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Abstract. We present asymptotic methods for numerically solving the time-dependent
Schrödinger equation with time-dependent potentials. The methods consist of the following ingredi-
ents: (1) perfectly matched layers are applied to limit the infinite domain to a bounded subdomain;
(2) the wavefunction is propagated by a short-time propagator in the form of integrals with re-
tarded Green’s functions that are based on Huygens’ principle; (3) semiclassical limit approximations
are adopted to approximate the retarded Green’s functions, where the phase and amplitude terms
are obtained as solutions of eikonal and transport equations, respectively; (4) Taylor expansions are
explored to obtain analytic approximations of the phase and amplitude terms for a short period of
time; and (5) the fast Fourier transform can be used to evaluate the integrals after appropriate low-
rank approximations with Chebyshev polynomial interpolation. The methods are expected to have
complexity O(N logN) per time step with N the number of points used in the simulation. Numerical
examples are presented to demonstrate the methods.
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1. Introduction. We consider numerical methods for solving the time-dependent
Schrödinger equation:

ι~
∂φ(x, t)

∂t
= − ~2

2m
∇2φ(x, t) + v(x, t)φ(x, t), t > 0,

φ(x, 0) = φ0(x),

(1.1)

where x ≡ (x, y, z) ∈ R3 is the spatial coordinate vector, ∇ ≡ (∂x, ∂y, ∂z) is the
gradient operator at x, m is the atomic mass, ~ is the reduced Planck constant, φ(x, t)
is the wavefunction, v(x, t) is the time-dependent potential, and φ0(x) is the initial
wavefunction. Numerical solutions of the Schrödinger equation (1.1) are desirable for
its wide applications in engineering, physics, and chemistry. However, solving the
equation numerically is highly challenging, mainly because (i) the domain is infinite,
and (ii) the wavefunction φ is oscillatory for small parameter ~.

For computing the wavefunction in an infinite domain, unless the wavefunction
is assumed to be compactly supported in a bounded subdomain, the aim is to com-
pute the wavefunction around a small bounded subdomain that bears special physical
interest. A common practice of accomplishing such a goal is to “truncate” the com-
putational domain and solve a “truncated” problem with a suitable domain-based
method, where absorbing boundary conditions (ABCs) are generally required. As
one of the approaches for designing ABCs, the perfectly matched layer (PML) method
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A878 SONGTING LUO

has achieved great success in various applications. The perfectly matched layer, ever
since it was introduced by Berenger in 1994 [9], has become a widespread technique
for preventing reflections from far field boundaries for wave propagation problems in
both the time-dependent and frequency domains. The idea is to use an absorbing layer
designed to absorb waves without reflections. The PML can be seen as the result of a
complex coordinate transformation, being essentially a continuation of the equation
into complex spatial coordinates, where a modified equation has to be solved. Ideally,
the incoming waves are damped to such an extent that the outer boundary conditions
are of no importance. Also, the interface between the computational domain and the
damping layer should not cause any reflections. In our numerical simulation, we will
first use the PML method to “truncate” the infinite domain to a bounded subdomain
and derive the modified equation in the bounded subdomain.

The wavefunction φ is highly oscillatory for small parameter ~ such that it is
very challenging to compute if methods based on direct discretization of the equation,
such as the finite difference and finite element methods, are used. Because in order to
control the dispersion error, such methods require very refined meshes to resolve the
oscillations, and their computational cost becomes too high for practical applications
[3, 4, 16]. Therefore, alternative methods such as the operator splitting methods and
the asymptotic methods in the semiclassical regime [2, 6, 7, 8, 19, 22, 30] have been
designed to balance efficiency and accuracy. In our numerical simulation, we propose
to design asymptotic methods in the semiclassical regime by approximating the time
propagator of the wavefunction φ in a way that combines Huygens’ principle [5] and
the Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) propagator [10, 13, 20, 22, 25, 26].

The time propagator of the wavefunction φ can be given as integrals with the
retarded Green’s functions [29, 31]. The retarded Green’s function for a generic source
(x0, t0), denoted as G(x, t;x0, t0), satisfies the equation:

ι~
∂G(x, t;x0, t0)

∂t
= − ~2

2m
∇2G(x, t;x0, t0) + v(x, t)G(x, t;x0, t0), t > t0,

lim
t→t+0

G(x, t;x0, t0) = δ(x− x0),

G(x, t;x0, t0) = 0, t < t0.

(1.2)

According to Huygens’ principle [29, 31], the wavefunction φ(x, t) for t > t0 is given as

φ(x, t) =

∫
R3

G(x, t;x0, t0)φ(x0, t0)dx0, t > t0.(1.3)

In order to apply the above integral for computing the wavefunction φ, the
retarded Green’s function G must be computed and it requires solving (1.2), which can
be as challenging as solving (1.1). Instead, we turn to seek asymptotic approximations
with the WKBJ ansatz [16, 20, 25, 26]:

G̃(x, t; t0; ξ) = exp(ιτ (x, t; t0; ξ)/~)A(x, t; t0; ξ; ~)

≡ exp(ιτ (x, t; t0; ξ)/~)

{ ∞∑
k=0

(−ι~)kAk(x, t; t0; ξ)

}
,

(1.4)

as ~→ 0 for any given parameter ξ ∈ R3, where τ is the phase and {Ak}∞k=0 are the

amplitude terms, and G̃ satisfies the following equation in the semiclassical limit:

ι~
∂G̃(x, t; t0; ξ)

∂t
= − ~2

2m
∇2G̃(x, t; t0; ξ) + v(x, t)G̃(x, t; t0; ξ), t > t0,

G̃(x, t0; t0; ξ) = exp(ιx · ξ).

(1.5)
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By substituting (1.4) into (1.5) and collecting terms in the same order of ~ as
~→ 0, for each parameter ξ, one can derive the eikonal equation for τ(x, t; t0; ξ),

τt + v(x, t) +
1

2m
|∇τ |2 = 0, t > t0,

τ(x, t0; t0; ξ) = x · ξ,
(1.6)

and the transport equations for {Ak(x, t; t0; ξ)}∞k=0,

(A0)t +
1

m
∇τ · ∇A0 +

1

2m
∆τA0 = 0, t > t0,

A0(x, t0; t0; ξ) = 1,
(1.7)

and for k ≥ 1,

(Ak)t +
1

m
∇τ · ∇Ak +

1

2m
∆τAk = −∆Ak−1

2m
, t > t0,

Ak(x, t0; t0; ξ) = 0.
(1.8)

With the plane wave decomposition of the δ-function given as

δ(x− x0) =

(
1

2π~

)3 ∫
R3

exp(ι(x · ξ − x0 · ξ)/~)dξ,

one can approximate the retarded Green’s function as

G(x, t;x0, t0)=

(
1

2π~

)3∫
R3

exp(ι(τ (x, t; t0; ξ)− x0 · ξ)/~)
∞∑
k=0

Ak(x, t; t0; ξ)(−ι~)kdξ,

(1.9)

for a short period of time, t ∈ [t0, t0 + ∆t] with ∆t small, while the phase τ and the
amplitude terms {Ak}∞k=0 are smooth [22].

With the asymptotic retarded Green’s function (1.9), the wavefunction φ can be
propagated for a short period of time starting from any arbitrary time t0 [18, 21, 22]:

φ(x, t) =

∫
R3

G(x, t;x0, t0)φ(x0, t0)dx0, t0 < t < t0 + ∆t.(1.10)

The local short-time propagation can be repeated to propagate the wavefunction φ
for a long time [18, 21]:

φ(x, t) =

∫
R3

G(x, t;x0, tk)φ(x0, tk)dx0, tk < t < tk + ∆t,(1.11)

with tk = k∆t for k = 0, 1, 2, . . .
The short-time propagator that combines Huygens’ principle and the WKBJ

ansatz has been applied to compute semiclassical solutions of the Schrödinger equa-
tions with time-independent potentials [22], where the solutions are assumed to be
compactly supported such that the computation can be performed in a bounded sub-
domain. Analytic approximations of the phase and amplitude terms within a short
period of time are obtained by Taylor expansions. And the integral (1.10) can be
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A880 SONGTING LUO

evaluated by the fast Fourier transform (FFT) after appropriate discretization. Con-
sequently, the overall complexity at each time step is O(N logN) with N the number
of points used in the simulation. Similar techniques that combine integral represen-
tations of the wavefunction and asymptotic approximations of the Green’s functions
have been developed for simulating acoustic and electromagnetic wave propagation
in the high frequency regime [23, 27, 28]. These methods are based on Huygens’
principle, and their complexity is O(N logN) because the integrals can be evaluated
efficiently via low-rank approximations of the matrix obtained from discretizing the
integrals.

