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Abstract
We present asymptotic methods for solving high frequency Helmholtz equations in
anisotropic media. The methods are motivated by Babich’s expansion that uses Hankel func-
tions of the first kind to approximate the solution of high frequency Helmholtz equation in
isotropic media. Within Babich’s expansion, we can derive the anisotropic eikonal equation
and a recurrent system of transport equations to determine the phase and amplitude terms
of the wave, respectively. In order to reconstruct the wave with the phase and amplitude
terms for any high frequencies, they must be computed with high-order accuracy, for which
a high-order factorization approach based on power series expansions at the primary source
is applied first to resolve the source singularities, after that high-order schemes can be imple-
mented efficiently. Rigorous formulations are derived, and numerical examples are presented
to demonstrate the methods.

Keywords Anisotropic Helmholtz equation · Asymptotic approximation · Babich’s
expansion · Anisotropic eikonal equation · Source singularity · High-order factorization ·
High-order scheme

Mathematics Subject Classification 65N06 · 41A60

1 Introduction

We consider the Helmholtz equation in anisotropic media,

∇r · A(r) · ∇rU (r; r0) + ω2

v2
U (r; r0) = −δ(r − r0), r ∈ Rd , (1)

with Sommerfeld radiation condition at infinity, where d is the dimension, ∇r denotes the
gradient at r ≡ (x, y, z), r0 ≡ (x0, y0, z0) is the primary source point, U (r; r0) is the
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wave, ω is the frequency, and v(r) is the wave speed in the anisotropic medium that is
characterized by a symmetric positive definite (SPD) tensor A(r). If A is the identity tensor,
the equation reduces to the isotropic case. The anisotropic Helmholtz equation (1) arises in
various applications, ranging from acoustics, electromagnetics, elasticity to geophysics. It is
therefore highly desirable to develop efficient and accurate numericalmethods for solving this
equation. The solution is highly oscillatory when the frequencyω is large. For example, in the
isotropic case, denote λmin = 2πvmin/ω as the smallest wavelength of the wave propagating
in a bounded domain Ω , and let k = diam(Ω)/λmin be the number of waves propagating in
the domain Ω . For numerical methods based on direct discretization of the equation, such as
finite-element and finite-differencemethods, it is well known that the “pollution effect” (large
dispersion error) in the finite-element method (e.g., piecewise linear finite-element method)
is unavoidable for 2-dimensional (2D) and 3-dimensional (3D) Helmholtz equations in the
pre-asymptotic regime k2h � 1 if the wavenumber k is large [3], where h is the mesh size
of the discretized problem. In order to avoid the pollution effect in finite-element methods
for Helmholtz equations in the high frequency regime, one has to choose the mesh size h
satisfying k2h � 1 [3]. In practice, this condition would exclude reliable wave computation
in 3D applications for moderate and higher frequencies [3], in that the condition k2h � 1
would imply that the dimension of the stiffness matrix of the discretized system is of order
O

(
h−3

) = O(k6), and the discretized system of linear equations is highly indefinite such
that the solution process becomes too expensive even for k in the range from 10 to 20.
Therefore, alternative methods are sought to tackle this highly challenging high-frequency
wave propagation problem.

We will investigate asymptotic approaches based on asymptotic high frequency theories
[2,7,13], notably geometrical optics (GO). GO approximations have been developed for the
isotropic case with A the identity tensor. In a GO approximation, instead of computing
the wave directly, the phase and amplitude terms of the wave, which are assumed to be
independent of the frequency ω, are computed and used to reconstruct the wave. Since the
phase and amplitude terms are frequency-independent, they are not as oscillatory as the
wave such that they can be computed more efficiently in general. Among a variety of GO
approximations in the literature, there are two approximating approaches that are popularly
applied in applications.

One asymptotic approach is based on the Wentzel-Kramers-Brillouin (WKB) approxima-
tion [7,13], with the wave approximated as

U (r; r0) = eιωτ(r;r0)
∞∑

k=0

Ak(r; r0)/(ιω)k, as ω → ∞, (2)

where ι = √−1, τ is the phase, and {Ak}∞k=0 are the amplitude terms. By substituting the
ansatz (2) into the Helmholtz equation (1) and collecting terms in the same order of ω, one
can find that τ satisfies the eikonal equation,

|∇rτ(r; r0)| = 1

v(r)
, τ (r0; r0) = 0, (3)

and {Ak}∞k=0 satisfy a recurrent system,

A−1 ≡ 0,

2∇rτ(r; r0) · ∇rAk(r; r0) + ∇2
r τ(r; r0)Ak(r; r0) = −∇2

r Ak−1(r; r0), k ≥ 0.
(4)

These equations are weakly coupled in the sense that the eikonal equation (3) needs to be
solved first to provide necessary coefficients for the transport equation (4), and higher order
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amplitude terms depend on lower order amplitude terms, but not vice versa. The eikonal
equation is a first-order nonlinear partial differential equation (PDE), in general it does not
have a globally defined classical solution. The concept of viscosity solutionwas introduced to
pick a uniquely defined weak solution among many possible generalized solutions for such
nonlinear first-order PDEs [5,6], and the viscosity solution of the eikonal equation is the
so-called first-arrival traveltimes [14], which is continuous everywhere but not necessarily
differentiable everywhere.

Another asymptotic approach is based on the Babich’s expansion with Hankel functions
[2], i.e.,

U (r; r0) =
∞∑

k=0

vk(r; r0) fk−(d−2)/2(ω, τ(r; r0)), as ω → ∞, (5)

where τ is the phase that satisfies the eikonal equation (3), fq (q ≡ k − (d − 2)/2) is defined
as

fq(ω, τ(r; r0)) = ι

√
π

2
eιqπ

(
2τ(r; r0)

ω

)q

H (1)
q (ωτ(r; r0)), (6)

with H (1)
q theq-thHankel function of first kind, and {vk}∞k=0 are the amplitude terms satisfying

a recurrent system,

v−1 ≡ 0,

2∇rτ
2(r; r0) · ∇rvk(r; r0) + vk(r; r0)

[
∇2
r τ

2(r; r0) + 2(2k + 1 − d)

v2(r)

]

= ∇2
r vk−1(r; r0), k ≥ 0.

