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Abstract

Given a contact network and coarse-grained diagnostic information such as electronic Health-
care Reimbursement Claims (eHRC) data, can we develop efficient intervention policies from
data to control an epidemic? Immunization is an important problem in multiple areas, espe-
cially epidemiology and public health. However, most existing studies rely on assuming
prior epidemiological models to develop pre-emptive strategies, which may fail to adapt to
the change in new epidemiological patterns and the availability of rich data such as eHRC.
In practice, disease spread is usually complicated, hence assuming an underlying model may
deviate from true spreading patterns, leading to possibly inaccurate interventions. Addition-
ally, the abundance of health care surveillance data (such as eHRC) makes it possible to study
data-driven strategies without too many restrictive assumptions. Hence, such a data-driven
intervention approach can help public-health experts take more practical decisions. In this
paper, we take into account propagation log and contact networks for controlling propaga-
tion. Different from previous model-based approaches, our solutions are solely data driven
in a sense that we develop immunization strategies directly from the network and eHRC
without assuming classical epidemiological models. In particular, we formulate the novel
and challenging data-driven immunization problem. To solve it, we first propose an efficient
sampling approach to align surveillance data with contact networks, then develop an efficient
algorithm with the provably approximate guarantee for immunization. Finally, we show the
effectiveness and scalability of our methods via extensive experiments on multiple datasets,
and conduct case studies on nation-wide real medical surveillance data.

Keywords Graph mining - Social networks - Immunization - Diffusion

1 Introduction

Vaccination and social distancing are among the principle strategies for controlling the spread
of infectious diseases [1,2]. CDC (Centers for Disease Control) guidelines for vaccine usage
are typically based on age groups, e.g., for young children and seniors—these do not result
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in optimal interventions, which minimize outcomes such as the total number of infections
[1]. Additionally, most work on designing immunization algorithms from a data-mining
viewpoint has focused on developing innovative strategies which assume knowledge of the
underlying disease model [3,4] or make assumptions of very fine-grained individual-level
surveillance data [5].

Recent trends have led to the increasing availability of electronic claims data and also
capabilities in developing very realistic urban population contact networks. This motivates
the following problem: given a contact network, and a coarse-grained propagation log such
as electronic Health Reimbursement Claims (eHRC), can we learn an efficient and realistic
intervention policy to control propagation (such as a flu outbreak)? Further, can we do it
directly without assuming any epidemiological models? Influenza viruses change constantly,
and hence designing interventions optimized for specific epidemic model parameters is likely
to be suboptimal [6].

The diagnostic propagation log data provide us with a good sense of how diseases spread,
while contact networks tell us how people interact with others. We take into account both for
immunization and study the data-driven immunization problem. Some of the major challenges
include: (1) the scale of these datasets (eHRC consists of billions of records and contact
networks have millions of nodes), and (2) eHRC data is anonymized, and available only at a
zipcode level. The main contributions of our paper are:

(a) Problem formulation We formulate the data-driven immunization problem given a
contact network and the propagation log. We first sample the most-likely “social-contact”
cascades from the propagation log to the contact network and then pose the immunization
problem at a location level, and show it is NP-hard.

(b) Effective algorithms We present efficient algorithms to get the most-likely samples,
and then provide a contribution-based greedy algorithm, IMMUCONGREEDY, with provably
approximate solutions to allocate vaccines to locations.

(c) Experimental evaluation We present extensive experiments against several competitors,
including graph-based and model-based baselines, and demonstrate that our algorithms out-
perform baselines by reducing upto 45% of the infection with limited budget. Furthermore,
we conduct case studies on nation-wide real medical surveillance data with billions of records
to show the effectiveness of our methods. To the best of our knowledge, we are the first to
study realistic immunization policies on such large-scale datasets.

2 Preliminaries

We give a brief introduction of the propagation data eHRC and contact networks we used in
this section.

2.1 Propagation data (eHRC)

The propagation data for this study were primarily based on IMS Health claims data, elec-
tronic Healthcare Reimbursement Claims (eHRC), which consists of over a billion claims
for the period April 1, 2009—-March 31, 2010. The claims data consist of reimbursement
claims recorded electronically from healthcare practitioners received from all parts of the
USA, including urban and rural areas. The dataset, its features, and its overall cover-
age/completeness are described in detail in [7,8]; for this study, we used daily flu reports,
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based on ICD-9 codes 486XX and 488XX and individual locations (zipcode) recorded in
the claims. Prior to our study, we obtained internal Institutional Review Board approval for
analyzing the dataset.

2.2 Activity-based populations

We use city-scale activity-based populations as contact networks (see [9,10] for more details).
These models are constructed by a “first-principles” approach and integrate over a dozen pub-
lic and commercial datasets, including census, land use, activity surveys and transportation
networks. The model includes detailed demographic attributes at an individual and house-
hold level, along with normative activities. These models have been used in a number of
studies on epidemic spread and public-health policy planning, including response strategies
for smallpox attacks [10] and the National strategy for pandemic flu [2].

3 Problem formulations

Table 1 lists the main notations used throughout the paper.

We use G(V, E) to denote an undirected unweighted graph and L = {Lq,...,L,} to
denote a set of locations. V; € V denotes the set of nodes at location L;; we assume there
are no overlapping nodes between locations. Large medical surveillance data, such as eHRC,
are usually anonymized due to privacy issues. Hence, in this paper, we assume that only
the number of infections is given. Formally, the propagation log R is an infection matrix
N ((fmax + 1) x n), where #p and fyax are the earliest and last timesteps. Each element
N(Lyg,t) represents the number of patients in R at location L, at time 7. Each row vector

Table 1 Terms and symbols

Symbol Definition and description

G(V,E) Graph G with the node set V and the edge set E
R Propagation log

N Infection matrix for the propagation log R
N(Lyg, t;) The number of patients at #; in Ly

1o The earliest timestep ) = 0

n Number of locations

L={Ly,...,Ly} Set of locations

m Number of vaccines
X Vaccine allocation vector [x1, ..., x,]
k Number of samples in M

M Set of sampled cascades {My, ..., M}
M
ST

A sampled cascade

M The starting infected node set in M
oG,M(X) The expected number of nodes Sy can reach when x is given
PG.M; (X) oG, M(0) — oG M%)
aM. ¢ Number of nodes that have at least one parent in M at location L,
Se The initial starting node set at location Ly, where |S¢| = N(Lg, ty)
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Fig.1 Overview of our approach. We first generate a set of cascades, then allocate vaccine to different locations

N(@) = [N(Ly,t),..., N(Ly,t)] represents the number of infections at time ¢, and each
column vector Ny, = [N (L, to), ..., N(Lyg, tma) ] represents the number of infections at
location L.

3.1 Interactions and surveillance

A contact network G models people’s interactions with others, which is a powerful tool to
control epidemics. For example, Prakash et al. [11] showed that the first eigenvalue of the
adjacency matrix of G is related to the epidemic threshold. An epidemic will be quickly extin-
guished given a small epidemic threshold. Several effective algorithms have been proposed
to minimize the first eigenvalue to control epidemics [3,4,12]. However, all of them assume
an underlying epidemiological model such as Susceptible-Infected-Recovered (SIR) [13]. In
addition, they are strictly graph-based methods without looking into rich medical surveillance
data. Although graph-based methods can provide us with good baseline strategies, they do
not take into account particular patterns of a given virus. On the other hand, the disease prop-
agation data R such as eHRC can give us a coarse-grained picture of infections. However,
there is very little information on how an epidemic spreads via person-to-person contacts
from R. Hence, we believe the disease propagation data R, along with a contact network G,
can help us develop better and more implementable interventions to control an epidemic. For
example, we can take the surveillance data of the past flu season to allocate vaccines for the
current flu season.

