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Abstract. We present asymptotic methods for numerically solving the time-dependent
Schrodinger equation with time-dependent potentials. The methods consist of the following ingredi-
ents: (1) perfectly matched layers are applied to limit the infinite domain to a bounded subdomain;
(2) the wavefunction is propagated by a short-time propagator in the form of integrals with re-
tarded Green'’s functions that are based on Huygens’ principle; (3) semiclassical limit approximations
are adopted to approximate the retarded Green’s functions, where the phase and amplitude terms
are obtained as solutions of eikonal and transport equations, respectively; (4) Taylor expansions are
explored to obtain analytic approximations of the phase and amplitude terms for a short period of
time; and (5) the fast Fourier transform can be used to evaluate the integrals after appropriate low-
rank approximations with Chebyshev polynomial interpolation. The methods are expected to have
complexity O(N log N) per time step with N the number of points used in the simulation. Numerical
examples are presented to demonstrate the methods.
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1. Introduction. We consider numerical methods for solving the time-dependent
Schrodinger equation:

2
(1.1) Lh%?t) = —%V2¢(X, t) + v(x,t)p(x,t), t >0,

$(x,0) = ¢o(x),

where x = (x,y,2z) € R® is the spatial coordinate vector, V = (0,0y,0.) is the
gradient operator at x, m is the atomic mass, % is the reduced Planck constant, ¢(x,t)
is the wavefunction, v(x,t) is the time-dependent potential, and ¢o(x) is the initial
wavefunction. Numerical solutions of the Schrédinger equation (1.1) are desirable for
its wide applications in engineering, physics, and chemistry. However, solving the
equation numerically is highly challenging, mainly because (i) the domain is infinite,
and (ii) the wavefunction ¢ is oscillatory for small parameter .

For computing the wavefunction in an infinite domain, unless the wavefunction
is assumed to be compactly supported in a bounded subdomain, the aim is to com-
pute the wavefunction around a small bounded subdomain that bears special physical
interest. A common practice of accomplishing such a goal is to “truncate” the com-
putational domain and solve a “truncated” problem with a suitable domain-based
method, where absorbing boundary conditions (ABCs) are generally required. As
one of the approaches for designing ABCs, the perfectly matched layer (PML) method
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has achieved great success in various applications. The perfectly matched layer, ever
since it was introduced by Berenger in 1994 [9], has become a widespread technique
for preventing reflections from far field boundaries for wave propagation problems in
both the time-dependent and frequency domains. The idea is to use an absorbing layer
designed to absorb waves without reflections. The PML can be seen as the result of a
complex coordinate transformation, being essentially a continuation of the equation
into complex spatial coordinates, where a modified equation has to be solved. Ideally,
the incoming waves are damped to such an extent that the outer boundary conditions
are of no importance. Also, the interface between the computational domain and the
damping layer should not cause any reflections. In our numerical simulation, we will
first use the PML method to “truncate” the infinite domain to a bounded subdomain
and derive the modified equation in the bounded subdomain.

The wavefunction ¢ is highly oscillatory for small parameter i such that it is
very challenging to compute if methods based on direct discretization of the equation,
such as the finite difference and finite element methods, are used. Because in order to
control the dispersion error, such methods require very refined meshes to resolve the
oscillations, and their computational cost becomes too high for practical applications
[3, 4, 16]. Therefore, alternative methods such as the operator splitting methods and
the asymptotic methods in the semiclassical regime [2, 6, 7, 8, 19, 22, 30] have been
designed to balance efficiency and accuracy. In our numerical simulation, we propose
to design asymptotic methods in the semiclassical regime by approximating the time
propagator of the wavefunction ¢ in a way that combines Huygens’ principle [5] and
the Wentzel-Kramers—Brillouin—Jeffreys (WKBJ) propagator [10, 13, 20, 22, 25, 26].

The time propagator of the wavefunction ¢ can be given as integrals with the
retarded Green’s functions [29, 31]. The retarded Green’s function for a generic source
(x0,t0), denoted as G(x,t; X, to), satisfies the equation:

LhaG(X,t;Xo,to)
ot
(1.2) lim G(x,t;Xo,t0) = d(x — Xo),

+
t—tg

G(X,t;Xo,to) =0, t <tp.

h2
— _%VQG(x,t;xo,to) +v(x,t)G(x,t;X0,t0), t > to,

According to Huygens’ principle [29, 31], the wavefunction ¢(x, t) for ¢ > t( is given as

(1.3) (b(X,t) = G(X,t;Xo,to)(b(Xo,to)dXo, t > to.
R3
In order to apply the above integral for computing the wavefunction ¢, the
retarded Green’s function G must be computed and it requires solving (1.2), which can
be as challenging as solving (1.1). Instead, we turn to seek asymptotic approximations
with the WKBJ ansatz [16, 20, 25, 26]:

G(x,t;t0;§) = exp(L7(x, t;to; &) /) A(x, t; to; & 1)

= exp(u7(x, ;103 §)/h) {Z(_Lh)kAk(thétm&)} :

k=0

(1.4)

as h — 0 for any given parameter £ € R*, where 7 is the phase and {Ak}52, are the
amplitude terms, and G satisfies the following equation in the semiclassical limit:

9G(x, t;to; €)
(1.5) 5

G(x;to; to; §) = exp(ix - §).

2 ~ ~
= —2h—V2G(x7t;t0;£) +v(x,t)G(x, t;t0; £), t > to,
m

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/29/19 to 129.186.251.89. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

FAST HUYGENS SWEEPING METHODS FOR SCHRODINGER EQN. A879

By substituting (1.4) into (1.5) and collecting terms in the same order of % as
h — 0, for each parameter &, one can derive the eikonal equation for 7(x, ¢;to; &),

1
Tt +U(X,t> + %|V’T|2 =0, t >,

T(Xv tht07£) =X 67

(1.6)

and the transport equations for {Ax(x,t;t0; &)},

1 1
(AO)t + —Vr- VA() + 7ATA() =0, t>to,
m 2m

(1.7)
Ag(x,t03t0;8) = 1,
and for k > 1,
1 1 AA_1
A+ —V7 - VAp + —ATAy = —
(1.8) ( k)t+mVTV k+2m TAg , t > to,

Ak (x,to;t0; &) = 0.
With the plane wave decomposition of the J-function given as

st = (555) [ ewoete-€ - x0-€)/miie

one can approximate the retarded Green’s function as
(1.9)
1 3 00
G tixosto) = (517 ) [ explalrioe tt0:€) = x0- €)/1) 3 At €)(~1h) e,

k=0

for a short period of time, ¢ € [to, to + At] with At small, while the phase 7 and the
amplitude terms {Ax}7° , are smooth [22].

