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Abstract:

Microbial production of oleochemicals from renewable feedstocks remains an attractive
route to produce high-energy density, liquid transportation fuels and high-value chemical products.
Metabolic engineering strategies have been applied to demonstrate production of a wide range of
oleochemicals, including free fatty acids, fatty alcohols, esters, olefins, alkanes, ketones, and
polyesters in both bacteria and yeast. The majority of these demonstrations synthesized products
containing long-chain fatty acids. These successes motivated additional effort to produce
analogous molecules comprised of medium-chain fatty acids, molecules that are less common in
natural oils and therefore of higher commercial value. Substantial progress has been made towards
producing a subset of these chemicals, but significant work remains for most. The other primary
challenge to producing oleochemicals in microbes is improving the performance, in terms of yield,
rate, and titer, of biocatalysts such that economic large-scale processes are feasible. Common
metabolic engineering strategies include blocking pathways that compete with synthesis of
oleochemical building blocks and/or consume products, pulling flux through pathways by
removing regulatory signals, pushing flux into biosynthesis by overexpressing rate-limiting
enzymes, and engineering cells to tolerate the presence of oleochemical products. In this review,
we describe the basic fundamentals of oleochemical synthesis and summarize advances since 2013

towards improving performance of heterotrophic microbial cell factories.
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1. Introduction

Oleochemicals are defined as a class of aliphatic compounds industrially-derived from animal or
vegetable lipids. Oleochemical products are classified according to the chain length, the terminal
reductive state (e.g. acid, aldehyde, ester, olefin, alcohol, alkane), and any modifications (e.g.
branching, unsaturation, hydroxyl-, cyclopropane-) to the main chain. These chemical features
dictate the value and end uses of each oleochemical. For instance, long-chain fatty acids (Ci6-Cis)
have a long history of use as soaps while medium-chain fatty acids (Cs-Ci2) have found additional
uses as herbicides (Vaughn and Holser, 2007), precursors to lubricants, and polymer additives.
Long-chain fatty acid methyl-esters (FAMEs) and fatty acid ethyl-esters (FAEEs) are the main
components of commercial biodiesels that provide the energy for combustion. Introduction of
branches in either the alcohol or acyl-portions of these esters decreases the cloud point of biodiesel,
enabling superior use in cold-climates (Deng et al., 2015; Lee et al., 1995) . In addition to use as
fuels, medium-chain FAMEs, FAEEs, and methyl ketones (MKs) are used as flavors and
fragrances (Longo and Sanroman, 2006). Fatty alcohols (FAOH) are used to produce laundry
detergents, industrial lubricants and surfactants, medicines, and personal care products. Long-
chain alka(e)nes (ALKs) can be blended with liquid transportation fuels and serve as “drop in”
replacements for petroleum-derived alkanes in fuel, solvent and other chemical applications. Long-
and medium-chain a-olefins are used to produce detergents and plasticizers, and as monomers for
elastomers used in automotive parts. In addition, very-long-chain oleochemicals such as fatty
alcohols, e.g. 1-docosanol (C22) and fatty waxes, e.g. Jojoba oil, are widely used in lubricants,
detergents, polymers, photographic film-processing agents, coatings, cosmetics and
pharmaceuticals (Jannin and Cuppok, 2013; Miwa, 1984; Taylor et al., 2010; Wisniak, 1994).

These wide-ranging applications, particularly biodiesel, are driving continued growth of the

Page 4 of 42



10

oleochemical industry.
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As oleochemical demand has grown, so has production of vegetable oils from oil seed
crops; world production of vegetable oils increased over 20% between 2013 and 2018 (Fig 1,
USDA-ERS). The majority of fatty acids present in high-volume oils are classified as long chain
(>Ci6) (Harwood et al., 2007) leaving natural sources of medium chain lipids (Cs-Ci4) in shorter
supply (with the exception of dodecanoic acid which is common in both coconut and palm kernel
oils). The lack of natural sources leaves room for metabolic engineering to play a role in generating
these chain length lipids as well as other naturally uncommon oleochemicals from renewable and
unrelated carbon sources. Over the past four decades, biochemists, microbiologists, and engineers
have contributed greatly to discovering enzymes involved in oleochemical synthesis, unlocking
key regulatory points that control fatty acid biosynthesis in model hosts, and demonstrating

metabolic engineering strategies to produce specific oleochemical products (Fig. 2). These topics
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have been detailed in many past reviews (Cronan, 2003; d’Espaux et al., 2015; Lennen and Pfleger,
2013, 2012; Marella et al., 2018; Pfleger et al., 2015; Sarria et al., 2017; Zhou et al., 2018) and
will be summarized herein.

The majority of oleochemicals sell for relatively low costs that are comparable to the costs
of the sugar feedstocks used to make them. For this reason, oleochemical yield is the most critical
parameter in evaluating strain performance. Unfortunately, most oleochemicals, with the exception
of triacylglycerols (TAGs), are not common metabolic end-products. Therefore, it is not surprising
that microbes capable of producing industrially relevant quantities (~100 g/L titers) at high yield
(>90% of theoretical) have not been isolated from natural environments. Instead, the metabolism
of common industrial microbes, e.g. Escherichia coli, Saccharomyces cerevisiae, and oleaginous
microbes (TAG producers), e.g. Yarrowia lipolytica, Rhodococcus opacus and Rhodosporidium
toruloides, have been altered to direct carbon flux from central metabolism towards lipid synthesis
and the ultimate oleochemical product of interest. In some instances, metabolism can be
engineered to produce oleochemicals as fermentation products (e.g. fatty alcohols via a thiolase-
driven reversal of B-oxidation) (Dellomonaco et al., 2011; Mehrer et al., 2018) but the vast majority
of oleochemicals are classified as secondary metabolites, i.e. metabolic products that compete with
growth for cellular resources. The fact that maximum oleochemical yield occurs when the cell is
directing zero carbon flux to biomass means that cells must work against the evolutionary pressure
to grow in order to maximize yields of oleochemicals. Even for oleaginous organisms where
nutrient limitations can be used to by-pass evolutionary pressures, the maximum lipid
accumulation occurs when the minumum carbon flux is dedicated to biomass generation. These
challenges have limited the number of compounds that have been produced in high yields, titers,

and rates in microbial hosts. The remainder of this review will focus on the progress that has been

Page 6 of 42



made by the field after our last review (Pfleger et al., 2015) to improve the production of
oleochemical products and close with a discussion of barriers that remain to be circumvented. The
review focuses primarily on production of unmodified oleochemicals in heterotrophic species.
Others have reviewed production of lipids in photosynthetic hosts (Klok et al., 2014; Remmers et
al., 2018; Wijffels and Barbosa, 2010) and production of modified fatty acids (Jiang et al., 2018;

Seo et al., 2015; Uemura, 2012; Werner and Zibek, 2017).