3.2 Map Rtonodesin G

The main challenge of integrating R and G is that R (such as eHRC) in practice is anonymized.
Hence, we cannot associate each record in R with a node in G. In this paper, we tackle this
challenge by mapping infections from R to nodes in G at the location level. The idea is that
at each location L, and time #;, we pick N(Ly, t;) nodes in G as infected nodes. Note that
we can have multiple choices of mapping R to G. For example, in Fig. 1, N(Ljy, 1) = 1,
and hence, we can pick either A or B as infected node at #y. We denote these choices as M,
where M is a set of cascades. We define a cascade M as follows:
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Definition 3.1 (Cascade) A cascade M is a directed acyclic graph (DAG) induced by R and
G. Each node u € Wy is associated with a location L, and a timestep t;, where u € V;
and u are infected at #; (denoted as ¢(u) = t;). For node u and v in M, if ¢, , € E and
t(u) = t(v) — 1, there is a directed edge from u to v in M. We denote e(u, v) € Enm.

We could select N (Lg, t;) nodes uniformly at random as infected nodes in G for each M.
However, it is not practical as infection distributions are not uniform. For example, if a node
u has an infected neighbor, u# can be infected by that node; in contrast, if # does not have
any infected neighbor in R, it is unlikely to be infected. Hence, we propose to map R to G
according to the SOCIALCONTACT approach.

3.3 SOCIALCONTACT

We say an infected node u gets infected by “social contact” in G, if u has a direct neighbor
that is infected earlier than u. Otherwise, we say that a node is infected by external forces. In
reality, infectious diseases (such as flu, mumps) usually spread via person-to-person contact.
Hence, for a mapped cascade M, we want to maximize the number of nodes caused by
SOCIALCONTACT. Formally, we define ant = [{#|3v, e(v, u) € Em}l, i.e., ay is the number
of nodes that have at least one parent in M. Then, maximizing the number of nodes infected
by SOCIALCONTACT is equivalent to maximizing oy . Figure 1 shows two cascades with the
best oy = 4: as only the node that starts the infection does not have a parent. To get k
cascades with SOCIALCONTACT in M, we formulate the mapping problem:

Problem 3.1 (Mapping problem) Given a contact network G, propagation log R, and number
of cascades k, find M* = {M*, ..., MZ} where each node u in M is associated with a location
L¢ and a time ;:

M* = arg max E am;, st M| =k (1)
M
M,‘EM

Remark 3.1 Since we do not specify any epidemiological model (such as SIR) for Prob-
lem 3.1, it is difficult to define any probability distribution for M. Hence, the sample average
approximation approach is not applicable for this problem.

3.4 Data-driven immunization

Once we generate M, we want to study how to best allocate vaccines to minimize the infection
shown in R. Recently, Zhang et al. [4] proposed a model-based group immunization problem,
in which they allocate vaccines to nodes within groups uniformly-at-random—this mimics
real-life distribution of vaccines by public-health authorities. We leverage their within-group
allocation approach. Let us define x = [x1, ..., x,]" as a vaccine allocation vector, where
x; is the number of vaccines given to location L;. If we give x; vaccines to location L;, x;
nodes will be uniformly randomly removed from V;. The objective is to find an allocation
that “breaks” the cascades most effectively. We define Sy to be the starting “seed” infected
nodes in M, ie., Sy = {u € Vml|t, = v}, and oG m(x) to be the expected number of
nodes that Sy can reach after x is allocated to locations in M. Hence, we want to minimize
oG M(X) to limit the expected infection over any cascade M € M. For example, in Fig. 1,
once two vaccines are given to L and L, we minimize the number of nodes that B can reach
in the two cascades.
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For ease of description, let us define pg M(X) = og.M(0) — og.M(X). pc. M (X) can be
thought as the number of nodes we can save if x is allocated. Since o m; (0) is constant,
minimizing oG m(X) is equivalent to maximizing pg, m(X). Formally, our data-driven immu-
nization problem given M (from Problem 3.1) is:

Problem 3.2 (Data-driven immunization) Given a contact network G, a set of cascades M,
and budget m, find a vaccine allocation vector x*:

1
X = arg max ™ Z pem; (X), st x| =m 2)
M,‘EM

3.5 Hardness

Both Problems 3.1 and 3.2 are NP-hard; this can be shown by reductions from the Max-K-Set
Union problem [14] and the DAV problem [5], respectively.

4 Proposed method

In this section, we develop two efficient algorithms, MAPPINGGENERATION for Problem 3.1
and IMMUCONGREEDY for Problem 3.2.

4.1 Generating cascades from SOCIALCONTACT

Main idea To tackle Problem 3.1, we first focus on a special case where k = 1 (find a single
cascade M), then extend it to multiple cascades. The challenge here is that even when k = 1,
Problem 3.1 is still NP-hard. Our main idea to solve this is to first generate S/ (the seed
set), and then generate M from SIy. In principle, this can be done from checking Sy ’s
i-hop neighbors. Clearly, S/v’s quality will directly affect M’s quality. However, it is still
hard to find S/v and generate M from S/7y;. Instead, we identify a necessary condition for
the optimal M, and propose a provable approximation algorithm to find S/ that satisfies
the condition. We make the algorithm faster by leveraging the Approximate Neighborhood
Function (ANF) technique. Then, we generate the corresponding cascade M from S7y, and
propose a fast algorithm MAPPINGGENERATION to extend it to k cascades for Problem 3.1.

Finding Sy To find a high-quality SZy, we first examine what is the optimal M. According
to Eq. 1, the optimal M has the maximum value of an. Let us define oy as the maximum of
am (am < af{,[). Then, we have the following lemma:

Lemma 4.1 ay = Zi‘i‘fl IN(t)|1, i.e., the number of infections after the earliest time t.

Proof When we map R to G, the optimal case for a cascade M is that every node u with
t(u) > ty has at least one parent in M, and the only nodes that do not have any parents are
the ones infected at the earliest time #y. Hence, ozf\‘/l is the number of nodes that are infected
after 1. ]

Lemma 4.1 shows that the maximum ay is the number of infections after 7y. However, as
shown in the next lemma, it is hard to find a Sy with the optimal M.

Lemma4.2 Finding a set STy for the cascade M with am = ayy is NP-hard.
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Proof We can reduce it from a K-Set Union problem which tries to pick K sets that cover at
least p elements. Consider an instance of the K-Set Union problem with n sets (n > k) where
each set A; contains /m elements e, we can construct the following instance: assuming only
one location L, we create any node set S that connects to A;, and each set A; has an edge
toany e; € A;. For the log R, we have N (Lo, to) = |S|, N(Lo, t1) =n,and N(Lo, ) = p,
then we want to find a M with oy = |K| + p. If we can find such M, the K-Set Union
problem must be solvable. O

According to Lemma 4.2, it is intractable to examine the whole graph to get Sy for large
networks (such as Houston with 59 million edges in Sect. 5). Hence, instead we will look
at each location independently to find S/, and aggregate the result to generate M.