(7)

These equations are weakly coupled, similarly as in theWKB approximation. Therefore they
must be solved in a similar way.

High-order schemes for the eikonal and transport equations can be designed to compute the
phase and amplitude terms such that thewave can be reconstructed for anyhigh frequencies [4,
20,22,24,27–29]. Themajor difference between theWKBapproximation (2) and theBabich’s
expansion (5) is that the later is more robust to achieve uniform accuracy near the source r0
[2,9,16–18].

Both theWKB approximation and the Babich’s expansion have been applied successfully
to numerically solve the Helmholtz equation (1) in the isotropic case [2,7,9,13,16–18,20,
22,24,27–29]. In order to implement these approaches numerically, the unbounded domain
needs to be truncated such that the computation is performed on a bounded computational
domain, and outgoing boundary conditions are assumed at the computational boundary.With
these assumptions, efficient and accurate asymptotic numerical methods based on (2) and (5)
have been successfully designed and implemented [20,22,24,27–29].

In this work, we further investigate the feasibility of the asymptotic approaches for solving
the general anisotropic Helmholtz equation (1).Wewill focus on the Babich’s expansionwith
Hankel functions of first kind. It turns out the phase and amplitude terms will satisfy similar
equations as the eikonal equation (3) and the transport equations (7), respectively. Once the
equations are derived, we will design efficient high-order numerical schemes to compute the
phase and amplitude termswith high-order accuracy, such that they can be used to reconstruct
the wave for any given high frequency ω.

The rest of the paper is organized as follows. In Sect. 2, we first present the formulations
resulting from applying the Babich’s expansion to the anisotropic Helmholtz equation, and
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then we present high-order numerical schemes for solving the governing equations of the
phase and amplitude terms, along with the factorization approach that can resolve the source
singularities efficiently. In Sect. 3, numerical experiments are presented to demonstrate the
performance of themethods. Concluding remarks are given in Sect. 4 alongwith a description
of ongoing and future projects.

2 Asymptotic Methods for Anisotropic Helmholtz Equation

In this section, we first present the Babich’s expansion for the anisotropic Helmholtz equation
(1), following which we present the numerical schemes for solving the governing equations
of the phase and amplitude terms. For notational simplicity, we derive the formulations
in 2-dimensional (2D) spaces. Extension to higher dimensions is straightforward, which is
presented in the Appendix. We assume the computational domain is Ω = [xmin, xmax] ×
[zmin, zmax] (km), r ≡ (x, z), r0 ≡ (x0, z0), ∇r ≡ (∂x , ∂z), and the anisotropic tensor is

A(r) ≡
(

a(r) −c(r)
−c(r) b(r)

)
,

with a > 0, b > 0, ab − c2 > 0.

2.1 Babich’s Expansion

We apply the Babich’s expansion (5) to the anisotropic Helmholtz equation (1), and derive
the governing equations for the phase and amplitude terms. The governing equations for
the phase and amplitude terms in the WKB expansion (2) can be derived similarly and are
presented in the Appendix.

Theorem 1 In the Babich’s expansion (5) for the anisotropic Helmholtz equation (1), the
phase τ satisfies the anisotropic eikonal equation,

√∇rτ(r; r0) · A(r) · ∇rτ(r; r0) = 1

v(r)
, τ (r0; r0) = 0, (8)

and the amplitude terms {vk}∞k=0 satisfy the following recurrent system,

v−1 ≡ 0,

(βTx + γ Tz + 4(k − 1)N + aTxx − 2cTxz

+ bTzz)vk + 2{(aTx − cTz)(vk)x + (bTz − cTx )(vk)z}
= (β(vk−1)x + γ (vk−1)z) + (a(vk−1)xx − 2c(vk−1)xz + b(vk−1)zz), k ≥ 0,

(9)

where β ≡ ax − cz, γ ≡ bz − cx , N ≡ 1/v2, and T ≡ τ 2.

Theorem 1 can be proved with the following lemma.

Lemma 1 For the function fk defined in (6) and rewritten as

fk(z) = ι
√

π

2
eιkπ 2k

ω2k
zk H (1)

k (z), with z = ωτ,

we have

f ′
k(z) = 2k fk(z)

z
+ ω2

2z
fk+1(z),
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and

f ′′
k (z) =

(
4k2 − 2k

z2
− 1

)
fk(z) + (2k − 1)ω2

2z2
fk+1(z).

Furthermore, we have

fk(ωτ) = O

(
1

ω2k+1/2

)
, as ω → ∞.

Lemma 1 is an extension of the following properties of Hankel functions of first kind [1],

H (1)
k−1(z) + H (1)

k+1(z) = 2k

z
H (1)

k (z),

H (1)
k−1(z) − H (1)

k+1(z) = 2H (1)′
k (z),

H (1)′
k (z) = H (1)

k−1(z) − k

z
H (1)

k (z),

H (1)′
k (z) = −H (1)

k+1(z) + k

z
H (1)

k (z).

With Lemma 1, we can show that

Ux =
∞∑

k=0

(vk)x fk − 2vkττx fk−1,

Uz =
∞∑

k=0

(vk)z fk − 2vkττz fk−1,

Uxx =
∞∑

k=0

(vk)xx fk − ω2vkτ
2
x fk −

(
(vk)xτx

τ
+ vkτ

2
x
2k − 1

2τ 2
+ vkτxx

2τ

)
4τ 2 fk−1,

Uzz =
∞∑

k=0

(vk)zz fk − ω2vkτ
2
z fk −

(
(vk)zτz

τ
+ vkτ

2
z
2k − 1

2τ 2
+ vkτzz

2τ

)
4τ 2 fk−1,

Uxz =
∞∑

k=0

(vk)xz fk − ω2vkτxτz fk

−
(

(vk)xτz

2τ
+ (vk)zτx

2τ
+ vkτxτz

2k − 1

2τ 2
+ vkτxz

2τ

)
4τ 2 fk−1.