Pathway Discovery and Increasing Performance, Scale-Up and
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Fig. 2. Timeline of select achievements. References a-w are: #(Winters et al., 1969); P(Fehler
and Light, 1970); ¢(Voelker and Davies, 1994); 4(Mark S. Davis et al., 2000); ¢(Lo et al., 2003);
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Fig. 3. Overview of Oleochemical Biosynthesis. Top. Oleochemicals are made in four phases,
initiation, elongation/reduction, termination, modification (not shown). Carbon sources are fed
through central metabolism to initiators (e.g. acetyl-CoA, propionyl-CoA, acetoacetyl-ACP) and
extension monomers (e.g. acetyl-CoA, malonyl-CoA). The elongation-reduction cycle extends
chains by two carbons and reduces (orange box) the beta-position to a saturated carbon. Elongation
reactions (Blue boxes) are driven by fatty acid synthases or thiolases in most oleochemical
pathways. Termination reactions (red arrows) act on various intermediates in the reduction cycle
to produce FFA, aldehydes, esters, and olefins. Some of these products can be further converted
by additional enzymes to olefins, alcohols, aldehydes, and PHA.
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2. Fundamentals of fatty acid initiation, elongation and termination reactions

The alkyl chains of fatty acids, lipids, and oleochemicals are synthesized via an iterative
elongation and reduction cycle that adds two carbons to the chain in each turn. The biochemistry
of the individual biosynthesis pathways have been thoroughly reviewed elsewhere (Beld et al.,
2015; Cronan, 2003; Heath and Rock, 2002; Lennen and Pfleger, 2012; Pfleger et al., 2015) and
will therefore be briefly summarized here. There are many variations on how individual
compounds are synthesized but in general, the biosynthetic pathway is comprised of four phases
(Fig. 3): 1.) synthesis of building blocks (i.e. starter units, elongation units, ATP, reducing power),
2.) acyl-chain elongation and reduction, 3.) chain termination, and 4.) modification (omitted in
Fig. 3 and not covered in this review). Substrates in the elongation, reduction, termination and
modification phases are acyl-thioesters comprised of the acyl chain and either coenzyme A (CoA)
or acyl-carrier protein (ACP) moieties (symbolized by S-X in Fig. 3). The CoA and ACP groups
serve as molecular handles and influence the binding of biosynthetic enzymes to specific substrates
(Beld et al., 2015; Chen et al., 2018; Meier and Burkart, 2009; Nguyen et al., 2014). The majority
of natural oleochemicals are derived from even, straight-chain fatty acids where biosynthesis
begins with an acetyl-CoA/ACP starter unit. More rarely, odd-chain (propionyl-CoA starter) and
branched chain (starters are branched acyl-CoAs created in amino acid biosynthesis) fatty acids
are naturally found and have been overproduced in heterologous hosts (Bentley et al., 2016; Cao
et al., 2015; Tseng and Prather, 2012) where alternative initiation enzymes (e.g. FabH, BktB)
synthesize the unusual starter units (Choi et al., 2000). As chains grow there is a competition
between further chain elongation and termination reactions where the acyl chain is released from
the thioester by hydrolysis, reductive cleavage, or transesterification. The relative kinetics of each

reaction (i.e. the rate of elongation versus the rate of termination) dictate the distribution of final
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products. In eukaryotes, the enzymes that catalyze the elongation and reductive cycle are fused
into a single polypeptide (e.g. mammalian Type I FAS) or two polypeptide (e.g. fungal Type I
FAS) to facilitate the transfer of intermediates and channel synthesis towards the desired products
(Ci6-acyl-CoA) (Herbst et al., 2018; Lomakin et al., 2007). In contrast, most prokaryotes use a
Type Il system in which each enzyme is a distinct protein; a feature that has been exploited to alter
the desired product profile using thioesterase enzymes capable of targeting medium chain acyl-
ACPs.

In all pathways, the elongation reaction (Fig. 3 left) is either an irreversible decarboxylative
Claisen condensation (e.g. FabF or FAS1) using malonyl-CoA/ACP as the donor or reversible
thiolase-catalyzed Claisen condensation (e.g. FadA or TER) using acetyl-CoA as the donor.
Malonyl-CoA is synthesized from acetyl-CoA, bicarbonate, and one ATP (Fig. 3, white box). The
irreversible decarboxylation performed as part of the Claisen condensation provides a
thermodynamic driving force at the expense of the extra ATP required to synthesize malonyl-CoA
(Shen et al., 2011). The extra ATP cost reduces the theoretical yield of oleochemicals synthesized
by a small (~5%) but significant amount when cells are cultivated aerobically; e.g. the theoretical
yield of dodecanoic acid is 0.39 g/g via a thiolase pathway and 0.37 g/g via fatty acid biosynthesis
(calculated from flux balance analysis of a modified iJO1366 E. coli genome scale reconstruction).
The difference in theoretical yield is much larger when cells are grown anaerobically because of
the reduced ATP synthesis achieved during fermentation; e.g. the theoretical yield of dodecanoic
acid is 0.39 g/g via a thiolase pathway and 0.27 g/g via fatty acid biosynthesis (Mehrer et al., 2018).
The reductive cycle (Fig 3. orange box) requires two reducing equivalents, often in the form of

NADPH, per turn of the cycle. The NADPH requirement reduces theoretical oleochemical yields
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because of reduced ATP synthesis of pathways that produce NADPH from common sugars (e.g.
pentose-phosphate pathway vs. glycolysis).

In effort to better understand flux control points, type II fatty acid synthesis was
reconstituted in vitro using enzymes from both E. coli and other microbes (Kuo and Khosla, 2014;
Xiao et al., 2013; Yu et al., 2011). From these studies, the field has learned that 1.) enoyl-ACP
reductase (FabI®C) and B-hydroxyacyl-ACP dehydratase (FabZEC) enhanced the rate of fatty acid
production in a dose-dependent manner; 2.) B-ketoacyl-ACP synthases III (FabHEC) and II
(FabFEC) decreased FAS activity at concentrations higher than 1 pM; 3.) the ratio of B-
hydroxyacyl-ACP dehydratase (FabAE€) and B-ketoacyl-ACP synthase I (FabBEC) regulated the
degree of unsaturated fatty acid biosynthesis in E. coli; 4.) FabH was the limiting enzyme in
cyanobacteria (Heath and Rock, 1995; Yu et al., 2011). Recently, a detailed mechanistic kinetic
model of type II fatty acid biosynthesis was constructed. The model’s perturbation analysis
supported these findings and showed: 1) overexpression of FabHEC inhibited fatty acid synthesis
by depleting malonyl-ACP pool; 2) overexpression of holo-ACP, fatty acid synthase (FabFE®), and
thioesterase (TesA’®C) inhibited fatty acid synthesis by sequestering components; 3)
overexpression of FabI*C and FabZ"C enhanced fatty acid synthesis rates. Analysis of free fatty
acid (FFA) composition produced by using the model indicated: 1) changes in the ratios of FAS
components altered the average length of fatty acids and 2) ketoacyl synthases and thioesterases
were required for narrow product profiles (Ruppe and Fox, 2018). Given the success of these in
vitro studies, further exploration of the enzymes in other organisms may shed light on the key
biochemical and regulatory differences between hosts, thereby guiding further metabolic