In this work, we extend the ideas to compute asymptotic solutions for the
Schrödinger equation with time-dependent potentials (1.1) and PMLs. The PML
method is first applied to limit the infinite domain to a bounded subdomain without
assuming that the wavefunction is compactly supported. After that, we derive the
modified Schrödinger equation with the PMLs in the “truncated” subdomain, follow-
ing which we present asymptotic approximations of the short-time propagator for its
wavefunction by combining Huygens’ principle and the WKBJ approximation. With
the asymptotic approximations of the short-time propagator, we propose efficient nu-
merical procedures to evaluate the integrals. Appropriate low-rank approximations
with Chebyshev polynomial interpolation will be applied to approximate the inte-
grals such that the resulting integrals can be evaluated by the FFT. Therefore, we
can compute globally asymptotic solutions for the Schrödinger equation efficiently.

The rest of the paper is organized as follows. In section 2, we first present
the modified Schrödinger equation with the PMLs and asymptotic approximations
of the short-time propagator for its wavefunction; then we show how to approximate
the phase τ and amplitude terms {Ak}∞k=0 analytically in the asymptotic approxima-
tion, and finally we present the formulations and numerical procedures for computing
the wavefunction efficiently. In section 3, we demonstrate the methods with numerical
experiments, including time-dependent Gross–Pitaevskii equations for Bose–Einstein
condensation at zero temperature. Conclusive remarks are given at the end.

2. Formulations and algorithms. In this section, we present asymptotic meth-
ods for the Schrödinger equation with perfectly matched layers. We assume the com-
putational domain is Ω = [xmin, xmax]× [ymin, ymax]× [zmin, zmax], which is covered
by a uniform mesh {xiijjkk ≡ (xii, yjj , zkk)} as

{xii ≡ xmin + (ii− 1)∆x}Nx+1
ii=1 ,

{yjj ≡ ymin + (jj − 1)∆y}Ny+1
jj=1 ,

{zkk ≡ zmin + (kk − 1)∆z}Nz+1
kk=1 ,

with ∆x = (xmax − xmin)/Nx,∆y = (ymax − ymin)/Ny,∆z = (zmax − zmin)/Nz. We
also assume the phase domain ξ ≡ (ξ1, ξ2, ξ3) is covered by a uniform mesh {ξijk ≡
(ξ1i, ξ2j , ξ3k)} as

{ξ1i ≡ (i− 1)∆ξ1}Nx/2
i=−Nx/2+1 ,

{ξ2j ≡ (j − 1)∆ξ2}
Ny/2

j=−Ny/2+1 ,

{ξ3k ≡ (k − 1)∆ξ3}Nz/2
k=−Nz/2+1 ,

with ∆ξ1 = 2π/(xmax − xmin),∆ξ2 = 2π/(ymax − ymin),∆ξ3 = 2π/(zmax − zmin).
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2.1. Schrödinger equation with PML. We shall derive the Schrödinger equa-
tion with the PMLs using the complex coordinate stretching technique. Introduce the
absorption profile functions [1, 9, 32]:

σ(l) =


Cl

∣∣∣∣ l − lmin − ηl
ηl

∣∣∣∣p , l ∈ [lmin, lmin + ηl],

0, l ∈ [lmin + ηl, lmax − ηl],

Cl

∣∣∣∣ l − lmax + ηl
ηl

∣∣∣∣p , l ∈ [lmax − ηl, lmax],

(2.1)

and

s(l) =
1

1 + exp(iπ/4)σ(l)
.

Here [lmin, lmax] is the interval of interest, ηl is the width of the PML, Cl is constant,
and p is the power of the profile function. The PML method replaces ∂x, ∂y, and ∂z
with s1(x)∂x, s2(y)∂y, and s3(z)∂z, respectively, where si(·) = s(·) with σi(·) = σ(·)
for i = 1, 2, 3. The PML effectively provides a damping layer of width ηx (ηy, ηz,
respectively) near the two sides of the x-axis (y-axis, z-axis, respectively); refer to
Figure 1.

PML	

PML	 PML	

PML	

Ω

xmin xmax

ymin

ymax

ηx ηx

ηy

ηy

Fig. 1. PML for two-dimensional cases: with width ηx and ηy along the x-axis and y-axis,
respectively.

The Schrödinger equation (1.1) transfers to

ι~
∂φ(x, t)

∂t
= − ~2

2m
{s1(x)∂x(s1(x)∂x) + s2(y)∂y(s2(y)∂y) + s3(z)∂z(s3(z)∂z)}φ(x, t)

+ v(x, t)φ(x, t).

By substituting φ(x, t) with

φ(x, t) =
ψ(x, t)√

s1(x)s2(y)s3(z)
,

we have the modified Schrödinger equation:

ι~
∂ψ(x, t)

∂t
=− ~2

2m1(x)
ψxx(x, t)− ~2

2m2(y)
ψyy(x, t)− ~2

2m3(z)
ψzz(x, t)+w(x, t)ψ(x, t),

(2.2)

with
m1(x) =

m

s2
1(x)

, m2(y) =
m

s2
2(y)

, m3(z) =
m

s2
3(z)

,
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and

w(x, t)

=− ~2

2m

(
(s′1(x))2+(s′2(y))2+(s′3(z))2

4
− s1(x)s′′1(x)+s2(y)s′′2(y)+s3(z)s′′3(z)

2

)
+v(x, t).

The time propagator of the wavefunction ψ is also given as integrals with the
retarded Green’s functions [29, 31], similarly as in the introduction (section 1). The
retarded Green’s function for a generic source (x0, t0), also denoted as G(x, t;x0, t0),
satisfies the equation:

ι~
∂G

∂t
= − ~2

2m1(x)
Gxx −

~2

2m2(y)
Gyy −

~2

2m3(z)
Gzz + wG, t > t0,

lim
t→t+0

G(x, t;x0, t0) = δ(x− x0),

G(x, t;x0, t0) = 0, t < t0.

(2.3)

Following Huygens’ principle [29, 31], the wavefunction ψ(x, t) for t > t0 is given as

ψ(x, t) =

∫
Ω

G(x, t;x0, t0)ψ(x0, t0)dx0, t > t0.(2.4)

2.2. Asymptotic approximation. We explore asymptotic approximations of
the retarded Green’s function G with the WKBJ ansatz (1.4) and choose G̃(x, t; t0; ξ)
that satisfies the following equation:

ι~
∂G̃

∂t
= − ~2

2m1(x)
G̃xx −

~2

2m2(y)
G̃yy −

~2

2m3(z)
G̃zz + wG̃, t > t0,

G̃(x, t0; t0; ξ) = exp(ιx · ξ).

