with our proposed DeepDiffuse. Since ours is the
first in line for this type of cascade prediction, we use
modified version of similar methods along with the baseline
we developed earlier for comparison. Another notable point is
although many cascade prediction models exist not all methods
have the same goal or data features as ours. Therefore we
consider only the models which use similar data to ours for
comparison. It should be mentioned that not all the methods
can predict both the node and the time of infection together.
Therefore we compare the node and time prediction separately.
The short description of the competing methods are given
below:
• RMTP [15] is an RNN model designed to predict marked
temporal point process. This model can predict the timing and
the type of next event. For our purpose, we input the infected
node and the corresponding infection time as the event marker
and the time of the event respectively.
• TopoLSTM [9] is an LSTM based model which only pre-
dicts the next node given a cascade and its network structure.
Since we do not exploit any network information we only
input the cascade. We only use it for node prediction since it
can not predict the timing.
• DeepCas [8] is a Bidirectional GRU based model designed
to predict the size of the cascade. We use a softmax layer in
the output layer to predict the next node but, it can not predict
the infection timing.
• LSTM is our vanilla LSTM based model described in
Section II-B, which can predict both the next node and timing
of the infection.
• DeepDiffuse Variants: DeepDiffuse is our proposed family
of methods for both node and infection time prediction. It has
two variants–DeepDiffuse-Basic (DeepDiffuse-B), described
in Sec. II-C, which uses the entire cascade information at
all time steps and DeepDiffuse-Enhanced (DeepDiffuse-E),
described in Sec. II-D, which uses two network modules: a
predictor network, to identify the subsequence to analyze and
an analyzer network, to process the identified subsequence of
the cascade1.
Parameter setting: Unless otherwise stated, we set the state
size K of all the methods to 256, batch size to 50, sequence
length to 100, and window to sequence ratio ρ to 0.9.

B. How effective is DeepDiffuse in predicting the node and
timing of infection?
Evaluation Metric: Given a cascade sequence obtaining the
next infected node can be viewed as a retrieval task since there

1code: https://github.com/raihan2108/deep-diffuse

Digg Twitter Memetracker

map@10 map@50 map@100
0

1

2

3

4

m
ap

 (%
)

RMTP
TopoLSTM
DeepCas
LSTM
DeepDiffuse-E

map@10 map@50 map@100
0

5

10

15

20

25

m
ap

 (%
)

map@10 map@50 map@100
0

5

10

15

20

25

m
ap

 (%
)

hits@10 hits@50 hits@100
0

10

20

30

40

hi
ts

 (%
)

RMTP
TopoLSTM
DeepCas
LSTM
DeepDiffuse-E

hits@10 hits@50 hits@100
0

5

10

15

20

25

30

hi
ts

 (%
)

hits@10 hits@50 hits@100
0

20

40

60

80

hi
ts

 (%
)

RMTP
LSTM

DeepDiffuse-E
0

2

4

6

8

10

R
M

SE
 (p

er
 u

ni
t t

im
e)

RMTP
LSTM

DeepDiffuse-E
0

5

10

15

RM
SE

 (p
er

 u
ni

t t
im

e)

RMTP
LSTM

DeepDiffuse-E
0

0.1

0.2

0.3

0.4

R
M

SE
 (p

er
 u

ni
t t

im
e)

Fig. 3. Comparison of node and time prediction for different datasets. The first and second rows show the map@κ and hits@κ score for node prediction
(higher the better). The bottom row shows RMSE score for timing prediction (lower the better). We can see our proposed DeepDiffuse-E outperforms all
other methods in all metrics. The performance gain is 6–107% across all the methods for hits@100. For timing prediction we achieve a minimum of 20%
reduction in RMSE.