Let us define apm, ¢ as the number of nodes that have at least one parent in M at location
Ly. Similar to oy, we have apm, e < “f\k/[,z where oz;“ = ;";‘f N(Ly, t;). “f\k/[,z is the
number of patients after 7o at location Ly in R, and it is the optimal value for o ¢. Since
we want to find a set of starting nodes, here we define S, as a node set at location Ly:
ie., S¢ = {vlv € Sandv € V;} where |S¢| = N(L¢, ty). For each location L,, we want
to find a set Sy as the starting infected node set, such that Sy will yield a cascade M that
minimizes o ¢. Our idea is to find Sy that satisfies a necessary condition for the best oy ¢.
We denote CF(Sy, t;) = |{u|lu € V;,3v € Sp,dist(v,u) < i}l, i.e., the number of nodes
that Sy can reach within distance i (i-hops) in Lg in G. Similarly, we denote CN (Ly, t;) =
Z}(:O N (Ly, t;) (the cumulative number of infections in L, in R until time ¢#;). The next
lemma will show that for each location L, when ap ¢ = ocf{,L ¢» the constraint in Eq. 3 must
be satisfied.

Lemma4.3 (Necessary condition) Given a cascade M generating from Se, if an.¢ = oy 4
then for any timestep t; € [0, tmax] and all locations Ly, we have

CF(S¢, 1) > CN(Ly, t;) 3)

Proof 1f av ¢ = oy, every node that is infected after 7o has a parent. For any node u that is
infected at #;, u must be within the ith hops of S¢, which means the number of nodes within the
i-hops of Sy is greater than the number of nodes infected at #;,i.e., CF (S¢, t;) > CN(Ly, t;).

O

Lemma 4.3 demonstrates a necessary condition (Eq. 3) for the maximum o ¢. Hence,
we seek to develop an efficient algorithm that can produce accurate results for the necessary
condition. Our idea is to construct a new objective function, which can get the necessary
condition for the best M at location L,. To do so, we propose the following problem to find
Shu:

Problem 4.1 Given graph G and infection matrix N, find $* = {ST,..., 5;} s.t., [S]| =
N(Lyg, to) for any location L, such that

S} =arg n}gin@(Sg) V location Ly,
14

where

Tmax

0(Se) = Z Leres,,i)<CN(Le,i) (CN(Lg, ti) — CF (S, t;)).
i=0

Here 1cr(s,,)<CN(L,,1;) 18 an indicator function: if CF(Se, ;) < CN(Ly, ;) then it is 1,
otherwise 0.
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Justification of Problem 4.1. Recall that af{,[, ; 1s the optimal value for an ¢, and 6(Sp) is
nonnegative. We have the following lemma to connect 6(S;) = 0 with the optimal orp .

Lemma4.4 If am ¢ is optimal, then 6(S;) = 0.
Proof In the appendix. O

Lemma 4.4 shows that if we minimize 6(S,), we are able to get the necessary condition
for the best M at location L,. Therefore, we propose Problem 4.1 to get Syy.
Hardness Problem 4.1 is NP-hard, as it can be reduced from the set cover problem [14].
Solving Problem 4.1 Let us define g(S¢) = [} /™% CN(L¢, ;)] — 6(Se). Y™ CN (L, t;)
is constant, so minimizing 6(Sy) is equivalent to maximizing g(S¢). The next lemma will
show that g(Sy) has interesting properties, which can help us get a near-optimal approximate
solution for it.

Lemma4.5 g(S¢) has the following properties: g(#) = 0; it is monotonic increasing and
submodular.

Proof In the appendix. O

Given the properties of g(S¢) in Lemma 4.5, we can develop a natural greedy algorithm to
solve Problem 4.1. with a provable guarantee (Lemma 4.6). We call it SAMPLENAIVEGREEDY:
Each time it picks a node u™ such that

W' = argmax g(Se U {u}) — g(Sp),
ueVy
until N (L, tp) nodes have been selected to S¢. We do it for all locations to get S/n.

Lemma 4.6 For each location Ly, SAMPLENAIVEGREEDY gives a (1 — 1/e)-approximate
solution to g(Sy).

Proof Minimizing 6(S;) is equivalent to maximizing g(S¢) = (Zf‘:j‘ CN(Lyg,t;)) —60(Se)
aszlf‘:‘f CN(Ly,t;) is constant. g(S¢) has the following properties: (1) g(¥) = 0; (2) it
is monotonic increasing; (3) it is a submodular function. Hence, the greedy algorithm to
maximize g(S¢) gives a (1 — 1/e)-approximate solution [15]. O

SAMPLENAIVEGREEDY selects a node with the maximum marginal gain of g(Sy) itera-
tively. It gives us a (1 — 1/e) approximate solution; however, it takes O(|V|(|V| + |E|))
time if we run BFS to get each C F(Sy, ;) for each iteration. The time complexity to get all
IN(#p)|1 nodes as Sy is O(IN(t0) |11V |(|V |+ |E|)), which is not scalable to large networks.
Hence, we need a faster algorithm.

Speeding up SAMPLENAIVEGREEDY In SAMPLENAIVEGREEDY, each time we recompute
CF(S¢U{u}, t;) for all i, which takes O (|E| + | V) time. We can speed up this computation
by leveraging the ANF (Approximate Neighborhood Function) algorithm [16], which uses
a classical probabilistic counting algorithm, the Flajolet—-Martin algorithm [17] to approxi-
mate the sizes of union-ed node sets using bit strings. Here, we refer to the bit string that
approximates C F(Sy, t;) as IF(Sg, i). To estimate CF(S¢ U {u}, t;), we first do a bitwise-
OR operation: F(Sp U {u}, i) = [IF(S¢, i) ORIF({u}, i)], then convert it to C F (S, U {u}, ;).
According to the ANF algorithm, CF (-, t;) = ¢(IF(+)) = (2b)/.77351, where b is the aver-
age position of the leftmost zero bit of the bit string. Since the bitwise-OR operation takes
constant time, we can reduce the running time of C F (S, U {u}, t;) for all timesteps i from
O(IE|+ |V]) to O (fmax)-
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We propose SAMPLEGREEDY (Algorithm 1), a modified greedy algorithm with bitwise-
OR operations for Problem 4.1. It first gets IF({u}, i) for all nodes at location L, over all
timesteps using ANF [16] (Line 2), then follows SAMPLENAIVEGREEDY. However, we use
bitwise-OR operations to speed up the computation of C F'(S; U {u}, ;) (Line 7-8).

Algorithm 1 SAMPLEGREEDY
Require: graph G, and propagation log matrix N.
1: for each location Ly do

2 Get F({u}, i) for all timestep i, all u € V, using ANF [16]
30 y=N(Ly 1)

4: S¢=0,and IF(S¢, i) = O for all timesteps i

5: for i=1toydo

6 for each node u € Vy — S, do

7 F(Se Ulu}, i) =T (Sp, i) OR F({u}, i) for all ¢;
8 CF(Sg U{u}, t;) = ¢(IF(Sg U {u}, 1)) for all ;
9 end for

100w = argmaxyey,—s, §(Se) — §(S¢ U {u})

11: S = Sy Uu*

12:  end for

13: end for

14: retarn Sly = {S1, ..., Su}

Lemma 4.7 SAMPLEGREEDY takes O ((|V|IN(to)|1 + | E|)tmax) time.