With the asymptotic retarded Green’s function (1.9), the wavefunction ¢ can be
propagated for a short period of time starting from any arbitrary time tq [18, 21, 22]:

(110) ¢(X, t) = G(X,t;XO,to)qﬁ(Xo, to)dXQ, to <t <tg+ At
R3

The local short-time propagation can be repeated to propagate the wavefunction ¢
for a long time [18, 21]:

(1.11) o(x,t) = G(x,t; X0, tr)d(X0, tr)dXo, tr <t < tg + At,
R3
with t;, = kAt for k=0,1,2,...

The short-time propagator that combines Huygens’ principle and the WKBJ
ansatz has been applied to compute semiclassical solutions of the Schrodinger equa-
tions with time-independent potentials [22], where the solutions are assumed to be
compactly supported such that the computation can be performed in a bounded sub-
domain. Analytic approximations of the phase and amplitude terms within a short
period of time are obtained by Taylor expansions. And the integral (1.10) can be
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evaluated by the fast Fourier transform (FFT) after appropriate discretization. Con-
sequently, the overall complexity at each time step is O(N log N) with N the number
of points used in the simulation. Similar techniques that combine integral represen-
tations of the wavefunction and asymptotic approximations of the Green’s functions
have been developed for simulating acoustic and electromagnetic wave propagation
in the high frequency regime [23, 27, 28]. These methods are based on Huygens’
principle, and their complexity is O(N log N) because the integrals can be evaluated
efficiently via low-rank approximations of the matrix obtained from discretizing the
integrals.

In this work, we extend the ideas to compute asymptotic solutions for the
Schrodinger equation with time-dependent potentials (1.1) and PMLs. The PML
method is first applied to limit the infinite domain to a bounded subdomain without
assuming that the wavefunction is compactly supported. After that, we derive the
modified Schrédinger equation with the PMLs in the “truncated” subdomain, follow-
ing which we present asymptotic approximations of the short-time propagator for its
wavefunction by combining Huygens’ principle and the WKBJ approximation. With
the asymptotic approximations of the short-time propagator, we propose efficient nu-
merical procedures to evaluate the integrals. Appropriate low-rank approximations
with Chebyshev polynomial interpolation will be applied to approximate the inte-
grals such that the resulting integrals can be evaluated by the FFT. Therefore, we
can compute globally asymptotic solutions for the Schrodinger equation efficiently.

The rest of the paper is organized as follows. In section 2, we first present
the modified Schrodinger equation with the PMLs and asymptotic approximations
of the short-time propagator for its wavefunction; then we show how to approximate
the phase 7 and amplitude terms {A}7° , analytically in the asymptotic approxima-
tion, and finally we present the formulations and numerical procedures for computing
the wavefunction efficiently. In section 3, we demonstrate the methods with numerical
experiments, including time-dependent Gross—Pitaevskii equations for Bose—Einstein
condensation at zero temperature. Conclusive remarks are given at the end.

2. Formulations and algorithms. In this section, we present asymptotic meth-
ods for the Schrodinger equation with perfectly matched layers. We assume the com-
putational domain is Q = [Zmin, Tmax] X [Ymin, Ymax] X [Zmin, Zmax], Which is covered
by a uniform mesh {X;;;jrr = (T4, Y5, 2kk)} as

{4 = Tmin + (14 — l)Ax}gi_"fl,

.. N,+1
{yjj = Ymin T+ (].7 - 1)Ay}jjy:1 s

{2zkk = 2min + (kk — 1)Az}£§§:117

with Az = (:Emax - xmin)/Nz7 Ay = (ymax - ymin)/Nyu Az = (Zmax - Zmin)/Nz- We
also assume the phase domain & = (£1,&2,&3) is covered by a uniform mesh {§,;, =
(€16, €25, &3k) } as
, Ny /2
{6ri=0G— I)Afl}izzz\zm/m—l )
. Ny /2
{&,=0- 1)A£2}j:£Ny/2+17

{&p = (k- 1)A§3}2V;£2N2/2+1 )

with A§1 = 27T/(xmax - xmin)7 AgZ = 27r/(ymax - ymin)7 Afg = 27r/(zmax - zmin)-
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2.1. Schrodinger equation with PML. We shall derive the Schrodinger equa-
tion with the PMLs using the complex coordinate stretching technique. Introduce the
absorption profile functions [1, 9, 32):

l - lmin - r
Cr | 21 € [Tty Lanin + 1),
m
(2.1) o(l) = 0, 1€ [lmin + M5 lmax — ml;
l - lmax P
Cl ——i—m P le [lmax -, lmax]v
m

and
1

O = T (/o)
Here [Imin, Imax] is the interval of interest, n; is the width of the PML, C} is constant,
and p is the power of the profile function. The PML method replaces 9,09, and 0,
with s1(2)0z, s2(y)9y, and s3(2)0., respectively, where s;(-) = s(-) with o;(-) = o(-)
for i = 1,2,3. The PML effectively provides a damping layer of width 7, (1,,7.,
respectively) near the two sides of the x-axis (y-axis, z-axis, respectively); refer to
Figure 1.

Vi

Yinin
X

Fic. 1. PML for two-dimensional cases: with width nz and ny along the z-azis and y-axis,
respectively.

The Schrédinger equation (1.1) transfers to

x 2
PP (o (@)0u51(2)02) + 2(0)0 (52(4)0,) + 55(2)0(55(2)0) )0,

ot
+v(x,1)P(x, 7).
By substituting ¢(x,t) with

Y(x, )
) t = )
D s

we have the modified Schrodinger equation:
(2.2)

op(x,t) h? h? Rh?
th ot = o2m, (x) wmc (X, t) - 2 (y) l/}yy (Xv t) - 2ms (z) qz[}zz (X’ t) —|—w(x, t)"vb(x’ t)?
with m m m

=g ™Y = gy " T g0y
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and
w(x,t)
2 s ()2 (sh(y) 2+ (s5(2)?  s1(z)s () +s2(y)sy s3(2)s5 (2
:_2% (( 1))+ ( 2(41/)) +(s5(2))" _ si1(x)si(x)+ 2(y)2 (y)+s3(2)s3( )>+v(x7t).

The time propagator of the wavefunction 1 is also given as integrals with the
retarded Green’s functions [29, 31], similarly as in the introduction (section 1). The
retarded Green’s function for a generic source (xg, %), also denoted as G(x,t; X, to),
satisfies the equation:

oG h? h? h?
o _2m1(z)Gm  2ma(y) Gy = 2ms(z) Caz 0 G, 1> o,
(2.3) lim G(x,t;X0,t0) = J(x — X0),
t—td

G(X,t, X07t()) - 0, t < to.