By substituting the above formulas into the anisotropic Helmholtz equation (1) in 2D, i.e.,

βUx + γUz + aUxx − 2cUxz + bUzz + ω2NU = −δ(r − r0),

we have,
∞∑

k=0

{[β(vk)x + γ (vk)z] + [a(vk)xx − 2c(vk)xz + b(vk)zz]} fk

− (aτ 2x − 2cτxτz + bτ 2z − N )ω2vk fk − 2(βτx + γ τz)τvk fk−1

−
(

a
(vk)xτx

τ
− c

(vk)zτx + (vk)xτz

τ
+ b

(vk)zτz

τ

)
4τ 2 fk−1

− (aτ 2x − 2cτxτz + bτ 2z )2(2k − 1)vk fk−1

− (aτxx − 2cτxz + bτzz)2τvk fk−1 = −δ(r − r0).
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By collecting the terms in the same order of ω as ω → ∞, we have

aτ 2x − 2cτxτz + bτ 2z = N ≡ 1/v2,

which is the anisotropic eikonal equation (8) after taking the square root, and

2(βτx + γ τz)τvk + 2(2k − 1)Nvk + (aτxx − 2cτxz + bτzz)2τvk

+
(

a
(vk)xτx

τ
− c

(vk)zτx + (vk)xτz

τ
+ b

(vk)zτz

τ

)
4τ 2

= [β(vk−1)x + γ (vk−1)z] + [a(vk−1)xx − 2c(vk−1)xz + b(vk−1)zz],
which is the transport equation (9) after using

T = τ 2, ∇T = 2τ∇τ, Txx = 2(τ 2x + ττxx ), Tzz = 2(τ 2z + ττzz), Txz = 2(τxτz + ττxz).

With the governing equations derived in Theorem 1, we can first solve the anisotropic
eikonal equation (8) for τ , and then solve the recurrent system of transport equations (9) for
{vk}∞k=0. The solutions are used to reconstruct the wave with the Babich’s expansion (5) for
any high frequencies ω. In order to approximate the wave faithfully, high-order accurate τ

and {vk}∞k=0 must be computed. For instance, since second derivatives of the solutions are
in the coefficients of the governing equations (9), in order to have first-order accurate v1,
third-order accurate v0 and fifth-order accurate τ are needed. The amplitude terms {vk}∞k=0
are smooth at the source, therefore, high-order schemes can be applied efficiently to compute
them with high-order accuracy, provided that τ is given with required high-order accuracy.
However, computing τ efficiently by high-order schemes with high-order accuracy is non-
trivial due to the source singularities. We now present detailed procedures to resolve this
issue.

2.2 High-Order Schemes for Governing Equations

We present efficient schemes for computing high-order accurate τ and {vk}∞k=0.

2.2.1 Factored Anisotropic Eikonal Equation

The main difficulty for solving the anisotropic eikonal equation (8) with high-order accu-
racy is the source singularities. In [21], a factorization approach was introduced to resolve
the source singularities. Then efficient first-order schemes were designed to obtain clean
first-order accuracy. The factorization approach follows the ideas that were developed to
resolve the source singularities for the isotropic eikonal equation (3) [8,19,20,22–24,26–
29,31]. Here, we extend the ideas to design high-order schemes for solving the anisotropic
eikonal equation (8). In the factorization approach, τ is decomposed as

τ(r; r0) = τ̃ (r; r0)u(r; r0), (10)

where τ̃ is an analytical factor that captures the source singularities such that the other factor
u serves as a smooth correction term at the source. Substituting (10) into the anisotropic
eikonal equation (8) yields a factored anisotropic eikonal equation for u,

√
u2∇rτ̃ · A · ∇rτ̃ + τ̃ 2∇ru · A · ∇ru + 2τu∇rτ̃ · A · ∇ru = 1

v
. (11)

Since u is smooth at the source, the factored anisotropic eikonal equation (11) can be solved
efficiently with high-order numerical methods to compute u with high-order accuracy. Then
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τ can be recovered with high-order accuracy through (10). In practice, for example, one may
choose τ̃ (r; r0) to be the solution of the following anisotropic eikonal equation with constant
coefficients [21], i.e.,

√
∇rτ̃ · A(r0) · ∇rτ̃ = 1/v(r0).

Then u(r0; r0) = 1, and u(r; r0) = τ(r; r0)/τ̃ (r; r0) for r �= r0.
In general, τ̃ can be derived in a systematic way near the source such that it fulfills any

accuracy requirement in applications. Furthermore, the factored anisotropic eikonal equa-
tion (11) and the recurrent system of transport equations (9) need to be solvedwith high-order
accuracy. In order to apply high-order schemes, the values of the solutions near the source
need to be initialized with high-order accuracy. We present a systematic approach for com-
puting τ̃ , based on high-order approximation near the source, in the following section.

2.2.2 High-Order Approximations of � and {vk}∞k=0 Near r0

We can compute high-order approximations of τ and {vk}∞k=0 near the source r0 using power
series expansions, which was first introduced for the isotropic eikonal equation (3) [23].
Without loss of generality, we assume r0 ≡ 0.

We will expand T ≡ τ 2 and {vk}∞k=0 as power series at 0,

T =
∞∑

ν=0

Tν, vk =
∞∑

ν=0

vk,ν ,

and assume the power series of A, N , β, and γ at 0 are already given as

A =
∞∑

ν=0

Aν ≡
∞∑

ν=0

(
aν −cν

−cν bν

)
, N =

∞∑

ν=0

Nν, β =
∞∑

ν=0

βν, γ =
∞∑

ν=0

γν,

where (·)ν are homogeneous polynomials of degree ν in r. We show how to determine
{Tν} and {vk,ν} term by term for ν = 0, 1, 2, . . .. For notational simplicity, we will denote
Γν ≡ (βν, γν) for ν ≥ 0, D2(·) as the Hessian of a given function, and define

(
m11 m12

m21 m22

)



(
n11 n12

n21 n22

)
≡ m11n11 + m12n12 + m21n21 + m22n22

for any two 2D tensors.
Power series expansion of T . From the anisotropic eikonal equation (8), we have ∇rT ·

A · ∇rT = 4N T , which, with power series expansions, yields
( ∞∑

ν=1

∇rTν

)

·
( ∞∑

ν=0

Aν

)

·
( ∞∑

ν=1

∇rTν

)

= 4

( ∞∑

ν=0

Nν

) ( ∞∑

ν=0

Tν

)

.