(2.5)

With formulas (1.9) and (2.4), one can derive the approximation of ψ as

ψ(x, t) =

∫
Ω

G(x, t;x0, t0)ψ(x0, t0)dx0

=

(
1

2π~

)3 ∫
Ω

∫
R3

exp(ι(τ (x, t; t0; ξ)− x0 · ξ)/~)

×
∞∑
k=0

Ak(x, t; t0; ξ)(−ι~)kψ(x0, t0)dξdx0

=

∞∑
k=0

∫
R3

exp(ιτ (x, t; t0; ξ)/~)Ak(x, t; t0; ξ)(−ι~)kψ̂(ξ, t0)dξ,

(2.6)

with ψ̂ ≡ F [ψ] the Fourier transform of ψ:

ψ̂(ξ, t0) ≡ F [ψ(x, t0)] =

(
1

2π~

)3 ∫
Ω

exp(−ιx0 · ξ/~)ψ(x0, t0)dx0.(2.7)

Formula (2.6) will serve as the short-time propagator for the wavefunction ψ. For
numerical implementations, we need to truncate the infinite sum and compute the
phase and amplitude terms needed in the truncated sum.
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2.3. Analytic approximations of phase and amplitude terms. The mod-
ified eikonal equation for τ(x, t; t0; ξ) is given as

∂τ

∂t
+

τ2
x

2m1(x)
+

τ2
y

2m2(y)
+

τ2
z

2m3(z)
+ w(x, t) = 0, t > t0,

τ(x, t0; t0; ξ) = x · ξ,
(2.8)

and the modified transport equations for {Ak(x, t; t0; ξ)}∞k=0 are given as

(A0)t +
(A0)xτx
m1(x)

+
(A0)yτy
m2(y)

+
(A0)zτz
m3(z)

+

(
τxx

2m1(x)
+

τyy
2m2(y)

+
τzz

2m3(z)

)
A0 = 0, t > t0,

A0(x, t0; t0; ξ) = 1,

(2.9)

and for k ≥ 1,

(Ak)t +
(Ak)xτx
m1(x)

+
(Ak)yτy
m2(y)

+
(Ak)zτz
m3(z)

+

(
τxx

2m1(x)
+

τyy
2m2(y)

+
τzz

2m3(z)

)
Ak

= − (Ak−1)xx
2m1(x)

− (Ak−1)yy
2m2(y)

− (Ak−1)zz
2m3(z)

, t > t0,

Ak(x, t0; t0; ξ) = 0.

(2.10)

The computation of τ and {Ak}∞k=0 is the most expensive part for implementing
(2.6), since they must be computed for all ξ ∈ R3. To alleviate the computational
burden, we follow the approaches in [17, 22, 24], where analytic approximations of τ
and {Ak}∞k=0 are obtained with short-time Taylor expansions.

Assume that we need to approximate τ(x, t; t0; ξ) and {Ak(x, t; t0; ξ)}∞k=0 at
t = t0 + ∆t with ∆t small. We expand them as Taylor series at t0:

τ(x, t; t0; ξ) =

∞∑
l=0

τl(x; t0; ξ)(∆t)l,

Ak(x, t; t0; ξ) =
∞∑
l=0

Akl(x; t0; ξ)(∆t)l, k ≥ 0,

(2.11)

with the expansion terms, {τl}∞l=0 and {Akl}∞l=0, to be determined. And we assume
the Taylor series for w(x, t) at t0 is given:

w(x, t) =
∞∑
l=0

wl(x, t0)∆tl ≡
∞∑
l=0

{
1

l!

∂lw(x, t0)

∂tl

}
∆tl.

By substituting the Taylor series for τ into the eikonal equation (2.8) and collect-
ing the terms of the same order in ∆t, we have

τ0(x; t0; ξ) = x · ξ,

τ1(x; t0; ξ) = −ξ2

2
·
(

1

m1(x)
,

1

m2(y)
,

1

m3(z)

)
− w0(x, t0),

τ2(x; t0; ξ)=
ξ

2
·
(

(w0)x
m1(x)

,
(w0)y
m2(y)

,
(w0)z
m3(z)

)
− ξ3

4
·
(
m′1(x)

m3
1(x)

,
m′2(y)

m3
2(y)

,
m′3(z)

m3
3(z)

)
−w1(x, t0)

2
,

(2.12)
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and similarly for τl(x; t0; ξ) with l ≥ 3 as

τl(x; t0; ξ)

=
1

l

{
−wl(x, t0)−

l−1∑
s=0

(
(τs)x(τl−1−s)x

2m1(x)
+

(τs)y(τl−1−s)y
2m2(y)

+
(τs)z(τl−1−s)z

2m3(z)

)}
.

(2.13)

By substituting the Taylor series for A0 into the transport equation (2.9) and
collecting the terms of the same order in ∆t, we have

A00(x; t0; ξ) = 1,

A01(x; t0; ξ) = 0,

A02(x; t0; ξ)=−1

8

(
m1(x)′′

m3
1(x)

+
m′′2(y)

m3
2(y)

+
m′′3(z)

m3
3(z)
− 2(m′1(x))2

m4
1(x)

− 2(m′2(y))2

m4
2(y)

− 2(m′3(z))2

m4
3(z)

)
+

1

4

(
(w0)xx
m1(x)

+
(w0)yy
m2(y)

+
(w0)zz
m3(z)

)
,

(2.14)

and similarly for A0l(x; t0; ξ) with l ≥ 3 as

A0l(x; t0; ξ) =
1

l

{
−
l−1∑
s=0

(
(A0s)x(τl−1−s)x

m1(x)
+

(A0s)y(τl−1−s)y
m2(y)

+
(A0s)z(τl−1−s)z

m3(z)

)

−
l−1∑
s=0

(
A0s(τl−1−s)xx

2m1(x)
+
A0s(τl−1−s)yy

2m2(y)
+
A0s(τl−1−s)zz

2m3(z)

)}
.

(2.15)

By substituting the Taylor series for Ak with k ≥ 1 into the transport equation
(2.10) and collecting the terms of the same order in ∆t, we have

Ak0(x; t0; ξ) = 0,

Ak1(x; t0; ξ) = 0,

Ak2(x; t0; ξ) = 0,

(2.16)

and similarly for Akl(x; t0; ξ) with l ≥ 3 as

Akl(x; t0; ξ) =
1

l

{
−
l−1∑
s=0

(
(Aks)x(τl−1−s)x

m1(x)
+

(Aks)y(τl−1−s)y
m2(y)

+
(Aks)z(τl−1−s)z

m3(z)

)

−
l−1∑
s=0

(
Aks(τl−1−s)xx

2m1(x)
+
Aks(τl−1−s)yy

2m2(y)
+
Aks(τl−1−s)zz

2m3(z)

)

−
l−1∑
s=0

(
1

2m1(x)
(Ak−1,s)xx +

1

2m2(y)
(Ak−1,s)yy +

1

2m3(z)
(Ak−1,s)zz

)}
.

(2.17)

Therefore, analytic approximations of τ and {Ak}∞k=0 for a short period of time
can be obtained with the Taylor series (2.11).
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2.4. Algorithms. With the short-time analytic approximations of τ and
{Ak}∞k=0, we demonstrate how to implement the asymptotic short-time propagator
with the following approximation:

τ = τ0 + τ1∆t+O(∆t2),

A = A00 +A01∆t+O(∆t2) +O(~).
(2.18)

In particular, we will approximate the wavefunction ψ(x, t) as

ψ(x, t) ≈
∫
R3

exp(ιτ (x, t; t0; ξ)/~)A0(x, t; t0; ξ)ψ̂(ξ, t0)dξ,(2.19)

with the phase τ and the amplitude A0 approximated as

τ(x, t; t0; ξ) = ξ · x−
{
ξ2

2
·
(

1

m1(x)
,

1

m2(y)
,

1

m3(z)

)
+ w0

}
∆t+O(∆t2),

A0(x, t; t0; ξ) = 1 +O(∆t2).

(2.20)

Formulas (2.19) and (2.20) yield a first-order approximation for ψ(x, t) =
ψ(x, t0 + ∆t):

ψ(x, t) = exp

(
−ιw0(x, t0)∆t

~

)∫
R3

exp

(
ιx · ξ
~

)
× exp

(
−ι∆t

2~

(
ξ2
1

m1(x)
+

ξ2
2

m2(y)
+

ξ2
3

m3(z)

))
ψ̂(ξ, t0)dξ

+O(∆t2(1 + ~)),

(2.21)

which provides the short-time propagator for the wavefunction ψ in the semiclassical
regime.

If x is not in the PMLs, (2.21) reads

ψ(x, t) = exp

(
−ιw0(x, t0)∆t

~

)∫
R3

exp

(
ιx · ξ
~

)
exp

(
−ι∆t
2m~

ξ2

)
ψ̂(ξ, t0)dξ

+O(∆t2(1 + ~))

= exp

(
−ιw0(x, t0)∆t

~

)
F−1

[
exp

(
−ιξ2∆t

2m~

)
F [ψ(x, t0)]

]
+O(∆t2(1 + ~)),

(2.22)

with F−1 the inverse Fourier transform defined as

F−1[ψ̂(ξ, t0)] =

∫
R3

exp

(
ιx · ξ
~

)
ψ̂(ξ, t0)dξ.