Following Huygens’ principle [29, 31], the wavefunction ¢ (x,t) for t > ¢y is given as

(2.4) Y(x,t) = AG(th;XOatO)w(X()vtO)dXOa t > 1.

2.2. Asymptotic approximation. We explore asymptotic approximations of
the retarded Green’s function G with the WKBJ ansatz (1.4) and choose G(x, t; to; €)
that satisfies the following equation:

oG B2 B2 h2
R =Y G- Gy —
25 ot T 2mi(x) 2may) Y 2ma(z)

G(x,t0;t0; &) = exp(ix - §).

With formulas (1.9) and (2.4), one can derive the approximation of ¢ as

G., +wG, t>tg,

(x,t) = A G(x,t; %0, to) (X0, to)dxo

(zjm) / /R exp(u(7(x, £ to; €) — 20 - €)/h)

X ZAk(X,t;to;ﬁ)(*bh)kl/f(xo,to)dﬁdxo
k=0

S [ explom( tito; €)/A)Au(x. o (1) (€ o)
k=0 /R’
with ¢) = F[4] the Fourier transform of v:

3
T bt = ot = (557) [ explooo-€/mute to)dxa

Formula (2.6) will serve as the short-time propagator for the wavefunction . For
numerical implementations, we need to truncate the infinite sum and compute the
phase and amplitude terms needed in the truncated sum.
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2.3. Analytic approximations of phase and amplitude terms. The mod-
ified eikonal equation for 7(x, t;to; &) is given as

or | T " () =0, >
v w(x,t) =
(2.8) ot 2mq(x)  2ma(y) 2ms(2) ’ ’ 0

T(Xa t07 t07 E) =X 57
and the modified transport equations for {Ax(x,t;t0;&)}5,, are given as

(AO)ITI (AO)yTy (AO)sz

Aokt S@ T ey T ma)
(29) Txx Tyy Tzz o
* <2ml<x> T oma() 2m3<z>> Ao=0. 1= 1o
AO(Xa tO;tO;S) = 13
and for k > 1,
(2.10)
(Ak)me (Ak)yTy (Ak)sz Trx Tyy Tzz
g S e e (e et i)

__Aeer - (Ae-t)yy  (Ar1)ze
N 2m1(m) 2m2(y) 2m3(z) » t>to,

Ap(x,t0:t0;€) = 0.

The computation of 7 and {Ax}72, is the most expensive part for implementing
(2.6), since they must be computed for all £ € R®. To alleviate the computational
burden, we follow the approaches in [17, 22, 24], where analytic approximations of 7
and {Ax}72, are obtained with short-time Taylor expansions.

Assume that we need to approximate 7(x,t;t0;€) and {Ap(x,t;t0;€)}72, at
t = to + At with At small. We expand them as Taylor series at tg:

o0
T(x,tit0;€) = Y mi(x;to; €)(AL),

=0

(2.11) -
Ap(x,t5t0:€) = D Ari(x:t0; £)(AL), k>0,
1=0

with the expansion terms, {7;}7°, and {Ax}7°,, to be determined. And we assume
the Taylor series for w(x,t) at to is given:

o0 (o) l
w(x,t) = Zwl(x, to)At! = Z {ll‘awg;’to)} At

=0 =0

By substituting the Taylor series for 7 into the eikonal equation (2.8) and collect-
ing the terms of the same order in At, we have

(2.12)
To(x;t0;§) =x-§,

2
T1(x;t0; &) = *%‘ (mf(x)’ L ) ! ) — wo(x,1o),
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and similarly for 7;(x;to; &) with [ > 3 as

(2.13)
(x5 03 &)

I SRR = N N i R (O M I PR CA R G
N l{ i) ;( 2m () - 2ma(y) i 2ms(2) )}

By substituting the Taylor series for Ay into the transport equation (2.9) and
collecting the terms of the same order in At, we have

(2.14)
Ago(x;5t0;8) =1,
Ap1(x;5t0;€) =0,

1 (m@) | mi) mie) 2Ami@)? 2min)  2Ami)
Aol t0i8)= 8<m%<x> mi) mi) mi) ma() m§<z>)
1 (wo)mc (wo)yy (wO)zz
T m1<x>+m2<y>+m3<z>>’

and similarly for Ag;(x;to; &) with [ > 3 as

(2.15)

Agi(x;t0:€) = % {

m(z) ma(y) - m3(2)

l_zl <(A05)z(7—l—1—s)z + (AOs)y(Tl—l—s)y (AOS)Z(Tl—l—S)Z>

s=0
— AOs(Tl—l—s)zx AOS(Tl—l—s)yy AOS(Tl—l—s)zz
‘E( (@) 2ma(y) | 2ma(?) ) '

By substituting the Taylor series for Ay with k > 1 into the transport equation
(2.10) and collecting the terms of the same order in At, we have

Apo(x;5t0;€) = 0,
(2.16) Ap1(x5t0:€) =0,
Apa(x;5t0;€) = 0,

and similarly for Ag;(x;to; &) with [ > 3 as

(2.17)

Api(x;t0;§) = % {—

Z (Ak:s TI—1— s)xw Ak:s(Tlflfs)yy Aks(Tlls)zz)
— - +
2m (x 2ma(y) 2ms(z)

lii <(Aks)w(7l—1—s):c + (Ak:s)y(Tl—l—s)y n (Aks)z(Tl—l—s)z>

2\ () m(y) ms(2)

-1 1 1 1
- Z (M(Ak—l,s)xx + W(Ak—l,s)yy + 2mS(Z)(Ak—1,s)ZZ> } .

s=0

Therefore, analytic approximations of 7 and {Ax}72,, for a short period of time
can be obtained with the Taylor series (2.11).
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2.4. Algorithms. With the short-time analytic approximations of 7 and
{Ak}72 o, we demonstrate how to implement the asymptotic short-time propagator
with the following approximation:

T = 19 + T At + O(At?),

(2.18) ,

In particular, we will approximate the wavefunction 1(x,t) as

@19 v~ [ explertstor €)/1) Ao, o €D ).

with the phase 7 and the amplitude Ay approximated as

(2.20)

st =5  ( ) e oo

Ag(x,t;t0; &) = 14+ O(AL?).

Formulas (2.19) and (2.20) yield a first-order approximation for ¥ (x,t) =
w(xa to + At)

(1) = exp (W) /R op <Lxhg)

S C U E I &) P

+ O(At* (1 + h)),

which provides the short-time propagator for the wavefunction 1 in the semiclassical
regime.