engineering.
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The biochemistry of the enzymes involved in chain termination has been reviewed
elsewhere (Beld et al., 2015; Fillet and Adrio, 2016; Kang and Nielsen, 2017; Lennen and Pfleger,
2013; Sarria et al., 2017) and will be briefly summarized here. Termination reactions branch from
each compound in the reductive cycle (Fig. 3 red arrows) with long-chain products being more
common. Fatty acid biosynthesis supports two main roles in the cell — creation of membranes and
cell wall components and storage of carbon in energy dense granules. Membrane lipids, storage
lipids, and waxes are made by transesterifying saturated and unsaturated acyl-ACP/CoAs onto
phosphoglycerol, acyl-glycerols (Cronan, 2003) or fatty alcohols respectively (Rontani, 2010).
These reactions are catalyzed by acyltransferases with widely varying substrate specificity to
produce medium-chain, long-chain, and very long-chain (> C0) products. Fatty acid ethyl-esters
(FAEEs) are synthesized by wax ester synthases/diacylglycerol acyltransferases (WS/DGAT) that
have activity on shorter chain alcohols (e.g. ethanol) (Rainer Kalscheuer et al., 2006). The most
common form of biodiesel, fatty acid methyl esters (FAMEs), can be enzymatically synthesized
through direct methylation of fatty acids by a methyltransferase that uses S-adenosyl-L-methionine
(SAM) as methyl group donor (Nawabi et al., 2011). In addition to lipid oils, microbes can store
fatty acids in the form of polyhydroxyalkanoates (PHAs), polymers of B-hydroxy fatty acids. Here,
acyl-CoAs are converted to (3R)-hydroxyacyl-CoA’s (via hydration of enoyl-CoAs by Phal) and
polymerized by variants of PHA synthases (PhaC) that accept long chains (Agnew and Pfleger,
2013). The monomers are produced either from transesterification of acyl-ACPs or incorporation
of free fatty acids via partial turns of B-oxidation (Agnew et al., 2012).

Acyl-thioester reductases catalyze the reductive cleavage of acyl-ACPs (acyl-ACP
reductase — AAR) and acyl-CoAs (acyl-CoA reductase — ACR) to yield fatty aldehydes. The

reductive power typically comes from oxidation of NADPH. Fatty aldehydes can also be produced
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by carboxylic acid reductase (CAR), an enzyme that activates a free fatty acid with ATP
hydrolysis, covalently links the fatty acid to the enzyme, and performs a similar reductive
hydrolysis reaction to ACR/AARs. Fatty aldehydes can be further reduced to fatty alcohols (via
promiscuous aldehyde reductases) or converted to alkanes by aldehyde deformylating oxidases
(ADO) that use oxygen and a protein reductive system (NADPH, ferredoxin, ferredoxin
reductase). Fatty alcohols are widely synthesized to produce wax esters of fatty alcohols and fatty
acids for use in cell walls and as energy storage (Rontani, 2010). Some species use multi-domain
enzymes that catalyze reduction of both acyl-thioesters and fatty aldehydes from the same
polypeptide (Willis et al., 2011). The alkane synthesis pathway was first identified in
cyanobacteria according to a bioinformatics comparison of alkanes producing and non-producing
strains. It is generally accepted that the second step (ADO) is rate-limiting due to its slow-turnover
of fatty aldehydes — a potentially toxic species that further complicates use of this pathway.

In addition to saturated alkanes, some microbes produce olefins. All sequenced
cyanobacteria genomes encode either the AAR/ADO pathway for producing alkanes or a pathway
for producing a-olefins (Coates et al., 2014). The presence of either compound is required for
modulating photosynthetic electron flow at low temperatures (Berla et al., 2015; Knoot and
Pakrasi, 2019). The biosynthesis of a-olefins is catalyzed by a polyketide synthase-like protein,
Ols, first characterized in Synechococcus sp. strain PCC (Mendez-Perez et al., 2011) 7002 or a
cytochrome P4so enzyme OleT from Jeotgalicoccus sp. (Rude et al., 2011). Ols uses saturated and
unsaturated Cig-acyl-ACPs as a substrate to produce 1-nonadecene and 1,14-nonadecadiene via
keto-synthase, B-ketoreductase, sulfotransferase, desulfation, and decarboxylation reactions
catalyzed by the multi-domain enzyme. The OleT enzyme is a fatty acid decarboxylase that

converts long-chain fatty acids to Ci9 and Cz1 a-olefins. Two novel enzymes that catalyze similar
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reactions have been more recently discovered and characterized. A family of oxidases, UndA,
conserved in Pseudomonas sp. are responsible for biosynthesis of a-olefins using an oxygen-
activating, non-heme iron-dependent mechanism (Rui et al., 2014). A family of desaturase-like
enzyme, UndB, is responsible for the biosynthesis of a-olefin through an B-hydrogen abstraction
(Rui et al., 2015). In addition to a-olefins, very-long chain olefins and ketones are synthesized by
condensing two acyl-chains to form a new bond between the carbonyl of one chain and the alpha
carbon of the second (catalyzed by OleA of Shewanella species) (Sukovich et al., 2010). This
intermediate undergoes keto-reduction, decarboxylation, and dehydration reactions (catalyzed by
OleBCD) to yield the final olefin product. Olefins are widely used in many material applications
and therefore these enzymes are attractive catalysts for biological production of high-value
compounds.

The most commonly studied termination reaction is the hydrolysis of acyl-thioesters by
thioesterases to produce free saturated, unsaturated, B-hydroxyl-, and B-keto-fatty acids; the latter
of which can be enzymatically or chemically decarboxylated to yield methyl-ketones (Goh et al.,
2012). In E. coli and S. cerevisiae, if fatty acid catabolism is blocked (e.g. deletion of acyl-
CoA/ACP synthesis and/or B-oxidation) and an exporter is expressed, free fatty acids accumulate
in the extracellular space (M S Davis et al., 2000; Hu et al., 2018; Lennen et al., 2010; Lu et al.,
2008; Voelker and Davies, 1994). This strategy is particularly effective in E. coli because long-
chain acyl-ACP, the key regulatory compound, is depleted in the presence of an active thioesterase
(Jiang and Cronan, 1994). Some thioesterases have broad substrate specificity and act on many
acyl-thioester chains (Cantu et al., 2011). Others, particularly those from plants, are specific for
particular chain-lengths that often correspond to the major fatty acids present in their storage lipids

(Cantu et al., 2011). In addition to making free fatty acids, thioesterases are also used to produce
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pools of specific length acyl-chains that are reactivated to acyl-CoAs, oxidized to the required
reduction state, and processed by other termination enzymes to produce esters, alcohols, alkanes,
olefins, polyhydroxyalkanoates, or methyl-ketones (Agnew et al., 2012; Akhtar et al., 2015; Goh
et al., 2014; Steen et al., 2010; Youngquist et al., 2013). This strategy requires expression of an
acyl-CoA synthetase (e.g. FadD), blockage of B-oxidation at the correct point in the oxidation
cycle, and expression of the desired termination enzyme (Fig. 4). The motivation for this approach
is the fact that most termination enzymes, except thioesterases, have broad substrate specificity.
Here, the approach generates a pool of the desired chain-length acyl-CoA, such that the profile of
oleochemical products matches that of the thioesterase used. The cost of this strategy is the extra
ATP required for FFA reactivation by CAR or acyl-CoA synthases and potential futile cycles

created by thioesterase activity on acyl-CoAs.