We can discretize the Fourier transform (2.7) as

ψ̂ijk(t0) =
∆xyz

(2π~)3

∑
ii,jj,kk

exp

(−ιxiijjkk · ξijk
~

)
ψiijjkk(t0),(2.23)D
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the integral (2.21) as

ψiijjkk(t) = exp

(
−ιw0,iijjkk(t0)∆t

~

)
∆ξ1ξ2ξ3

∑
i,j,k

exp

(
ιxiijjkk · ξijk

~

)

× exp

(
−ι∆t

2~

(
ξ2
1i

m1,ii
+

ξ2
2j

m2,jj
+

ξ2
3k

m3,kk

))
ψ̂ijk(t0),

(2.24)

and the integral (2.22) as

ψiijjkk(t) = exp

(
−ιw0,iijjkk(t0)∆t

~

)
∆ξ1ξ2ξ3

∑
i,j,k

exp

(
ιxiijjkk · ξijk

~

)

× exp

(
−ι∆t

2~

(
ξ2
ijk

m

))
ψ̂ijk(t0),

(2.25)

with ψ̂ijk(t0) = ψ̂(ξijk, t0), ψiijjkk(t0) = ψ(xiijjkk, t0), ξijk = (ξ1i, ξ2j , ξ3k),xiijjkk =
(xii, yjj , zkk), ∆xyz = ∆x∆y∆z, w0,iijjkk(t0) = w0(xiijjkk, t0),m1,ii = m1(xii),
m2,jj = m2(yjj),m3,kk = m3(zkk), and ∆ξ1ξ2ξ3 = ∆ξ1∆ξ2∆ξ3.

The formula (2.23) for approximating the Fourier transform and the formula
(2.25) for computing ψ with x not in the PMLs can be implemented efficiently by
the FFT [14]. And the formula (2.21) and/or (2.24) for computing ψ with x in the
PMLs can be implemented by direct summation. Therefore, we have first algorithm
for computing the wavefunction ψ.

Algorithm 1 (Direct sum for x in PMLs).
For k = 0, 1, 2, . . .:

1. At t0 = k∆t, apply FFT and (2.23) to compute ψ̂(ξ, t0) = F [ψ(x, t0)];
2. At t = t0 + ∆t:

(a) for x not in the PMLs, apply FFT and (2.25) to compute ψ(x, t):
• apply FFT to compute

Wiijjkk ≡ ∆ξ1ξ2ξ3
∑
i,j,k

exp

(
ιxiijjkk · ξijk

~

)
Ŵijk

with Ŵijk = exp
(
−ι∆t

2~

(
ξ2
ijk

m

))
ψ̂ijk(t0);

• compute

ψiijjkk(t) = exp

(
−ιw0,iijjkk(t0)∆t

~

)
Wiijjkk.

(b) for x in the PMLs, apply (2.24) to compute ψ(x, t) with direct summa-
tion.

For Algorithm 1, the complexity of step 1 and part (a) of step 2 is O(N logN)
with N = NxNyNz since FFT is applied. The complexity of part (b) of step 2
is O(ηx~

ηy
~
ηz
~ MxMyMzN), provided that ∆x = O( ~

Mx
), ∆y = O( ~

My
), and ∆z =

O( ~
Mz

) for certain constants Mx,My, and Mz. Therefore, the total complexity is

O(N logN + ηx
~
ηy
~
ηz
~ MN) with M = MxMyMz, which depends on the width of the

PMLs.
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The complexity for computing ψ(x, t) with x in the PMLs can become too high
with small parameter ~ if the width of the PMLs is independent of ~. Fortunately,
we find that the following term,

E(x, ξ) ≡ exp

(
−ι∆t

2~

(
ξ2
1

m1(x)
+

ξ2
2

m2(y)
+

ξ2
3

m3(z)

))
= exp

(
−ι∆t

2~

(
ξ2
1

m1(x)

))
exp

(
−ι∆t

2~

(
ξ2
2

m2(y)

))
exp

(
−ι∆t

2~

(
ξ2
3

m3(z)

))
,

(2.26)

is not oscillatory with respect to x when ξ is in a bounded domain and ∆t is small
enough. Consequently we can apply a low-rank approximation of this term, e.g., with
piecewise Chebyshev polynomial interpolation [11, 15, 23, 27, 28], given as

E(x, ξ) ≈
Cp∑
p=1

Cq∑
q=1

Cr∑
r=1

L(x, xp)L(y, yq)L(z, zr)E(xpqr, ξ),(2.27)

where {xpqr ≡ (xp, yq, zr)} ≡ {xp}
Cp

p=1 × {yq}
Cq

q=1 × {zr}
Cr
r=1 are Chebyshev nodes in

Ω, and L(·, ·) is the Lagrange basis function. Cp, Cq, and Cr are expected to be much
smaller than Nx, Ny, and Nz.

With the piecewise Chebyshev polynomial interpolation, we can approximate
(2.21) as

ψ(x, t) ≈ exp

(
−ιw0(x, t0)∆t

~

)∫
R3

exp

(
ιx · ξ
~

)
Cp∑
p=1

L(x, xp) exp

(
−ι∆tξ2

1

2m1(xp)~

)
×


Cq∑
q=1

L(y, yq) exp

(
−ι∆tξ2

1

2m2(yq)~

)
{
Cr∑
r=1

L(z, zr) exp

(
−ι∆tξ2

1

2m3(zr)~

)}
ψ̂(ξ, t0)dξ

= exp

(
−ιw0(x, t0)∆t

~

) Cp∑
p=1

Cq∑
q=1

Cr∑
r=1

L(x, xp)L(y, yq)L(z, zr)

×
∫
R3

exp

(
ιx · ξ
~

)
E(xpqr, ξ)ψ̂(ξ, t0)dξ

= exp

(
−ιw0(x, t0)∆t

~

) Cp∑
p=1

Cq∑
q=1

Cr∑
r=1

L(x, xp)L(y, yq)L(z, zr)

×F−1 [E(xpqr, ξ)F [ψ(x, t0)]]

(2.28)

and (2.25) as

ψiijjkk(t) ≈ exp

(
−ιw0,iijjkk(t0)∆t

~

) Cp∑
p=1

Cq∑
q=1

Cr∑
r=1

L(xii, xp)L(yjj , yq)L(zkk, zr)

×∆ξ1ξ2ξ3
∑
i,j,k

exp

(
ιxiijjkk · ξijk

~

)
E(xpqr, ξijk)ψ̂ijk(t0).

(2.29)
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With the low-rank approximation by piecewise Chebyshev polynomial interpola-
tion, formulas (2.28) and/or (2.29) can be evaluated efficiently because the FFT can
be utilized. Therefore, we have second algorithm for computing the wavefunction ψ:

Algorithm 2 (low-rank approximation via Chebyshev polynomial interpolation).

For k = 0, 1, 2, . . .:
1. At t0 = k∆t, apply FFT and (2.23) to compute ψ̂(ξ, t0) = F [ψ(x, t0)];
2. At t = t0 + ∆t, apply FFT and (2.29) to compute ψ(x, t):

(a) for each Chebyshev node xpqr = (xp, yq, zr), apply FFT to compute

W iijjkk
pqr ≡ ∆ξ1ξ2ξ3

∑
i,j,k

exp

(
ιxiijjkk · ξijk

~

)
Ŵijk

with Ŵijk = E(xpqr, ξijk)ψ̂ijk(t0);
(b) compute ψ(x, t) as

ψiijjkk(t) ≈ exp

(
−ιw0,iijjkk(t0)∆t

~

)
Cp∑
p=1

Cq∑
q=1

Cr∑
r=1

L(xii, xp)L(yjj , yq)L(zkk, zr)W
iijjkk
pqr .

For Algorithm 2, the complexity of step 1 is O(N logN), the complexity of part
(a) of step 2 is O(CpqrN logN) with Cpqr = CpCqCr, and the complexity of part (b)
of step 2 is O(CpqrN). Therefore the total complexity is O(N logN +CpqrN logN +
CpqrN), which is independent of the width of the PMLs.