If x is not in the PMLs, (2.21) reads

wix.t) = exp (ZEISE) [ o (28 Yo (it ) die e

+ O(At*(1 + h))
= exp (W) Fi [exp (—;i?t) f[l/J(X»tO)]]
+ O(At3(1 + h)),

(2.22)

with F~1 the inverse Fourier transform defined as

x-&

FbE ) = [ exp (h) VI to)dé

R3

We can discretize the Fourier transform (2.7) as

N Azyz —1Xiijikk - &
(2.23) Yijk(to) = ﬁ > exp <”h]k> Yiijjkk(to),
i,j5.kk
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the integral (2.21) as

Giijjrn(t) = exp ( = “hkk( o) ) A&16oés > exp (”’“}’;J’“)
4,4,k

—AE (& 8 & .
X iik(to),
o ( 2h (mm ’ ma,jj * m3 kk Yigi(fo)

and the integral (2.22) as

—Lwo gijjkk (to) At Kiijink - €
Yiijjk(t) =exp ( 0 ”ffk( 0) ) A&16E3 Zexp (”kg?’“)

.5,k

2
X exp <_2L§t (5;;;:)) @/Ah‘jk(to);

with ik (to) = (&5, to)s Yiijjrk(to) = Y Xiigjrr, to)s Eije = (E1i, 25, E3k)s Xiijjne =
(Tis, Yjjs 2ek)s Axyz = AxAyAz, wogijirk(to) = wo(Xiijjek,to), M1 = mi(xi),
maj; = ma(y;j), M3 kk = m3(zkk), and A&1&ls = AGALALs.

The formula (2.23) for approximating the Fourier transform and the formula
(2.25) for computing ¥ with x not in the PMLs can be implemented efficiently by
the FFT [14]. And the formula (2.21) and/or (2.24) for computing ¢ with x in the
PMLs can be implemented by direct summation. Therefore, we have first algorithm
for computing the wavefunction ).

(2.24)

(2.25)

ALGORITHM 1 (Direct sum for x in PMLs).
Fork=0,1,2,...:
1. At to = kAt, apply FFT and (2.23) to compute ¥(€,to) = Fli(, to));
2. Att =ty + At:
(a) for x not in the PMLs, apply FFT and (2.25) to compute (x,t):
e apply FFT to compute

WZiijjkk - i 5
Wiijink = A§16283 Z exp (”h]k> Wik
igok

with W”k = exp ("At ( ”k)) 1/ngk(t0)
e compute

—Lwo iijkk (to) AL
Viijjn(t) = eXp( 2 “hkk( o) >Wiijjkk.

(b) for x in the PMLs, apply (2.24) to compute (x,t) with direct summa-
tion.

For Algorithm 1, the complexity of step 1 and part (a) of step 2 is O(N log N)
with N = N,N,N, since FFT is applied. The complexity of part (b) of step 2

is O(%%%M M M,N), provided that Az = O(%), Ay = O(Miy), and Az =

( ) or certain constants Mg, M,, and M,. Therefore, the total complexity is
O(NlogN + B lu = MN) with M = M M, M., which depends on the width of the
PMLs.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/29/19 to 129.186.251.89. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

FAST HUYGENS SWEEPING METHODS FOR SCHRODINGER EQN. A887

The complexity for computing 1 (x,t) with x in the PMLs can become too high
with small parameter & if the width of the PMLs is independent of A. Fortunately,
we find that the following term,

(2.26) ) e & &2
E(x,€) —exp( o <m1<x> oM ms(z>>>

-0 (G (i) (G () = (' (556))

is not oscillatory with respect to x when £ is in a bounded domain and At is small
enough. Consequently we can apply a low-rank approximation of this term, e.g., with
piecewise Chebyshev polynomial interpolation [11, 15, 23, 27, 28], given as

Q
Q

f

P q

(2.27) E(x,§) ~ L(x,xp) L(y, Yq) L(2, 20 ) E(Xpgr, ),

1 1r=1

S
Il
_
Il
Il

where {X,qr = (2p,yq, 2r)} = {xp} X {yq} 4 x {2}, are Chebyshev nodes in
Q, and L(-,-) is the Lagrange basis functlon C’p, Cy, and C, are expected to be much
smaller than N, Ny, and N..

With the piecewise Chebyshev polynomial interpolation, we can approximate
(2.21) as

(2.28)
~ —wwo(x, o)At 1x- € r —1AtE?
P(x,t) = exp (h ) /R3 exp ( - ) ;L(m,xp) exp <2m1(a:p;ﬁ>
c
. At At )
ZL (4, yq) exp <2ng yfl ) {ZL (2,2) exp (2 L( g)lh>}w(£,to)d£
Cy Cy C,
—oxp (SIS SES TS L Ll L 2)
p=1qg=1r=1
< [ e (%5E) B 06 o)

~ e (”“i;”“) > ) Lo ) %)

x F1E(xpgr, &) F[W(x, 0)]]
and (2.25) as

(2.29)
C, Cq C,
LWo,iijikk tO At
wiijjkk(t) ~ exp ( jJ ) Z Z ZL wmvxp Z/gj,yq)L(ka Zr)
p=1g=1r=1

x A&1&aés Z exp (wksmk) E(qurfijsz'jk(tO)-

~ h
1,5,k
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With the low-rank approximation by piecewise Chebyshev polynomial interpola-
tion, formulas (2.28) and/or (2.29) can be evaluated efficiently because the FFT can
be utilized. Therefore, we have second algorithm for computing the wavefunction :

ALGORITHM 2 (low-rank approximation via Chebyshev polynomial interpolation).

Fork=0,1,2,...:
1. At tg = kAt, apply FFT and (2.23) to compute @Z(E,to) = Fly(z, to));
2. Att=to+ At, apply FFT and (2.29) to compute ¢(x,t):
(a) for each Chebyshev node @qr = (Tp,Yq, 2r), apply FFT to compute

ii7 7 quk‘kﬁz s
WEDTEE = A& €ats Z exp (W) Wijk
04,k
with Wijk = E(wpqraéijk)qjjijk(tO);
(b) compute ¥(x,t) as

—LWo,iijikk (to) At
¢iijjkk;(t) ~ exp ( 0, thifk( 0) )

Cp Cq C,

D> L@iis@p)L(yigs ya) Lzun, 20 ) W™

p=1qg=1r=1

For Algorithm 2, the complexity of step 1 is O(N log N), the complexity of part
(a) of step 2 is O(Cpgr N log N) with Cpqr = C,C,C,, and the complexity of part (b)
of step 2 is O(CpqrN). Therefore the total complexity is O(N log N + Cpq- N log N +
CpqrN), which is independent of the width of the PMLs.