Fatty Acid Biosynthesis 4
- 6 NAD(P)H, - 3ATP — = Acetyl-coA

Further ACP /
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Fig. 4 — Strategy for selectively producing medium chain oleochemicals using thioesterases.
Most termination enzymes have activity on a broad range of substrates. Consequently, few
enzymes are capable of producing a specific termination product (e.g. octanol from octanoyl-
ACP/CoA). Instead, thioesterases that act on a small set of substrates can be used to create a narrow
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pool of free fatty acids. If B-oxidation is blocked, then the fatty acid pool can be converted to a
narrow set of acyl-CoAs by acyl-CoA synthetases (Acs). These narrow pools can then be converted
to specific oleochemicals by enzymes having broad substrate specificity acting on the most
abundant acyl-thioester present. Unfortunately, the required blockage of B-oxidation prevents the
r-BOX pathway from being used to produce the acyl-chains.

3. Engineering strategies to increase oleochemical production and chain-length selection
Maximizing flux through fatty acid biosynthesis is achieved by combining general
metabolic engineering strategies: 1.) blocking pathways that compete with synthesis of key
precursors or consume oleochemical products, 2.) pushing flux into fatty acid biosynthesis by
overexpressing rate-limiting enzymes or enzymes that produce intermediates dedicated to fatty
acid biosynthesis (e.g. malonyl-CoA), 3.) pulling flux through fatty acid biosynthesis by
overexpressing enzymes and/or regulatory proteins that by-pass native regulation, 4.) balancing
synthesis of required co-factors with building blocks and other cellular requirements, 5.)
expressing auxiliary proteins that alleviate stresses and other problems caused by producing
specific oleochemicals (Royce et al., 2015; Xu et al., 2017). In addition, maximizing particular
chain-length oleochemical production can be achieved by altering key endogenous enzyme
activities (e.g. thioesterase in E. coli and Type I FAS in yeast) or termination enzyme activities.
Over the past five years, many of these efforts have increased production of oleochemicals in S.

cerevisiae, E. coli, and oleaginous microbes. Progress is summarized in Table 1.

3.1. Increasing acetyl-CoA pool

Acetyl-CoA is the key building block of all oleochemicals and a central metabolite
involved in many biochemical systems. This section briefly summarizes strategies implemented
to increase the acetyl-CoA pool in E. coli, S. cerevisiae and Y. lipolytica. More comprehensive
reviews on balancing intracellular acetyl-CoA pools can be found elsewhere (Krivoruchko et al.,
2015; Nielsen, 2014; Pietrocola et al., 2015). The synthesis of acetyl-CoA is highly regulated and
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completes with production of several fermentation products, e.g. acetate, ethanol, lactate. In E.
coli, deletion of these competing pathways is essential to direct flux through the reversed f-
oxidation pathway (r-BOX) (Dellomonaco et al., 2011; Mehrer et al., 2018; Wu et al., 2017a) and
reduce carbon flux to acetate that is used as part of the acetate switch (Wolfe, 2005) during rapid
exponential growth. Unfortunately, deletion of the pathways that compete with acetyl-CoA
synthesis often leads to reduced growth rates and/or substrate uptake rates. This is best exemplified
in S. cerevisiae where ethanol production is eliminated by disruption of the three pyruvate
decarboxylase (PDC) isozymes (Y. Chen et al., 2015; Dai et al., 2018; Oud et al., 2012). Triple
PDC mutants grow very slowly on glucose and accumulate mutations that result in reduced glucose
uptake. To overcome these challenges, Zhou et al. overexpressed a chimeric ATP:citrate lyase-
malic enzyme-malate dehydrogenase-citrate transporter Ctpl, resulting in a 20% increase in fatty
acid production. In addition, an engineered S. cerevisiae carrying deletions of fatty acyl-CoA
synthases FAA1 and FAA4, and fatty acyl-CoA oxidase HFD1, overexpressing R. foruloides FAS,
TesA’ and ACCI enabled 10.4 g/L free FFAs in fed-batch fermentation (Zhou et al., 2016). A
separate study that integrated metabolic engineering and adaptive laboratory evolution converted
S. cerevisiae to a Crabtree negative yeast (Dai et al., 2018), in the process eliminating ethanol
production. Further development led to a strain capable of producing 33.4 g/ FFAs, representing
a 4-fold improvement over a starting strain in a glucose limited and nitrogen restricted fed-batch
cultivation (Yu et al., 2018). In contrast, the oleaginous yeast Y. lipolytica naturally generates a
large flux to cytosolic acetyl-CoA, particularly under nitrogen starvation when storage lipids are
accumulated. In effort to decouple acetyl-CoA flux from nitrogen starvation, and thereby shorten
cultivation time, Xu et al investigated five alternative cytosolic acetyl-CoA pathways in Y.

lipolytica (Xu et al., 2016). Overexpression a carnitine acetyltransferase Cat2 and a mitochondrial
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carnitine acetyltransferase Yatl helped pull mitochondrial acetyl-CoA into cytosol and conferred
the most improvement of lipid titer (~75%). Increasing the acetyl-CoA pool has been shown to be
beneficial for increasing oleochemical production in both non-oleaginous and oleaginous

organisms.