By collecting terms of the same degree in r, we can determine {Tν} term by term.
T0 = 0 is obvious due to the initial condition τ(0; 0) = 0.
For r0 terms, we have ∇rT1 · A0 · ∇rT1 = 0, which implies ∇rT1 = 0, hence T1 = 0.
There are no r1 terms.
For r2 terms, we have ∇rT2 · A0 · ∇rT2 = 4N0T2, which implies T2 = N0r · A−1

0 · r.
This process can be repeated recursively. For ν ≥ 3, we have

2∇rTν · A0 · ∇rT2 +
(

ν−1∑

l=2

∇rTl

)

·
{

ν−l+1∑

s=2

Av−l+2−s · ∇rTs

}

= 4N0Tν + 4
ν−2∑

l=1

Nl Tν−l ,
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which implies

Tν =
4

∑ν−2
l=1 Nl Tν−l −

(∑ν−1
l=2 ∇rTl

)
·
{∑ν−l+1

s=2 Av−l+2−s · ∇rTs

}

4(ν − 1)N0
,

where the right hand side only depends on Tp with p < ν.
Therefore, we can determine {Tν} term by term.
Power series expansion of {vk}.By substituting the power series expansions into the trans-

port equation (9) and collecting terms of the same degree in r, we can derive the following
formulas.

For r0 terms, we have

4(k − 1)N0vk,0 + (A0 
 D2
r T2)vk,0 = Γ0 · ∇rvk−1,1 + A0 
 D2

rvk−1,2,

which implies

vk,0 = Γ0 · ∇rvk−1,1 + A0 
 D2
rvk−1,2

4k N0
.

For r1 terms, we have

(Γ0 · ∇rT2)vk,0 + 4(k − 1)N0vk,1 + 4(k − 1)N1vk,0

+ (A0 
 D2
r T2)vk,1 + [A0 
 D2

r T3 + A1 
 D2
r T2]vk,0 + 2∇rT2 · A0 · ∇rvk,1

= Γ0 · ∇rvk−1,2 + Γ1 · ∇rvk−1,1 + A0 
 D2
rvk−1,3 + A1 
 D2

rvk−1,2,

which implies

vk,1 =

Γ0 · ∇rvk−1,2 + Γ1 · ∇rvk−1,1 + A0 
 D2
rvk−1,3 + A1 
 D2

rvk−1,2

− (Γ0 · ∇rT2)vk,0 − 4(k − 1)N1vk,0 − [A0 
 D2
r T3 + A1 
 D2

r T2]vk,0

4(k + 1)N0
.

This process can be repeated recursively. For ν ≥ 2, we have

ν−1∑

l=0

{
ν−l∑

s=0

(Γs · ∇rTν−l+1−s)

}

vk,l + 4(k − 1)N0vk,ν + 4(k − 1)
ν−1∑

l=0

Nν−lvk,l

+ (A0 
 D2
r T2)vk,ν +

ν−1∑

l=0

{
ν−l∑

s=0

(As 
 D2
r Tν−l−s+2)

}

vk,l

+ 2∇rT2 · A0 · vk,ν + 2
ν−1∑

l=0

{
ν−l∑

s=0

∇rTs+1 · Aν−l−s

}

· vk,l

=
ν∑

l=0

Γν−l · ∇rvk−1,l+1 +
ν∑

l=0

Aν−l 
 D2
rvk−1,l+2,
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which implies,

vk,ν =

ν∑

l=0

Γν−l · ∇rvk−1,l+1 +
ν∑

l=0

Aν−l 
 D2
rvk−1,l+2 −

ν−1∑

l=0

{
ν−l∑

s=0

(Γs · ∇rTν−l+1−s)

}

vk,l

− 4(k − 1)
ν−1∑

l=0

Nν−lvk,l −
ν−1∑

l=0

{
ν−l∑

s=0

(As 
 D2
r Tν−l−s+2)

}

vk,l

− 2
ν−1∑

l=0

{
ν−l∑

s=0

∇rTs+1 · Aν−l−s

}

· vk,l

[4(k − 1) + 4(ν + 1)]N0
,

where the right hand side only depends on vk,p with p < ν and vk−1,p with p ≤ ν + 2.
Therefore, we can determine {vk,ν} term by term. The only term that can not be determined

by the above formulas is v0,0, which, however, can be determined by examining the solution
of the anisotropic Helmholtz equation (1) with constant coefficients, i.e.,

∇r · A0 · ∇rU + ω2N0U = −δ(r). (12)

Let R = A0
−1/2 · r, we have ∇r = A0

−1/2 · ∇R, which transforms Eq. (12) to the following
isotropic case,

(∇R · ∇R + ω2N0)U (R) = −δ(A0
1/2 · R) = − δ(R)√|A0| . (13)

The solution for Eq. (13) is given as

U (R) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√|A0|
eιω

√
N0|R|

4π |R| , 3D,

1√|A0|
ι

4
H (1)
0 (ω

√
N0|R|), 2D,

i.e.,

U (r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1√|A0|
eιω

√
N0

√
r·A−1

0 ·r

4π
√
r · A−1

0 · r
, 3D,

1√|A0|
ι

4
H (1)
0

(
ω

√
N0

√
r · A−1

0 · r
)

, 2D,

which, compared with the Babich’s expansion (5), implies that

v0,0 =

⎧
⎪⎪⎨

⎪⎪⎩

1√|A0|
√

N0

2π
, 3D,

1√|A0|
1

2
√

π
, 2D.
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Table 1 Order of convergence with l∞ errors for computing τ, v0 and v1

Mesh 26 × 26 51 × 51 101 × 101 201 × 201

l∞ error for τ 1.026E–5 5.986E–7 1.808E–8 5.828E–10

order of conv. – 4.099 5.049 4.955

l∞ error for v0 4.576E–4 8.989E–5 9.460E–6 1.122E–6

order of conv. – 2.348 3.248 3.076

l∞ error for v1 3.879E–2 2.049E–2 7.218E–3 3.140E–3

order of conv. – 0.921 1.505 1.201

Reference solution is computed on a refined mesh (801 × 801) with the proposed methods

With the power series expansions, we can approximate τ and vk up to any order P > 0
near the source, i.e., as r → r0,

τ = τP + O(|r − r0|P ) ≡
(

P∑

ν=2

Tν

)1/2

+ O(|r − r0|P ),

vk =
P−1∑

ν=0

vk,ν + O(|r − r0|P ).