The efficiency of Algorithm 2 also depends on the piecewise Chebyshev polynomial
interpolation of the term E(x, €) defined in (2.26). For notational simplicity, we focus

2
on the first factor Ey(z,&) = exp( —rﬁt(mf;z))y and explain how to perform the
piecewise Chebyshev polynomial interpolation.

The Chebyshev nodes on [—1, 1] are given as

- 2k —1
tnk_cos( ﬂ'),k—l,Q,...,n,
’ 2n

and they can be mapped to any interval [a, b] as

b a+b b—a-
tfza,k) =5 + Ttn,k, k=1,2,...,n.
By examining the function Fi(x,&;), we note that it is constant for x not in the
PMLs, i.e.,

— At (€2
El(xagl) = exXp ( o (ii)) Vo € [-Tmin + Nzs Tmax — nw}

Therefore, we can apply piecewise polynomial interpolation on [Zmin, Zmax] with three
subintervals {[Zmin, Tmin + Nz]; [Tmin + Mz, Tmax — Mz, [Tmax — Mey Tmax]} (Figure
2a), and choose the interpolation nodes as

(2.30)
c . o
Cp _ (Tmin, Tmin+tNz) | P Lmin + Tmax (Zmax =Nz, Tmax) | 7P
{ophply = {tC{wk ! }k:1 U {2} U {tczlwk ! }kzl ’
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Re(El)
Re(El)

-0.5 0 0.5 x 0.5 0 0.5 ,*
a) x b) x

Fic. 2. Demonstration of Chebyshev nodes for piecewise polynomial interpolation. Solid red
curve indicates the function. Vertical solid lines indicate boundaries of PMLs. (a) three subintervals
[min, Tmin + Mz], [Tmin + Nz Tmax — Nz], and [Tmax — Nz, Tmax], black circles indicate Chebyshev
nodes in the corresponding subintervals; (b) five subintervals [Zmin, =*], [2*, Tmin + M), [Tmin +
Nz, Tmax — Nz), [Tmax — Mz, ]|, and [z**, Tmax], blue circles indicate Chebyshev nodes in the
corresponding subintervals.

with C), = (Cp — 1)/2. That is, we can use Chebyshev polynomial interpolation on
[Zmins Tmin + M) and [Tmax — M2y Tmax), respectively, and use constant polynomial
approximation on [Zmin + Mz, Tmax — 7). Similarly, we can choose

c : o
Cq  — [ (Ymin, Ymintny) |9 Ymin T Ymax (Hmax =1y, Ymax) | 77
{ya}o2i = {tc;,k ' }kzl U {2} U {toz’zv’f / }kzl ’

’

’
{ }C" = t(zmim Zmin+1z) Cr Zminf"’ Zmax t(z!rxax_7727 Zmax) cr
Frir=1 = ek k=1 2 Crok k=1

with C} = (Cy —1)/2,C) = (C; — 1)/2.

Remark 2.1. By further examining the function F(z,&;), we note that it is pos-
sible to perform piecewise polynomial interpolation with more subintervals to capture
more detailed features of the function, which requires more rigorous analysis and will
not be discussed in this work. However, we will also perform numerical experiments
with the following choice of Chebyshev nodes (Figure 2b),

CZ

1
{:c }C,, = {t(xmim x*)}cp U {t(x*, xmin-l-m)} P
pip=1 CLE ke1 C2.k k1

(2.31) U {xmm J; Tmax }
(@max—11a> 2*)| 7 (@**, omax) | O
U {tcg,k }k=1 U {tc;),k }k=1 ’

c o
g1 and {2,357, can be chosen similarly.

with Cp, = 2(C} + C2) + 1. {y,}

2.5. Applications to Gross—Pitaevskii equations. We can apply Algorithms
1 and 2 to compute the wavefunction for the time-dependent Gross—Pitaevskii equa-
tion that describes the dynamics of a trapped Bose—Einstein condensates (BEC) at
zero temperature [6, 12]:

h2
(2.32) 22000 20, 8) + w66, )60, 1) + MUIG(x, D00, ), 10,

¢(X7 0) = ¢O (X),

where Uy = 4wh?a/m is the coupling strength, a is the scattering length, and M is the
number of particles in the condensate. With the PMLs, the modified Gross—Pitaevskii
equation has the form (2.2), with
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w(x, t)
W(M@W+%@W+%@Wam%w+@@$@+%@%@>
2m 4 2
P (x,0)
et + MU | W) |

2.6. Discussion of Algorithms 1 and 2. The complexity of Algorithm 1 is
O(Nlog N + 2= MN) with N = N,N,N. and M = M,M,M., provided that
Az = O(Mij),Ay = O(Miu),Az = O(Miz) The complexity depends on the width
of the PMLs. If the width of the PMLs is independent of A, then the second term
is dominant as A — 0, and the complexity becomes too high. If the width of the
PMLs is O(h), i.e., n, = O(h),n, = O(k),n, = O(h), then the complexity is as low as
O(Nlog N + MN).

The complexity of Algorithm 2 is as low as O(Nlog N + Cpgr N log N 4+ Cpgr N)
with Cpqr = Cp,CyCy. The complexity depends on the numbers of the Chebyshev
nodes. For certain accuracy requirement, the numbers of the Chebyshev nodes are
independent of & as h — 0.

We demonstrate the algorithms with numerical experiments.

3. Numerical examples. We present one-dimensional (1-D) and two-dimen-
sional (2-D) examples to demonstrate the proposed methods. The reference solutions
are computed with the spectral Strang operator splitting method [6, 30], where the
solutions are assumed to be compactly supported in the computational domain. For
simplicity, we consider the following dimensionless equations after appropriate change
of variables:

99(x, t)

(3.1) e,

2
= — S V26(x.1) + v(x, )6 (x, 1) + Klo(x, 1) 6 (x, ),

where € is the small parameter and s is constant. The proposed methods and the
spectral Strang operator splitting method are implemented with Matlab on a Linux
desktop. We will denote Algorithm 2 with Chebyshev nodes chosen in (2.31) as
Algorithm 2(a), and denote Algorithm 2 with Chebyshev nodes chosen in (2.30) as
Algorithm 2(b).

Ezample 1 (1-D examples). We present 1-D examples to check efficiency and
accuracy of the proposed methods:
e The potential is

2
oz, t) = % + 20 cos(20mt) exp(—x2/2).
e The initial condition is

#(z,0) = exp(—22/0.02).

e The computational domain for the proposed method is [—1 1], and the com-
putational domain for the reference solution is [—4 4].

e Both the errors and CPU time for computing the solutions up to time ¢t = 0.5
are recorded.