The efficiency of Algorithm 2 also depends on the piecewise Chebyshev polynomial
interpolation of the term E(x, ξ) defined in (2.26). For notational simplicity, we focus

on the first factor E1(x, ξ1) ≡ exp(−ι∆t2~ (
ξ21

m1(x) )), and explain how to perform the

piecewise Chebyshev polynomial interpolation.
The Chebyshev nodes on [−1, 1] are given as

t̃n,k = cos

(
2k − 1

2n
π

)
, k = 1, 2, . . . , n,

and they can be mapped to any interval [a, b] as

t
(a,b)
n,k =

a+ b

2
+
b− a

2
t̃n,k, k = 1, 2, . . . , n.

By examining the function E1(x, ξ1), we note that it is constant for x not in the
PMLs, i.e.,

E1(x, ξ1) = exp

(
−ι∆t

2~

(
ξ2
1

m

))
∀x ∈ [xmin + ηx, xmax − ηx].

Therefore, we can apply piecewise polynomial interpolation on [xmin, xmax] with three
subintervals {[xmin, xmin + ηx], [xmin + ηx, xmax − ηx], [xmax − ηx, xmax]} (Figure
2a), and choose the interpolation nodes as

{xp}
Cp

p=1 ≡
{
t
(xmin, xmin+ηx)
C′

p,k

}C′
p

k=1

⋃{
xmin + xmax

2

}⋃{
t
(xmax−ηx, xmax)
C′

p,k

}C′
p

k=1
,

(2.30)

D
ow

nl
oa

de
d 

07
/2

9/
19

 to
 1

29
.1

86
.2

51
.8

9.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FAST HUYGENS SWEEPING METHODS FOR SCHRÖDINGER EQN. A889

a) b)

Fig. 2. Demonstration of Chebyshev nodes for piecewise polynomial interpolation. Solid red
curve indicates the function. Vertical solid lines indicate boundaries of PMLs. (a) three subintervals
[xmin, xmin + ηx], [xmin + ηx, xmax − ηx], and [xmax − ηx, xmax], black circles indicate Chebyshev
nodes in the corresponding subintervals; (b) five subintervals [xmin, x

∗], [x∗, xmin + ηx], [xmin +
ηx, xmax − ηx], [xmax − ηx, x∗∗], and [x∗∗, xmax], blue circles indicate Chebyshev nodes in the
corresponding subintervals.

with C ′p = (Cp − 1)/2. That is, we can use Chebyshev polynomial interpolation on
[xmin, xmin + ηx] and [xmax − ηx, xmax], respectively, and use constant polynomial
approximation on [xmin + ηx, xmax − ηx]. Similarly, we can choose

{yq}
Cq

q=1 ≡
{
t
(ymin, ymin+ηy)
C′

q,k

}C′
q

k=1

⋃{
ymin + ymax

2

}⋃{
t
(ymax−ηy, ymax)
C′

q,k

}C′
q

k=1
,

{zr}Cr
r=1 ≡

{
t
(zmin, zmin+ηz)
C′

r,k

}C′
r

k=1

⋃{
zmin + zmax

2

}⋃{
t
(zmax−ηz, zmax)
C′

r,k

}C′
r

k=1
,

with C ′q = (Cq − 1)/2, C ′r = (Cr − 1)/2.

Remark 2.1. By further examining the function E1(x, ξ1), we note that it is pos-
sible to perform piecewise polynomial interpolation with more subintervals to capture
more detailed features of the function, which requires more rigorous analysis and will
not be discussed in this work. However, we will also perform numerical experiments
with the following choice of Chebyshev nodes (Figure 2b),

{xp}
Cp

p=1 ≡
{
t
(xmin, x

?)
C1

p,k

}C1
p

k=1

⋃{
t
(x?, xmin+ηx)
C2

p,k

}C2
p

k=1⋃{
xmin + xmax

2

}
⋃{

t
(xmax−ηx, x??)
C2

p,k

}C2
p

k=1

⋃{
t
(x??, xmax)
C1

p,k

}C1
p

k=1
,

(2.31)

with Cp = 2(C1
p + C2

p) + 1. {yq}
Cq

q=1 and {zr}Cr
r=1 can be chosen similarly.

2.5. Applications to Gross–Pitaevskii equations. We can apply Algorithms
1 and 2 to compute the wavefunction for the time-dependent Gross–Pitaevskii equa-
tion that describes the dynamics of a trapped Bose–Einstein condensates (BEC) at
zero temperature [6, 12]:

ι~
∂φ(x, t)

∂t
= − ~2

2m
∇2φ(x, t) + v(x, t)φ(x, t) +MU0|φ(x, t)|2φ(x, t), t > 0,

φ(x, 0) = φ0(x),

(2.32)

where U0 = 4π~2a/m is the coupling strength, a is the scattering length, and M is the
number of particles in the condensate. With the PMLs, the modified Gross–Pitaevskii
equation has the form (2.2), with
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w(x, t)

= − ~2

2m

(
(s′1(x))2 + (s′2(y))2 + (s′3(z))2

4
− s1(x)s′′1(x) + s2(y)s′′2(y) + s3(z)s′′3(z)

2

)
+ v(x, t) +MU0

∣∣∣∣ ψ2(x, t)

s1(x)s2(y)s3(z)

∣∣∣∣ .
2.6. Discussion of Algorithms 1 and 2. The complexity of Algorithm 1 is

O(N logN +
ηxηyηz

~3 MN) with N = NxNyNz and M = MxMyMz, provided that

∆x = O( ~
Mx

),∆y = O( ~
My

),∆z = O( ~
Mz

). The complexity depends on the width

of the PMLs. If the width of the PMLs is independent of ~, then the second term
is dominant as ~ → 0, and the complexity becomes too high. If the width of the
PMLs is O(~), i.e., ηx = O(~), ηy = O(~), ηz = O(~), then the complexity is as low as
O(N logN +MN).

The complexity of Algorithm 2 is as low as O(N logN + CpqrN logN + CpqrN)
with Cpqr = CpCqCr. The complexity depends on the numbers of the Chebyshev
nodes. For certain accuracy requirement, the numbers of the Chebyshev nodes are
independent of ~ as ~→ 0.

We demonstrate the algorithms with numerical experiments.

3. Numerical examples. We present one-dimensional (1-D) and two-dimen-
sional (2-D) examples to demonstrate the proposed methods. The reference solutions
are computed with the spectral Strang operator splitting method [6, 30], where the
solutions are assumed to be compactly supported in the computational domain. For
simplicity, we consider the following dimensionless equations after appropriate change
of variables:

ιε
∂φ(x, t)

∂t
= −ε

2

2
∇2φ(x, t) + v(x, t)φ(x, t) + κ|φ(x, t)|2φ(x, t),(3.1)

where ε is the small parameter and κ is constant. The proposed methods and the
spectral Strang operator splitting method are implemented with Matlab on a Linux
desktop. We will denote Algorithm 2 with Chebyshev nodes chosen in (2.31) as
Algorithm 2(a), and denote Algorithm 2 with Chebyshev nodes chosen in (2.30) as
Algorithm 2(b).

Example 1 (1-D examples). We present 1-D examples to check efficiency and
accuracy of the proposed methods:

• The potential is

v(x, t) =
x2

2
+ 20 cos(20πt) exp(−x2/2).

• The initial condition is

φ(x, 0) = exp(−x2/0.02).

• The computational domain for the proposed method is [−1 1], and the com-
putational domain for the reference solution is [−4 4].
• Both the errors and CPU time for computing the solutions up to time t = 0.5

are recorded.

Tables 1 and 2 show the l∞ and l2 errors between the solutions computed by
the proposed methods and the reference solutions. First-order accuracy, i.e., O(∆x+
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∆t), of the proposed methods is observed. Tables 3 and 4 show the l∞ and l2 errors
between the solutions computed by Algorithm 1 and Algorithm 2(a), and between
the solutions computed by Algorithm 1 and Algorithm 2(b). Stability of the low-rank
approximation with piecewise Chebyshev polynomial interpolation is observed, since
the errors between Algorithm 1 and Algorithm 2 do not increase as ε decreases, and
the number of Chebyshev nodes is fixed. Furthermore, from the CPU time recorded
in these tables, O(N logN) complexity of Algorithm 2 is observed. For Algorithm 1,
if the width of the PMLs depends on ~, O(N logN) complexity is observed; if the
width of the PMLs is independent of ~, O(N2) complexity is observed.