For numerical implementation, we may choose τ̃ = τP near the source r0, where P is the
desired order of accuracy of the numerical scheme to be used.

Remark 1 For the current application, we can also apply the factorization approach with
additive factors [8,19,20,22–24,26–29,31],

τ = τ̃ + u,

which leads to the following factored anisotropic eikonal equation for the smooth correction
term u,

√
∇ru · A · ∇ru + 2∇ru · A · ∇rτ̃ + ∇rτ̃ · A · ∇rτ̃ = 1

v
.

This equation can also be used to compute high-order accurate phase τ with appropriate
numerical schemes.

2.2.3 Lax–Friedrichs Schemes with WENO Approximations for Governing Equations

We apply the Lax–Friedrich scheme (LxF) [12,20,24,29,30,32] with weighted essentially
non-oscillatory (WENO)finite-difference approximations [10,11,15,25] to numerically solve
the factored anisotropic eikonal equation (11) and the transport equations (9). Without loss
of generality, we present the methods in 2D spaces for the Hamilton-Jacobi type equation in
a generic form as

H(x, z, u, ux , uz) = f (x, z), (14)

where H is the Hamiltonian that is convex in the gradient variables, and f is a given function.
Assume the computational domain Ω is discretized by a uniform mesh {xi , z j } for i =

1, . . . , I , j = 1, . . . , J with the mesh size Δx = (xmax − xmin)/(I − 1), Δz = (zmax −
zmin)/(J − 1). We also denote a grid point (i, j) = (xi , z j ) with neighbors N {i, j} =
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Fig. 1 Sinusoidal model, Case 1: real part of the wave with ω = 16π (a), 32π (b), and 48π (c). Left: U1,
Middle: U2, Right: reference solution (Color figure online)

{(xi−1, z j ), (xi+1, z j ), (xi , z j−1), (xi , z j+1)}. We consider the following Lax–Friedrichs
Hamiltonian [12,20,25],

H L F (xi , z j , ui, j , uN {i, j}) = H

(
xi , z j , ui, j ,

ui+1, j − ui−1, j

2Δx
,

ui, j+1 − ui, j−1

2Δz

)

− αx
ui+1, j − 2ui, j + ui−1, j

2Δx
− αz

ui, j+1 − 2ui, j + ui, j−1

2Δz
,

(15)

where αx and αz are chosen such that at each grid point (xi , z j ),

∂ H L F

∂ui, j
≥ 0,

∂ H L F

∂uN {i, j}
≤ 0. (16)

Then we have the first-order Lax–Friedrichs scheme,

unew
i, j =

(
1

αx/Δx + αz/Δz

) [
fi, j − H

(
xi , z j , uold

i, j ,
ui+1, j − ui−1, j

2Δx
,

ui, j+1 − ui, j−1

2Δz

)

+αx
ui+1, j + ui−1, j

2Δx
+ αz

ui, j+1 + ui, j−1

2Δz

]
. (17)

As in [20,23,32], we can replace ui−1, j , ui+1, j , ui, j−1 and ui, j+1 as,

ui−1, j = ui, j − Δx(ux )
−
i, j , ui+1, j = ui, j + Δx(ux )

+
i, j ;

ui, j−1 = ui, j − Δz(ux )
−
i, j , ui, j+1 = ui, j + Δz(ux )

+
i, j .

(18)
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Fig. 2 Sinusoidal model, Case 2: real part of the wave with ω = 16π (a), 32π (b), and 48π (c). Left: U1,
Middle: U2, Right: reference solution (Color figure online)

Here, (ux )
−
i, j and (ux )

+
i, j are high-orderWENO approximations of ux , and (uz)

−
i, j and (uz)

+
i, j

are high-order WENO approximations of uz ; see [10,11,15,25]. Then we have the following
high-order Lax–Friedrichs scheme based on high-order WENO approximations [20,32],

unew
i, j =

(
1

αx/Δx + αz/Δz

) [
fi, j

−H

(

xi , z j , uold
i, j ,

(ux )
−
i, j + (ux )

+
i, j

2
,
(ux )

−
i, j + (ux )

+
i, j

2

)

+αx
2uold

i, j + Δx[(ux )
+
i, j − (ux )

−
i, j ]

2Δx
+αz

2uold
i, j + Δz[(ux )

+
i, j − (ux )

−
i, j ]

2Δz

]

.

(19)

In the updating formulas (17) and (19), unew
i, j and uold

i, j denote the to-be-updated numerical
solution and the current old value for u at the grid point (xi , z j ), respectively.

The algorithm is summarized here.

Algorithm 1 (LxF Scheme with WENO approximations for Eq. (14))

1. Initialization:
For grid points in a Δx×Δz (first-order), 2Δx×2Δz (WENO3), or 3Δx×3Δz (WENO5)
small neighborhood covering the source, their values are set and fixed according to the
boundary conditions. All other points are assigned a large value initially.
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Fig. 3 Sinusoidal model, Case 1: real part of the wave with ω = 16π (a), 32π (b), and 48π (c). Blue-circle:
U1, Green-dash: U2, and Red-line: reference solution. Left: at z = 0.2 (km), Middle: at z = 0.25 (km), and
Right: at z = 0.3 (km) (Color figure online)

2. Gauss-Seidel iterations with alternating orderings (sweepings):

– Sweepings: sweep all the grid points following the four alternating orderings,

(1) i = 1 : I ; j = 1 : J ; (2) i = I : 1; j = 1 : J ;
(3) i = I : 1; j = J : 1; (4) i = 1 : I ; j = J : 1. (20)

– Updating: at each point (xi , z j ), the updated value unew
i, j is computed from the current

given neighboring values according to the procedure detailed above.
– Stopping criterion: given δ > 0, check if |unew − uold | < δ.

2.2.4 Implementation Details

The infinite series in the Babich’s expansion (5) needs to be truncated to approximate the
wave U for practical applications. In this work, we will approximate U as

U ≈ U1 ≡ v0 f0, or U ≈ U2 ≡ v0 f0 + v1 f1.