can be an arbitrarily large number of potential candidates [9].
Therefore an intuitive way for evaluation is to apply ranking
metrics used in information retrieval. To apply such metrics we
rank the uninfected nodes by their infection probabilities (from
Eqn. 4) and consider the relevant item to be the actual node
to get infected. We use two widely popular ranking methods:
• MAP@κ: This is the Mean Average Precision used in
information retrieval
• HITS@κ: The rate of top κ ranked nodes containing the
next infected node.
We use κ = 10, 50, 100 for our evaluation. For the time
prediction we compute the estimated time of next infection
using Eqn. 7 for the test. Then we compute the RMSE score.
The comparison of map@κ and hits@κ (top two rows) and the
RMSE score for timing prediction (bottom row) for different
datasets is shown in Fig. 3. We can make the following

observations.
1) DeepDiffuse-E outperforms TopoLSTM and DeepCas by a
very good margin. The performance gain ranges from 29% to
107% in case of hits@100 against TopoLSTM whereas w.r.t.
DeepCas it is 6% to 42%. This demonstrates the superiority
of DeepDiffuse-E over current state-of-the-arts methods.
2) DeepDiffuse-E also outperforms the LSTM model in all
cases. Here performance gain range is 10%–34% in case of
hits@100.
3) Performance improves as κ increases since the true infected
node is more likely to be in the set of possible candidates if
its size increases.
4) DeepDiffuse-E also outperforms all the other methods
in terms predicting the next time of infection (bottom row,
lower the better) demonstrating its effectiveness. As mentioned
before TopoLSTM and DeepCas are omitted from this com-

parison as they cannot predict time.
5) Among other observations, DeepCas performs well com-
pared to TopoLSTM. TopoLSTM requires the network struc-
ture to create an additional hidden layer. Our hypothesis is
because of the absence of network structure in our study
TopoLSTM is underperforming.
6) In both node and timing prediction RMTP performs the
worst, as it uses simple RNN architecture.

IV. ADDITIONAL RELATED WORK

Information Diffusion: Established research provides diffu-
sion models to study notions of influence in the network [20],
[21] and applications to inference and link prediction [22],
[23]. Cascade prediction research is typically one of classify-
ing whether a cascade will go viral in the future [24], [25]
or one of regression of size of cascade [26]. Temporal Point
Processes: Temporal point processes [27] while having been
applied to modeling information diffusion [28], [29] in a wide
range of domains (e.g. finance [30], sociology [31]), model
only the temporal dynamics of the diffusion networks unlike
ours. Attention Mechanisms: Attention mechanisms are one
of the most recent and exciting advances in deep learning but
have been primarily utilized for NLP tasks (e.g. [16], [32])
or computer vision (e.g. [33], [34]) unlike our application to
cascade prediction.

V. CONCLUSION

In this paper, we introduced the novel problem of cascade
prediction involving the prediction of both future nodes and
timing. Our model DeepDiffuse was designed to focus on
specific nodes for prediction by learning to jump to any part of
a cascade as necessary. We evaluate our model in some real
world datasets against state-of-the-art methods proposed for
similar problems. Our model demonstrates outstanding results
in every experimental scenario. One of the future research
directions involves estimating how effective DeepDiffuse can
be in predicting the future growth of cascades or identifying
viral cascades. Another direction can be incorporating the
content of the cascade (meta-features) into the prediction
problem.

ACKNOWLEDGEMENTS

This paper is based on work partially supported by US
NSF grants IIS-1750407 (CAREER), IIS-1633363, and DGE-
1545362, by the NEH (HG-229283-15), by the Army Research
Laboratory under grant W911NF-17-1-0021, ORNL and a
Facebook faculty gift.

REFERENCES

[1] H.-W. Shen, D. Wang, C. Song, and A.-L. Barabási, “Modeling and
predicting popularity dynamics via reinforced poisson processes,” in
AAAI, 2014, pp. 291–297.

[2] L. Weng, F. Menczer, and Y.-Y. Ahn, “Predicting successful memes
using network and community structure,” in ICWSM, 2014, pp. 535–
544.

[3] C. Bauckhage, F. Hadiji, and K. Kersting, “How viral are viral videos,”
in ICWSM, 2015, pp. 22–30.

[4] Y. Matsubara, Y. Sakurai, B. A. Prakash, L. Li, and C. Faloutsos, “Rise
and fall patterns of information diffusion: model and implications,” in
KDD, 2012, pp. 6–14.

[5] J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec, “Can
cascades be predicted?” in WWW, 2014, pp. 925–936.

[6] L. Yu, P. Cui, F. Wang, C. Song, and S. Yang, “From micro to
macro: Uncovering and predicting information cascading process with
behavioral dynamics,” in ICDM, 2015, pp. 559–568.

[7] K. Subbian, B. A. Prakash, and L. Adamic, “Detecting large reshare
cascades in social networks,” in WWW, 2017, pp. 597–605.