Figures 3 and 4 show the plots of the numerical solutions φ, Figure 5 shows the
plots of |φ|2, and Figure 6 shows the plots of

∫
|φ|2dx.

Table 1
1-D example, order of accuracy, and CPU time. l∞ error, l2 error, and CPU time are recorded.

For the reference solution, ∆x = ε/64,∆t = ∆x/16; and for the proposed methods, ∆t = ∆x/16.

ε = 0.025, κ = −1, Cp = 13;Cx = 2.5; ηx = 0.3
∆x ε/4 ε/8 ε/16 ε/32
Alg. 1: l∞ Err. 9.551E-2 2.079E-2 6.516E-3 2.261E-3
Conv. Order – 2.200 1.674 1.527
Alg. 1: l2 Err. 1.637E-2 3.727E-3 1.221E-3 4.401E-4
Conv. Order – 2.135 1.610 1.472
CPU time 1.696E1 3.511E1 9.202E1 2.686E2
Alg. 2(a): l∞ Err. 9.551E-2 2.079E-2 6.516E-3 2.261E-3
Conv. Order – 2.200 1.674 1.527
Alg. 2(a): l2 Err. 1.637E-2 3.727E-3 1.221E-3 4.401E-4
Conv. Order – 2.135 1.610 1.472
CPU time 1.709E1 3.467E1 9.281E1 1.714E2
Alg. 2(b): l∞ Err. 9.551E-2 2.079E-2 6.516E-3 2.261E-3
Conv. Order – 2.200 1.674 1.527
Alg. 2(b): l2 Err. 1.637E-2 3.727E-3 1.221E-3 4.401E-4
Conv. Order – 2.135 1.610 1.472
CPU time 1.708E1 3.459E1 9.287E1 2.035E2

ε = 0.01, κ = 2, Cp = 13;Cx = 2.5; ηx = 0.3
∆x ε/4 ε/8 ε/16 ε/32
Alg. 1: l∞ Err. 6.559E-3 3.279E-3 1.639E-3 8.195E-4
Conv. Order – 1.000 1.000 1.000
Alg. 1: l2 Err. 3.972E-3 1.982E-3 9.900E-4 4.948E-4
Conv. Order – 1.003 1.001 1.001
CPU time 6.057E1 1.368E2 3.853E2 1.308E3
Alg. 2(a): l∞ Err. 6.566E-3 3.295E-3 1.660E-3 8.423E-4
Conv. Order – 0.995 0.989 0.979
Alg. 2(a): l2 Err. 3.972E-3 1.982E-3 9.904E-4 4.952E-4
Conv. Order – 1.003 1.001 1.000
CPU time 5.780E1 1.196E2 2.483E2 5.552E2
Alg. 2(b): l∞ Err. 6.569E-3 3.289E-3 1.650E-3 8.297E-4
Conv. Order – 0.998 0.995 0.992
Alg. 2(b): l2 Err. 3.972E-3 1.982E-3 9.901E-4 4.949E-4
Conv. Order – 1.003 1.001 1.000
CPU time 5.746E1 1.192E2 2.480E2 4.950E2

Example 2 (2-D examples). We demonstrate the performance of the proposed
methods with the following 2-D examples.

• Case 1: the potential is

v(x, y, t) =
x2 + y2

2
+ 2 cos(2πt) exp(−(x2 + y2)/2),
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Table 2
1-D example, order of accuracy, and CPU time. l∞ error, l2 error, and CPU time are recorded.

For the reference solution, ∆x = ε/64,∆t = ∆x/16; and for the proposed methods, ∆t = ∆x/16.

κ = 2, Cp = 13;Cx = 5; ηx = min(30ε, 0.3)
ε (∆x) 0.04 (ε/2) 0.02 (ε/4) 0.01 (ε/8) 0.005 (ε/16)
Alg. 1: l∞ Err. 1.380E-2 6.614E-3 3.279E-3 1.636E-3
Conv. Order – 1.061 1.012 1.003
Alg. 1: l2 Err. 8.300E-3 4.008E-3 1.982E-3 9.883E-4
Conv. Order – 1.050 1.016 1.004
CPU time 7.660 2.585E1 9.589E1 7.802E2
Alg. 2(a): l∞ Err. 1.399E-2 6.572E-3 3.287E-3 1.644E-3
Conv. Order – 1.090 1.000 1.000
Alg. 2(a): l2 Err. 8.306E-3 4.007E-3 1.982E-3 9.883E-4
Conv. Order – 1.052 1.016 1.004
CPU time 7.545 2.515E1 9.290E1 4.338E2
Alg. 2(b): l∞ Err. 1.379E-2 6.605E-3 3.292E-3 1.650E-3
Conv. Order – 1.062 1.005 0.996
Alg. 2(b): l2 Err. 8.301E-3 4.006E-3 1.983E-3 9.884E-4
Conv. Order – 1.051 1.014 1.005
CPU time 7.308 2.694E1 9.372E1 4.324E2

Table 3
1-D example, stability, and CPU time. l∞ error, l2 error, and CPU time are recorded. For the

proposed methods, ∆t = ∆x/16.

∆x = ε/8, κ = 2, Cp = 13;Cx = 0.5; ηx = min(30ε, 0.3)
ε 0.04 0.02 0.01 0.005 0.0025
CPU time for Alg. 1 2.691E1 5.500E1 1.274E2 2.193E2 4.926E2
CPU time for Alg. 2(a) 2.867E1 4.842E1 9.084E1 1.476E2 4.371E2
CPU time for Alg. 2(b) 3.094E1 5.486E1 1.193E2 1.568E2 4.351E2
Alg. 2(a): l∞ Err. 4.680E-4 4.088E-4 2.395E-4 2.025E-4 1.739E-4
Alg. 2(a): l2 Err. 2.238E-4 1.209E-4 5.264E-5 3.217E-5 2.073E-5
Alg. 2(b): l∞ Err. 9.054E-5 7.059E-5 8.877E-5 8.175E-5 7.614E-5
Alg. 2(b): l2 Err. 6.978E-5 4.820E-5 4.074E-5 2.587E-5 1.820E-5

∆x = ε/8, κ = 2, Cp = 13;Cx = 2.5; ηx = 0.3
ε 0.04 0.02 0.01 0.005 0.0025
CPU time for Alg. 1 2.472E1 5.057E1 1.161E2 3.237E2 1.021E3
CPU time for Alg. 2(a) 2.388E1 4.943E1 1.018E2 2.154E2 4.258E2
CPU time for Alg. 2(b) 2.420E1 4.886E1 1.019E2 2.196E2 4.257E2
Alg. 2(a): l∞ Err. 3.141E-4 3.254E-4 3.177E-4 1.962E-4 4.993E-5
Alg. 2(a): l2 Err. 1.779E-4 1.139E-4 7.382E-5 3.815E-5 9.267E-6
Alg. 2(b): l∞ Err. 1.864E-5 1.422E-5 1.780E-5 3.207E-5 5.570E-5
Alg. 2(b): l2 Err. 1.465E-5 9.735E-6 8.503E-6 1.053E-5 1.715E-5

and the initial condition is

φ(x, y, 0) = exp(−(x2 + y2)/0.1).

The computational domain for the proposed methods is [−1, 1]2, and the
computational domain for the reference solution is [−2, 2]2.
Figures 7, 8, and 9 show the plots of the numerical solutions by Algorithms
1 and 2, and the reference solutions.
• Case 2 (2-D vortices Bose–Einstein condensation [6, 12]): the potential is

v(x, y, t) =
x2 + y2

2
+Ws(t) exp(−4((x− xs(t))2 + (y − ys(t))2)/V 2

s ),
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Table 4
1-D example, stability, and CPU time. l∞ error, l2 error, and CPU time are recorded. For the

proposed methods, ∆t = ∆x/16.