With the scheme presented in Algorithm 1, we will use the LxF scheme with WENO5
approximations (LxF-WENO5) to solve the factored anisotropic eikonal equation (11) for
τ , where the values at points near the source are initialized using the fifth-order power-
series approximation, and we will use the LxF scheme with WENO3 approximations (LxF-
WENO3) and first-order approximations (LxF-1st) to solve the transport equation (9) for
v0 and v1, respectively, where the values at points near the source are initialized using the
third-order power-series approximations.
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Fig. 4 Sinusoidal model, Case 2: real part of the wave with ω = 16π (a), 32π (b), and 48π (c). Blue-circle:
U1, Green-dash: U2, and Red-line: reference solution. Left: at z = 0.2 (km), Middle: at z = 0.25 (km), and
Right: at z = 0.3 (km) (Color figure online)

Fig. 5 Sinusoidal model: real part of the wave with ω = 16π . Zoom-in of the curves at a z = 0.2 (km), b
z = 0.25 (km), and c: z = 0.3 (km). Top: Case 1; Bottom: Sase 2. Blue-circle: U1, Green-dash: U2, and
Red-line: reference solution (Color figure online)
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Fig. 6 Waveguide model, Case 1: real part of the wave with ω = 16π (a), 32π (b), and 48π (c). Left: U1,
Middle: U2, and Right: reference solution (Color figure online)

The WENO3 approximations, for example for (ux )
−
i, j and (ux )

+
i, j , are given as

(ux )
−
i, j = 1

2

(
Δ+ui−1, j

Δx
+ Δ+ui, j

Δx

)
− w−

2

(
Δ+ui−2, j

Δx
− 2

Δ+ui−1, j

Δx
+ Δ+ui, j

Δx

)
,

with

w− = 1

1 + 2r2
, r = ε + (Δ−Δ+ui−1, j )

2

ε + (Δ−Δ+ui, j )2
,

and

(ux )
+
i, j = 1

2

(
Δ+ui−1, j

Δx
+ Δ+ui, j

Δx

)
+ w+

2

(
Δ+ui+1, j

Δx
− 2

Δ+ui, j

Δx
+ Δ+ui−1, j

Δx

)
,

with

w+ = 1

1 + 2r2
, r = ε + (Δ−Δ+ui+1, j )

2

ε + (Δ−Δ+ui, j )2
.

The WENO5 approximations, for example for (ux )
−
i, j and (ux )

+
i, j , are given as

(ux )
−
i, j = 1

12

(
−Δ+ui−2, j

Δx
+ 7

Δ+ui−1, j

Δx
+ 7

Δ+ui, j

Δx
− Δ+ui+1, j

Δx

)

− �W E N O
(

Δ−Δ+ui−2, j

Δx
,
Δ−Δ+ui−1, j

Δx
,
Δ−Δ+ui, j

Δx
,
Δ−Δ+ui+1, j

Δx

)
,
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Fig. 7 Waveguide model, Case 2: real part of the wave with ω = 16π (a), 32π (b), and 48π (c). Left: U1,
Middle: U2, and Right: reference solution (Color figure online)

with

�W E N O (a, b, c, d) = 1

3
w0(a − 2b + c) + 1

6

(
w2 − 1

2

)
(b − 2c + d),

w0 = α0

α0 + α1 + α2
, w2 = α2

α0 + α1 + α2
,

α0 = 1

(ε + I S0)2
, α1 = 6

(ε + I S1)2
, α2 = 3

(ε + I S2)2
,

I S0 = 13(a − b)2 + 3(a − 3b)2, I S1 = 13(b − c)2 + 3(b + c)2,

I S1 = 13(c − d)2 + 3(3c − d)2,

and

(ux )
+
i, j = 1

12

(
−Δ+ui−2, j

Δx
+ 7

Δ+ui−1, j

Δx
+ 7

Δ+ui, j

Δx
− Δ+ui+1, j

Δx

)

− �W E N O
(

Δ−Δ+ui+2, j

Δx
,
Δ−Δ+ui+1, j

Δx
,
Δ−Δ+ui, j

Δx
,
Δ−Δ+ui−1, j

Δx

)
.

The parameter ε is chosen as 10−6 to avoid division by zero, andΔ±ui, j ≡ ±(ui±1, j −ui, j ).
For computing phase τ , we choose τ̃ = τP with P = 5 to achieve the desired fifth-order

accuracy. Since τP is in general well-defined in a neighborhood of the primary source r0, we
can use the Hybrid scheme [23], where the factored equation (11) is solved in a neighborhood
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Fig. 8 Waveguide model, Case 1: real part of the wave with ω = 16π (a), 32π (b), and 48π (c). Blue-circle:
U1, Green-dash: U2, and Red-line: reference solution. Left: at z = 0.2 (km), Middle: at z = 0.25 (km), and
Right: at z = 0.3 (km) (Color figure online)

of the primary source r0 and the original Eq. (8) is solved outside this neighborhood. The
size of this neighborhood is independent of the mesh and can be determined easily.

When applying the LxF-WENO schemes for solving the governing equations, we will
impose the computational boundary conditions introduced in [12] to enforce outgoing
boundary conditions. Therefore, the solutions will reduce to first-order accurate near the
computational boundary. However, the computational boundary conditions will not affect
the high-order accuracy of the solutions in the interior of the computational domain. Once
τ , v0 and v1 are computed, we can use them repeatedly to construct waves as U1 or U2 for
any high frequencies.

3 Numerical Examples

In this section, we present numerical examples to demonstrate the methods. Reference solu-
tions are obtained by the finite difference methods with central differences on very refined
meshes.

Example 1: Sinusoidal Velocity Model.We consider the following parameters:

– The velocity v(x, z) = 1 + 0.2 sin(3π(x + 0.05)) sin(0.5π z)(km/s).
– The computational domain is Ω = [0, 0.5]2 (km), and the source is r0 = (0.25, 0.25)

(km).
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Fig. 9 Waveguide model, Case 2: real part of the wave with ω = 16π (a), 32π (b), and 48π (c). Blue-circle:
U1, Green-dash: U2, and Red-line: reference solution. Left: at z = 0.2 (km), Middle: at z = 0.25 (km), and
Right: at z = 0.3 (km) (Color figure online)

– The anisotropy tensor A is chosen as

A =
(

8 −1
−1 1

)
(Case 1), or

A =
(

1.5025(1 + sin2(8πxz)) −0.8616953(1 − 0.125 sin2(8πxz))
−0.8616953(1 − 0.125 sin2(8πxz)) 0.5075(1 + cos2(8πxz))

)
(Case 2).