3.2. Increasing malonyl-CoA pool

Malonyl-CoA, the elongation unit used in fatty acid biosynthesis, is produced from acetyl-
CoA by acetyl-CoA carboxylase (ACC), a rate-limiting reaction in fatty acid biosynthesis in
several organisms. Efforts to increase malonyl-CoA pools have been detailed in prior reviews
(Johnson et al., 2017; Pfleger et al., 2015; Sheng and Feng, 2015), so recent progress will be briefly
summarized in this section. Balanced overexpression of ACC subunits increases production of free
fatty acids in E. coli that co-express a thioesterase (M S Davis et al., 2000; Lennen et al., 2010).
In yeast, several strategies increased malonyl-CoA production including 1.) overexpression of
ACCI1 by chromosomally swapping to a strong constitutive promoter (Qiao et al., 2015), 2.)
overexpression of a mutated ACC1** (Ser659Ala, Serl157Ala) that abolishes post-translational
phosphorylation inhibition (d’Espaux et al., 2017)(Shi et al., 2014), 3.) by-passing the ACC
pathway by expressing methyl malonyl-CoA carboxyltransferase and phosphoenolpyruvate
carboxylase (Shin and Lee, 2017), 4.) overcoming a allosteric feedback inhibition by Ci6-Cao
saturated acyl-CoAs through overexpressing 4-9 stearoyl-CoA desaturase in Y. lipolytica (Qiao et
al., 2015), or through overexpressing a A9-desaturase (OLE1) in S. cerevisiae to increase
membrane fluidity and the fatty acyl-CoA pool (d’Espaux et al., 2017). In addition, Liu et al. found
that a mutant Mga2p regulator in Y. lipolytica led to increased unsaturated fatty acid biosynthesis
and lipid accumulation, possibly due to reduced feedback inhibition of ACC (L. Liu et al., 2015).

An alternative strategy is to balance malonyl-CoA production and consumption using a malonyl-
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CoA responsive biosensor (Xu et al., 2014). In addition to this direct sensing strategy, indirect
malonyl-CoA biosensors have been produced in E. coli, Pseudomonas putida, and
Corynebacterium glutamicum using RppA, a type III polyketide synthase that synthesizes
flaviolin, a red-colored pigment, from malonyl-CoA. The sensor was applied to identify high

malonyl-CoA producers using a genome-wide SRNA knockdown library (Yang et al., 2018).

3.3. Leveraging S-oxidation as a high-yielding synthetic pathway

In a seminal work, Dellomonaco et al., showed that B-oxidation enzymes can be used in a
synthetic direction (r-BOX) to produce medium and long-chain oleochemicals via acyl-CoAs. The
advantage of this pathway is the larger theoretical yields that can be achieved by avoiding ATP
consumption required for malonyl-CoA synthesis. Since the first description in 2011, several
groups have expanded the r-BOX concept to improve oleochemical production in bacteria and
yeast (Kallscheuer et al., 2017). One study demonstrated that E. coli type II FAS can be used to
comprise the pathway (Clomburg et al., 2018). A second explored the relative expression of key
component enzymes in producing medium chain fatty acids (Wu et al., 2017a). The same group
showed that increasing NADH availability is critical to boosting production of medium chain fatty
acids from r-BOX in E. coli (Wu et al., 2017b). The r-BOX pathway is ideally suited for producing
fatty alcohols because the biosynthesis pathway is redox balanced to glucose catabolism. This
strategy led to the production of a distribution of medium chain fatty alcohols (~1.8 g/L) in E. coli
(Mehrer et al., 2018). The r-BOX pathway has been assembled in the cytosol of S. cerevisiae to
synthesize butanol, medium chain fatty acids and ethyl esters (Lian and Zhao, 2015). One main
hurdle of developing r-BOX in yeast is the compartmentalization of -oxidation pathway in the
peroxisome away from pyruvate dehydrogenase (acetyl-CoA synthesis) in the cytosol. In this sense,
two locations of r-BOX can be chosen: peroxisome or cytosol. To use the r-BOX pathway in the
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peroxisome one must increase the peroxisomal acetyl-CoA pool. Alternatively, the requisite r-
BOX enzymes will need to be expressed in the cytosol along with strategies for increasing flux to
acetyl-CoA.

The key enzyme in the r-BOX pathway is the reversible thiolase that elongates the acyl-
chains. Specific thiolase variants have different substrate preferences and therefore help determine
the ultimate product chain-length. The original description of the r-BOX pathway utilized a short-
chain acyl-CoA transferase, YqeF, leading to accumulation of C4 acyl-CoA and butanol. Ralstonia
eutropha BktB has been widely used in r-BOX supporting synthesis of acyl-CoA of up to 10
carbons. For instance, in combination with a ‘TesAEC can lead to 1.3 g/L C¢-Cio fatty acids (Kim
et al., 2015) and in combination with a longer-chain acyl-CoAs thioesterase FadM led to 2.1 g/L
Cio fatty acids (Kim and Gonzalez, 2018). Utilization of a long-chain acyl-CoA transferase FadA
led to accumulation of longer chain-length CoA precursors (Dellomonaco et al., 2011; Mehrer et
al., 2018). In addition, utilization of the specificity of the thiolase (BktB), reductase (PhaB),
dehydratase (PhalJ) and enoyl-CoA reductase (Ter) allows accumulation of C4 and Cs acyl-CoA
substrates, in combination with a broad-specificity carboxylic acid reductase and a cyanobacterial
aldehyde decarbonylase led to 1.6 mg/L pentane (Sheppard et al., 2016). Efforts to engineer the
specificity of thiolases have been reported (Bonk et al., 2018) and further engineering will likely

be necessary to produce narrower product distributions.

3.4. Balance cofactors

Reducing power required for synthesis of many intracellular metabolites is often provided
in the form of NADPH, and in the case of oleochemicals, NADPH is required in each elongation
cycle and frequently in terminal reductions to convert acids into aldehydes, alcohols, olefins and
alkanes. The NADPH requires balancing because catabolic pathways typically generate excess
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NADH as electron carriers rather than NADPH. Efforts to redirect flux to balance the NADPH
supply and demand have been guided by genome-scale metabolic modeling (Ranganathan et al.,
2012; Tee et al., 2014). Alternatively, synthetic pathways can be comprised of natural variants of
the reductive enzymes that prefer NADH or engineered variants that utilize NADH at higher rates
(Javidpour et al., 2014). In Y. lipolytica, '*C metabolic flux analysis identified the oxidative
pentose phosphate pathway as the primary source of NADPH for lipid synthesis (Wasylenko et
al., 2015). Similarly, a constraint-based model identified fluxes in a lower portion of glycolysis
and pentose phosphate pathway are highly correlated to alkane synthesis in E. coli, due to
supplementing reducing equivalent NADPH (Fatma et al., 2018). In E. coli, PPP flux was
enhanced by overexpressing G6P dehydrogenase Zwf, eliminating ED pathway fluxes usage by
deleting phosphogluconate dehydratase Edd, and eliminating reverse fluxes toward PEP by
deleting PpsA and PfIB (Fatma et al., 2018). A recombinant strain led to 2.54 g/L alkane
production in a fed-batch fermentation. Alternatively, introduction of the Entner-Doudoroff
pathway from Zymomonas mobilis into E. coli increased the NADPH regeneration rate by 25-fold
(Ngetal., 2015). In S. cerevisiae, NADPH synthesis was enhanced by replacing PGI1 with ZWF1
to force flux through the pentose phosphate pathway, and deleting GDH1, a NADPH consuming
pathway. The resulting strain produced 6 g/L of fatty alcohols with yield of 0.058 g/g glucose from
a lignocellulosic hydrolysate (d’Espaux et al., 2017). Alternatively, NADH-producing enzymes
have been replaced by NADPH producing variants, e.g. NADP+-dependent glyceraldehyde 3-
phosphate dehydrogenase from Clostridium acetobutylicum, malic enzyme from Mucor
circinelloides where the resulting Y. lipolytica strain produced a highest reported titer, 99 g/L lipids

with 1.2 g/L/h productivity and 0.269 FAME g/g glucose (Qiao et al., 2017).