∆x = ε/8, κ = −1, Cp = 13;Cx = 5; ηx = min(30ε, 0.3)
ε 0.4 0.2 0.1 0.05 0.025
CPU time for Alg. 1 8.791 1.893E1 3.987E1 8.779E1 2.081E2
CPU time for Alg. 2(a) 8.479 1.964E1 3.553E1 8.002E1 1.657E2
CPU time for Alg. 2(b) 8.820 1.918E1 3.961E1 8.039E1 1.664E2
Alg. 2(a): l∞ Err. 4.349E-5 9.106E-6 5.653E-7 8.685E-8 7.020E-8
Alg. 2(a): l2 Err. 3.148E-5 4.521E-6 1.670E-7 2.296E-8 1.457E-8
Alg. 2(b): l∞ Err. 2.318E-5 1.183E-6 1.120E-7 2.942E-8 2.481E-8
Alg. 2(b): l2 Err. 2.388E-5 8.641E-6 6.531E-8 1.887E-8 2.032E-9

∆x = ε/8, κ = −1, Cp = 13;Cx = 2.5; ηx = 0.3
ε 0.4 0.2 0.1 0.05 0.025
CPU time for Alg. 1 1.019E1 1.924E1 4.009E1 8.660E1 2.303E2
CPU time for Alg. 2(a) 1.173E1 1.877E1 3.871E1 7.982E1 1.675E2
CPU time for Alg. 2(b) 1.019E1 1.933E1 3.857E1 7.903E1 1.670E2
Alg. 2(a): l∞ Err. 2.116E-5 6.023E-6 4.116E-7 9.375E-8 3.049E-8
Alg. 2(a): l2 Err. 2.044E-5 3.282E-6 1.416E-7 3.160E-8 1.108E-8
Alg. 2(b): l∞ Err. 1.087E-6 2.336E-7 2.217E-8 5.687E-9 1.468E-8
Alg. 2(b): l2 Err. 4.000E-7 1.746E-7 1.317E-8 3.873E-9 5.325E-9

a) b) c)

a) b) c)

Fig. 3. 1-D example, plots of the numerical solutions φ at t = 0.5. κ = 2, ∆x = ε/8, ∆t =
∆x/16. Top: real part of φ; Bottom: imaginary part of φ. Red line: refrerence solution; Blue dashed:
Alg. 1; Green dots: Alg. 2(a); Black circle: Alg. 2(b). Column (a): ε = 0.01, Cx = 2.5, ηx = 0.3;
Column (b): ε = 0.005, Cx = 2.5, ηx = 0.3; Column (c): ε = 0.005, Cx = 5, ηx = 0.15.

where (xs(t), ys(t)) = (r0 cos(ωst), r0 sin(ωst)), Ws increases linearly from 0
at t = 0 to Wf at t = π, remains constant as Wf from t = π to t = 4π,
decreases linearly to 0 at t = 5π from t = 4π, and remains 0 after t = 5π. We
choose Wf =

√
2, Vs =

√
0.1, r0 = 2

√
0.1, ωs = 1.

The initial condition is

φ(x, y, 0) =

√
max

{
0, µ− x2 + y2

2

}
exp(−(x2 + y2)),

with µ a given constant.
The computational domain for the proposed methods is [−2, 2]2, and the
computational domain for the reference solution is [−4, 4]2.
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a) b) c)

a) b) c)

Fig. 4. 1-D example, plots of the numerical solutions φ at t = 0.5. κ = −1, ∆x = ε/8,
∆t = ∆x/16. Top: real part of φ; Bottom: imaginary part of φ. Red line: refrerence solution;
Blue dashed: Alg. 1; Green dots: Alg. 2(a); Black circle: Alg. 2(b). Column (a): ε = 0.01, Cx =
2.5, ηx = 0.3; Column (b): ε = 0.005, Cx = 2.5, ηx = 0.3; Column (c): ε = 0.005, Cx = 5, ηx = 0.15.

a) b) c)

d) e) f)

Fig. 5. 1-D example, plots of |φ|2 at t = 0.5. ∆x = ε/8, ∆t = ∆x/16. Top: κ = 2;
Bottom: κ = −1. Red line: refrerence solution; Blue dashed: Alg. 1; Green dots: Alg. 2(a); Black
circle: Alg. 2(b). (a–d): ε = 0.01, Cx = 2.5, ηx = 0.3; (b–e): ε = 0.005, Cx = 2.5, ηx = 0.3; (c–f):
ε = 0.005, Cx = 5, ηx = 0.15.

Figures 10, 11, and 12 show the plots of the numerical solutions by Algorithms
1 and 2 and the reference solutions.

These figures verify the accuracy of the proposed methods.

3.1. Discussion of numerical experiments. From the numerical experiments,
we note that

• for Algorithms 1 and 2, we can choose the mesh sizes as {∆x,∆y,∆z} = O(~)
and ∆t = O({∆x,∆y,∆z}).
• For Algorithms 1 and 2, the order of accuracy is O(~ + {∆x,∆y,∆z}+ ∆t),

provided that the error due to the low-rank approximation with piecewise
Chebyshev polynomial interpolation is not dominant.
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a) b) c)

d) e) f)

Fig. 6. 1-D example, plots of
∫
|φ|2dx. ∆x = ε/8, ∆t = ∆x/16. Top: κ = 2; Bottom: κ = −1.

Red line: refrerence solution; Blue dashed: Alg. 1; Green dots: Alg. 2(a); Black circle: Alg. 2(b).
(a–d): ε = 0.01, Cx = 2.5, ηx = 0.3; (b–e): ε = 0.005, Cx = 2.5, ηx = 0.3; (c–f): ε = 0.005, Cx =
5, ηx = 0.15.

a) b) c) d)

a) b) c) d)

e) f) g) h)

e) f) g) h)

Fig. 7. 2-D example case 1: surface plots of the numerical solutions φ at t = 0.8. (a–d) with
ε = 0.1, (e–h) with ε = 0.05. κ = 1,∆x = ∆y = ε/4,∆t = min{∆x,∆y}/8. Top of (a–d) and (e–h):
real part of φ, Bottom of (a–d) and (e–h): imaginary part of φ. From first column to fourth column:
reference solution, Alg. 1, Alg. 2(a), and Alg. 2(b), respectively. For PMLs, ηx = ηy = 0.3,
Cx = Cy = 2.5. For Algorithm 2(b), Cp = Cq = 13.

• For Algorithm 1, if the width of the PMLs is independent of ~, the complexity
is O(N2) due to the fact that direct summation is applied for computing the
wavefunction in the PMLs; if the width of the PMLs is O(~), the complexity is
O(N logN). For Algorithm 2, the complexity is O(N logN) for both choices
of the PMLs.D
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a) b) c) d)

e) f) g) h)

Fig. 8. 2-D example case 1: contour plots of |φ|2 at t = 0.8. (a–d) with ε = 0.1, (e–h)
with ε = 0.05. κ = 1,∆x = ∆y = ε/4,∆t = min{∆x,∆y}/8. From first column to fourth column:
reference solution, Alg. 1, Alg. 2(a), and Alg. 2(b), respectively. For PMLs, ηx = ηy = 0.3, Cx =
Cy = 2.5. For Algorithm 2(b), Cp = Cq = 13.

a) b)

Fig. 9. 2-D example case 1: plots of
∫
|φ|2dxdy. Red line: refrerence solution; Blue dashed:

Alg. 1; Green dots: Alg. 2(a); Black circle: Alg. 2(b). (a) with ε = 0.1, (b) with ε = 0.05.
κ = 1,∆x = ∆y = ε/4,∆t = min{∆x,∆y}/8. For PMLs, ηx = ηy = 0.3, Cx = Cy = 2.5. For
Algorithm 2(b), Cp = Cq = 13.

a) b) c) d)

a) b) c) d)

e) f) g) h)

e) f) g) h)