– The mesh for computing the phase and amplitude terms is 101 × 101.
– The mesh for computing the reference solution is 801 × 801 for ω = 16π, 32π , and

1001 × 1001 for ω = 48π .

Table 1 shows the l∞ errors for computing τ, v0 and v1 with the proposed approaches. We
observe the desired fifth, third and first order of convergence for τ, v0 and v1, respectively.

Figures 1 and 2 show plots of the numerical solutions and reference solutions. Figures 3
and 4 showdetailed comparisons between the numerical solutions and the reference solutions.
And Fig. 5 shows zoom-in portion of the figures.

Example 2: Waveguide Velocity Model.We consider the following parameters:

– The velocity v(x, z) = 1 − 0.5e−16(x−0.25)2 (km/s).
– The computational domain is Ω = [0, 0.5]2 (km), and the source is r0 = (0.25, 0.25)

(km).
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Fig. 10 Smoothed Marmousi
velocity model. The window
(between two solid lines) from
receiver 41 to receiver 158 is
used (Color figure online)

x(km)
0 2 4 6 8

z(
km

)

0

1

2
2

4

Fig. 11 Marmousi model, Case 1: real part of the wave with ω = 32π (a), and 48π (b). Left: U1, Middle:
U2, Right: reference solution (Color figure online)

– The anisotropy tensor A is chosen as

A =
(

8 −1
−1 1

)
(Case 1), or

A =
(

1.5025(1 + sin2(8πxz)) −0.8616953(1 − 0.125 sin2(8πxz))
−0.8616953(1 − 0.125 sin2(8πxz)) 0.5075(1 + cos2(8πxz))

)
(Case 2).

– The mesh for computing the phase and amplitude terms is 101 × 101.
– The mesh for computing the reference solution is 801 × 801 for ω = 16π, 32π , and

1001 × 1001 for ω = 48π .

Figures 6 and 7 show plots of the numerical solutions and reference solutions. Figures 8 and 9
show detailed comparisons between the numerical solutions and the reference solutions.

Example 3: Marmousi Velocity Model. We consider the following parameters:

– The velocity v(x, z) is chosen to be a window (receiver 41 to 158) of the Marmousi
model, referring to Fig. 10.

– The computational domain is Ω = [0.96, 3.768] × [0, 2.094] (km), and the source is
r0 = (2.4, 1.44) (km).
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Fig. 12 Marmousi model, Case 2: real part of the wave with ω = 32π (a), and 48π (b). Left: U1, Middle:
U2, Right: reference solution (Color figure online)

Fig. 13 Marmousi model, Case 1: real part of the wave with ω = 32π (a), 48π (b). Blue-circle: U1, Green-
dash: U2, and Red-line: reference solution. Left: at z = 2.16 (km), Middle: at z = 2.4 (km), and Right:
z = 2.64 (km) (Color figure online)

– The anisotropy tensor A is chosen as

A =
(

8 −1
−1 1

)
(Case 1), or

A =
(

1.5025(1 + sin2(πxz)) −0.8616953(1 − 0.125 sin2(πxz))
−0.8616953(1 − 0.125 sin2(πxz)) 0.5075(1 + cos2(πxz))

)
(Case 2).

– The mesh for computing the phase and amplitude terms is 118 × 122.
– The mesh for computing the reference solution is 1171 × 1211.
– For computing the reference solutions, the velocity is interpolated onto a refined mesh

by cubic polynomials.
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Fig. 14 Marmousi model, Case 2: real part of the wave with ω = 32π (a), 48π (b). Blue-circle: U1, Green-
dash: U2, and Red-line: reference solution. Left: at z = 2.16 (km), Middle: at z = 2.4 (km), and Right:
z = 2.64 (km) (Color figure online)

Figures 11 and 12 show plots of the numerical solutions and reference solutions. Figures
13 and 14 show detailed comparisons between the numerical solutions and the reference
solutions.

3.1 Discussion of Numerical Examples

For all the examples, the phase and amplitude terms are computed on a coarse mesh, and are
re-used to construct the waves for different frequencies.

If there are no caustics, the computed numerical solutions approximate the reference
solutions faithfully, which verifies the feasibility of the proposed methods. In particular,
uniform accuracy near the source is achieved, see second columns of Figs. 3, 4, 8, 9, 13,
and 14.

If the caustics occur, the proposed methods can not capture caustics faithfully, which is
common for high frequency asymptotic approaches. In future work, we will incorporate the
proposed methods to the fast Huygens sweeping method [22,27–29] such that the caustics
can be captured faithfully.

4 Conclusion

We present asymptotic approaches for solving high frequency anisotropic Helmholtz equa-
tion with a point-source condition. The methods are based on Babich’s expansion that was
first introduced for isotropic Helmholtz equation. Detailed formulations for the governing
equations of the phase and amplitude terms are derived, and efficient high-order schemes,
with high-order approximations near the source, are designed to solve the governing equa-
tions. The solutions can be used to reconstruct the waves for different high frequencies.
Numerical experiments verify the effectiveness of the methods.

The proposed methods can be incorporated into the fast Huygens sweeping method [22,
27–29] for capturing the caustics faithfully for the anisotropic Helmholtz equation, where
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the proposed method will provide numerical approximations for Green’s functions that are
needed in the fast Huygens sweeping method. The results will be reported in future work.

Acknowledgements Funding was provided by NSF Division of Mathematical Sciences (1418908, 1719907).

Appendix A: WKB Approximation for Eq. (1) in 2D

We derive the governing equations for the phase and amplitude terms in the WKB expansion
(2) for the anisotropic Helmholtz equation (1) in 2D.

Theorem 2 In the WKB approximation (2) for the anisotropic Helmholtz equation (1) in 2D,
the phase τ satisfies the anisotropic eikonal equation (8), and the amplitude terms {Ak}∞k=0
satisfy the following recurrent system,

A−1 ≡ 0,

(βτx + γ τz + aτxx − 2cτxz + bτzz)Ak + 2{(aτx − cτz)(Ak)x + (bτz − cτx )(Ak)z}
= −(β(Ak−1)x + γ (Ak−1)z) − (a(Ak−1)xx − 2c(Ak−1)xz + b(Ak−1)zz), k ≥ 0,

(21)

where β ≡ ax − cz, and γ ≡ bz − cx .