[8] C. Li, J. Ma, X. Guo, and Q. Mei, “Deepcas: An end-to-end predictor
of information cascades,” in WWW, 2017, pp. 577–586.

[9] J. Wang, V. Zheng, Z. Liu, and K. Chang, “Topological recurrent neural
network for diffusion prediction,” in ICDM, 2017, pp. 475–484.

[10] Q. Zhao, M. Erdogdu, H. He, A. Rajaraman, and J. Leskovec, “Seismic:
A self-exciting point process model for predicting tweet popularity,” in
KDD, 2015, pp. 1513–1522.

[11] K. Lerman and R. Ghosh, “Information contagion: An empirical study
of the spread of news on digg and twitter social networks.” in ICWSM,
vol. 10, 2010, pp. 90–97.

[12] M. Gomez Rodriguez, J. Leskovec, and A. Krause, “Inferring networks
of diffusion and influence,” in KDD, 2010, pp. 1019–1028.

[13] C. L. Barrett, K. R. Bisset et al., “Episimdemics: an efficient algorithm
for simulating the spread of infectious disease over large realistic social
networks,” in ACM/IEEE SC, 2008, pp. 1–12.

[14] S. Sundareisan, J. Vreeken, and B. A. Prakash, “Hidden hazards: Finding
missing nodes in large graph epidemics,” in SDM, 2015, pp. 415–423.

[15] N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and
L. Song, “Recurrent marked temporal point processes: Embedding event
history to vector,” in KDD, 2016, pp. 1555–1564.

[16] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[17] V. Mnih, N. Heess, A. Graves et al., “Recurrent models of visual
attention,” in NIPS, 2014, pp. 2204–2212.

[18] N. O. Hodas and K. Lerman, “The simple rules of social contagion,”
Scientific reports, vol. 4, p. 4343, 2014.

[19] J. Leskovec, L. Backstrom, and J. Kleinberg, “Meme-tracking and the
dynamics of the news cycle,” in KDD, 2009, pp. 497–506.

[20] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in KDD, 2003, pp. 137–146.

[21] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing social
influence in nearly optimal time,” in SODA, 2014, pp. 946–957.

[22] S. Myers and J. Leskovec, “On the convexity of latent social network
inference,” in NIPS, 2010, pp. 1741–1749.

[23] S. Bourigault, S. Lamprier, and P. Gallinari, “Representation learning for
information diffusion through social networks: An embedded cascade
model,” in WSDM, 2016, pp. 573–582.

[24] M. Jenders, G. Kasneci, and F. Naumann, “Analyzing and predicting
viral tweets,” in WWW, 2013, pp. 657–664.

[25] P. Cui, S. Jin, L. Yu et al., “Cascading outbreak prediction in networks:
a data-driven approach,” in KDD, 2013, pp. 901–909.

[26] O. Tsur and A. Rappoport, “What’s in a hashtag?: Content based
prediction of the spread of ideas in microblogging communities,” in
WSDM, 2012, pp. 643–652.

[27] D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point
Processes. Springer Science & Business Media, 2007.

[28] N. Du, L. Song, M. Yuan, and A. J. Smola, “Learning networks of
heterogeneous influence,” in NIPS, 2012, pp. 2780–2788.

[29] Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-linear
time: A martingale approach,” in SIGMOD, 2015, pp. 1539–1554.

[30] E. Bacry, A. Iuga, M. Lasnier, and C.-A. Lehalle, “Market impacts and
the life cycle of investors orders,” Market Microstructure and Liquidity,
vol. 1, no. 02, 2015.

[31] A. Ferraz Costa, Y. Yamaguchi et al., “RSC: Mining and modeling
temporal activity in social media,” in KDD, 2015, pp. 269–278.

[32] C. Gulcehre, F. Dutil, A. Trischler, and Y. Bengio, “Plan, attend,
generate: Planning for sequence-to-sequence models,” in NIPS, 2017,
pp. 5480–5489.

[33] H. Larochelle and G. E. Hinton, “Learning to combine foveal glimpses
with a third-order boltzmann machine,” in NIPS, 2010, pp. 1243–1251.

[34] M. Denil, L. Bazzani, H. Larochelle, and N. de Freitas, “Learning
where to attend with deep architectures for image tracking,” Neural
Computation, pp. 2151–2184, 2012.