Fig. 10. 2-D example case 2: contour plots of the numerical solutions φ at t = 12π with ε = 0.1.
(a–d) with µ = 0.3, (e–h) with µ = 0.6. κ = 1,∆x = ∆y = ε/4,∆t = min{∆x,∆y}/8. Top of (a–d)
and (e–h): real part of φ, Bottom of (a–d) and (e–h): imaginary part of φ. From first column
to fourth column: reference solution, Alg. 1, Alg. 2(a), and Alg. 2(b), respectively. For PMLs,
ηx = ηy = 0.3, Cx = Cy = 2.5. For Algorithm 2(b), Cp = Cq = 13.
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a) b) c) d)

e) f) g) h)

Fig. 11. 2-D example case 2: contour plots of |φ|2 at t = 12π with ε = 0.1. (a–d) with
µ = 0.3, (e–h) with µ = 0.6. κ = 1,∆x = ∆y = ε/4,∆t = min{∆x,∆y}/8. From first column
to fourth column: reference solution, Alg. 1, Alg. 2(a), and Alg. 2(b), respectively. For PMLs,
ηx = ηy = 0.3, Cx = Cy = 2.5. For Algorithm 2(b), Cp = Cq = 13.

a) b)

Fig. 12. 2-D example case 2: plots of
∫
|φ|2dxdy with ε = 0.1. Red line: refrerence solution;

Blue dashed: Alg. 1; Green dots: Alg. 2(a); Black circle: Alg. 2(b). (a) with µ = 0.3, (b) with
µ = 0.6. κ = 1,∆x = ∆y = ε/4,∆t = min{∆x,∆y}/8. For PMLs, ηx = ηy = 0.3, Cx = Cy = 2.5.
For Algorithm 2(b), Cp = Cq = 13.

• Compared with Algorithm 1 that uses direct summation for points in the
PMLs, Algorithm 2 with the low-rank approximation by piecewise Chebyshev
polynomial interpolation is stable,
• 2-D examples on 2-D vortices Bose–Einstein condensation [6, 12] demonstrate

that the proposed methods can be applied to solve real physical problems.

4. Conclusion. We present asymptotic methods, namely fast Huygens sweep-
ing methods, for numerically solving the time-dependent Schrödinger equations with
time-dependent potentials in the semi-classical regime. The PML techniques are ap-
plied to truncate the infinite domain to a bounded subdomain. The methods combine
Huygens’ principle and short-time WKBJ propagators, which results in integrals with
the retarded Green’s functions that approximated by the WKBJ expansion. Analytic
approximations of the phase and amplitude terms in the WKBJ ansatz for the retarded
Green’s functions can be obtained via short-time Taylor expansions. For points in the
PMLs, low-rank approximation by Chebyshev polynomial interpolation can be uti-
lized to approximate the integrals such that the resulting integrals can be evaluated
efficiently with FFT and the complexity is O(N logN) with N the number of points in
the simulation. Numerical examples including time-dependent Gross–Pitaevskii equa-
tion for BEC are presented to demonstrate the proposed methods. The framework
can be extended to include higher-order terms in the WKBJ ansatz and higher-order
Taylor expansions for the phase and amplitude terms such that higher-order methods
can be designed. The methods will be extended to study the time-dependent Kohn-
Sham equations arising from electronic structure calculations, which will be reported
in a future work.

D
ow

nl
oa

de
d 

07
/2

9/
19

 to
 1

29
.1

86
.2

51
.8

9.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A898 SONGTING LUO

REFERENCES

[1] X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, and A. Schaedle, A review of trans-
parent and artificial boundary conditions techniques for linear and nonlinear Schrödinger
equations, Commun. Comput. Phys., 4 (2008), pp. 729–796.

[2] X. Antoine, W. Bao, and C. Besse, Computational methods for the dynamics of the non-
linear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun., 184 (2013), pp.
2621–2633.

[3] I. M. Babus̆ka, F. Ihlenburg, T. Strouboulis, and S. K. Gangaraj, A posteriori error
estimation for finite element solutions of helmholtz equation. Part II: Estimation of the
pollution error, Int. J. Numer. Methods Engrg., 40 (1997), pp. 3883–3900.

[4] I. M. Babus̆ka and S. A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz
equation considering high wave numbers?, SIAM Rev., 42 (2000), pp. 451–484.

[5] B. Baker and E. T. Copson, The mathematical theory of Huygens’ principle, AMS Chelsea
Publishing, Providence, RI, 1987.

[6] W. Bao, D. Jaksch, and P. A. Markowich, Numerical solution of the Gross-Pitaevskii
equation for Bose-Einstein condensation, J. Comput. Phys., 187 (2003), pp. 318–342.

[7] W. Bao, S. Jin, and P. Markowich, Numerical Study of Time-Splitting Spectral Discretiza-
tions of Nonlinear Schrödinger Equations in the Semiclassical Regimes, SIAM J. Sci.
Comput., 25 (2003), pp. 27–64.

[8] W. Bao, S. Jin, and P. A. Markowich, On Time-Splitting Spectral Approximations for the
Schrödinger Equation in the Semiclassical Regime, J. Comput. Phys., 175 (2002), pp.
487–524.

[9] J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J.
Comput. Phys., 114 (1994), pp. 185–200.

[10] M. Brack and R. K. Bhaduri, Semiclassical Physics, Addison Wesley, Reading, MA, 1997.
[11] E. Candés, L. Demanet, and L. Ying, A fast butterfly algorithm for the computation of

Fourier integral operators, Multiscale Model. Sim., 7 (2009), pp. 1727–1750.
[12] B. M. Caradoc-Davies, R. J. Ballagh, and K. Burnett, Coherent dynamics of vortex

formation in trapped Bose-Einstein condensates, Phys. Rev. Lett., 83 (1999), pp. 895–898.
[13] P. Chand and J. Hoekstra, A review of the semi-classical WKB approximation and its

usefulness in the study of quantum systems, in Proceedings of the IEEE Semiconductor
Advances for Future Electronics, 2001, pp. 13–19.

[14] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier
series, Math. Comp., 19 (1965), pp. 297–301.

[15] L. Demanet, M. Ferrara, N. Maxwell, J. Poulson, and L. Ying, A butterfly algorithm
for synthetic aperture radar imaging, SIAM J. Imaging Sci., 5 (2012), pp. 203–243.

[16] B. Engquist and O. Runborg, Computational high frequency wave propagation, Acta
Numerica, 12 (2003), pp. 181–266.

[17] S. Fomel, L. Ying, and X. Song, Seismic wave extrapolation using lowrank symbol approxi-
mation, Geophys. Prospect., 61 (2013), pp. 526–536.

[18] D. Fujiwara, A construction of the fundamental solution for the Schrödinger equations, Proc.
Japan Acad. Ser. A Math. Sci., 55 (1979), pp. 10–14.

[19] S. Jin, P. Markowich, and C. Sparber, Mathematical and computational methods for semi-
classical Schrödinger equations, Acta Numerica, 20 (2011), p. 121–209.

[20] J. B. Keller, Semiclassical mechanics, SIAM Rev., 27 (1985), pp. 485–504.
[21] H. Kitada and H. Kumano-go, A family of Fourier integral operators and the fundamental

solution for a Schrödinger equation, Osaka J. Math., 18 (1981), pp. 291–360.
[22] S. Leung, J. Qian, and S. Serna, Fast Huygens sweeping methods for Schrödinger equations

in the semi-classical regime, Methods Appl. Anal., 21 (2014), pp. 31–66.
[23] S. Luo, J. Qian, and R. Burridge, Fast Huygens sweeping methods for Helmholtz equations

in inhomogeneous media in the high frequency regime, J. Comput. Phys., 270 (2014),
pp. 378–401.

[24] S. Luo, J. Qian, and R. Burridge, High-order factorization based high-order hybrid fast
sweeping methods for point-source Eikonal equations, SIAM J. Numer. Anal., 52 (2014),
pp. 23–44.

[25] A. Martinez, An introduction to semiclassical and microlocal analysis, Springer, New York,
2002.

[26] V. P. Maslov and M. V. Fedoriuk, Semi-classical approximation in quantum mechanics, D.
Reidel Publishing Company, Boston, 1981.D

ow
nl

oa
de

d 
07

/2
9/

19
 to

 1
29

.1
86

.2
51

.8
9.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FAST HUYGENS SWEEPING METHODS FOR SCHRÖDINGER EQN. A899
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