Proof Computing all IF({u}, i) over all locations takes O ((|V |+ |E|)fmax) according to the
ANF algorithm. Since bitwise-OR operation takes constant time, hence, Line 8 and 9 takes
O (tmax) time, and Line 7-10 takes O(]V |fmax) time. Since ||N(#p)||1 is the total number of
starting infected nodes, it takes ||N(#9)||1|V |fmax time to pick total ||N(#9)||; nodes. Hence,
the overall running time is O ((|V|||N(#0)||1 + | E)tmax)- O

Generating cascades from S7y; Once we obtain S1y from Algorithm 1, we can generate
M from S1y. Similar to the result of Lemma 4.2, generating M from Sy is also hard. Here
we propose a heuristic, the CASCADEGENERATION algorithm (Algorithm 2) for M. Let us
define Df = {ulu € Vy,3Jv € Shy, dist(v,u) = i}, i.e., a set of nodes in location L, that
S Iz can reach at distance i. We first add STy to the cascade M, and compute Df for all time
t; and location L, by running a BFS starting from Sy (Line 2). Then, we select nodes into
M by running another BFS from S7y as well: at each distance i from S Iy, for each location
L, we pick N(Ly, t;) nodes uniformly at random to M, and add corresponding edges (Line
4-18). Note that we do it by permutating the set Df. N (Lg, t;) nodes are selected as follows:
(1) if |[CANDIDATEQUEUE;| > N (Lg, t;) (the constraint in Eq. 3 follows), we pick N (Lg, t;)
nodes uniformly at random, and add them to M from CANDIDATEQUEUE (Line 8-10); (2)
otherwise, we add all nodes in CANDIDATEQUEUE to M, record the number of nodes left
(Line 11-12), and finally randomly pick other nodes from V;, and add to M (Line 18).

Lemma 4.8 CASCADEGENERATION fakes O (|V| + |E|) time.
Proof Running BFS takes O(|V| 4+ |E|) (Line 2). For each timestep ¢ at each nodes L;, we

check the nodes in DZ hence, overall we just need to traverse the nodes once, which takes
linear time (Line 4— 17) Hence, CASCADEGENERATION takes O (|V| 4 |E|) time. O
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Algorithm 2 CASCADEGENERATION

Require: Graph G, propagation log matrix N, and node set S/yg
1: Add all nodes in Sy to the cascade M

2: Compute Df for all time #; (by running BFS from S1yp)

3: PRESET = S1yj, NUMLEFTNODE=0

4: for i = 1 to tpax do

5 for each location Ly do

6: f)f = Permutate(Df)

7 Add DY to the end of CANDIDATEQUEUE;

8 if |CANDIDATEQUEUE;| > N(Ly, t;) then

9: CURSET=pop N (Ly, t;) nodes from the top of CANDIDATEQUEUE;

10: else

11: CURSET=pop all nodes in CANDIDATEQUEUE,

12: NUMLEFTNODE+=(N (L, tj)— | CANDIDATEQUEUE]|,)

13: end if

14: Add CURSET to M, and edges from PRESET to CURSET if e(u, v) € G for any u € PRESET and v €
CURSET

15:  end for

16:  PRESET=CURSET

17: end for

18: Uniformly randomly pick NUMLEFTNODE nodes from V, to M

19: return M

Extend CASCADEGENERATION to k cascades We can simply extend Algorithm 2 to
k cascades. Note that CASCADEGENERATION permutes the nodes in Df (Line 6); hence,
for different permutations, we can generate different cascades. If the constraint in Eq. 3
holds, at time #;, we add N (L, t;) nodes uniformly at random into M from Zl/':l |Df| —

Z’J_:l] N(Ly¢, tj) candidate nodes. If the constraint does not follow, we pick extra nodes from
V — Vi uniformly at random, and add them to M.

Remark 4.1 The above random process will generate O ([ ], el IL |DiZ |) cascades.

Remark 4.1 shows that we have a large number of cascades. In case if we need more, we can
generate extra cascades by ranking the result of SAMPLEGREEDY: instead of picking the best
S¢, we pick the top sets (in Algorithm 1 Line 10-11). In practice, as shown in our experiments,
we do not need to do this, as we have enough cascades. In addition, our cascades have high
quality: The average value of app is almost the same as the optimal solution (Table 3).
MAPPING GENERATION Combining the above results, we propose the MAPPINGGENERA-
TION algorithm (Algorithm 3) to solve Problem 3.1.

Claim 4.1 The time complexity of MAPPINGGENERATION (Algorithm 3) is O ((|V |IN(#0)|1 +
|E)tmax + k(|V |+ |E])), where k is the number of runs for CASCADEGENERATION to get k
cascades.

Algorithm 3 MAPPINGGENERATION

Require: graph G, propagation log R

1: Generate propagation log matrix N

2: Run SAMPLEGREEDY (G, N) (Algorithm 1) to get STy

3: RunCASCADEGENERATION (G, N, STyp) (Algorithm 2) until k£ unique cascades are found for M
4: return M.
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Fig.2 Counter-example for the
diminishing return property of @
PG (x, M;)

4.2 Data-driven immunization

Main idea In this section, we solve the data-driven immunization (Problem 3.2) assuming the
samples are available. We first show that pg m; (X) in Problem 3.2 is neither submodular nor
supermodular. We then propose to optimize an alternative credit-based objective function,
whichis an upperbound of pg m;, (X) (Problem 4.2). We show that this function is nonnegative,
increasing and has the diminishing return property. Based on these properties, we propose a
greedy algorithm which gives a (1 — 1/e)-approximate solution.

Note that in Problem 3.2, pg m; (X) is defined over an integer lattice, and is not a simple
set function. If a function /(x) has the diminishing return property over an integer lattice,
then for any x’ > x and k, we have h(x + e;) — h(x) > h(x' + e;) — h(x') (e be the vector
with 1 at the kth index). According to [4], there exists a near-optimal algorithm to maximize
h(x). Unfortunately, oG m;, (X) does not follow the diminishing return property.

Remark 4.2 pg(x, M;) does not have diminishing return property. Figure 2 shows a counter-
example, where all nodes are in different locations. Suppose x = 0, X' = ey, then x < x/;
however, pg m; (X + €2) — pg.m; (X) = 5 and pg M, (X' +€2) — pgm; (X)) =8 -2 =6.

Instead, we develop a contribution-based approach. The idea is if we remove a node « in
M;, the number of nodes u can save is related to u’s children. Each child of u can contribute
to the savings of removing u. First, let us denote I Ny, (S) as the set of S’s parents in M;,
ie, INw, (S) = {ule(u,v) € M;, v € S}, and OU Ty, (S) as the set of S’s children in M;.
We define the contribution Cg wm, (S) recursively,

|1 Nw; ({v}) N S|

C i .
TN, (o] OM (v}

Com®) =181+

vEOU Ty, (S)

|1 Ny, ((v)NS]
[TNw; (D]
is that since we do not have any propagation models, it is reasonable to assume the infected
v should be infected by any of its parents equally; hence, v contributes its savings equally to
each of its parents. Now we define the contribution function over an integer lattice,

is the fraction of savings v contributes to S, and Cg m; ({v}) = 1. The intuition

t6.m; (X) = Y Pr($)Co.m; (5), “
s
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where S is a node set sampled from the random process of distributing x (|S| = |x[1).
Lemma 4.9 shows that ¢ M, (X) is the upperbound of pg wm; (X).

Lemma 4.9 Given a cascade M;, pg m; (X) < {G.m; (X).
Proof In the appendix. O

We use ¢G,m; (X) to estimate pg M, (X). Hence, we formally define the following problem
for Problem 3.2.

Problem 4.2 Given a contact network G(V, E), a set of cascades M, and budget m, find a
vaccine allocation vector x*:

1
* _
X" = arg max ™ Z ‘o.M, (X), s.tIx|; =m. (®)]
M;eM
¢, Mm; (X) has interesting properties (as shown in the following Lemma 4.10), which can
lead us to a near-optimal solution for Problem 4.2 (Lemma 4.11).

Lemma4.10 (g wm;, (X) has the following properties:

(P1) ¢G.m; (x) > 0and ¢Gm; (0) = 0.

(P») (Non-decreasing) ¢ m; (X) < {g.m; (X + ;) fori.