3.5. Controlling the chain length of oleochemicals
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As discussed above, the majority of termination enzymes, with the exception of
thioesterases, have poor selectivity in terms of activity on different chain-length products. As such,
the product profile mirrors the distribution of acyl-thioesters that accumulate in the cell. For this
reason, metabolic and protein engineering strategies have been applied to alter the chain length of
acyl-thioesters produced by cells or to alter the selectivity/activity of termination enzymes to target
specific substrates. In type II fatty acid biosynthesis, different B-ketoacyl synthase variants are
used to extend ranges of acyl-thioester intermediates. For instance, in E. coli, FabH initiates the
elongation cycle, FabF elongates medium chain ACPs, and FabB is essential for elongating
unsaturated Cio and long chain acyl-ACPs. The overlapping specificity provides functional
redundancy (i.e. only FabB is essential) and opportunities for altering the distribution of acyl-
ACPs. In one such study, an E. coli FabF* variant incapable of extending Cg acyl-ACPs was co-
expressed with a FabB variant tagged with an inducible protease recognition sequence. Upon
degradation of FabB, a large pool of Cs-ACP was created, resulting in increased flux to octanoic
acid via a Cg specific thioesterase (Torella et al., 2013). Computational models of fatty acid
biosynthesis predict that the ratio of TesA (thioesterase) to FabF determines the mean fatty acid
chain-length, and the relative substrate specificity of the thioesterase and B-ketoacyl synthase
dictate the width of fatty acid profiles (Ruppe and Fox, 2018). These findings motivate protein
engineering to alter the substrate preference of other termination enzymes.

In type II systems, termination enzymes can compete with B-ketoacyl synthases for free
acyl-ACP substrates. In contrast, tethering of acyl-chains to the synthases in type I systems reduces
access of trans-acting termination enzymes. For this reason, type I variants were created to replace
the native termination domain (MPT) with medium-chain targeting thioesterase or methyl ketone

synthase. The resulting enzyme in increased production of medium chain fatty acids or methyl
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ketones (Xu et al., 2016; Zhu et al., 2017b). Alternatively, the active sites of the synthase (KS),
loading (acyltransferase - AT), and termination (MPT) domains were mutated to manipulate the
chain length distribution of fatty acids synthesized (Gajewski et al., 2017; Rigouin et al., 2017).
For instance, In the KS domain, M1251 protrudes into the KS binding channel and dividing the
binding channel into an outer and inner volume. On acyl binding, the methionine rotates and gives
access to the inner cavity. The neighboring G1250 is essential for the conformational changes of
M1251. Variants comprised of G1250S and M1251W mutations increased Cs- and Cs-FFA by 12-
and 56-fold over wild-type, respectively. The mutation of 1306A of AT domain broadened
substrate specificities. Together, a combinational variant (I306A, G1250S, M1251W) increased

production to 646 mg/L Cs-Cs FFAs.

3.6. Improving production of specific oleochemical products

Free fatty acids. The substrate profile of thioesterases can be broad or narrow and variants
that target desirable chain lengths have been found in both plants and microbes (Cantu et al., 2011),
albeit with varying activity in heterologous hosts. For this reason, protein engineering has been
applied to increase thioesterase activity and selectivity towards desired chains. Thioesterase
activity has been enhanced by altering the protein surface to better recognize E. coli ACP instead
of the surface of the ACP found in the host from which the thioesterase was sourced (Sarria et al.,
2018). A structure-guided mutagenesis algorithm was applied to the E. coli thioesterase TesA’
(PDB 1U8U) to increase its activity towards medium chain acyl-ACPs. One variant, TesA’
M141L, Y145K, L146K, produced a product profile with 50% Cg while increasing the overall
activity (Grisewood et al., 2017). Highly active variants of the Cuphea palustris FatB (native Csg
specificity >90%) were isolated from a random mutagenesis library using an octanoic acid
selection (Herndndez Lozada et al., 2018). The best variant (CpFatB N28S, 165M, N-terminal
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truncation) increased the vimax by 15-fold enabling production of nearly 3 g/L octanoic acid from a
single chromosomal copy of the gene (Hernandez Lozada et al., 2018). As additional enzymes are
crystalized, structure-guided mutagenesis algorithms are likely to play an important role in in

providing access to enzymes capable of producing medium-chain length oleochemicals.

Fatty alcohols. Recently, homologues of dual function acyl-thioester reductases have been
explored for varying the chain-length profile of fatty alcohols (Hofvander et al., 2011; Willis et
al., 2011). Overexpression of Marinobacter aquaeolei VT8 ACR in E. coli led to 1.6 g/L Ci2 and
Ci6 alcohols, with dodecanol coming from expression of a Ci2-specific thioesterase (Youngquist
et al., 2013). Overexpression of a dual function alcohol dehydrogenase YiaY led to 0.42 g/L Ce-
Cio alcohols in an engineered E. coli -BOX strain (Dellomonaco et al., 2011). Expression of FAR
in yeast produced longer chain-length fatty alcohols: 1.) Tyto alba acyl-CoA reductase (7TaACR)
in Y. lipolytica led to 690.21 mg/L Ci6 and Cis alcohols (Wang et al., 2016); 2.) localization of
TaACR in §. cerevisiae peroxisome produced Cio and Ci2 alcohols (Sheng et al., 2016); 3.) Mus
musculus ACR in S. cerevisiae WRY1 led to 98.0 mg/L Cis and C;g alcohols (Runguphan and
Keasling, 2014); 4.) Mus musculus ACR in S. cerevisiae yL.434 produced 6.0 g/L Cis and Cis
alcohols (d’Espaux et al., 2017). In each of these studies, the ACR itself was not used to dictate

the product profile, indicating that ACR selectivity remains an open area for future study.