Tables 1 and 2 show the [, and ls errors between the solutions computed by
the proposed methods and the reference solutions. First-order accuracy, i.e., O(Ax +
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At), of the proposed methods is observed. Tables 3 and 4 show the I, and Iy errors
between the solutions computed by Algorithm 1 and Algorithm 2(a), and between
the solutions computed by Algorithm 1 and Algorithm 2(b). Stability of the low-rank
approximation with piecewise Chebyshev polynomial interpolation is observed, since
the errors between Algorithm 1 and Algorithm 2 do not increase as e decreases, and
the number of Chebyshev nodes is fixed. Furthermore, from the CPU time recorded
in these tables, O(N log N') complexity of Algorithm 2 is observed. For Algorithm 1,
if the width of the PMLs depends on A, O(N log N) complexity is observed; if the
width of the PMLs is independent of i, O(NN?) complexity is observed.

Figures 3 and 4 show the plots of the numerical solutions ¢, Figure 5 shows the
plots of |¢|?, and Figure 6 shows the plots of [ |¢|?dx.

TABLE 1
1-D example, order of accuracy, and CPU time. lx error, la error, and CPU time are recorded.
For the reference solution, Az = €/64, At = Az/16; and for the proposed methods, At = Az/16.

€e=0.025,k = -1, Cp = 13;Cy = 2.5;m; = 0.3
Az €/4 €/8 €/16 €/32
Alg. 1: loo Err. 9.551E-2 | 2.079E-2 | 6.516E-3 | 2.261E-3
Conv. Order — 2.200 1.674 1.527
Alg. 1: Iz Err. 1.637E-2 | 3.727E-3 | 1.221E-3 | 4.401E-4
Conv. Order — 2.135 1.610 1.472
CPU time 1.696E1 3.511E1 9.202E1 2.686E2
Alg. 2(a): loo Err. | 9.551E-2 | 2.079E-2 | 6.516E-3 | 2.261E-3
Conv. Order - 2.200 1.674 1.527
Alg. 2(a): l2 Err. 1.637E-2 | 3.727E-3 1.221E-3 | 4.401E-4
Conv. Order - 2.135 1.610 1.472
CPU time 1.709E1 3.467TE1 9.281E1 1.714E2
Alg. 2(b): loo Err. 9.551E-2 | 2.079E-2 | 6.516E-3 | 2.261E-3
Conv. Order - 2.200 1.674 1.527
Alg. 2(b): l2 Err. 1.637E-2 | 3.727E-3 1.221E-3 | 4.401E-4
Conv. Order - 2.135 1.610 1.472
CPU time 1.708E1 3.459E1 9.287E1 2.035E2
e=0.01,k=2,Cp, =13;Cz =2.5;n, = 0.3
Az e/4 €/8 €/16 €/32
Alg. 1: loo Err. 6.559E-3 | 3.279E-3 1.639E-3 | 8.195E-4
Conv. Order - 1.000 1.000 1.000
Alg. 1: Iz Err. 3.972E-3 | 1.982E-3 | 9.900E-4 | 4.948E-4
Conv. Order — 1.003 1.001 1.001
CPU time 6.057E1 1.368E2 3.853E2 1.308E3
Alg. 2(a): loo Err. | 6.566E-3 | 3.295E-3 | 1.660E-3 | 8.423E-4
Conv. Order - 0.995 0.989 0.979
Alg. 2(a): l2 Err. 3.972E-3 1.982E-3 | 9.904E-4 | 4.952E-4
Conv. Order - 1.003 1.001 1.000
CPU time 5.780E1 1.196E2 2.483E2 5.552E2
Alg. 2(b): loo Err. | 6.569E-3 | 3.289E-3 | 1.650E-3 | 8.297E-4
Conv. Order - 0.998 0.995 0.992
Alg. 2(b): l2 Err. 3.972E-3 1.982E-3 | 9.901E-4 | 4.949E-4
Conv. Order - 1.003 1.001 1.000
CPU time 5.746E1 1.192E2 2.480E2 4.950E2

Ezample 2 (2-D examples). We demonstrate the performance of the proposed
methods with the following 2-D examples.
e (ase 1: the potential is

2 2
ol y,t) = T+ 2cos(2nt) exp(—(2* +4)/2),
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TABLE 2

1-D example, order of accuracy, and CPU time. loo error, la error, and CPU time are recorded.

For the reference solution, Ax = ¢/64, At = Az/16; and for the proposed methods, At = Ax/16.

k=2, Cp, = 13; Cy = 5;n, = min(30¢, 0.3)

e (Az) 0.04 (¢/2) | 0.02 (e/4) | 0.01 (¢/8) | 0.005 (¢/16)

Alg. 1: loo Err. 1.380E-2 6.614E-3 3.279E-3 1.636E-3

Conv. Order - 1.061 1.012 1.003

Alg. 1: Iz Err. 8.300E-3 4.008E-3 1.982E-3 9.883E-4

Conv. Order - 1.050 1.016 1.004

CPU time 7.660 2.585E1 9.589E1 7.802E2

Alg. 2(a): oo Err. 1.399E-2 6.572E-3 3.287E-3 1.644E-3

Conv. Order - 1.090 1.000 1.000

Alg. 2(a): l2 Err. 8.306E-3 4.007E-3 1.982E-3 9.883E-4

Conv. Order - 1.052 1.016 1.004

CPU time 7.545 2.515E1 9.290E1 4.338E2

Alg. 2(b): Il Err. 1.379E-2 6.605E-3 3.292E-3 1.650E-3

Conv. Order - 1.062 1.005 0.996

Alg. 2(b): l2 Err. 8.301E-3 4.006E-3 1.983E-3 9.884E-4

Conv. Order - 1.051 1.014 1.005

CPU time 7.308 2.694E1 9.372E1 4.324E2

TABLE 3
1-D example, stability, and CPU time. l error, lo error, and CPU time are recorded. For the
proposed methods, At = Ax/16.
Az =¢/8, k=2, Cp = 13;Cy = 0.5;n, = min(30¢,0.3)
€ 0.04 0.02 0.01 0.005 0.0025
CPU time for Alg. 1 2.691E1 5.500E1 1.274E2 2.193E2 4.926E2
CPU time for Alg. 2(a) 2.867E1 4.842E1 9.084E1 1.476E2 4.371E2
CPU time for Alg. 2(b) 3.094E1 5.486E1 1.193E2 1.568E2 4.351E2
Alg. 2(a): loo Err. 4.680E-4 | 4.088E-4 | 2.395E-4 | 2.025E-4 | 1.739E-4
Alg. 2(a): l2 Err. 2.238E-4 | 1.209E-4 | 5.264E-5 | 3.217E-5 | 2.073E-5
Alg. 2(b): lx Err. 9.054E-5 | 7.059E-5 | 8.877E-5 | 8.175E-5 | 7.614E-5
Alg. 2(b): Iz Err. 6.978E-5 | 4.820E-5 | 4.074E-5 | 2.587E-5 | 1.820E-5
Az =¢/8,k=2,Cp =13;Cr =2.5;nm, =0.3