(P3) (Diminishing returns) For any X' > x, we have {g m, (X+€;) — g M, (X) = Lo.m, (X' +
e) —om; (X).

Proof (Py) is trivially true because Cg m; (S) > 0 and when x = 0, S = . For (P,), when
we add e;, it means that we add one more vaccine to M;. Note that when we add {u«} to a node
set S, clearly Cg m; (SU{u}) = Cg,m; (S). Letus assume Cg m; (SU{u}) = Co m; (S) + 8y
where §, > 0. When the allocation is x+e;, we can think the process as follows: we first give x
vaccines, then we allocate the last vaccine e;. Hence, (g m; (X+¢€;) = D ¢ Pr(S)[Cg,m, (S)+
Z{u} Pr({u})é.) = &G m; (x). For (P3), it follows the proof of Lemma 1 in [4]. O

Given the properties of £ m, (X) in Lemma 4.10, we propose a greedy algorithm, IMMU-
NAIVEGREEDY for Problem 4.2: each time we give one vaccine to location L+, such that

£* = arg max E ‘o m; (X +€) — &o.Mm; (X),
Ly
M;eM

until m vaccines are allocated.
Lemma 4.11 IMMUNAIVEGREEDY gives a (1 — 1/e)-approximate solution to Problem 4.2.
Proof In the appendix. O

In IMMUNAIVEGREEDY, since we distribute vaccines uniformly at random, we can apply
the Sample Average Approximation (SAA) framework,i.e., {G Mm; (X) ~ ﬁ > ses Com; (S),
where S is a set of samples taken from the vaccine allocation process. This approach takes
O(|SI(JV] + |EJ)) to estimate G, m; (x), and we need to look into | M| cascades to pick
the best location L+ for one iteration. We have |L| locations and m vaccines. Hence, the
total time complexity of IMMUNAIVEGREEDY is O (m|L||M||S|(|V| + |E])), which is not
practical for large networks. However, we can speed up this naive greedy algorithm.

Speeding up IMMUNAIVEGREEDY We propose a faster algorithm, IMMUCONGREEDY
(Contribution-based Greedy Immunization) in Algorithm 4, which takes only O (m|M|
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(V| + |E])) time. The idea is that we can compute the contribution function efficiently
when the budget m = 1, i.e., all values of £ wm, (e¢) in M; can be obtained in O(|V| 4+ |E|)
time. This is because {g m;(e¢) = Zuew ﬁCG,Mi({M}), and we can get Cg m, ({u})
for all u € V by traversing M; once. For simplicity, let d;,(v) = [INwm; ({v})]. We
have Com, ({u}) = 1+ ZveOUTMi({u}) mCG,Mf ({v}). If u does not have any chil-
dren (OUTwm; ({u}) = 9), Cgm; ({u}) = 1. Since M; is a DAG, we can iteratively obtain
Ci.m; ({u}) forallu e V fromareversed order of a topological sort, which takes O (|V |+|E|)
time.

In Algorithm 4, we compute contribution function Cg m; ({u}) for all M; (Line 4), which
takes O (IM|(|V |+ |E|)) time. Then, we obtain ZM[EM {G.M; (eg) for each location Ly by
summing up the contribution for each u € V, (Line 5), which takes O (JM||V]) time. Once
we allocate one vaccine to the best location L+, we update each M; by uniformly at random
removing one node in L+ (Line 7). This way we can just compute ZMI, em §6.M; (e¢) instead
of ZM,» em $6.M; (X + eg) after the next iteration.

Algorithm 4 IMMUCONGREEDY

Require: graph G(V, E), propagation log R, and budget m
1: M =MAPPINGGENERATION (G, R) {Section 4.1}
2:x=0

3: for j =1tomdo

VM; € M: compute CG.Mi ({u}) for each node u

V location Ly € L: compute ZM,-EM ¢G.M; (e¢)

£ =argmaxp, > v em $G,M; (€0)

VM; € M: update M; by uniformly at random removing one node at location L g«
X = X + epx

9: end for

10: return x

AN AN

Lemma 4.12 IMMUCONGREEDY takes O (m|M|(|V |+ |E])) time.

Proof First, for simplicity, let di,(v) = [INm,({v})|. Since Cowm,({u}) = 1 +
ZUGOUTM_ (uh) ﬁCG,Mi ({v}), if u does not have any children (OU T, ({u}) = ¥), clearly
Com; ({u}l) = 1. Note that M; is a DAG, we can iteratively obtain Cg m; ({#}) from a
reversed order of a topological sort, which takes O(|V| + |E]|) time. Hence, Line 4 takes
O(IM|(V]| + |E])) time.

Second, ¢G.m; (€) = Z{U}EILzl Pr({v})Cq m; ({v}). Since we uniformly at random give
vaccines to locations, Pr({v}) = ﬁ Hence, ¢ m; (e) = ZveLk ﬁCGMi({U}). Hence,
Line 5 takes O (M|V|) time.

Third, Lines 6 and 7 take |L| and O (| M]) time, respectively. Hence, the overall running
time is O (m|M|(|V| + |E))). o

5 Experiments

We conducted the experiments using a 4 Xeon E7-4850 CPU with 512 GB of 1066 MHz main

memory.

' Code in Python: https://goo.gl/tsMueB.
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Table 2 Network datasets

Dataset Nodes Edges Locations
WorkPlace 92 757

HighSchool 182 2221

SBM 1000 5000 20
Portland 1.5 million 41 million 72
Miami 2.2 million 50 million 74
Houston 2.7 million 59 million 98

5.1 Experimental setup

Networks We do experiments on multiple datasets (Table 2). Stochastic Block Model
(SBM) [18] is a well-known graph model to generate synthetic graphs with groups.
WorkPlace and HighSchool are social-contact networks.? Nodes in HighSchool
are students from five different sections and edges represent two students who are in vicinity
of each other. Nodes in WorkP1lace are employees of a company with five departments and
edges indicate two people are in proximity of each other. We treat each section/department
as a location. Miami and Houston are million-node social-contact graphs from city-scale
activity-based synthetic populations as described in Sect. 2. We divided people by their
residential zipcodes.

Propagation logs We have the billion-record eHRC data (described in Sect. 2) as the propa-
gation log R for Miami and Houston. The Miami and Houston have 118K and 132K
patients, respectively. For SBM, HighSchool, and WorkPlace, we run the well-known
SIR model (infection rate as 0.4, and recovery rate as 0.6) to generate the propagation log R:
We first uniformly at random pick 5% nodes at each location as seeds at ¢, then run a SIR
simulation to get other infected nodes.

Settings We set the number of samples M| = 1000 for MAPPINGGENERATION, and number
of bitmasks as 32 for computing IF'(-) in SAMPLEGREEDY (similar to the ANF algorithm [16]).

Baselines As we are not aware of any direct competitor tackling our problem, we use several
baselines to better judge our performance. These baselines have been regularly used for
immunization studies. However, none of them take into account both propagation log and
contact networks.

(1) RANDOM: uniformly randomly assign vaccines to locations.

(2) PROPPOPULATION: a data-based approach: assign vaccines to locations in proportion to
population in locations.

(3) PROPINFECTION: a data-based approach: assign vaccines in proportion to total number of
infections in locations.

(4) DEGREE: a graph-based approach: calculate the average degree d;,; of each location L;,
and independently assign vaccines to L; with probability dr,/ )", cer ALy

(5) IMMUMODEL: a model-based approach: apply the model-driven group immunization
algorithm (the QP version) in [4]. IMMUMODEL aims to minimize the spectral radius of a
contact graph. Spectral radius is the first eigenvalue of the graph, which has been proven to
be the threshold of an epidemic in the graph [11]. We set edge weights to be 0.24 according
to [8].