Alka(e)nes. In the first demonstration of heterologous alkane biosynthesis, expression of
the ADO and AAR encoded by PCC7942 orf1593 and PCC7942 orf1594 in E. coli MG1655 led
to accumulation of ~150 mg/L. C13-Ci7 alkanes/alkenes (Schirmer et al., 2010). Homologues of
PCC7942 orf1593 were explored to expand product profiles - Arabidopsis thaliana CER1 and

CER2 in S. cerevisiae produced ~86 pg per g DCW C»7-Cs1 alkanes (Bernard et al., 2012); A.
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thaliana CER, Clostridium acetobutylicum ACR, and ‘tesAL109P in E. coli produced 327.8 mg/L
Co and 136.5 mg/L Ci, alkanes (Choi and Lee, 2013); Mycobacterium marinum CAR and a
cyanobacterial ADO in E. coli BL21(DE3) led to ~2 mg/L Ci; alkane (Akhtar et al., 2013); N.
punctiforme ADO in E. coli resulted in ~4.2 mg/L C7 and ~ 1.0 mg/L Co alkanes (Sheppard et al.,
2016). In addition, Cs alkane can be produced in Y. /ipolytica from linoleic acid catalyzed by a
soybean lipoxygenase I (Gmlox1) (Blazeck et al., 2013). ADO protein engineering has also been
attempted — mutagenesis of the substrate channel of Synechococcus elongatus ADO altered the
activity and specificity (Bao et al., 2016); a Procholorococcus marinus cADO A134F variant
showed increased substrate activities toward C4-Ci2 aldehydes compared to the wild-type (Khara
et al., 2013). Other efforts to increase ADO turnover include: 1) applying ferredixin/ferredoxin-
NADP+ reductase system with NADPH native to ADO-expressing cyanobacteria, 2) creating
ADO proteins fused to alternative electron transfer systems for ‘self-sufficient’ catalysis, and 3)
engineering ADO with a catalase domain to alleviate hydrogen peroxide inhibition that likely
arises from poorly balanced electron transfer between the reducing system and ADO (Andre et al.,
2013; Herman and Zhang, 2016; Rajakovich et al., 2015). Together, these strategies improved the
ADO turnover rate 300-fold above the wild-type. Crystal structures of several ADO enzymes have
been reported leading to the discovery of key residues involved in selectivity and activity —
suggesting that further protein engineering is possible (Bao et al., 2016; Jia et al., 2017, 2015;
Marsh et al., 2014).

Esters. In E. coli, methyltransferases from different organisms, including Mycobacterium
marinum Mmar 3356 and Drosophila melanogaster DmJHAMT, were explored to increase
FAME production. Expression of Mmar 3356 in E. coli produced ~0.13 mg/L Cio, ~0.17 mg/L

Ci2, and ~0.073 mg/L C14 FAMEs (Nawabi et al., 2011). Overexpression of DmJHAMT in E. coli
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led to 0.56 g/L C12-C14 FAMEs (Sherkhanov et al., 2016). The first report of producing biodiesel
in E. coli demonstrated that AtfA, a WS/DGAT from Acinetobacter baylyi strain ADP1 exhibited
activity toward Ci2-Cyo chain-lengths (Rainer Kalscheuer et al., 2006; Kalscheuer and Steinbiichel,
2003). Homologs of AtfA have been tested by overexpressing in E. coli or yeast and exhibited
various substrate specificities: Marinobacter hydrocarbonoclasticus DSM 8798 WS in S.
cerevisiae produced 6.3 mg/L C12-Ci1s FAEE (Deng et al., 2015); Acinetobacter sp. ADP1 AtfA in
E. coli expressing ‘TesA L109P produced 22.4 mg/L Cio, 363.1 mg/L Ci2 and 92.2 mg/L Ci4
FAEE (Choi and Lee, 2013); 4. baylyi AtfA in Y. lipolytica produced ~142.5 mg/L C15-C20 FAEE
(Xu et al., 2016); Marinobacter aquaeolei VT8 Maqu_0168 M405W variant showed a ~3-fold

improved selectivity toward ethanol compared to the wild-type (Barney et al., 2015).

4. The state of the field and future directions

Over the past five years, many studies have improved the production of oleochemicals in
common industrial microbes. The most significant accomplishments have led to the development
of S. cerevisiae as an oleochemical producer, expansion of the products produced by Y. lipolytica,
deeper understanding of the r-BOX pathway, and demonstration of enzyme engineering techniques
to alter product profiles. That said, these substantial advancements have failed to lead to high-
volume industrial production of oleochemicals in microbes. The remaining barriers include 1.)
approaching the theoretical yield of specific oleochemicals other than TAGs, 2.) selectivity
towards desired chain lengths, 3.) tolerance to oleochemical products, 4.) wider understanding of
regulation modes in potential oleochemical producing hosts, 5.) identifying lower cost feedstocks
to feed to cells. Continued development of synthetic biology tools for engineering genomes,
analytical methods for identifying cells capable of elevated oleochemical production, systems

biology models for predicting cellular phenotypes, and protein design/evolution methods are key

Page 26 of 42



10

to circumventing these barriers. Given the growth in the community studying oleochemical
production in microbes, we anticipate that the next five years will bring continued advancement
and the development of commercial ventures for high-value oleochemicals (e.g. octanol,
dicarboxylic acids, a-olefins). If low-cost feedstocks can be identified, production of highly-

demanded, but low cost oleochemicals (e.g. biodiesel) will follow suit.
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7. Tables

Table 1. Summary of yields of oleochemical production from carbon sources using microbes.