€ 0.04 0.02 0.01 0.005 0.0025
CPU time for Alg. 1 2.472E1 5.057E1 1.161E2 3.237E2 1.021E3
CPU time for Alg. 2(a) 2.388E1 4.943E1 1.018E2 2.154E2 4.258E2
CPU time for Alg. 2(b) 2.420E1 4.886E1 1.019E2 2.196E2 4.257TE2
Alg. 2(a): loo Err. 3.141E-4 | 3.254E-4 | 3.177E-4 1.962E-4 | 4.993E-5
Alg. 2(a): l2 Err. 1.779E-4 | 1.139E-4 | 7.382E-5 | 3.815E-5 | 9.267E-6
Alg. 2(b): leo Err. 1.864E-5 | 1.422E-5 | 1.780E-5 | 3.207E-5 | 5.570E-5
Alg. 2(b): Iz Err. 1.465E-5 | 9.735E-6 | 8.503E-6 1.053E-5 1.715E-5

and the initial condition is

¢z, y,0) = exp(—(z* + %) /0.1).

The computational domain for the proposed methods is [~1, 1]?, and the
computational domain for the reference solution is [—2, 2]2.
Figures 7, 8, and 9 show the plots of the numerical solutions by Algorithms
1 and 2, and the reference solutions.
e Case 2 (2-D vortices Bose-Einstein condensation [6, 12]): the potential is

v(z,y,t) =

2

Ty
2

2

+ Wi (1) exp(—4((z — 25(1))* + (y — ys(t)*) V),
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TABLE 4
1-D example, stability, and CPU time. lo error, lo error, and CPU time are recorded. For the
proposed methods, At = Ax/16.

Az =¢/8,r=—1, Cp = 13;Cy = 5;n, = min(30¢,0.3)

€ 0.4 0.2 0.1 0.05 0.025

CPU time for Alg. 1 8.791 1.893E1 3.987E1 8.779E1 2.081E2
CPU time for Alg. 2(a) 8.479 1.964E1 3.553E1 8.002E1 1.657E2
CPU time for Alg. 2(b) 8.820 1.918E1 3.961E1 8.039E1 1.664E2
Alg. 2(a): loo Err. 4.349E-5 | 9.106E-6 | 5.653E-7 | 8.685E-8 | 7.020E-8
Alg. 2(a): l2 Err. 3.148E-5 | 4.521E-6 | 1.670E-7 | 2.296E-8 | 1.457E-8
Alg. 2(b): lx Err. 2.318E-5 1.183E-6 1.120E-7 | 2.942E-8 | 2.481E-8
Alg. 2(b): l2 Err. 2.388E-5 | 8.641E-6 | 6.531E-8 | 1.887E-8 | 2.032E-9

Az =¢/8,k=—1,Cp =13;Cy = 2.5;n, = 0.3

€ 0.4 0.2 0.1 0.05 0.025

CPU time for Alg. 1 1.019E1 1.924E1 4.009E1 8.660E1 2.303E2
CPU time for Alg. 2(a) 1.173E1 1.877E1 3.871E1 7.982E1 1.675E2
CPU time for Alg. 2(b) 1.019E1 1.933E1 3.857TE1 7.903E1 1.670E2
Alg. 2(a): loo Err. 2.116E-5 | 6.023E-6 | 4.116E-7 | 9.375E-8 | 3.049E-8
Alg. 2(a): l2 Err. 2.044E-5 | 3.282E-6 1.416E-7 | 3.160E-8 1.108E-8
Alg. 2(b): e Err. 1.087E-6 | 2.336E-7 | 2.217E-8 | 5.687E-9 | 1.468E-8
Alg. 2(b): Iz Err. 4.000E-7 | 1.746E-7 | 1.317E-8 | 3.873E-9 | 5.325E-9

Re(¢)

Im(¢)

Fi1G. 3. 1-D example, plots of the numerical solutions ¢ at t = 0.5. k = 2, Az = ¢/8, At =
Az /16. Top: real part of ¢; Bottom: imaginary part of ¢. Red line: refrerence solution; Blue dashed:
Alg. 1; Green dots: Alg. 2(a); Black circle: Alg. 2(b). Column (a): ¢ = 0.01,Cz = 2.5,n; = 0.3;
Column (b): € =0.005,Cy = 2.5,n; = 0.3; Column (c): € = 0.005,Cy = 5,1z = 0.15.

where (24(t),ys(t)) = (ro cos(wst), 7o sin(wst)), W, increases linearly from 0
at t = 0 to Wy at t = , remains constant as Wy from ¢ = 7 to t = 4,
decreases linearly to 0 at t = 5m from ¢ = 47, and remains 0 after ¢t = 57. We
choose Wy = \/§,VS = \/077 rog = 2\/0.71, ws = 1.

The initial condition is

oa,.0) =y fmax fo. = T b exp(- (a2 +-7),

with p a given constant.
The computational domain for the proposed methods is [-2, 2]%, and the
computational domain for the reference solution is [—4, 4]2.
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Fic. 4. 1-D example, plots of the numerical solutions ¢ at t = 0.5. k = —1, Az = ¢/8,

At = Ax/16. Top: real part of ¢; Bottom: imaginary part of ¢. Red line: refrerence solution;
Blue dashed: Alg. 1; Green dots: Alg. 2(a); Black circle: Alg. 2(b). Column (a): € = 0.01,Cy =
2.5,mz = 0.3; Column (b): € = 0.005,Cy = 2.5,n, = 0.3; Column (c): € = 0.005,Cy = 5,1, = 0.15.

0.15 0.15 0.15
n 0.1 : n 01 n 0.1 :
< < <
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o 0 : o
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a) x b) x c) x
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FIG. 5. 1-D example, plots of |$|? at t = 0.5. Az = ¢/8, At = Az/16. Top: r = 2;
Bottom: k = —1. Red line: refrerence solution; Blue dashed: Alg. 1; Green dots: Alg. 2(a); Black
circle: Alg. 2(b). (a—d): € = 0.01,Cy = 2.5,n5 = 0.3; (b—e): € = 0.005,Cy = 2.5,n, = 0.3; (c-f):
€ =0.005,Cy = 5,1, = 0.15.