2 http://www.sociopatterns.org.
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5.2 Results

In short, we demonstrate that our immunization algorithm IMMUCONGREEDY outperforms
other baselines on all datasets. We also show our approach is robust as the size of the prop-
agation log R varies. In addition, we show that our sampling algorithm SAMPLEGREEDY
provides accurate results for generating cascade samples. Finally, we study the scalability of
our approach.

Effectiveness of IMMUCONGREEDY Figure 3 shows results of minimizing the spread on
cascades for the whole log R. In all datasets, IMMUCONGREEDY consistently outperforms
others. WorkPlace and HighSchool have < 200 nodes; hence, we varied m till 10. SBM
has 1K nodes, so we varied m till 20. However, even with the small budget, IMMUCONGREEDY
canreduce 45% of the infection, which is about 10% better than the second best IMMUMODEL.
For Miami, Houston and Portland with upto 2.7million nodes, IMMUCONGREEDY can
reduce about 50% of the infection on the cascades generated by SOCIALCONTACT with only
50K vaccines. Model-based IMMUMODEL and data-based PROPINFECTION perform better
than RANDOM and DEGREE as they take into account either epidemic threshold in the contact
graph or the eHRC data. However, IMMUCONGREEDY easily outperforms them, as it leverages
both contact networks and the eHRC data.

We also study how to leverage the rich log data to develop vaccine interventions in the
future. To do so, we split the eHRC data into training parts and testing parts: We get the vaccine
allocations from the training parts (the fall regime of flu from August 2009 to October 2009),
and apply the allocations to the testing parts (the winter regime of flu from November 2009
to February 2010) to examine how effective our approach IMMUCONGREEDY is. Figure 4
shows the results of infection reductions on the cascades generating from the testing data.
IMMUCONGREEDY consistently outperforms others in both Miami and Houston: It can
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Fig. 4 Effectiveness of IMMUCONGREEDY for the testing data. Infection ratio r versus vaccine budget m.
Lower is better. IMMUCONGREEDY consistently outperforms other baselines for both Miami and Houston

reduce about 25% of the infection with only SK vaccines, compared to other baselines such
as IMMUMODEL and PROPINFECTION.

We use simulations of the SIR model to evaluate the performance of IMMUCONGREEDY
on the activity-based urban social-contact networks (described in Sect. 2). These were first
calibrated to get the same outbreak size as in the eHRC data for these cities. We then choose
a random subset of individuals in each zipcode to be vaccinated, based on the allocation by
IMMUCONGREEDY. We find the reduction in the number of infections is quite substantial in
many cases. For instance, for Miami, for a budget of 50K vaccines, the IMMUCONGREEDY
allocation leads to more than 50% reduction, compared to arandom allocation. For Houston,
when the budget is 50K, IMMUCONGREEDY can lead to more than 38% reduction in the
infection compared to IMMUMODEL and PROPINFECTION.

Robustness of IMMUCONGREEDY We study how sensitive IMMUCONGREEDY is, as the
size of the propagation log R varies next. To do so, we first generate synthetic propagation
log R from the SIR model, then manually change the size of R as the input of our data.
Finally, we compare IMMUCONGREEDY to the model-based approach IMMUMODEL. For
each dataset, we generate R by running a SIR simulation (with the infection rate 0.4 and
the recovery rate 0.6 for WorkPlace, HighSchool and SBYM, and the infection rate 0.24
and timesteps to recovery 7 for Miami according to [8]). Once R is generated, we change
the size of R by extracting a portion [N(#p), ..., N(fmax)] as the input (p% of R). For
example, suppose fmax = 20 and p = 50, we use [N(7p), ..., N(t10)] as the propagation
log. Since we know all configurations come from the SIR model, we expect the model-
based approach IMMUMODEL to do better than IMMUCONGREEDY. However, as p increases,
as more data are used, IMMUCONGREEDY should approach IMMUMODEL. Figure 5 shows
the results: as expected, for all datasets, clearly as p increases, IMMUCONGREEDY becomes
better. Interestingly for smaller datasets such as WorkPlace, HighSchool, SBM, even
with only 25% of data, we can get upto 85% of the performance. For large networks such as
Miami, we need more data; however, when all the data are used, compared to IMMUMODEL,
IMMUCONGREEDY can achieve 90% of the savings.

Number of cascades in IMMUCONGREEDY We study how IMMUCONGREEDY performs as
the number of samples change. To do so, we first generate different number of cascades from
the SIR model, then directly run IMMUCONGREEDY without MAPPINGGENERATION (Line
2-10 in Algorithm 4). Note that since the SIR simulation can generate true cascade, we skip
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Fig.6 Similarity of vaccine allocations as the number of simulations varies. The allocation vector of IMMU-
CONGREEDY is closer to IMMUMODEL as the simulation number increases

the process of generating cascades from the log R. Finally, we compare the cosine similarity
of vaccine allocation vector to the one from the model-based approach IMMUMODEL. The
intuition is that since our cascades are generated from simulations of the SIR model, as the
number of cascades increases, vaccine allocated from IMMUCONGREEDY should be more
similar to IMMUMODEL. Figure 6 shows the results for Miami and Houston: as expected,
clearly the allocation vector from IMMUCONGREEDY is closer to the allocation from IMMU-
MODEL, as the number of the SIR simulations increases. When we generate 5K simulations,
the cosine similarity is more than 50%.
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Table 3 MAPPINGGENERATION.
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Fig. 7 Scalability. a Total running time of MAPPINGGENERATION and IMMUCONGREEDY versus vaccine
budget m; b total running time of MAPPINGGENERATION and IMMUCONGREEDY versus number of cascade
samples k

Effectiveness of MAPPINGGENERATION We also study the performance of MAP-
PINGGENERATION by comparing oy to the optimal value o* (Problem 3.1). We obtain «*
using the brute-force algorithm. See Table 3: & 4, the average value of anp over all sampled
cascades, is almost the same as o* for all datasets. For example, in SBM, aaq is 107.9, a
difference of only 1.1 from «*. In addition, we found that o™ is exactly the same as the
number of nodes that are infected after the first timestep #y, which suggests the best scenario
for SOCIALCONTACT is that only nodes which are infected at the earliest time are not caused
by social contact.

Scalability Figure 7 shows the running time of MAPPINGGENERATION and IMMUCON-
GREEDY w.r.t. the vaccine budget m and the number of cascades k on SBM. For Fig. 7a,
we set k = 100, while for Fig. 7b we set m = 20. We observe that as m increases and k
increases, the running time scales linearly. (Figures also show the linear fit with R? values.)
Consistent with the time complexity bounds for our algorithms in Sect. 4, large datasets need
fairly extensive time. For example, Miami takes about 2 days to get 5K vaccines. This is still
reasonable: importantly, note that we expect to run immunization algorithms for infectious
epidemics, so the solution quality is much more critical than the fastest running time.

5.3 Case studies

We conduct case studies to analyze vaccine allocations per zipcode for both Houston and
Miami. Figure 8 shows the total population, the total #patients in the eHRC data, the total
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Fig. 8 Case studies for Houston and Miami per location. Houston: a—e; Miami: f—j; Portland: k—
0. Heatmap of a, f and k: total population; b, g and I: patients in eHRC; ¢, h and m: number of vaccines
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#vaccines taken in the eHRC data,® the total #vaccines from IMMUMODEL, and the total
#vaccines from IMMUCONGREEDY, respectively.