Chain-length | Theo Yield®(g/g) Yield (g/g)* Titer (g/L) Carbons Source, Medium Hosts Citations
MK C11-Cyy 0.32Cs 0.14 g/g fed glucose 34 ¢/L 20 g/L glucose, M9-MOPS minimal E. coli (Goh et al., 2014)
medium
Cii-Cy7 0.32Css 0.054 g/g fed glucose 54 ¢/L Glucose, M9-MOPS minimal medium, fed- | E. coli (Goh et al., 2018)
batch
Cii-Cis 0.33Cy3 10 ug/g DCW - 20 g/L glucose, YPD medium S. cerevisiae (Zhu et al., 2017b)
Ci3-Cio 0.32C;s 0.0074 g/g fed glucose 0.3148 g/L glucose, YSC medium, fed-batch Y. lipolytica (Hanko et al., 2018)
FAOH Cs-Cro 0.34 Cs 0.084 g/g consumed glucose 0.42 g/L 20 g/L glucose, minimal medium E. coli (Dellomonaco et al.,
2011)
C4-Cis 0.33Cp, 0.2 g/g consumed glucose 1.8 g/L 10 g/L glucose, LB medium E. coli (Mehrer et al., 2018)
Ci10-Cis 0.32 Cy4 0.043 g/g consumed glucose 1.3 g/L glucose, SC medium, fed-batch S. cerevisiae (Sheng et al., 2016)
C10-Cis 0.32Cy4 0.012 g/g fed glucose 0.1 g/L 20 g/L glucose, YSC medium S. cerevisiae (Runguphan and
Keasling, 2014)
Ci10-Cis 0.32Cy4 0.058 g/g consumed glucose 6.0 g/L Glucose, YSC medium, fed-batch S. cerevisiae (d’Espaux et al., 2017)
Cx - 0.0028 g/g fed glucose 0.0835 g/L 30 g/L glucose, minimal medium S. cerevisiae (Yu et al., 2017)
Ci6-Cis 0.32 Cy6 0.00342 g/g fed glucose 2.15 g/L 60 g/L glucose, YSC medium Y. lipolytica (Xu et al., 2016)
Cis 0.32 Cy6 0.004 g/g fed glucose 0.69 g/L 160 g/L glucose, YSC medium Y. lipolytica (Wang et al., 2016)
FFA C14-Cis 0.35Cys 0.28 g/g consumed glucose ~7gL 30 g/L glucose, minimal medium E. coli (Dellomonaco et al.,
2011)
Cs 0.42 Cy 0.17 g/g consumed glucose 1.7 g/L 4 g/L glycerol, LB medium E. coli (Hernandez Lozada et al.,
2018)
Ce-Cro 0.42 Cy 0.0215 g/g fed glucose 0.43 g/L 20 g/L glycerol, modified MOPS minimal E. coli (Clomburg et al., 2018)
medium
Ce-Cro 0.42 Cy 0.28 g/g consumed glucose 38¢g/L 15 g/L glucose, modified MOPS minimal E. coli (Wu et al., 2017a)
medium
Cuo 0.39Cyo 0.1 g/g fed glycerol 2.1¢g/L 20 g/L glycerol, modified MOPS minimal E. coli (Kim and Gonzalez,
medium 2018)
Ci 0.37Ci» 0.1 g/g fed glycerol 0.4 g/L 4 g/L glycerol, LB medium E. coli (Grisewood et al., 2017)
Ci12-Cy 0.35 Cys 0.26 g/g consumed glucose 52 ¢g/L 20 g/L glucose, M9 minimal medium E. coli (Zhang et al., 2012b)
Ce-Cs 0.42 Cg 0.0232 g/g fed glucose 0.464 g/L 20 g/L glucose, YPD medium S. cerevisiae (Gajewski et al., 2017)
C¢Ci2 0.39 Cyo 0.00875 g/g fed glucose 0.175 g/LL 20 g/L glucose, YPD medium S. cerevisiae (Zhu et al., 2017b)
Cus 0.36 Cy4 0.00263 g/g fed glucose 0.052 g/L 20 g/L dextrose, SDC-A medium S. cerevisiae (Fernandez-Moya et al.,
2015)
Ci6-Cis 0.35Cys 0.02 g/g fed glucose ~0.4 g/L 20 g/L glucose, YSC medium S. cerevisiae (Runguphan and
Keasling, 2014)
Ci6-Cis 0.35 Cys ~0.034 g/g consumed glucose 10.4 g/L Glucose, minimal medium, fed-batch S. cerevisiae (Zhou et al., 2016)
Ci16-Ci1s 0.35 Cys ~0.07 g/g consumed glucose 334 ¢/L Glucose, minimal medium, fed-batch S. cerevisiae (Yu et al., 2018)
Ci2-Cis 0.35 Cys 0.022 g/g fed glucose 1.3 gL 60 g/L glucose, YSC medium Y. lipolytica (Xu et al., 2016)
Ci6-Cis 0.35Cys 0.087 g/g fed glucose 10.4 g/L 120 g/L glucose, YNB medium Y. lipolytica (Ledesma-Amaro et al.,
2016)
ALK C, 0.26 C; 0.00035 g/g fed glucose ~0.0042 g/l | 12 g/L glucose, LB medium E. coli (Sheppard et al., 2016)
C-Cy 0.27 Cy 0.0001 g/g fed glucose ~0.0012 g/l | 12 g/L glucose, LB medium E. coli (Sheppard et al., 2016)
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Co-Cy3 0.27 Cyy n.p. 0.581 g/LL glucose, MR minimal medium, fed-batch E. coli (Choi and Lee, 2013)
Cii-Ci3 0.27 Cu 0.000951 g/g fed galactose 0.0038 g/L 4 g/L arabinose, LB medium E. coli (Bao et al., 2016)
Ci3-Cy7 0.28 Cys 0.0213 g/g fed glucose 0.426 g/L 20 g/L glucose, M9 modified minimal E. coli (Fatma et al., 2018)
medium
Cis 0.28 Cis 0.00233 g/g consumed glucose | 0.14 g/L glucose, M9 minimal medium, fed-batch E. coli (Q. Liu et al., 2015)
Cs-Cy3 0.27Cyy 0.00015 g/g fed glucose 0.003 g/L 20 g/L glucose, Delft minimal medium S. cerevisiae (Zhu et al., 2017a)
Ci3-Cy7 0.28 Cis 0.000027 g/g fed glucose ~0.00081 30 g/L glucose, minimal medium S. cerevisiae (Zhou et al., 2016)
g/L
Ci11-Cyo 0.28 C;s 0.000123 g/g fed glucose 0.0037 g/L 30 g/L glucose, YPD+G418 medium S. cerevisiae (B. Chen et al., 2015)
Ci3-Ciz 0.28 Cis 0.000383 g/g fed glucose 0.023 g/L 60 g/L glucose, YSC medium Y. lipolytica (Xu et al.,, 2016)
FAEE
Ci10-Ci4 0.36 Ci» 0.0159 g/g fed glucose 0.477 g/ 30 g/L glucose, MR minimal medium E. coli (Choi and Lee, 2013)
C1-Css 0.35 Cy 0.031 g/g fed sugar 0.682 g/L 20 g/L beechwood xylan and 2 g/L glucose, | E. coli (Steen et al., 2010)
M9 minimal medium
Ci-Cis 0.35 Cys 0.075 g/g fed glucose 1.5 g/L 20 g/L glucose, minimal medium E. coli (Zhang et al., 2012a)
Cs-Cio 0.37 Cyo n.p. n.p. 20 g/L glucose, SCD medium S. cerevisiae (Lian and Zhao, 2015)
C1-Css 0.35Cy4 0.00025 g/g fed sugar 0.005 g/L 2 g/L glucose, 18 g/L galactose YSC S. cerevisiae (Runguphan and
medium Keasling, 2014)
Ci16-Cao 0.34 Cy5 0.00228 g/g fed glucose 0.137 g/L 60 g/L glucose, YSC medium Y. lipolytica (Xu et al., 2016)
FAME C12-Ci4 0.29 Cy» 0.037 g/g fed glycerol 0.56 g/L 15 g/L glycerol, TB medium E. coli (Sherkhanov et al.,
2016)
Ci6-Cis 0.305 Cy6 0.27 g/g fed glucose 99 g/L lipid- | Glucose, YNB medium, fed-batch Y. lipolytica (Qiao et al., 2017)
derived
FAME

2Yield is calculated as either g/g consumed carbon source or g/g fed carbon source, where the former is directly reported in the original papers and the latter is quantified by

dividing the reported titer (g/L) over the initial carbon concentration.

b Not reported.

¢ Theoretical yield is calculated using a genome-scale metabolic model through fatty acid synthesis pathways under aerobically growth condition.

4 Not available
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