Figures 10, 11, and 12 show the plots of the numerical solutions by Algorithms
1 and 2 and the reference solutions.
These figures verify the accuracy of the proposed methods.

3.1. Discussion of numerical experiments. From the numerical experiments,
we note that
e for Algorithms 1 and 2, we can choose the mesh sizes as {Ax, Ay, Az} = O(h)
and At = O({Ax, Ay, Az}).
e For Algorithms 1 and 2, the order of accuracy is O(h + {Ax, Ay, Az} + At),
provided that the error due to the low-rank approximation with piecewise
Chebyshev polynomial interpolation is not dominant.
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F1c. 6. 1-D ezample, plots of [ |p|2dx. Ax = ¢€/8, At = Ax/16. Top: k = 2; Bottom: k = —1.
Red line: refrerence solution; Blue dashed: Alg. 1; Green dots: Alg. 2(a); Black circle: Alg. 2(b).

(a—d): € = 0.01,Cz = 2.5,n, = 0.3; (b—e): € = 0.005,Cyx = 2.5,m; = 0.3; (cf): e = 0.005,Cy =
5,mz = 0.15.
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Fic. 7. 2-D example case 1:
e=0.1, (e-h) with e =0.05. Kk =1,Az = Ay =¢/4, At =

surface plots of the numerical solutions ¢ at t = 0.8. (a—d) with

min{Az, Ay}/8. Top of (a—d) and (e-h):

real part of ¢, Bottom of (a—d) and (e-h): imaginary part of ¢. From first column to fourth column:
1, Alg. 2(a), and Alg. 2(b), respectively.
Cy = Cy = 2.5. For Algorithm 2(b), Cp = Cq = 13.

reference solution, Alg.

For PMLs, nz = ny = 0.3,

e For Algorithm 1, if the width of the PMLs is independent of /i, the complexity
is O(N?) due to the fact that direct summation is applied for computing the
wavefunction in the PMLs; if the width of the PMLs is O(h), the complexity is
O(Nlog N). For Algorithm 2, the complexity is O(N log N) for both choices

of the PMLs.
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FIG. 8. 2-D example case 1: contour plots of |¢|? at t = 0.8. (a—d) with e = 0.1, (e-h)
with € = 0.05. kK = 1,Az = Ay = €¢/4, At = min{Az, Ay}/8. From first column to fourth column:
reference solution, Alg. 1, Alg. 2(a), and Alg. 2(b), respectively. For PMLs, ny =ny = 0.3, Cy =
Cy = 2.5. For Algorithm 2(b), Cp = Cyq = 13.
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Fic. 9. 2-D ezample case 1: plots of [ |¢|2dxdy. Red line: refrerence solution; Blue dashed:
Alg. 1; Green dots: Alg. 2(a); Black circle: Alg. 2(b). (a) with e = 0.1, (b) with e = 0.05.
k= 1,Az = Ay = €¢/4, At = min{Az, Ay}/8. For PMLs, n, = ny = 0.3, Cy = Cy = 2.5. For
Algorithm 2(b), Cp = Cq = 13.

2 2 2 2
>0 4 >0 & >0 & >0 &

F1G. 10. 2-D ezample case 2: contour plots of the numerical solutions ¢ at t = 127 with e = 0.1.
(a—d) with p = 0.3, (e-h) with u = 0.6. Kk =1, Az = Ay = ¢/4, At = min{Az, Ay}/8. Top of (a—d)
and (e-h): real part of ¢, Bottom of (a—d) and (e-h): imaginary part of ¢. From first column
to fourth column: reference solution, Alg. 1, Alg. 2(a), and Alg. 2(b), respectively. For PMLs,
Nz =1y = 0.3, Cx = Cy = 2.5. For Algorithm 2(b), Cp = Cq = 13.
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FIG. 11. 2-D example case 2: contour plots of |$|? at t = 12w with ¢ = 0.1. (a-d) with
u = 0.3, (e-h) with p = 0.6. kK = 1,Az = Ay = ¢/4, At = min{Az, Ay}/8. From first column
to fourth column: reference solution, Alg. 1, Alg. 2(a), and Alg. 2(b), respectively. For PMLs,
Nz =1ny = 0.3, Cx = Cy = 2.5. For Algorithm 2(b), Cp = Cq = 13.
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Fic. 12. 2-D ezample case 2: plots of [ |¢|2dxdy with € = 0.1. Red line: refrerence solution;
Blue dashed: Alg. 1; Green dots: Alg. 2(a); Black circle: Alg. 2(b). (a) with p = 0.3, (b) with
pw=06. k=1,Az = Ay = ¢/4, At = min{Az, Ay}/8. For PMLs, n, =ny = 0.3, C; = Cy = 2.5.
For Algorithm 2(b), Cp = Cq = 13.

e Compared with Algorithm 1 that uses direct summation for points in the
PMLs, Algorithm 2 with the low-rank approximation by piecewise Chebyshev
polynomial interpolation is stable,

e 2-D examples on 2-D vortices Bose-Einstein condensation [6, 12] demonstrate
that the proposed methods can be applied to solve real physical problems.

4. Conclusion. We present asymptotic methods, namely fast Huygens sweep-
ing methods, for numerically solving the time-dependent Schrédinger equations with
time-dependent potentials in the semi-classical regime. The PML techniques are ap-
plied to truncate the infinite domain to a bounded subdomain. The methods combine
Huygens’ principle and short-time WKBJ propagators, which results in integrals with
the retarded Green’s functions that approximated by the WKBJ expansion. Analytic
approximations of the phase and amplitude terms in the WKBJ ansatz for the retarded
Green’s functions can be obtained via short-time Taylor expansions. For points in the
PMLs, low-rank approximation by Chebyshev polynomial interpolation can be uti-
lized to approximate the integrals such that the resulting integrals can be evaluated
efficiently with FFT and the complexity is O(N log N) with N the number of points in
the simulation. Numerical examples including time-dependent Gross—Pitaevskii equa-
tion for BEC are presented to demonstrate the proposed methods. The framework
can be extended to include higher-order terms in the WKBJ ansatz and higher-order
Taylor expansions for the phase and amplitude terms such that higher-order methods
can be designed. The methods will be extended to study the time-dependent Kohn-
Sham equations arising from electronic structure calculations, which will be reported
in a future work.
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