Figure 8a—e shows the case study for Houston. First, the areas with zipcode 77030 and
77024 in Fig. 8b have the largest number of patients, and vaccine allocations from both eHRC
(Fig. 8c), and IMMUCONGREEDY (Fig. 8e) also prefer these areas. Second, vaccines taken in
the eHRC data do not follow the total population (Fig. 8a), but roughly follow the distribution
of #patients in eHRC. This may suggest the immunization strategy in practice is to give vac-
cines based on the proportion of reported patients. Third, IMMUMODEL distributes 38% of
vaccines to three areas (77002, 77008 and 77056), which are the center of Houston Metropoli-
tan Area (such as downtown and uptown) with a large number of interactions in the contact
network. However, both data-based and model-based approaches do not perform well (see
Fig. 3). Our method, IMMUCONGREEDY, gives 43% of vaccines to the areas 77030, 77024 and
77002. The first two areas have the highest infections in eHRC, while the last one is essential
for minimizing the epidemic threshold as IMMUMODEL suggests. Hence, IMMUCONGREEDY
considers both eHRC and contact networks. It is interesting that the Texas Medical Center
(one of the largest medical centers in the world) is in 77030, and Houston downtown is in
77002. Hence, IMMUCONGREEDY targets regions with high risk of influenza outbreak.

Figure 8f—j shows the case study for Miami. First, vaccines taken in eHRC (Fig. 8h)
follow the distribution of #patients as well (Fig. 8g). Second, IMMUMODEL distributes 31%
of vaccines in one area with zipcode 33165 (Fig. 81). We believe this area with large number
of households is critical to minimize the spectral radius of the contact network in Miami.

3 We extract vaccine reports based on ICD-9 codes V04.81. These are actual vaccine allocations as given in
the eHRC data.
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However, both data-based and model-based approaches do not perform well in Miami as
well (as shown in Fig. 3). Interestingly, as shown in Fig. 8j, our approach, IMMUCONGREEDY,
gives most of the vaccines (29%, 18% ) to areas with the largest number of patients (33140
and 33176, respectively). We observe that different from Houston, in Miami IMMUCON-
GREEDY tend to prefer data-based approaches. However, the areas adjacent to 33165, which
IMMUMODEL targets, also get higher vaccine allocations than others—this means IMMU-
CONGREEDY also takes into account information in the contact network. In fact, the areas
IMMUCONGREEDY targets indeed have high risk of an influenza outbreak: They are either
tourist attractions (33140) or residential areas (33176). For example, 33140 belongs to Miami
Beach, which is a famous place with large transient population.

Figure 8k—o shows the case study for Miami. First, similarly to Houston and Miami,
the distribution of vaccine allocation in eHRC (Fig. 8m) is very similar to the distribution of
patients (Fig. 8i). Second, IMMUMODEL gives 18% of vaccines to the area with the zipcode
97124. We believe this region has many households, which is important to the spectral
radius of the contact network in Portland. However, only considering the contact network
does not give us a better performance (as shown in Fig. 3). Our method, IMMUCONGREEDY
in Fig. 8o, gives most vaccines to three areas with the zipcodes 97124, 97123 and 97216.
Interestingly, different from Houston and Miami, in Portland, the vaccines distribution
in Portland tends to slightly prefer network-based approaches. The area 97124 is given
the most number of vaccines. However, this area also has a relatively high number of patients
according to Fig. 8L

6 Translation to practice

Our approach shows that combining partial incidence data with a detailed activity-based pop-
ulation model can help in developing more effective interventions for controlling the spread
of an outbreak, compared to current baselines. Incidence data can be obtained in different
ways: (1) eHRC data, as we assume here, (2) incidence from previous year’s outbreaks,
provided it is at a high spatiotemporal resolution, or (3) other proxies, such as surveys, and
even non-traditional sources such as tweets and online media, so long as they give some
indication of the incidence at a geographic level. Therefore, we believe our approach can be
operationalized by public-health agencies, such as the CDC.

7 Related work

We review closely related work next. Remotely, related work includes those on blogs and
propagations [19], and viral marketing [20] (e.g., Goyal et al. [21] studied the influence
maximization problem using a data-based approach).

Epidemiology The early canonical textbooks and surveys include [13,22], which describe
the fundamental epidemiological models such as the so-called SIS and SIR models. Epi-
demic thresholds (minimum virulence of a virus that causes an epidemic) for various models
have been extensively studied [11,23]. In practice, viruses are always changing, and hence
assuming a prior model may be suboptimal.

Immunization There has been a lot of work on developing optimal strategies to control
propagation over graphs. Cohen et al. [24] proposed the popular acquaintance immunization
policy, while Aspnes et al. [25] developed inoculation policies for victims of viruses using
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game theory. Tong et al. [3,12], Van Miegham et al. [26], and Prakash et al. [27] studied the
problem of minimizing the spectral radius (epidemic threshold) of the graph for a variety
of models. In addition, other immunization work in the literature has been proposed based
on differential equation methods [1,28]. The most related work includes Zhang et al. [4]
who studied the immunization at the group scale, while Zhang and Prakash [5] and Khalil
et al. [29] developed several model-based efficient algorithms for immunization given par-
tial information of infections. All past work proposed either model-based or graph-based
approaches for immunization. Instead, we leverage rich surveillance healthcare data together
with the network information for the problem of controlling disease spread.

eHRC. There has been a lot of work in using eHRC data for inferring patient conditions [30].
Previous studies have also pointed to the utility of eHRC data to identify trends in epidemic
incidence across the USA [31,32]. Leveraging eHRC, the spatial and temporal patterns of
flu incidence during 2009-2010 pandemic flu season have been discovered [7]. In addition,
Malhotra et al. [33] used sequential pattern mining techniques to reveal common sequences
of clinical procedures administered to patients for a variety of medical conditions from eHRC.
In sum, none studied the immunization problem with the eHRC data.

8 Conclusions

This paper addresses the novel problem of controlling epidemics in the presence of
coarse-grained health surveillance data and population contact networks. We formulate the
data-driven immunization problem, which first aims to align the propagation log with contact
networks, and then allocate vaccines to minimize spread in the data. We develop an efficient
approach MAPPINGGENERATION to obtain high-quality cascades, and then give an approxi-
mation algorithm IMMUCONGREEDY with provable solutions for immunization on sampled
cascades. We demonstrate the effectiveness of our method through extensive experiments on
multiple datasets including nation-wide real electronic Health Reimbursement Claims data.
Finally, case studies in Miami and Houston metropolitan regions show that our allocation
strategies take both the network and surveillance data into account to effectively distribute
vaccines.

Future work can include investigating other sampling strategies, incorporating more data
sources, and studying vaccine allocations to other groups, such as demographics like age.
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Appendix

Proof of Lemma 4.4 When o ¢ is optimal, an, ¢ = ozf{,L ¢
Second, let Bs, be the number of nodes without any parents. Maximizing am, ¢ for Problem 3.1
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is equivalent to minimizing fs, at location L,. Suppose ﬁ;é is maximum number of nodes
without any parents in the sample at location L,. It is obvious ﬂ;z = CN(Lg, ty) = |SL|.
For each timestep ¢;, if CF;(S¢) < CN(Ly, t;),then CN(Ly, t;) — C F;(S¢) is the number of
nodes that cannot be mapped to the cascade generated by Sy at timestep #;. Hence, 6(Sy) is
the number of nodes that cannot be mapped to the cascade generated by Sy. If there exists any
t; that CF;(S¢) < CN(Ly,t;), we can always generate a cascade by mapping all CF; (Sy)
nodes into the cascade, then uniformly at random map other 6(S,) nodes into cascade. This
way, the number of nodes without any parents, Bs, < 52( + 0(Sp) as 6(Sy) nodes can have
connection within themselves. Since Bg, + a5, = Zli N(L;,t;),then ap ¢ > ozf(u —0(Sp).
Hence, Olf{,l’[ —0(Sp) < aM,¢ = O{i\k/[,l' When oM, = Olf\k/[,g, 0(Se) =0. O

Proof of Lemma 4.5 First, it is clear that g(@) = 0.