Theorem 2 can be proved by careful calculation. We have

Ux =
∞∑

k=0

(
τx Ak

(ιω)k−1 + (Ak)x

(ιω)k

)
eιωτ ;

Uz =
∞∑

k=0

(
τz Ak

(ιω)k−1 + (Ak)z

(ιω)k

)
eιωτ ;

Uxx =
∞∑

k=0

(
τ 2x Ak

(ιω)k−2 + 2τx (Ak)x + τxx Ak

(ιω)k−1 + (Ak)xx

(ιω)k

)
eιωτ ;

Uzz =
∞∑

k=0

(
τ 2z Ak

(ιω)k−2 + 2τz(Ak)z + τzz Ak

(ιω)k−1 + (Ak)zz

(ιω)k

)

eιωτ ;

Uxz = Uxz =
∞∑

k=0

(
τxτz Ak

(ιω)k−2 + τz(Ak)x + τx (Ak)z + τxz Ak

(ιω)k−1 + (Ak)xz

(ιω)k

)
eιωτ .

By substitution the above formulas into Eq. (1), we have

∞∑

k=0

(
Ak

(ιω)k−2 {aτ 2x − 2cτxτz + bτ 2z − 1/v2}

+ 1

(ιω)k−1 {(βτx + γ τz + aτxx − 2cτxz + bτzz)Ak

+ 2(aτx − cτz)(Ak)x + 2(bτz − cτx )(Ak)z}
+ 1

(ιω)k
{β(Ak)x + γ (Ak)z + a(Ak)xx − 2c(Ak)xz + b(Ak)zz}

)
eιωτ = 0.

Then collecting coefficient for O(1/(ιω)k−2) term and letting it be equal to 0 yields the
anisotropic eikonal equation (8), and collecting coefficients for O(1/(ιω)k−1) term and let
it be equal to 0 yields the recurrent system (21).
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The factorization techniques can also be applied to resolve the source singularities for com-
puting amplitude terms {Ak}∞k=0, for instance, see [22,24,28] for similar techniques applied
for isotropic cases.

Appendix B: WKB Approximation and Babich’s Expansion for Eq. (1) in
3D

We also include the formulations of the WKB approximation and Babich’s expansion for
the anisotropic Helmholtz equation (1) in three-dimensional (3D) spaces. We assume the
anisotropy tensor A is given as

A(r) =
⎛

⎝
a(r) −d(r) −e(r)

−d(r) b(r) − f (r)
−e(r) − f (r) c(r)

⎞

⎠ .

Theorem 3 In the WKB approximation (2) for the anisotropic Helmholtz equation (1) in 3D,
the phase τ satisfies the anisotropic eikonal equation (8), and the amplitude terms {Ak}∞k=0
satisfy the following recurrent system,

A−1 ≡ 0,

(βτx + γ τy + ζ τz + aτxx + bτyy + cτzz − 2dτxy − 2eτxz − 2 f τyz)Ak

+ 2{(aτx − dτy − eτz)(Ak)x

+ (bτy − dτx − f τz)(Ak)y + (cτz − eτx − f τy)(Ak)z}
= −(β(Ak−1)x + γ (Ak−1)y + ζ(Ak−1)z)

− (a(Ak−1)xx + b(Ak−1)yy + c(Ak−1)zz

− 2d(Ak−1)xy − 2e(Ak−1)xz − 2 f (Ak−1)yz), k ≥ 0,

(22)

where β ≡ ax − dy − ez, γ ≡ by − dx − fz , and ζ = cz − ex − fy .

Theorem 4 In the Babich’s expansion (5) for the anisotropic Helmholtz equation (1) in 3D,
the phase τ satisfies the anisotropic eikonal equation (8), and the amplitude terms {vk}∞k=0
satisfy the following recurrent system,

v−1 ≡ 0,

(βTx + γ Ty + ζ Tz + (4k − 6)N + aTxx + bTyy + cTzz − 2dTxy − 2eTxz − 2 f Tyz)vk

+ 2{(aTx − dTy − eTz)(vk)x + (bTy − dTx − f Tz)(vk)y

+ (cTz − eTx − f Ty)(vk)z}
= (β(vk−1)x + γ (vk−1)y + ζ(vk−1)z)

+ (a(vk−1)xx + b(vk−1)yy + c(vk−1)zz

− 2d(vk−1)xy − 2e(vk−1)xz − 2 f (vk−1)yz), k ≥ 0,

(23)

where β ≡ ax − dy − ez, γ ≡ by − dx − fz , ζ = cz − ex − fy , N ≡ 1/v2, and T ≡ τ 2.

Theorems 3 and 4 can be proved similarly as in 2D cases. And the governing equations
for τ and {vk} can be solved by the same schemes numerically. Figures 15 and 16 show plots
of a 3D model on computational domain [0, 0.5]3 (km) with

v(r) = 3 − 1.75e−((x−0.25)2+(y−0.25)2+(z−0.25)2)/0.64(km/s),
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Fig. 15 3D model. Case 1: slices of the wave with ω = 32π at x = 0.25 (km), y = 0.25 (km) and z = 0.25
(km), respectively. Top: real part; Bottom: imaginary part. Left: U1; Right: U2 (Color figure online)

Fig. 16 3D model. Case 2: slices of the wave with ω = 32π at x = 0.25 (km), y = 0.25 (km) and z = 0.25
(km), respectively. Top: real part; Bottom: imaginary part. Left: U1; Right: U2 (Color figure online)

and

A(r) =
⎛

⎝
1 −0.5 −0.3

−0.5 3 −0.1
−0.3 −0.1 2

⎞

⎠ or

⎛

⎝
1 + 0.3 sin2(πx) −0.5 + 0.1 cos2(πx) −0.3 + 0.2 cos2(π y)

−0.5 + 0.1 cos2(πx) 3 + 0.2 sin2(π y) −0.1 − 0.1 cos2(π z)
−0.3 + 0.2 cos2(π y) −0.1 − 0.1 cos2(π z) 2 + 0.1 sin2(π z)

⎞

⎠ .

The source is r0 = (0.25, 0.25, 0.25) (km).
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