Second, to prove g(S) is monotonic increasing, we need to prove 6(S) is a monotonic
decreasing function. To do that, we first show that C F; (Sy) is monotone non-decreasing and
submodular functions for any i and L. First, let us define f;(S¢) as the number of nodes in
L, that Sy can reach in i-hops; hence, f; (S¢) < fi(Sx) when Sy C Sk. Second, given Sy C Sk
and anode u, f;(S¢ U {u}) — fi(S¢) is marginal gain of a set union. Since the function in the
set union problem is submodular [14], f; (Sy) is also submodular. Since f;(S¢) is monotone
non-decreasing and submodular, the cumulative function C F; (S¢) is also non-decreasing and
submodular.

Let X; = [IcFrauBy<cn; (CN; — CF; (AU B))L, Yi = [IcFay<cn; (CN; — CF;i (A))].
For any set A and B,

T
O(AUB) —0(A) =) (X; - ) 6)
i=1

For any i, let us consider the following two cases:

(D) If Ickay<cn; = 0, it means CF;(A) > CN;, then CF;(A U B) > CN;; hence,
1CF,-(AUB)<CN,' = 0. We have Xl' — Y,’ =0.

(2) If 1cFa)<cn; = 1, we have two cases:

(2a) 1cr (auBy<cn; = 0,then X; —Y; = —Y; = —(CN; — CF;(A)) < 0;

(2b) 1cF,aupy<cn; = 1, then X; — Y; = (CN; — CFi(AU B)) — (CN; — CF;(A))
= CF;(A) — CF;(AU B) < 0 (using Claim 2).

Putting together, we have (A U B) < 6(A). Hence, 6(S) is monotonic decreasing, and
hence g(S) is monotonic increasing.

Third, to prove g(S) is submodular, For any location /, we need to prove that, given
SCT,g(SU{a}) —g(S) = g(T Ula}) —g(T), which is equivalent to 6(S) — (S U {a}) <
0(T) — 6(T U {a}) (supermodularity). Let us write

3(S,a,i) = [LcFsufay<cn (CN; — CF(SU{a)] — [LcF s)<cn; (CNi — CFi(S))],
and
(T, a,i) = [Lcrauiay<cn; (CN; — CF (T U {a}))] — [LcFr)<cn; (CN; — CF;(T))],
then,

0(S) —0(SUfa) =X"_,8(S,a,i),and0(T) — (T Ufa}) =3 i_, 8(T,a,i).

For any i, let us consider the following two cases:

(D If Leks<en; = 0, then Ler,sutap<cn; = Lerm<cn; = Lok uiap<cn; = 0.
Hence, §(S,a,i) =6(T,a,i) =0.

(2) If 1cF(sy<cn; = 1, we have the following cases:

(2a) If 1cF(1y<cn; = 0, then we have Lcr, (7ufa))<cn; = 0. Let us consider the value of
LcF (sulap<cn;:
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If 1cF (sufap<cn; =0, then 8(S,a,i) = (CN; — CF;(SU{a})) <0=46(T,a,i).

If ]lcpl.(su{g})<cjvi = 1, then 5(5, a, i) = CF,'(S) — CF,'(S U {a}) < 0 = S(T, a, i).

(2b) If 1 £, (ry<cn; = 1, let us consider the value of 1cF, (sufa))<cn;:

If 1CF,-(SU{a})<CN,~ = 0, then ]ICFi(TU{a})<CNi = 0, and then §(S,a,i) = —(CN; —
CF;i(S)) < —(CN; — CF;(T)) =6(T, a,i) (using Claim 2).

If TcF(sufap<cn; = 1, then for Lo g (rugap<cn;:

If Ler (rutap<cn; = 1,thend(S, a,i) = CF;(S) —CF;(SU{a})) < CF(T)—CF;(TU
{a})) = 8(T, a, i) (using Claim 2 that C F;(S) is a submodular function).

Otherwise, lcr,(rufap<cn; = 0, and then since we have CF;(T U {a}) > CN;,
§(S,a,i) = CF(S) —CF(SU{a})) < CF(T) — CF(T U{a})) < CF(T) — CN; =
8(T, a,i) (using Claim 2).

Putting all cases together, we have 6(S) — 0(S U {a}) < 6(T) — 6(T U {a}). Hence,
g(SUfa}l) —g(8) = g(T Ufa}) — g(T).

g(§) is a submodular function. O

Proof of Lemma 4.9 Since we uniformly randomly allocate X, pg, M, (X) can be written as
oM (X) =) s Pr(8)rg m; (S), where S is a node set sampled from the random process
of distributing x (|S| = ||x||1), and rg M, (S) is the number of nodes Sly; can reach after
removing S.

Since {gm; (X) = Y ¢ Pr(S)Cq m; (S) and pg m; (X) = Y Pr(S)rg m, (S), we need to
show thatrg m; (S) < C wm; (S). rg,m; (S) is the number of nodes S can save in M;, we can
show that given any node u that STy can save, the credit u given to Sy must be 1. This is
because if we can save u, it means every path from Sy to u# has been removed when S is
removed. Hence, all nodes within the paths from Sy have been removed. These nodes are
all nodes that propagate u’s credit to STy, so all credits of # can be contributed to Cg m; (S).
Hence, Cg m; (S) is at least equal to G m; (S). On the other hand, other nodes that S cannot
save also make contributions to the credit of C wm, (S). Hence, Cg wm; (S) > rg m; (S), which
leads to pg m; (X) < {G.Mm; (X). ]

Proofof Lemma 4.11 We use a similar technique as in [4] given the properties of Pj, P> and
P53 of {g,m; (x). For brevity, we write {g M, (X) as £ (X).

First, we show that if y = (y;, ..., y,)7 where Zj y; = m, then {(x+Yy) — {(x) <
> viCx+e) —¢(x).
Let y can be recursively obtained from a sequence e e (e ¢ {er,...,exD)

such thaty = y™ = y_(m’l) +e y® = yi=D 4 @ (; <m)andy® = 0.
Obviously, > e = > ;vjej =y. Then,

{(x+y) —¢(x)

=ty —cx+y")

i=1

=2t +y TV e?) — ey )

i=1

< Z c(x+ ell )) — ¢(x) (Diminishing Return)

i=1

=) yicx+e) —x)

j=1
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Now, let us prove that IMMUNAIVEGREEDY gives a (1 — 1/e)-approximate solution. Sup-
pose x is the solution from IMMUNAIVEGREEDY, and x* is the optimal solution. Clearly, we
have > iXji=2 x;.‘ = m. Let us define x¥) as the solution got from the ith iteration of the

greedy algorithm; hence, x = x"™). And x* can be represented as > j x;fe j- We have

(") < 2 4 x)
= c(xD) 4 (c(x* +xD) — £ (xDy)
= ;(X(i)) + ij(g‘(x(i) + ej) _ {(X(i)))

J

<)+ ) —rx )
J
=) +mE ) —cx®))

Hence, ¢(xUFD) > (1 — Lyex@) + Lr(x*). Recursively, we can get ¢(x) > (1 —
(1= ;)¢ (). Therefore, £(x) = ¢(x™) > (1 = (1 = ;)™M = (1 = 1/e)¢(x*). O
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